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Abstract. This paper presents a topology optimization formulation based on the Solid Isotropic Material with
Penalization (SIMP) method and solved by the Modified Optimality Criteria (MOC) algorithm. It addresses
mechanical design problems such as structural reinforcement adding elastic material or vibration reduction
using viscoelastic layers. The aim is thus to attach on a pre-existing given structure a design domain in order
to improve the behavior of this elastic structure, according to an objective function. This can be useful when
one wants to use, for example, additive manufacturing to reinforce a pre-existing structure or to maximize
structural damping. Two objective functions are tested in both linear statics and dynamics: a compliance
based objective function and a displacement based one. In the dynamic case, written in the frequency domain,
the two proposed objective functions include the viscoelastic material model (a Zener fractional derivative
one) used to fill the design domain. The displacement criteria is developed using a general formula able
to take into account as many degree of freedom as necessary. Finally, some applications based on beams
and CubeSat-like structures are shown in this article. The proposed examples show that in both statics and
dynamics, the optimization of a restrained design domain attached to an existing structure can improve its
behavior: stiffness improvement or vibration reduction.

Keywords: Static Reinforcement / Vibration Reduction / Topology optimization / Viscoelasticity

1 Introduction and motivation

The structural mass is often a main issue which has to
be cautiously considered during the design process of
a mechanical structure, for instance for a vehicle or an
equipment in the aerospace industry. This is a structural
optimization problem where one wants to reduce the mass
regarding to another criterion such as, non-exhaustively:
stiffness maximization usually expressed as a compliance
minimization problem, displacement lowering or vibration
reduction [1]. Such objectives can be effectively addressed
by using a topology optimization approach [2–11].

The present article uses an algorithm based on the well
known SIMP-method [12–14] in order to focus on these
objectives and tries to address the situation when one
wants to add to a pre-existing given structure Ω1, a sec-
ond domain Ω2 with the aim of either reinforcing the
pre-existing structure, lowering the displacement of a cho-
sen area, or reducing vibrations of Ω1 using the design
domain Ω2. Although few papers exist on the subject
of structural reinforcement using topology optimization
[15–18], the idea of considering separated substructures is
newly addressed here. This means that mass (for dynamic
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formulation) and stiffness matrices of each substructure
are considered separately and assembled afterwards in
the global system. During the optimization process, the
discretized operators of Ω1 remain constant (stiffness
and mass matrices) while they vary for Ω2 according
to its material density distribution. In order to perform
this topology optimization, the design variables are the
elemental material density distribution in Ω2.

One can therefore imagine to reinforce Ω1 using an
efficient manufacturing process such as additive manu-
facturing [19] to build Ω2.

Concerning the purpose of vibration reduction, it is per-
formed in the frequency domain and damping is taken into
account thanks to viscoelastic materials [20–22]. Among
the various rheological existing models of viscoelastic
behavior, the four-parameter Zener fractional-derivative
model is used in this work. It allows to efficiently repre-
sent the frequency-dependence of the damping properties
with only four parameters: correlations between numerical
and experimental tests show a good accuracy [23].

The next part of the present paper is dedicated to
the building of the discretized numerical model of the
physical problem, including a sensitivity analysis of the
solution with respect to the design variables, namely the
elemental material densities in the design domain. The
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third section details the topology optimization problem
formulation, introducing the two different used objective
functions: compliance and displacement based objective
functions. The fourth section presents a selection of appli-
cations corresponding to a static reinforcement and to a
vibration reduction.

The numerical implementation is done using Python
and Fortran languages. Gmsh [24] is used for pre-
treatment (meshing) and post-treatment (plotting).

2 Modeling of the problem

2.1 Geometry

The studied problem is composed of a purely elastic given
domain Ω1 and a design domain Ω2 which can be either
purely elastic or viscoelastic (Fig. 1). The whole problem
is assumed to be linear. The interface between the two
domains is denoted by I. In the static case, the aim is
to reinforce the given structure Ω1 subjected to the static
load ~F . In the dynamic case, considered in the frequency
domain, the aim is to dissipate energy in order to protect
the given structure Ω1 from spurious vibrations due to the
harmonic excitation ~F . The first case can be degenerated
from the second by taking the angular frequency ω to zero.

A design domain Ω2 is then attached to Ω1, in which
each element e has a material density variable xe. The aim
is to find the best material distribution in Ω2 according to
an objective function associated to constrains functions.
This optimization problem is solved using a topology
optimization procedure described in Section 3.1.

2.2 Viscoelastic model

In this work, the viscoelastic behavior of the dissipa-
tive material in Ω2 is modeled using a four-parameter
Zener fractional-derivative viscoelastic model, introduced
by Bagley and Torvik [20]. For that purpose, the Young
modulus is considered as a complex one such as:

E?(ω) = E′(ω) + iE′′(ω), (1)

where E′(ω) is the storage modulus, E′′(ω) the loss mod-
ulus and i2 = −1. Both moduli can be expressed as a
function of the static stiffness E0, the dynamic stiffness
E∞, the relaxation time τ and the fractional order of the
derivative α [25], which represent the four parameters of
the model:

E′(ω) =
E0 + (E0 + E∞)(ωτ)α cos(απ2 ) + E∞(ωτ)2α

1 + 2(ωτ)α cos(απ2 ) + (ωτ)2α
,

E′′(ω) =
(E∞ − E0)(ωτ)α sin(απ2 )

1 + 2(ωτ)α cos(απ2 ) + (ωτ)2α
.

(2)
Finally, the Young modulus can be expressed using the
four above parameters:

E?(ω) =
E0 + E∞(iωτ)α

1 + (iωτ)α
. (3)

Ω2

Ω1

xe = 0
xe = 1

Interface I

~F

Fig. 1. Geometry and finite element mesh of the problem
composed of a given structure Ω1 and a design domain Ω2.

This last expression is the one that is implemented to
describe the material contained in the sub-part Ω2.

2.3 Implementation of design variables

For the purpose of topology optimization, the design
domain Ω2 contains a set of design variables x =
[x1, x2, . . . , xn]T which is the set of elemental material
densities (n is the number of elements in Ω2-domain’s
mesh). These densities are such that 0 ≤ xe ≤ 1 where 0
is the lower bound of xe corresponding to an absence of
material in the element and 1 is the upper bound meaning
a presence of material [26] (Fig. 1).

An efficient way to use this is the well-known penal-
ization algorithm SIMP from Bendsøe [12] and Zhou &
Rozvany [13]. However, a derivative from this law estab-
lished by Sigmund [27] and called the Modified SIMP-law
is used here. This formulation has several advantages,
including the fact that it avoids stiffness (or mass) matrix
to become singular.

The effective Young modulus in the element e of Ω2 is
expressed as a function of the elemental material densities
xe such that:

E?eff.(ω, xe) =
[Emin

E0
+ xpe

(
1− Emin

E0

)]
E?(ω), (4)

where E?(ω) is given by equation (3), Emin = εE0 is the
imposed lower bound of the effective Young modulus (ε <
1) and p is a penalization factor. In the same way, the
effective volumetric mass density in the element e of Ω2 is
expressed as a function of the elemental material densities
xe such that:

ρeff.(xe) =
[ρmin

ρ0
+ xme

(
1− ρmin

ρ0

)]
ρ0, (5)

where ρ0 is the volumetric mass density of the material
used for the design domain Ω2, ρmin = ερ0 is the imposed
lower bound of the effective volumetric mass density and
m is a penalization factor. In this work, the penalization
factor p related to the Young modulus is set to 3 and the
penalization factor m related to the volumetric mass is set
to 1 [5]; the ε coefficient is chosen to be 10−3.



S. Burri and A. Legay: Mechanics & Industry 24, 14 (2023) 3

2.4 Discretized system

Using the finite element method, the dynamic discretized
system of the whole problem is written in the frequency
domain as: (

K− ω2M
)
U = F , (6)

where K is the complex stiffness matrix (taking into
account viscoelastic terms), M is the mass matrix, ω
is the angular frequency and F represents the external
nodal forces. The design variable vector x, composed of
elemental material densities in design sub-domain Ω2 is
introduced in order to use a topology optimization proce-
dure. Using a sub-domain decomposition between domain
Ω1 and Ω2, the global discretized system equation (6) is
written:([

K111
K11I

012

K1I1
K1II

+ K2II
(ω, x) K2I2

(ω, x)
0

21
K22I

(ω, x) K222
(ω, x)

]

−ω2

[
M111

M11I
0

12

M1I1
M1II

+ M2II
(x) M2I2

(x)
0

21
M22I

(x) M222
(x)

])

×

[
U1(x)
U I(x)
U2(x)

]
=

[
F 1
0I
02

]
,

(7)

where 1, 2 and I denote respectively sub-domain Ω1, sub-
domain Ω2 and the interface I between Ω1 and Ω2. The
stiffness matrix K2(ω, x) is complex and frequency depen-
dent due to the viscoelastic material of sub-domain Ω2

(Eq. (3)). Moreover, this last matrix depends on the design
variable vector x.

In order to simplify the notations, the following matri-
ces are introduced:

S1(ω) =

[
K111

K11I
012

K1I1
K1II

0
I2

021 0
2I

022

]
− ω2

[
M111

M11I
012

M1I1
M1II

0
I2

021 0
2I

022

]
,

(8)

S2(ω, x) =

[
0

11
0

1I
0

12

0
I1

K2II
(ω, x) K2I2

(ω, x)
0

21
K22I

(ω, x) K222
(ω, x)

]

−ω2

[
0

11
0

1I
0

12

0
I1

M2II
(x) M2I2

(x)
021 M22I

(x) M222
(x)

]
, (9)

where S1(ω) does not depend on x and represents the con-
tribution of Ω1, while S2(ω) depends on x and represents
the contribution of the design domain Ω2.

The global dynamic equation (Eq. (6)) then becomes(
S1(ω) + S2(ω, x)

)
U(x) = F . (10)

By denoting S(ω, x) = S1(ω) +S2(ω, x), the equation can
be written as

S(ω, x)U(x) = F . (11)

2.5 Sensitivity analysis of the solution with respect to
the design variables

In the following work, a topology optimization procedure
is used (Sect. 3.1). This algorithm needs to compute the
sensibility of the solution according to the design variables
xe. Since only matrix S2(ω, x) is depending on design
variables, the derivative of equation (11) with respect to
the design variable xe leads to the following equation:

∂S2(ω, x)

∂xe
U(x) + S(ω, x)

∂U(x)

∂xe
= 0. (12)

The sensitivity of the solution with respect to the design
variable xe is then given by:

∂U(x)

∂xe
= −S−1(ω, x)

∂S2(ω, x)

∂xe
U(x), (13)

where U(x) is the solution of equation (11). In this last
equation, the derivative of the S2(ω, x) matrix needs to
be computed.

2.6 Derivatives of the stiffness and mass matrices of
the design domain

The derivative of S2(ω, x) with respect to xe involves
the derivative of the stiffness and mass matrices of Ω2,
denoted respectively by K2(ω, x) and M2(x):

∂S2(ω, x)

∂xe
=
∂K2(ω, x)

∂xe
− ω2 ∂M2(x)

∂xe
. (14)

The stiffness matrix K2(ω, x) can be expressed as the
assembly of the elemental stiffness matrices kj(ω, xj) over
the n elements of Ω2-domain mesh:

K2(ω, x) = Anj=1kj(ω, xj). (15)

The elemental stiffness matrix kj(ω, xj) can be written as

kj(ω, xj) = E?eff.(ω, xj)k
0
j , (16)

where k0
j is the stiffness matrix of element j computed

with a unit Young modulus. Thus, the derivative of
K2(ω, x) with respect to xe is given by

∂K2(ω, x)

∂xe
= Anj=1

∂E?eff.(ω, xj)

∂xj
k0
e, (17)

with

∂E?eff.(ω, xe)

∂xj
= pxp−1e

(
1− Emin

E0

)
E?(ω)δej , (18)

where δej is the Kronecker symbol (no implicit sum-
mation). The same development is applied to the mass
matrix. The mass matrix M2(x) is expressed as the assem-
bly of the elemental mass matrices mj(xj) over the n
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elements of Ω2-domain mesh:

M2(x) = Anj=1mj(xj). (19)

The elemental mass matrix mj(xj) can be written as

mj(xj) = ρeff.(xj)m
0
j , (20)

where m0
j is the mass matrix of element j computed with

a unit volumetric mass density. Thus, the derivative of
M2(x) with respect to xe is given by

∂M2(x)

∂xe
= Anj=1

∂ρeff.(xj)

∂xe
m0
j , (21)

with

∂ρeff.(xj)

∂xe
= mxm−1e

(
1− ρmin

ρ0

)
ρ0δej . (22)

Since m = 1 in this work, the simplification gives

∂ρeff.(xj)

∂xe
= (ρ0 − ρmin)δej . (23)

The elemental stiffness and mass matrices obtained
with a unit Young modulus and a unit volumetric mass
density are computed once at the beginning of the com-
putation and stored in order to be used later on during
the topology optimization process.

3 Topology optimization problem
formulation

3.1 Minimization problem

In this work, the aim of the topology optimization is to
find the material density set of design variables x̃ω mini-
mizing the objective function f(ω, x) for a given angular
frequency ω according to constraints:

x̃ω = Argmin
x

f(ω, x), (24)

such that

v(x)− γv0 ≤ 0, (25)

0 ≤ xe ≤ 1,∀e ∈ [1, n], (26)

S(ω, x)U(x) = F , (27)

where v(x) is the volume of material in Ω2 associated
to the distribution of material density x, v0 is the total
volume of Ω2 and γ is the final target of material volume
ratio in Ω2, chosen by the user. Two different objective
functions are considered in this work. The first function
is based on the compliance (denoted by c(ω, x)) while

the second one is based on the displacement (denoted by
d(ω, x)). Both can be used under a static environment
(ω = 0) as well as a dynamic one (ω > 0).

A density filtering strategy [3] is used to avoid checker-
board patterns. This minimization problem is solved using
a modified-SIMP algorithm (see Sect. 2.3) associated to a
solver called Modified Optimality Criteria (MOC) method
[16] which is an extension of the Optimality Criteria (OC)
method [14,28]. This algorithm has been chosen thanks to
its capability to be adjustable depending on the optimiza-
tion problem to solve. Also, it is much more suitable than
OC due the modified parameter introduced for dealing
with dynamic criteria, and relatively easier to implement
and analyze compare to other complex algorithms such as
MMA [29].

The iterative process is stopped until either a conver-
gence of the objective function is reached, meaning when
the difference of the elemental densities between 2 con-
secutive iterations is less than a fixed relative criterion
(noted as ζ in this work); or when the maximum number
of iterations is reached (noted as nmax in this work).

3.2 Compliance based objective function

3.2.1 Dynamic case

The compliance is given in terms of the complex displace-
ment field U(x), and the stiffness and mass matrices of
the problem as [30,31]

c(ω, x) = |UT (x)
(
S1(ω) + S2(ω, x)

)
U(x)|, (28)

where UT (x) denotes the transpose-conjugate of the U(x)
vector and |.| denotes the norm of a complex number. By
introducing the following g(ω, x) complex function

g(ω, x) = U
T

(x)
(
S1(ω) + S2(ω, x)

)
U(x), (29)

the compliance can be expressed as a function of g(ω, x):

c(ω, x) = (g(ω, x)g(ω, x))
1
2 . (30)

The sensitivity of c(ω, x) with respect to xe is then given
by:

∂c(ω, x)

∂xe
=

1

2
(g(ω, x)g(ω, x))−

1
2

(∂g(ω, x)

∂xe
g(ω, x)

+g(ω, x)
∂g(ω, x)

∂xe

)
. (31)
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This last expression involves the sensitivity of g(ω, x)
with respect to xe, which can be computed from equa-
tion (29):

∂g(ω, x)

∂xe
=
∂U

T
(x)

∂xe
S(ω, x)U(x) + U(x)TS(ω, x)

∂U(x)

∂xe

+U
T

(x)
∂S2(ω, x)

∂xe
U(x). (32)

Using equation (13), this equation becomes

∂g(ω, x)

∂xe
= −UT (x)

∂S2(ω, x)

∂xe
S
−1

(ω, x)S(ω, x)U(x).

(33)
It can be rewritten as:

∂g(ω, x)

∂xe
= −UT ∂S2(ω, x)

∂xe
X, (34)

where X is the solution of the following system:

S(ω, x)X = S(ω, x)U(x). (35)

The system of equation (35) has to be solved for each
iteration of the topology optimization loop, but not for
each design variable xe. Once the sensitivity of the g(x)
function with respect to xe is obtained, the compliance
sensitivity is given by equation (31).

3.2.2 Static case

The compliance based objective function in the static
case (denoted by cs(x)) can be derived from the previous
section by taking ω = 0:

cs(x) = c(0, x) = |UT (x)
(
S1(0) + S2(0, x)

)
U(x)|, (36)

where

S1(0) = K1, (37)

S2(0, x) = K2(0, x). (38)

In this case, S(0, x) = S(0, x) since S2(0, x) is a real
matrix. The derivative of g(0, x) with respect to xe
becomes:

∂g(0, x)

∂xe
= −UT ∂K2(0, x)

∂xe
U(x), (39)

and the static compliance sensitivity is then given by

∂cs(x)

∂xe
= −UT ∂K2(0, x)

∂xe
U(x). (40)

where E?(0) = E0 in the expression of equation (3).

3.3 Displacement based objective function

3.3.1 Dynamic case

For some applications, it can be relevant to use a local
criterion (e.g. when focusing on a targeted component
embedded in a the structure Ω1), such as the minimization
of the displacement of a local point (or set of points). The
following displacement based function given in terms of
the displacement field U(x) [32,33] is then introduced:

d(ω, x) = U
T

(x)βU(x), (41)

where β is a diagonal localization matrix which can
be defined by (using the Kronecker symbol δij with no
implicit summation):

βij = biδij , (42)

The coefficient bi is prescribed by the user (0 or 1)
depending on whether one wants to consider the degree of
freedom (dof) i or not.

The derivative of d(ω, x) with respect to xe is

∂d(ω, x)

∂xe
=
∂U

T
(x)

∂xe
βU(x) + U

T
(x)β

∂U(x)

∂xe
. (43)

Using equation (13), this last equation becomes

∂d(ω, x)

∂xe
= −UT (x)

∂S2
T

(ω, x)

∂xe
S
−1

(ω, x)βU(x)

−UT (x)βS−1(ω, x)
∂S2(ω, x)

∂xe
U(x). (44)

This expression can be rewritten as:

∂d(ω, x)

∂xe
= −UT (x)

∂S2
T

(x)

∂xe
Y + Y

T ∂S2(x)

∂xe
U(x), (45)

where Y is the solution of the following system:

S(x)Y = βU(x). (46)

This equation has to be solved for each topology optimiza-
tion iterative step, while equation (45) gives the sensitivity
of the displacement based objective function:

∂d(ω, x)

∂xe
= −2<

(
U
T

(x)
∂S2

T
(x)

∂xe
Y
)
, (47)

where < is the real part of the imaginary number.

3.3.2 Static case

The displacement based function in the static case
(denoted by ds(x)) can be derived from the previous
section by taking ω = 0:

ds(x) = d(0, x) = UT (x)βU(x), (48)
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where U(x) is the solution of:

(K1 + K2(0, x))U(x) = F . (49)

The sensitivity of ds(x) with respect to xe becomes:

∂d(0, x)

∂xe
= −2UT (x)

∂K2
T (0, x)

∂xe
Y (50)

where Y is the solution of the following system:

K(x)Y = βU(x). (51)

4 Applications

4.1 Static reinforcement

4.1.1 Reinforcement of a 3D cantilever beam

This example is adapted from the cantilever beam from
[34] and is composed of an elastic plate (Ω1) surrounded
by two layers which compose Ω2, as shown in Figure 2.
The beam is fully clamped on its left side while a verti-
cal load of 100 N is applied on the right side of Ω1. The
structure is discretized using 8-node hexahedral elements:
2160 in Ω1 and 8640 in Ω2, leading to a total of 10,800 ele-
ments and 37,719 degrees of freedom. The chosen point for
the local displacement minimization is point A (Fig. 2), so
matrix β only has 3 unit terms corresponding to the 3 dofs
associated to the node A. The optimum solution for both
objective functions, static compliance cs(x) and displace-
ment based function ds(x), are compared. The material for
both domains Ω1 and Ω2 is aluminum whose properties
are given in Table 1.

In this case, the target for the final volume ratio is set
to γ = 25% of the total volume of Ω2, the stop criterion ζ
is empirically set to 2.5% and the maximum number nmax
of iterations is set to 100.

The optimal final shapes obtained by minimizing cs(x)

and ds(x) are denoted respectively by x̃c and x̃d; they are
given in Figure 3. One can see that the final shapes are
quite similar, with only few differences on a local aspect.
In both cases, computations have converged towards a
physical shape. On a numerical aspect, the evolution of
both objective functions (Fig. 4) show that a convergence
is reached around 80 iterations for both criteria. In the
final shape for solution x̃c, there are:

� 2140 elements such that xe > 0.99
� 6420 elements such that xe < 0.01
� 80 elements such that 0.01 < xe < 0.99

In the final shape for solution x̃d, there are:

� 2140 elements such that xe > 0.99
� 6400 elements such that xe < 0.01
� 100 elements such that 0.01 < xe < 0.99

The quantity of non-converged elements (material density
between 0.01 and 0.99) is about 1% in both cases.

Ω1
Ω2

~F

A

30 cm

4 cm

4 cm

2 cm

10 cm

Fig. 2. 3D cantilever beam (Ω1) reinforced by a design domain
(Ω2).

4.1.2 Application to a 3D CubeSat-like structure

The application addressed in this section concerns a
CubeSat-like structure which is a standard format cre-
ated by Puig-Suari and Twiggs [35,36] for the sake of
university projects, in order to send small satellites into
space. The specifications for the main configuration is
called “1U” and is a 10 × 10 × 10 cm cube whose weight
can not exceed 1.33 kg. Therefore, it seems appropriate to
use topology optimization on an initial CubeSat skeleton
in order to optimize the stiffness of the overall structure
while controlling the mass of the added material.

The considered initial structure is shown in Figure 5
and is composed of a skeleton (Ω1) standing on its 4
clamped feet. A vertical surface load is applied on the
upper surface. Design domain Ω2 is chosen to be the
volume resulting from the 6 faces of the cube times the
thickness of the skeleton in the third dimension. The struc-
ture is discretized using 8-node hexahedral elements: 2808
in Ω1 and 9504 in Ω2, leading to a total number of 12,312
elements and 49,560 degrees of freedom. The material for
both domains Ω1 and Ω2 is aluminum whose properties are
given in Table 1. The two criteria, compliance cs(x) and
displacement based objective functions ds(x), are used.
The chosen point for the local displacement minimization
is one of the upper corner (point A), so matrix β only
has 3 unit terms corresponding to the 3 dofs associated to
this node A. The target for the final volume ratio is set
to γ = 25% of the total volume of Ω2, the stop criterion
ζ is empirically set to 1% and the maximum number of
iterations nmax is set to 200.

The optimal final shapes obtained by minimizing cs(x)

and ds(x) are denoted respectively by x̃c and x̃d; they are
given in Figure 6. One can observe two clearly defined
reinforcement shapes depending on the objective func-
tion. The evolution of the objective functions are given
in Figure 7. It shows that the criteria ζ is reached at
around 100 iterations for the displacement objective func-
tion while there are spurious oscillations in the material
densities for the compliance objective function and the
maximum number of iteration nmax is reached. Neverthe-
less it does not affect the final shape of the design domain
since it concerns only a few elements. Indeed, in the final
shape for solution x̃c, there are:

� 2360 elements such that xe > 0.99
� 7064 elements such that xe < 0.01
� 80 elements such that 0.01 < xe < 0.99
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Table 1. Aluminum material properties.

Young Modulus E Poisson coefficient ν Volumetric mass density ρ
70 GPa 0.3 2700 kg m−3

(a) View of the optimal solution x̃c (b) View of the optimal solution x̃d

(c) Side view of the optimal solution x̃c (d) Side view of the optimal solution x̃d

Fig. 3. Optimal converged final shapes for the 3D cantilever beam: elements in Ω2 such that xe > 0.99 are in red, elements in Ω1

are in blue.

Fig. 4. Evolution of the objective functions cs(xi)/cs(x1) and ds(xi)/ds(x1) over the optimization iterations for the 3D cantilever
beam where x1 is the design at the end of the first iteration while xi is the design at iteration i.
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1 cm

~F

Ω1 Ω2

10 cm

10 cm

10 cm

1 cm

1 cm

8 cm
8 cm

7 cm

1 cm
A

Fig. 5. CubeSat-like structure (Ω1) reinforced by a design domain (Ω2). Note that half of Ω2 volume is represented with a
translation from Ω1 in order to see its shape.

(a) Overall view of the optimal solution x̃c (b) Overall view of the optimal solution x̃d

(c) Side view of the optimal solution x̃c (d) Side view of the optimal solution x̃d

Fig. 6. Optimal converged final shapes for the 3D CubeSat-like structure: elements in Ω2 such that xe > 0.99 are in red, elements
in Ω1 are in blue.
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Fig. 7. Evolution of the objective functions cs(xi)/cs(x1) and ds(xi)/ds(x1) over the optimization iterations for the 3D CubeSat-like
structure where x1 is the design at the end of the first iteration while xi is the design at iteration i.

e = 1 mm

e = 1 mm
h = 1 mm

Ω1

Ω1

Ω2

L = 0.1 m

A

Harmonic force

Fig. 8. Optimization of an internal viscoelastic layer (Ω2) of a 2D sandwich beam composed of 2 external aluminum layers (Ω1).

In the final shape for solution x̃d, there are:

� 2368 elements such that xe > 0.99
� 7072 elements such that xe < 0.01
� 64 elements such that 0.01 < xe < 0.99

The quantity of non-converged elements (material density
between 0.01 and 0.99) is less than 1% in both cases.

4.2 Vibration reduction

4.2.1 Optimization of a visoelastic layer for a 2D sandwich
beam

The problem is described in Figure 8. It is assumed a plane
stress state. The sandwich beam is composed of 2 exter-
nal aluminum layers (domain Ω1) and a viscoelastic layer
(domain Ω2) in between them. The material properties
are given in Table 1 (for aluminum) and 2 (for the vis-
coelastic layer). The left side of the beam is clamped while
an harmonic force (±10 N) is imposed at the right side at
the angular velocity ω. The structure is discretized using
quadrangular 4-node elements. There are 6 elements in the
thickness direction of the aluminum layers and 7 elements
in the thickness direction of the viscoelastic layer. Along

the length direction of the beam, there are 198 elements.
There is a total of 1386 elements in Ω2. The target final
volume ratio is γ = 50% of the total volume of Ω2, the
stop criterion ζ is empirically set to 1% and the maximum
number of iterations nmax is set to 100.

Firstly, the viscoelastic layer is optimized using the
compliance objective function c(ω, x) at three different
harmonic excitations ω (500 Hz, 1000 Hz and 2000 Hz).
The solutions in terms of material densities are denoted
respectively by x̃c500 Hz, x̃

c
1000 Hz and x̃c2000 Hz. These optimal

material densities are plotted in Figure 9. The conver-
gence of the compliance over the iterations is plotted in
Figure 10. It can be seen that for the three harmonic
excitations, there are oscillations of the objective func-
tion and the optimization process is stopped at a fixed
number of iteration (here nmax=100 iterations). How-
ever, these spurious oscillations concern a few elements
and do not affect the final solution (Tab. 3). The fre-
quency response functions of the beam are then computed
using these three material densities. The compliance func-
tions c(ω, x̃c500 Hz), c(ω, x̃

c
1000 Hz) as well as c(ω, x̃c2000 Hz) are

shown in Figure 11. The black curve is obtained using
a fully filled layer of viscoelastic material (xe = 1, ∀e).
It can be seen that for a given angular frequency, a
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Table 2. Viscoelastic material properties.

E0 E∞ ν ρ α τ
4.2 MPa 1.62 GPa 0.45 1460 kg m−3 0.59 0.52×10−6 s

Fig. 9. Optimal solutions of the visco-elastic layer of the 2D sandwich beam (black: xe > 0.99) for the compliance criteria, from
bottom to top: x̃c

500 Hz, x̃
c
1000 Hz, x̃

c
2000 Hz.

Fig. 10. Dynamic compliance c(x) evolution over the optimization iterations for the 2D sandwich beam and for the three different
harmonic excitations: c(500 Hz, xi), c(1000 Hz, xi) and c(2000 Hz, xi).

Table 3. Number of elements in Ω2 in terms of their final
material densities for the 2D sandwich beam.

xe > 0.99 xe < 0.01 0.01 < xe < 0.99

x̃c500 Hz 623 754 9
x̃c1000 Hz 675 625 86
x̃c2000 Hz 676 617 93
x̃d500 Hz 693 693 0
x̃d1000 Hz 677 622 87
x̃d2000 Hz 686 663 37

solution can be better than an other in terms of mini-
mizing the compliance. For instance, the material density
solution x̃c500 Hz given by the minimization of the compli-
ance at 500 Hz exhibits the minimum of compliance at
500 Hz compared to the other solutions, even the solu-
tion computed with a full layer of viscoelastic material.

The same conclusions can be done with solution x̃c1000 Hz
at the frequency 1000 Hz; and with solution x̃c2000 Hz at the
frequency 2000 Hz.

Secondly, the viscoelastic layer is optimized using the
displacement objective function d(ω, x) at the same three
different harmonic excitations ω (500 Hz, 1000 Hz and
2000 Hz). The solutions in terms of material densities
are denoted respectively by x̃d500 Hz, x̃

d
1000 Hz and x̃d2000 Hz.

These optimal material densities are plotted in Figure 12.
The convergence of the displacement objective function
over the iterations is plotted in Figure 13. As for the
compliance criteria, there are spurious oscillations for two
harmonic excitations (1000 Hz and 2000 Hz) (Table 3).
The frequency response functions of the beam are then
computed using these three material densities. The dis-
placement functions d(ω, x̃d500 Hz), d(ω, x̃d1000 Hz) as well as
d(ω, x̃d2000 Hz) are shown in Figure 14. The black curve is
obtained using a fully filled layer of viscoelastic mate-
rial (xe = 1, ∀e). As for the compliance based criteria,
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Fig. 11. Frequency response functions of the 2D sandwich beam in terms of dynamic compliance: c(ω, x̃c
500 Hz), c(ω, x̃

c
1000 Hz) and

c(ω, x̃c
2000 Hz).

Fig. 12. Optimal solutions of the visco-elastic layer of the 2D sandwich beam (black: xe > 0.99) for the displacement criteria, from
bottom to top: x̃d

500 Hz, x̃
d
1000 Hz, x̃

d
2000 Hz.

Fig. 13. Displacement objective function d(x) evolution over the optimization iterations for the 2D sandwich beam and for the
three different harmonic excitations: d(500 Hz, xi), d(1000 Hz, xi) and d(2000 Hz, xi).
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Fig. 14. Frequency response functions of the 2D sandwich beam in terms of displacement objective function: d(ω, x̃d
500 Hz),

d(ω, x̃d
1000 Hz) and d(ω, x̃d

2000 Hz).

Ω1

Ω2

Ω2

Ω2

~F
45o A

96 cm

96 cm

19 cm

1 cm

Fig. 15. Optimization of an internal viscoelastic layer (Ω2) for a 2D CubeSat-like structure (Ω1).

the same conclusions can be made: the density optimized
solution obtained for a given frequency gives the minimum
of the displacement based function at this frequency. One
can notice that in this case, for 500 Hz, it is not completely

true; the topology optimization process can not give a bet-
ter solution than the one given by a fully filled layer of
viscoelastic material. Nevertheless, the solution given by
the optimization is lighter.
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(a) Solution x̃c50 Hz at 50 Hz (b) Solution x̃c100 Hz at 100 Hz (c) Solution x̃c200 Hz at 200 Hz

Fig. 16. Deformed structure for the three target frequencies and for the compliance objective function (scale factor of the deformed
mesh is 5000; black correspond to no displacement, yellow to maximum).

Fig. 17. Optimal solutions of the viscoelastic layer of the 2D CubeSat-like structure (black: xe > 0.99) for the compliance criteria,
from left to right: x̃c

50 Hz, x̃
c
100 Hz, x̃

c
200 Hz.

4.2.2 Optimization of a viscoelastic layer for a 2D
CubeSat-like structure

The problem is described in Figure 15. It is assumed a
plane stress state. The structure is composed of external
aluminum layers (domain Ω1) and internal viscoelastic
layers (domain Ω2). Its shape is the same as the 3D
CubeSat-like structure studied in the previous section.
The material properties are given in Table 1 (for alu-
minum) and 2 (for the viscoelastic layers). The target
final volume ratio is γ = 50% of the total volume of Ω2,
the stop criterion ζ is empirically set to 1% and the maxi-
mum number of iterations nmax is set to 100. The bottom
side of the structure is clamped while an harmonic force ~F
is imposed on the upper left corner at the angular velocity
ω (‖ ~F ‖= 1 N).

The structure is discretized with a total of 3222 quad-
rangular 4-node elements, the number of elements in Ω2

is 966. The mesh can be seen in Figure 16.

Firstly, the viscoelastic layer is optimized using the
compliance objective function c(ω, x) at three different
harmonic excitations ω (50 Hz, 100 Hz and 200 Hz).
The solutions in terms of material densities are denoted
respectively by x̃c50 Hz, x̃

c
100 Hz and x̃c200 Hz. These optimal

material densities are plotted in Figure 17. The conver-
gence of the compliance over the iterations is plotted
in Figure 18. As for the 2D sandwich beam, it can be
seen that for the three harmonic excitations, there are
oscillations of the objective function and the optimiza-
tion process is stopped at a fixed number of iteration
(here 100 iterations). However, these spurious oscillations
concern a few elements and do not affect the final solu-
tion (Table 4). These oscillations are more important for
x̃c50 Hz, nevertheless if only elements with xe > 0.99 are
considered the solution is acceptable. Moreover, for this
solution, there are 369 elements with a material density
less than 0.1; and so only 128 elements between 0.1 and
0.99. The frequency response functions of the structure
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Fig. 18. Dynamic compliance c(x) evolution over the optimization iterations for the 2D CubeSat-like structure and for the three
different harmonic excitations: c(50 Hz, xi), c(100 Hz, xi) and c(200 Hz, xi).

Table 4. Number of elements in Ω2 in terms of their final material densities for the 2D CubeSat-like structure.

xe > 0.99 xe < 0.01 0.01 < xe < 0.99

x̃c50 Hz 469 339 158
x̃c100 Hz 499 411 56
x̃c200 Hz 508 432 26
x̃d50 Hz 450 0 516
x̃d100 Hz 499 414 53
x̃d200 Hz 509 435 22

Fig. 19. Frequency response functions of the 2D CubeSat-like structure in terms of dynamic compliance: c(ω, x̃c
50 Hz), c(ω, x̃

c
100 Hz)

and c(ω, x̃c
200 Hz).
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Fig. 20. Optimal solutions of the viscoelastic layer of the 2D CubeSat-like structure (black: xe > 0.99) for the displacement criteria,
from left to right: x̃d

50 Hz, x̃
d
100 Hz, x̃

d
200 Hz.

Fig. 21. Displacement objective function evolution over the optimization iterations for the 2D CubeSat-like structure and for the
three different harmonic excitations: d(50 Hz, xi), d(100 Hz, xi) and d(200 Hz, xi).

are then computed using these three material densities.
The compliance functions c(ω, x̃c50 Hz), c(ω, x̃

c
100 Hz) as well

as c(ω, x̃c200 Hz) are shown in Figure 19. The black curve
is obtained using a fully filled layer of viscoelastic mate-
rial (xe = 1, ∀e). As for the 2D sandwich beam, it can
be seen that for a given angular frequency, a solution
can be better than another one in terms of minimizing
the compliance. For instance, the material density solu-
tion x̃c50 Hz given by the minimization of the compliance
at 50 Hz exhibits the minimum of compliance at 50 Hz
compared to the other solutions, even the solution com-
puted with a full layer of viscoelastic material. The same
conclusions can be done with solution x̃c100 Hz at the fre-
quency 100 Hz; and with solution x̃c200 Hz at the frequency
200 Hz.

Secondly, the viscoelastic layer is optimized using the
displacement objective function d(ω, x) at the same three
different harmonic excitations ω (50 Hz, 100 Hz and
200 Hz). The solutions in terms of material densities
are denoted respectively by x̃d50 Hz, x̃

d
100 Hz and x̃d200 Hz.

These optimal material densities are plotted in Figure 20.
The convergence of the displacement criteria over the
iterations is plotted in Figure 21. As previously, two
of the three optimizations have spurious oscillations in
terms of objective function over the iteration process
(Table 4). These oscillations are more important for
x̃d50 Hz: for this case, there are no elements with xe <
0.01 but there are 362 elements with a material den-
sity less than 0.1; and so only 154 elements between
0.1 and 0.99. In order to illustrate the oscillations in
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Fig. 22. Last 3 iterations for the solution x̃d
50 Hz of the 2D CubeSat-like structure, from left to right: iterations 98, 99, and 100 (red:

xe = 1, blue: xe = 0).

Fig. 23. Frequency response functions of the 2D CubeSat-like structure in terms of displacement amplitude: d(ω, x̃d
50 Hz), d(ω, x̃d

100 Hz)

and d(ω, x̃d
200 Hz).

the solution, the last three iterations are plotted on
Figure 22. Nevertheless if only elements with xe > 0.99
are considered the solution is acceptable. The frequency
response functions of the structure are then computed
using these three material densities. The displacement
functions d(ω, x̃d50 Hz), d(ω, x̃d100 Hz) as well as d(ω, x̃d200 Hz)
are shown in Figure 23. The black curve is obtained using
a fully filled layer of viscoelastic material (xe = 1, ∀e). As
for the compliance based criteria, the same conclusions
can be made: the density optimized solution obtained for
a given frequency gives the minimum of the displacement
based function at this frequency.

However, sometimes, for this application, the topol-
ogy optimization process does not improve so much the
solution compared to the one given by a fully filled layer

of viscoelastic material. Nevertheless, the solution given
by the optimization is lighter.

5 Conclusion

The aim of this work is to use a topology optimiza-
tion process to design a domain Ω2 interacting through
an interface with a fixed given structure Ω1 in order to
improve the behavior of the initial structure according to
a given criteria. The problem can be static or dynamic. In
the dynamic case, the problem is treated in the frequency
domain and the used material in the design domain
has viscoelastic properties able to reduce the vibration
amplitude. This viscoelastic material is modeled using
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a four-parameter Zener fractional-derivative viscoelastic
model.

Two objective functions are introduced in this paper:
a global compliance based one and a local displacement
based one. They are both defined for the dynamic as well
as for the static case. Results show that the optimum
solutions obtained for the two objective function are very
often quite similar.

The formulation of the problems allows to have a com-
plex shape of the additional design, even a design domain
separated into several volumes, as it is the case in a few
presented applications. Moreover, the chosen material for
the design domain can be different than the one used
for the initial structure. The shape and the material of
the design domain have simply to be coherent with func-
tional surfaces of the system and with the manufacturing
process.

The applications in the static case show that it is
possible to improve a given structure by adding mate-
rial around it using a topology optimization process.
The strategy may be applied to a damaged structure
needed to be repaired. Additive manufacturing may
be used to manufacture the domain Ω2 in order to
reinforce Ω1.

The examples in the dynamic case show that the
proposed strategy enables to design additive viscoelas-
tic layers to damp the vibrations at a given frequency.
The proposed examples deal with sandwich structures for
which the viscoelastic layer in between two layers of metal
since it is known to be more efficient than on the external
surface of the structure. The final shape of the viscoelastic
layer drastically depends on the target frequency.

Nevertheless, especially in the context of dynamics and
viscoelasticity, the topology optimization process often
reaches the maximum number of iterations, exhibiting
spurious oscillations of the material densities between
few elements. However, these oscillations concern a few
elements, and do not affect the quality of the final
solution.

Conclusions show that it is possible to deal with two
different substructures with the aim of controlling the first
one using the second one. The way it is implemented here
allows for a great variety of configurations for future users.
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