
HAL Id: hal-04087375
https://hal.science/hal-04087375v1

Submitted on 3 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

harDNNing: a machine-learning-based framework for
fault tolerance assessment and protection of DNNs

Marcello Traiola, Angeliki Kritikakou, Olivier Sentieys

To cite this version:
Marcello Traiola, Angeliki Kritikakou, Olivier Sentieys. harDNNing: a machine-learning-based frame-
work for fault tolerance assessment and protection of DNNs. ETS 2023 - IEEE European Test Sym-
posium, May 2023, Venise, Italy. pp.1-6. �hal-04087375�

https://hal.science/hal-04087375v1
https://hal.archives-ouvertes.fr


harDNNing: a machine-learning-based framework
for fault tolerance assessment and protection of DNNs

Marcello Traiola, Angeliki Kritikakou, Olivier Sentieys
Inria, Univ Rennes, CNRS, IRISA

marcello.traiola@inria.fr, angeliki.kritikakou@irisa.fr, olivier.sentieys@inria.fr

Abstract—Deep Neural Networks (DNNs) show promising
performance in several application domains, such as robotics,
aerospace, smart healthcare, and autonomous driving. Never-
theless, DNN results may be incorrect, not only because of the
network intrinsic inaccuracy, but also due to faults affecting the
hardware. Indeed, hardware faults may impact the DNN infer-
ence process and lead to prediction failures. Therefore, ensuring
the fault tolerance of DNN is crucial. However, common fault
tolerance approaches are not cost-effective for DNNs protection,
because of the prohibitive overheads due to the large size of
DNNs and of the required memory for parameter storage. In this
work, we propose a comprehensive framework to assess the fault
tolerance of DNNs and cost-effectively protect them. As a first
step, the proposed framework performs datatype-and-layer-based
fault injection, driven by the DNN characteristics. As a second
step, it uses classification-based machine learning methods in
order to predict the criticality, not only of network parameters,
but also of their bits. Last, dedicated Error Correction Codes
(ECCs) are selectively inserted to protect the critical parameters
and bits, hence protecting the DNNs with low cost. Thanks
to the proposed framework, we explored and protected two
Convolutional Neural Networks (CNNs), each with four different
data encoding. The results show that it is possible to protect the
critical network parameters with selective ECCs while saving up
to 83% memory w.r.t. conventional ECC approaches.

Index Terms—Reliability Analysis; Fault Tolerance; Machine
Learning; Neural Networks.

I. INTRODUCTION

Deep Neural Networks (DNNs) [2] are currently one of the
most intensively and widely used predictive models in the field
of Machine Learning (ML). DNNs have proven to give very
good results for many complex tasks and applications, such as
object recognition in images/videos, natural language processing,
satellite image recognition, robotics, aerospace, smart healthcare,
and autonomous driving.

The network results can be affected not only by the inaccuracy
of DNNs models, but also by hardware faults. The underlying
hardware, where the DNN is executed, is subject to faults due
to several sources, e.g., defects undetectable at time-zero post-
fabrication testing that manifest themselves later in the field of
application, silicon ageing, and environmental stress, such as heat,
humidity, vibration, and radiation [3]. Although DNN models have
the capability to circumvent to a large extent hardware faults
during the learning process, faults can still occur after training.
Thus, inference can be significantly affected, leading to DNN
prediction failures that are likely to lead to a detrimental effect on
the application [4]–[6]. Therefore, ensuring the reliability of DNN

A 2-page abstract of this paper has been accepted at DATE2023 [1]

is crucial, especially when deployed in safety- and mission-critical
applications.

However, common reliability approaches, such as complete
Triple Modular Redundancy (TMR) and Error Correction Codes
(ECC), are not cost effective since they incur prohibitive overheads
due to the large-sized DNNs and memories required for parameter
storage. Therefore, to ensure the DNN reliability in a cost effective
manner, the DNN resilience must be properly evaluated, the most
critical parts should be identified and such an information can be
used to drive the network protection.

The evaluation of the DNN resilience is typically based on
simulation-based, hardware-based and radiation-based Fault Injec-
tion (FI) [7], [8]. Simulation-based fault-injection is a commonly
used technique as it is a low cost and high controllable approach.
Software simulation-based FI is usually performed due to reduced
FI time. Several approaches exist based on different models, e.g.,
based on PyTorch [9] and TensorFlow [10], injecting permanent or
transient faults at several fault locations, e.g., weights, activation,
and operators [5]. Hardware-based FI is more time consuming, but
it is more accurate as it takes into account the underlying hardware.
For instance, approaches inject permanent and transient faults
during inference at the hardware accelerator RTL [11]. To reduce
simulation time, hybrid (or cross-layer) approaches are proposed
to obtain fault models using hardware information and injected
at the software level, e.g., high-level design information from
architectural descriptions is used to model faults [12] and each line
of code is mapped to the corresponding hardware component of
the DNN accelerators [13], [14].

However, exhaustive FI is not feasible, since every neuron and
synapse is a FI candidate, whereas each FI requires performing
inference on the complete test set to assess the fault effect, being
intractable from a computation point of view. Therefore, the ma-
jority of approaches evaluate DNN resilience through statistical FI.
Following such an approach, only the criticality of the parameters
where faults have been injected can be estimated. To protect the
DNN in a cost effective way, the criticality of all parameters should
be evaluated.

To address this limitation, recent approaches combine FI with
machine learning methods [15], [16]. Approaches exist that focus
on reducing the time of DNN reliability evaluation by reducing
the number of FIs and combine the results with machine learning.
For instance, a percentage of the parameters is selected for FI, and
a set of features (absolute value, gradient, calculation time and
layer location) is extracted and used with random forest regression
for the vulnerability estimation [16]. However, such approaches
do not leverage the obtained results in order to cost-effectively
protect the DNNs. Other existing approaches focus on timing
errors, e.g., first-order Taylor expansion approximates the weight
sensitivity to design a DNN where sensitive weights are mapped



to robust multiple-and-accumulate operators [17]. Other studies
proposed the use of dedicated low-overhead correction codes to
protect DNN parameters [18]–[22]. However, they either apply the
protection to all the NN parameters - regardless of their criticality
- or rely on a modified training procedure. This can be problematic
especially when dealing with DNNs with elevated training time
and costs (weeks/months for industry-level production models,
e.g., alphaGO [23], GPT-3 [24]) and with billions of parameters.

This work extends the state-of-the art by proposing for the first
time a comprehensive framework to (i) evaluate the resilience of
large DNNs to faults impacting their parameters, (ii) estimate the
criticality of all the DNN parameters and their bits, and (iii) use this
information for cost-effective DNN protection. More precisely, the
proposed framework performs, as a first step, a datatype-and-layer-
based FI, driven by the characteristics of the targeted DNN model.
As a second step, it uses the results of FI to train ML classification
models. This allows predicting the bit-accurate criticality of all
network parameters. Last, ECC codes are selectively inserted to
protect the critical bits and critical parameters, achieving low-
overhead fault tolerance. Thanks to the proposed framework, we
explored eight Convolutional Neural Networks and show memory
savings up to 83% w.r.t. protecting all the network parameters
with common ECC. Our framework is applied at post-training
phase, and thus, does not require any special fault-aware training
procedure.

The rest of the paper is organized as follows. Section II describes
the proposed resilience evaluation and protection framework. Sec-
tion III presents the results for eight case studies and Section IV
draws conclusions.

II. PROPOSED FRAMEWORK

Figure 1 depicts the overview of the proposed framework, which
consists of three main steps, described below.

Step I: datatype-and-layer-based fault injection campaign
The first step of the proposed framework consists in perform-

ing a reduced number of targeted FIs, while keeping high the
confidence of the FI outcome. This is achieved by considering
a datatype-and-layer-based FI approach, to take into account the
characteristics of the DNN model under study. DNNs consist of
several layers, performing different operations, thus having differ-
ent impact on the output. To capture the individual impact of the
DNN layers, in this paper, we perform a layer-based simulation-
based software FI, ensuring that a statistically significant number

Random Fault
Selection

Fault Injection

Fault
Classification

Selective
Hardening

NN accuracy

Neural Network (NN) model

Random
subset of faults

Hardened NN model

List of faults classified
as Critical or Acceptable

All NN faults

Predicted criticality
of all faults

Step III: Selective
Hardening

Step I: Statistical
Fault Injection and
Impact Learning 

ML model

NN
structure

Step II:
Criticality
prediction 

Fig. 1: Overview of the proposed framework.

of random faults is injected in each DNN layer. We target the
parameters of the DNN stored in the memory. Similar approaches
were previously adopted to study the statistical resilience of DNNs
(e.g. in [5], [13]).

Furthermore, faults striking different bits of a given DNN pa-
rameter impact the DNN output in different ways [13]. Their
criticality depends on the datatype and the position of the impacted
bit in the DNN under study. Usually, the DNN training process
generate parameters having values in a relatively small range [13],
[21]. Therefore, faults impacting data encoding approaches al-
lowing large value ranges are more likely to generate out-of-
scale values. For example, using floating-point datatype has a
particularly negative effect for fault tolerance, since the possible
data range is very extended. On the other hand, using fixed-point
datatype allows the range of values to be reduced, mitigating the
fault effect in DNNs [5], [13], [21].

In this paper, as fault model we consider the Single Event
Upset (SEU), which can be caused by a single energetic particle
(e.g. cosmic rays and high energy protons) and is a soft (non-
destructive) error [25]. To mimic this condition, we inject random
faults in DNN parameters, according to the statistical fault injec-
tion formula proposed in [26]: fault injections = N

1+e2× N−1

t2×0.25

,

where N is the number of NN parameters, e is the desired error
margin (1% in our case), and t depends on the desired confidence
level (we used t=2.5758 to achieve 99% confidence level). The FI
procedure is done once and results can be used as many times as
necessary in the next steps. The use of the approach in [26] applied
to DNNs has also been validated recently in [27], where the authors
showed that it is necessary to apply the aforementioned formula to
each layer of the DNN to obtain meaningful results. Therefore,
as already mentioned, we assess the fault tolerance of every DNN
layer through statistical FI. However, performing exhaustive injec-
tion may be feasible for layers having few parameters. Figure 2
shows the necessary injections in both statistical and exhaustive
approaches as a function of layer parameters, along with the
relative percentage of injection savings obtained with the statistical
approach. For example, when a layer has 4164 parameters, the
statistical FI allows performing 3331 injections, thus avoiding 20%
of the injections. However, the user may be willing to pay the extra
20% in order to have an exhaustive characterization and not a ML-
based prediction. Conversely, for big convolutional layers with a
lot more parameters, it is simply not feasible to inject exhaustively.
For example, the fourth layer of ResNet-18 has convolutional
layers with 2,359,296 parameters; the statistical injection approach
allows reducing the necessary injections to 16,525 faults (>99%
savings) to characterize the layer criticality with 1% error and
99% confidence. The proposed framework lets the user choose the

0 10000 20000 30000 40000
Parameters

0

10000

20000

30000

40000

In
je

ct
io

ns

10%10%20%20%30%30% 40%40%40% 50%50%50%50% 60%60%60%60%60%60% 70%70%70%70%70%70%70%70%70%70%70%70%

asymptote for statistical injection: 16641

exhaustive
statistical

Fig. 2: Necessary injections for statistical VS exhaustive
approaches (according to [26]), with percentage reduction.



percentage of injection savings under which a statistical FI is not
deemed necessary because an exhaustive one is possible according
to the available resources.

Moreover, we inject on different bits of the selected parameters,
depending on their datatype and width. For Floating-Point (FP)
data, we inject the sign bit, linearly spaced exponent bits and
linearly spaced mantissa bits. For Fixed-Point (FxP), we inject
linearly spaced integer bits and linearly spaced fractional bits.
To assess the impact of an injected fault, we execute the whole
NN test set (i.e., we perform all the inferences) and compare the
obtained results with the golden reference (i.e., the fault-free NN).
If the fault has a critical impact w.r.t. a user-defined metric (e.g.
top-1 accuracy reduced more than a given value), we classify as
critical both the injected bit and the parameter it belongs to. The
framework user can choose how many and which bits to inject.
In this paper, we kept the number of injected bits per parameter
lower than 10. Then, as sketched in Figure 3, we consider the non-
injected bits in a given parameter as critical if they have a left-
hand-side (i.e., more significant) bit classified as critical. If a non-
injected bit has a left-hand-side bit classified as acceptable (i.e., the
impact of the fault was not critical), it is considered as acceptable.
For FP, we apply this approach to both exponent and mantissa. For
NNs having parameters encoded with low bit width data (e.g., 8
bits), we inject in every bit.

Critical Critical Acceptable Acceptable Acceptable Acceptable Acceptable AcceptableCritical

Critical Critical Critical Acceptable Acceptable Acceptable Acceptable AcceptableConsidered as:

Injection Impact
on NN:

MSB LSB

Fig. 3: Classification injected and non-injected parameter bits.

Step II: ML-based parameter and bit criticality prediction
In the second step, the framework predicts the criticality of all

NN parameters and bits where FI was not performed. To do so, we
train an ML-classification model using as input training data the
FI results obtained from step I. Within the proposed framework,
the user can choose the ML model. For our experiments, in this
paper we used the Random Forest (RF) model, which exhibits high
degree of robustness to over-fitting and has efficient execution time
even for large datasets. A similar choice was made in previous
work, where an RF-based regression model was used [16], instead
of classification. Furthermore, we will show that the RF model is
sensible to imbalanced datasets obtained for some NN configura-
tions; thus, we used also a balanced version of RF, i.e., Balanced
Random Forest (BRF).

Step III: Selective hardening
After steps I and II, the proposed framework is able to esti-

mate the criticality of each parameter and bit. Step III uses this
information to apply efficient selective protection mechanisms and
explore their effects. In this paper, we propose and evaluate a
set of mechanisms, based on selective Hamming ECC (single bit
correction), to cost-effectively protect the DNN:
1) ECC protecting all the bits of the Critical Parameters (CP).
2) ECC only protecting the Critical Bits of the Critical Parameters

(CBCP). This category is further divided into two:
a) each critical parameter has a dedicated ECC (CBCP-Single,

or CBCP-S).
b) an ECC code is produced for all critical bits of a block of

parameters (CBCP-Block or CBCP-B).

For the last two categories, the framework also proposes the option
to store the ECCs in the LSBs of the critical parameters themselves
- to further reduce the area overhead - and explores whether this
option has a negative impact on the NN result quality.

For all the above mechanisms, additional memory is required to
store the information about the criticality of NN parameters. The
framework uses a classification signature: an array of bits - each
one corresponding to an NN parameter - indicating whether the
parameter has been classified as critical or not. Such classification
signature could be further compressed with existing compression
algorithms, to reduce memory. Finally, the classification signature
needs to be protected with ECC to prevent faults from impacting
the classification. For a coarse-grain ECC the overhead is negli-
gible for big signatures. Indeed, using an m-bit Hamming ECC
guarantees protection to 2m−m− 1 bits. For example, a signature
vector of 1Mbits can be protected with only 20 bits of ECC code.
Alternatively, the Hamming ECC for the classification signature
can also be applied with high granularity, e.g. using 7 bits per 64-
bit signature chunk would result in a final ECC with an overhead
of 0.34% for a 32-bit encoded NN. It is up to the user to choose the
most suitable configuration, according to the requirements.

For the CBCP mechanism, different parameters may have dif-
ferent number of critical bits. The user can choose whether to
store this information for each critical parameter, along with the
classification signature, or to protect the same bits for all parame-
ters within a layer and store only this information (i.e., which bits
to protect for a given layer). In the second case, the framework
protects a given bit in a layer if it is critical for at least one
parameter in that layer. In this paper, we adopt the latter approach.
As each layer is dedicated to a specific functionality, the parameters
within a layer are expected to have similar characteristics, and thus,
not large variations in the number of critical bits.

III. USE CASES FOR THE PROPOSED FRAMEWORK

We used the proposed framework to assess the fault tolerance
and then protect two Convolutional Neural Networks, LeNet-5 and
ResNet-18, each in four versions: (i) 32-bit floating-point (FP32),
(ii) 32-bit fixed-point with 31 bits for fractional part (FxP32),
(iii) 16-bit fixed-point with 15 bits for fractional part (FxP16), and
(iv) 8-bit fixed-point with 7 bits for fractional part (FxP8), for a
total of eight use cases. All versions of LeNet-5 were trained with
the MNIST dataset and all versions of ResNet-18 were trained with
the CIFAR10 dataset with an NVIDIA Quadro RTX 5000 GPU.
The top-1 accuracy values of the NNs are reported in Table I,
along with the training time. The FxP versions were trained using
a quantization-aware training process [28].

In step I, we performed a statistical FI of random bit flips.
We injected, on average, 292,000 faults for LeNet-5 NNs and
2,100,000 faults for ResNet-18 NNs. The statistical FI is done only
once per NN; thanks to a highly parallel computing grid, we kept
the FI time reasonably low: it took us on average one hour to realize
the statistical FI on LeNet-5 NNs and two days on ResNet-18 NNs.

TABLE I: Top-1 accuracy and training time of the NNs under
study

FP32 FxP32 FxP16 FxP8
LeNet-5 top-1 accuracy 99.02% 98.7% 98.95% 98.81%
ResNet-18 top-1 accuracy 92.59% 93.8% 93.59% 93.18%
LeNet-5 training time(s) 1220 984 870 889
ResNet-18 training time(s) pre-trained [29] 23989 23824 23929



In step II, two ML classification models are used (i) Random
Forest (RF) and (ii) Balanced Random Forest (BRF). We used
as ML input features only structural properties of the NNs, in
order to be able to apply the proposed approaches in a post-
training phase, unlike previous studies [21], [22]. In particular,
the used features are the injected parameter’s sign, the position of
the injected bit in the parameter, the injected NN layer, and the
output feature map and filter channel affected by the fault, depicted
in Figure 4. The ML models are evaluated with a k-fold cross

Filter channels
Fault Injection

Param
eter 

kernel 2

Input 

Feature Maps

Output 

Feature M
aps

kernel 1
Param

eter

Fig. 4: Affected output feature map and filter channel.

validation process with k=10. The dataset ratio used to train/test the
ML models is 70%/30%. As stated in Section II, the classification
into critical and acceptable faults depends on a user-defined metric
which provides the tolerated output quality degradation. Thus, we
trained the ML models with 20 different tolerated top-1 accuracy
degradation values, from 0.5 to 10 with step 0.5. The average
training time for a ML model was lower than one hour, for all
experiments.

In step III, we set at 120 the dimension of the block of param-
eters used in the CBCP-B approach. This allows a block of 120
parameters to be protected with only 7 ECC bits when having one
critical bit, with 8 ECC bits when having 2 critical bits, and so on;
indeed, as already mentioned, a m-bit Hamming ECC guarantees
protection to 2m−m−1 critical bits. In the interest of conciseness,
in the next subsections we present a subset of the results per step.

Step I: datatype-and-layer-based fault injection campaign
This subsections reports the results of the FI campaigns. Table II

shows the percentage of bits that have been classified as acceptable
and as critical for all the explored networks as a result of the
datatype-and-layer-based FI campaigns. As the trend is very clear
and for the sake of conciseness, we report half of the results,
omitting one every two. Overall, we observe that, when the
network parameters are encoded using the FxP datatype, the impact

TABLE II: Fault Injection results.
Tolerated
Top1 Acc.
Reduction

FP32 FxP32 Fx16 FxP8
Accep. Critic. Accep. Critic. Accep. Critic. Accep. Critic.

LeNet-5
0.50% 98.23% 1.77% 99.21% 0.79% 99.71% 0.29% 99.70% 0.30%
1.50% 98.36% 1.64% 99.80% 0.20% 99.94% 0.06% 99.95% 0.05%
2.50% 98.38% 1.62% 99.91% 0.09% 99.98% 0.02% 99.98% 0.02%
3.50% 98.39% 1.61% 99.95% 0.05% 99.99% 0.01% 99.99% 0.01%
4.50% 98.40% 1.60% 99.98% 0.02% 100% 0.00% 99.99% 0.01%
5.50% 98.41% 1.59% 99.99% 0.01% 100% 0.00% 99.99% 0.01%
6.50% 98.42% 1.58% 99.99% 0.01% 100% 0.00% 100% 0.00%
7.50% 98.43% 1.57% 100% 0.00% 100% 0.00% 100% 0.00%
8.50% 98.44% 1.56% 100% 0.00% 100% 0.00% 100% 0.00%
9.50% 98.44% 1.56% 100% 0.00% 100% 0.00% 100% 0.00%

ResNet-18
0.50% 91.56% 8.44% 95.38% 4.62% 95.56% 4.44% 95.78% 4.22%
1.50% 91.58% 8.42% 96.91% 3.09% 97.02% 2.98% 97.98% 2.02%
2.50% 91.64% 8.36% 97.61% 2.39% 97.66% 2.34% 98.62% 1.38%
3.50% 91.70% 8.30% 98.01% 1.99% 98.05% 1.95% 98.94% 1.06%
4.50% 91.74% 8.26% 98.28% 1.72% 98.31% 1.69% 99.14% 0.86%
5.50% 91.76% 8.24% 98.50% 1.50% 98.52% 1.48% 99.28% 0.72%
6.50% 91.78% 8.22% 98.68% 1.32% 98.69% 1.31% 99.39% 0.61%
7.50% 91.79% 8.21% 98.83% 1.17% 98.84% 1.16% 99.47% 0.53%
8.50% 91.80% 8.20% 98.96% 1.04% 98.96% 1.04% 99.54% 0.46%
9.50% 91.80% 8.20% 99.07% 0.93% 99.07% 0.93% 99.60% 0.40%

The reported numbers are referred to bits classified as Critical or Acceptable

of fault is less critical than in the FP case. As mentioned also in
Section II, this happens because faults impacting data encoding
approaches allowing narrow value ranges are less likely to generate
out-of-scale values.

Step II: Machine-learning parameter & bit criticality predic-
tion

Firstly, we deem necessary to validate the effectiveness of the
prediction w.r.t. real criticality, since the approach is build on top
of statistical fault injection. To do so, we performed an exhaustive
fault injection of all parameters of the FP32 version of LeNet and
compared the results with the prediction of RF and BRF models,
trained on statistical fault injection results. The results of such
experiment showed that the difference between the number of
real-critical parameters and the number of parameters predicted as
critical is on average 0.09% (min 0.03%, max 0.17%) when RF
is used, and 0.29% (min 0.12%, max 0.49%) when BRF is used -
well below the 1% error mentioned in Section II. Moreover, this
difference is translated in the models always predicting more crit-
ical parameters than the exhaustive approach. This means that the
predictions are conservative, i.e., we do not leave critical parame-
ters unprotected but may protect some non-critical ones, especially
with BRF. For example, with tolerate top-1 accuracy reduction
of 0.5%, 52.86% of the parameters are critical (exhaustive), the
RF prediction is 52.94% and the BRF is 53.12%. Thus, we
can conclude that the prediction model trained on statistical fault
injections delivers reliable criticality predictions. Therefore, from
this point forward, we use conventional ML metrics to validate
the models. Also, performing exhaustive FI on bigger NN, such as
ResNet-18, is not feasible - which stresses the need of the proposed
approach.

In Table III, we report prediction results regarding the criticality
of the parameters’ bits, for the FP32 and FxP8 datatypes. As done
in Table II, we reduce the number of results, omitting one every
two from 3.0% forward. For the other NN versions, the general
trend is similar, thus we do not report all the results, for the sake
of conciseness. We report FP32 to show that the RF model is
sufficient to perform a correct prediction. For FxP data, a BRF
model is sometimes necessary. We report FxP8 data to show the
merit of the approach also when dealing with a low-precision data
encoding. In the table, we report the Area under the ROC Curve
(ROC AUC) metric and the ML prediction results (percentages of
correctly/incorrectly predicted classes) ROC AUC ranges in value
from 0 to 1. A model whose predictions are 100% wrong has
an AUC of 0.0; one whose predictions are 100% correct has an
AUC of 1.0. An overall observation is that our approach is able to
provide accurate results for the classification of the parameters and
their bits, given the general high values of ROC AUC. Note that,
when n/a is reported, it means that in the experiment the critical
faults were insufficient to (i) perform the model cross-validation
(Mean ROC AUC columns) and (ii) perform the ML training (other
columns).

When the network parameters are encoded with FxP, we observe
a high percentage of mispredicted critical bits (compare columns
11 and 12). This is also highlighted by the Recall metric for Critical
faults reported in the table. Recall measures between 0 and 1 the
correct coverage of the class. High values mean that the critical
faults are rarely predicted as Acceptable. This issue is likely due
to the imbalanced number of samples in the two classes (i.e. few
critical and lots of acceptable). To deal with this issue, we resorted
to the balanced version of RF, highly reducing the percentage of



TABLE III: ML-based fault prediction model. Results are referred to bits of NN parameters.
FP32 FxP8 with RF FxP8 with BRF

Tolerated
Top1 Acc.
Reduction

Mean
ROC
AUC

True Class:Acceptable True Class:Critical Critical
Recall

Mean
ROC
AUC

True Class:Acceptable True Class:Critical Critical
Recall

Mean
ROC
AUC

True Class:Acceptable True Class:Critical Critical
RecallPredicted

Acceptable
Predicted
Critical

Predicted
Acceptable

Predicted
Critical

Predicted
Acceptable

Predicted
Critical

Predicted
Acceptable

Predicted
Critical

Predicted
Acceptable

Predicted
Critical

Predicted
Acceptable

Predicted
Critical

LeNet-5
0.5% 0.9965 98.17% 0.07% 0.03% 1.74% 0.98 0.9742 99.63% 0.07% 0.20% 0.10% 0.33 0.9951 93.59% 6.11% 0.00% 0.30% 1.00
1.0% 0.9985 98.29% 0.04% 0.02% 1.66% 0.99 0.9762 99.84% 0.06% 0.07% 0.02% 0.25 0.9958 96.75% 3.15% 0.00% 0.10% 1.00
1.5% 0.9994 98.33% 0.03% 0.01% 1.63% 0.99 0.9583 99.95% 0.00% 0.04% 0.00% 0.05 0.9917 97.78% 2.17% 0.00% 0.05% 1.00
2.0% 0.9997 98.36% 0.02% 0.01% 1.61% 0.99 0.9639 99.97% 0.00% 0.03% 0.00% 0 0.9942 98.72% 1.25% 0.00% 0.03% 1.00
2.5% 0.9997 98.36% 0.02% 0.01% 1.60% 0.99 0.9535 99.98% 0.00% 0.02% 0.00% 0 0.9987 97.81% 2.17% 0.00% 0.02% 1.00
3.0% 0.9997 98.36% 0.02% 0.01% 1.60% 0.99 0.9493 99.99% 0.00% 0.01% 0.00% 0 0.9984 96.44% 3.54% 0.00% 0.01% 1.00
4.0% 0.9998 98.38% 0.02% 0.02% 1.58% 0.99 0.9747 99.99% 0.00% 0.01% 0.00% 0 0.9983 95.91% 4.08% 0.00% 0.01% 1.00
5.0% 0.9999 98.38% 0.02% 0.02% 1.57% 0.99 0.9998 99.99% 0.00% 0.01% 0.00% 0 0.9983 95.52% 4.47% 0.00% 0.01% 1.00
6.0% 0.9999 98.40% 0.01% 0.02% 1.57% 0.99 n/a 99.99% 0.00% 0.01% 0.00% 0 nan 94.65% 5.35% 0.00% 0.01% 1.00
7.0% 0.9999 98.40% 0.02% 0.02% 1.56% 0.99 n/a 100.00% 0.00% 0.00% 0.00% 0 nan 84.39% 15.61% 0.00% 0.00% 1.00
8.0% 0.9999 98.42% 0.01% 0.01% 1.56% 0.99 n/a 100.00% 0.00% 0.00% 0.00% 0 nan 84.39% 15.61% 0.00% 0.00% 1.00
9.0% 0.9999 98.42% 0.01% 0.01% 1.55% 0.99 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

10.0% 0.9998 98.44% 0.01% 0.00% 1.55% 1.00 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
ResNet-18

0.5% 0.9999 91.53% 0.02% 0.01% 8.43% 1.00 0.9965 95.41% 0.37% 0.48% 3.74% 0.89 0.9978 92.87% 2.91% 0.05% 4.17% 0.99
1.0% 0.9999 91.54% 0.03% 0.01% 8.42% 1.00 0.9968 96.98% 0.30% 0.47% 2.26% 0.83 0.9979 94.21% 3.06% 0.02% 2.71% 0.99
1.5% 0.9999 91.55% 0.03% 0.01% 8.41% 1.00 0.9967 97.80% 0.18% 0.41% 1.61% 0.80 0.9980 94.85% 3.12% 0.01% 2.01% 0.99
2.0% 0.9999 91.56% 0.05% 0.02% 8.37% 1.00 0.9965 98.24% 0.13% 0.32% 1.31% 0.80 0.9982 95.31% 3.06% 0.01% 1.62% 0.99
2.5% 0.9999 91.56% 0.07% 0.03% 8.34% 1.00 0.9963 98.50% 0.12% 0.25% 1.13% 0.82 0.9983 95.68% 2.95% 0.01% 1.37% 1.00
3.0% 0.9999 91.60% 0.08% 0.04% 8.29% 0.99 0.9957 98.66% 0.14% 0.22% 0.98% 0.81 0.9985 96.02% 2.77% 0.00% 1.20% 1.00
4.0% 0.9999 91.65% 0.07% 0.05% 8.23% 0.99 0.9955 98.92% 0.13% 0.17% 0.78% 0.82 0.9986 96.80% 2.25% 0.01% 0.95% 0.99
5.0% 0.9999 91.68% 0.07% 0.03% 8.22% 1.00 0.9950 99.10% 0.11% 0.16% 0.62% 0.80 0.9986 97.27% 1.94% 0.01% 0.78% 0.99
6.0% 0.9999 91.70% 0.08% 0.02% 8.21% 1.00 0.9958 99.26% 0.08% 0.16% 0.50% 0.76 0.9986 97.57% 1.77% 0.00% 0.65% 0.99
7.0% 0.9999 91.71% 0.08% 0.01% 8.20% 1.00 0.9959 99.35% 0.08% 0.15% 0.41% 0.73 0.9985 97.78% 1.65% 0.00% 0.57% 1.00
8.0% 0.9999 91.71% 0.08% 0.01% 8.19% 1.00 0.9963 99.44% 0.07% 0.14% 0.35% 0.71 0.9985 97.94% 1.57% 0.00% 0.49% 0.99
9.0% 0.9999 91.72% 0.08% 0.01% 8.19% 1.00 0.9961 99.52% 0.05% 0.13% 0.30% 0.69 0.9985 98.05% 1.52% 0.00% 0.43% 0.99

10.0% 0.9999 91.71% 0.10% 0.01% 8.18% 1.00 0.9952 99.58% 0.04% 0.12% 0.26% 0.67 0.9986 98.11% 1.51% 0.00% 0.38% 0.99
when n/a, the critical faults are insufficient to (i) perform the model cross-validation (Mean ROC AUC columns) and (ii) perform the ML training (other columns). See Table II.

0

50

100

Pe
rc

en
ta

ge

FP32 FxP32-RF FxP32-BRF FxP16-RF FxP16-BRF FxP8-RF FxP8-BRF

0 1 2 3 4 5 6 7 8 9 10
Tolerated Top-1

Accuracy Reduction (%)

0

50

100

Pe
rc

en
ta

ge

FP32

0 1 2 3 4 5 6 7 8 9 10
Tolerated Top-1

Accuracy Reduction (%)

FxP32-RF

0 1 2 3 4 5 6 7 8 9 10
Tolerated Top-1

Accuracy Reduction (%)

FxP32-BRF

0 1 2 3 4 5 6 7 8 9 10
Tolerated Top-1

Accuracy Reduction (%)

FxP16-RF

Critical Acceptable

0 1 2 3 4 5 6 7 8 9 10
Tolerated Top-1

Accuracy Reduction (%)

FxP16-BRF

0 1 2 3 4 5 6 7 8 9 10
Tolerated Top-1

Accuracy Reduction (%)

FxP8-RF

0 1 2 3 4 5 6 7 8 9 10
Tolerated Top-1

Accuracy Reduction (%)

FxP8-BRF

LeNet-5

ResNet-18

Fig. 5: ML prediction of Critical and Acceptable parameters for both LeNet-5 and ResNet-18

critical bits predicted as acceptable, as shown in column 17. For
instance, for 0.5% top-1 accuracy reduction, LeNet-5 with FxP8
has 0.2009% critical bits predicted as acceptable (recall 0.33),
when RF is used, and 0% when BRF is used (recall 1.00). ResNet-
18 with FxP8 has 0.4814% critical bits predicted as acceptable
(recall 0.89), when RF is used, and 0.0451% (recall 0.99) when
BRF is used. As a drawback of using BRF, we highlight that, while
the number of mispredicted critical bits is reduced, the percentage
of mispredicted acceptable bits increases (column 16). Note that,
this only entails a protection overhead and not a hazard in terms
of reliability. Nonetheless, the framework user can choose which
RF version to use according to final requirements. So far, we
reported results concerning bit criticality. As already mentioned,
we consider a parameter as critical when it contains at least one
critical bit. Hence, in Figure 5, we report the ML prediction results
regarding the total number of critical and acceptable parameters
for all versions of the NNs and for all tolerated top-1 accuracy
reductions that we explored. With FP representation, we obtain
significantly higher number of critical parameters compared to
the FxP versions of the networks, in line with results observed
in previous works investigating the fault tolerance of DNNs [5],
[13]. Furthermore, as BRF is more conservative, the number of
parameters considered as critical is increased compared to the RF.
For instance, for 0.5% top-1 accuracy reduction, the RF model
predicted LeNet-5 with FxP32 having 1,745 critical parameters,

while BRF predicted 12,477 (total 44,190); for ResNet with FxP32,
RF predicted 979,577 critical parameters, while BRF predicted
1,654,378 (total 10,992,320).

Step III: Selective hardening
Table IV reports the results in terms of memory overhead for

the proposed approaches (i.e., CP, CBCP-S, and CBCP-B) and
compares them to the conventional ECC method, where ECC
protects all parameters and all bits (AP). Results are reported for
the case where an accuracy reduction of 0.5% was tolerated, thus
the number of critical bits is high. Compared to AP, on average,
CP achieves 61.22% reduction, CBCP-S 71.95% and CBCP-B
80.20%. As also reported in Section II, the classification signature
can be protected with few bits of coarse-grain ECC - 16 bits for

TABLE IV: Memory overhead comparison
Overhead Overhead reduction w.r.t. AP

ECC Class/tion
Signature

Class/tion Signature and
AP CP CBCP-S CBCP-B CP CBCP-S CBCP-B

LeNet-5
FP32 18.75% 9.926% 5.017% 0.126% 3.125% 30.396% 56.575% 82.662%
FxP32 18.75% 0.740% 0.363% 0.009% 3.125% 79.384% 81.399% 83.286%
FxP16 31.25% 0.383% 0.215% 0.009% 6.250% 78.773% 79.312% 79.972%
FxP8 50.00% 0.583% 0.351% 0.012% 12.500% 73.835% 74.298% 74.975%

ResNet-18
FP32 18.75% 13.488% 4.572% 0.132% 3.125% 11.398% 58.947% 82.630%
FxP32 18.75% 1.671% 0.835% 0.019% 3.125% 74.422% 78.878% 83.234%
FxP16 31.25% 2.668% 1.601% 0.036% 6.250% 71.462% 74.877% 79.885%
FxP8 50.00% 2.476% 1.857% 0.046% 12.500% 70.049% 71.287% 74.907%

Coarse-grain ECC size to protect the Classification Signature for LeNet-5 is 16 bits
and for ResNet-18 is 24 bits, negligible compared to the dimension of the NNs.



FP32-CBCP-SFxP32-CBCP-SFxP16-CBCP-SFxP8-CBCP-S FxP8-CBCP-B

0%

10%

20%

30%

40%

50%
Im

pa
ct

ed
 p

ar
am

et
er

s

Altered parameters Impact on Top-1 accuracy
FP32-CBCP-SFxP32-CBCP-SFxP16-CBCP-SFxP16-CBCP-BFxP8-CBCP-SFxP8-CBCP-B

75%

50%

25%

0%

25%

50%

Im
pa

ct
ed

 p
ar

am
et

er
s

0

10

20

30

40

50

To
p-

1 
im

pa
ct

75

50

25

0

25

50

To
p-

1 
im

pa
ct

LeNet-5

ResNet-18

Fig. 6: Altered parameters and impact on Top1 accuracy.

LeNet-5 and 24 for ResNet-18 - or with very low overhead, e.g.
0.34% of fine-grain ECC overhead for a 32-bit encoded NN.

To further reduce the memory overhead, we explore the inte-
gration of the ECC obtained with the proposed approaches in the
LSB of the critical parameters. In this case, the memory overhead
comes only from the Classification Signature (i.e., the overhead for
CP, CBCP-S/B in Table IV would be 0). However, this choice is
likely to alter the value of the critical parameters, thus may affect
the NN accuracy. Figure 6 shows the results of this approach in
terms of percentage of the altered parameters and of how much
this modification reduced the NN top-1 accuracy. While for 32-bit
parameters the accuracy is not impacted (F(x)P32-CBCP-S in the
figures), when reduced datatypes (especially 8 bits) are used, alter-
ing the LSBs of the parameters significantly impacts the accuracy,
e.g., with a reduction of 3.65% for the FxP8 LeNet and 81.91%
for FxP8 ResNet considering RF (FxP8-CBCP-S in the figures).
Nonetheless, the results show that using the proposed CBCP-
Block mechanism drastically reduces this limitation by altering a
significantly lower amount of parameters and bits (FxP16-CBCP-B
and FxP8-CBCP-B in the figures).

IV. CONCLUSIONS

We proposed a framework to enable the post-training fault
tolerance characterization of all parameters of big DNNs, with
the goal applying selective protection. This process is infeasible
with conventional FI approaches, due to the dimensions of DNNs.
The proposed framework is composed of three steps. The first
one obtains data regarding the criticality of DNN parameters and
bits through targeted FI campaigns. Then, in the second step,
classification-based ML methods are trained with FI data and used
to predict the criticality of all non-injected DNN parameters and
bits. Using this information, the last step applies selective ECC
to the DNN to cost-effectively protect it. Thanks to the proposed
framework, the exploration of eight DNN models was possible.
Results show memory savings up to 83% w.r.t. conventional ECC
on LeNet-5 and ResNet-18 DNNs with different datatypes and
widths.

REFERENCES

[1] M. Traiola et al., “A machine-learning-guided framework for fault-
tolerant DNNs,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2023.

[2] Y. LeCun et al., “Deep learning,” Nature, vol. 521, 2015.
[3] F. F. d. Santos et al., “Analyzing and increasing the reliability of con-

volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2019.

[4] C. Torres-Huitzil et al., “Fault and error tolerance in neural networks:
A review,” IEEE Access, vol. 5, pp. 17 322–17 341, 2017.

[5] A. Ruospo et al., “Investigating data representation for efficient and reli-
able convolutional neural networks,” Microprocessors and Microsystems,
vol. 86, p. 104318, 2021.

[6] A. Lotfi et al., “Resiliency of automotive object detection networks on
gpu architectures,” in IEEE Int. Test Conference (ITC), 2019, pp. 1–9.

[7] A. Ruospo et al., “Pros and cons of fault injection approaches for the
reliability assessment of deep neural networks,” in 2021 IEEE 22nd
Latin American Test Symposium (LATS), 2021, pp. 1–5.

[8] A. Ruospo et al., “A survey on deep learning resilience assessment
methodologies,” Computer, vol. 56, no. 2, pp. 57–66, 2023.

[9] A. Mahmoud et al., “Pytorchfi: A runtime perturbation tool for DNNs,”
in IEEE/IFIP Int. Conf. Dependable Systems and Networks Workshops
(DSN-W), 2020, pp. 25–31.

[10] Z. Chen et al., “Tensorfi: A flexible fault injection framework for
tensorflow applications,” CoRR, vol. abs/2004.01743, 2020.

[11] B. Salami et al., “On the resilience of rtl nn accelerators: Fault
characterization and mitigation,” in Int. Symp. Computer Architecture
and High Performance Computing (SBAC-PAD), sep 2018, pp. 322–329.

[12] Y. He et al., “Fidelity: Efficient resilience analysis framework for
deep learning accelerators,” in IEEE/ACM Int. Symp. Microarchitecture
(MICRO), 2020, pp. 270–281.

[13] G. Li et al., “Understanding error propagation in deep learning neural
network (DNN) accelerators and applications,” in Int. Conf. High
Performance Computing, Networking, Storage and Analysis (SC), 2017.

[14] C. Bolchini et al., “Fast and accurate error simulation for cnns against
soft errors,” IEEE Transactions on Computers, pp. 1–14, 2022.

[15] A. Chaudhuri et al., “Efficient fault-criticality analysis for ai accelerators
using a neural twin,” in 2021 IEEE International Test Conference (ITC),
2021, pp. 73–82.

[16] Y. Zhang et al., “Estimating vulnerability of all model parameters in
DNN with a small number of fault injections,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2022, pp. 60–63.

[17] W. Choi et al., “Sensitivity based error resilient techniques for energy
efficient deep neural network accelerators,” in ACM/IEEE Design Au-
tomation Conference (DAC), 2019, pp. 1–6.

[18] K. Huang et al., “Functional Error Correction for Reliable Neural
Networks,” in 2020 IEEE International Symposium on Information
Theory (ISIT), Jun. 2020, pp. 2694–2699.

[19] S. Burel et al., “Zero-overhead protection for cnn weights,” in 2021
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT), 2021, pp. 1–6.

[20] U. Zahid et al., “Fat: Training neural networks for reliable inference
under hardware faults,” in 2020 IEEE International Test Conference
(ITC), 2020, pp. 1–10.

[21] S.-S. Lee et al., “Value-aware Parity Insertion ECC for Fault-tolerant
Deep Neural Network,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, Mar. 2022, pp. 724–729.

[22] N. Cavagnero et al., “Fault-Aware Design and Training to Enhance
DNNs Reliability with Zero-Overhead,” 2022, arXiv:2205.14420.

[23] D. Silver et al., “Mastering the game of Go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017.

[24] T. B. Brown et al., “Language Models are Few-Shot Learners,” Jul.
2020, arXiv:2005.14165 [cs].

[25] J. F. Ziegler et al., “Effect of cosmic rays on computer memories,”
Science, vol. 206, no. 4420, pp. 776–788, 1979.

[26] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2009, pp. 502–506.

[27] A. Ruospo et al., “Assessing convolutional neural networks reliability
through statistical fault injections,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2023.

[28] B. Jacob et al., “Quantization and Training of Neural Networks for Effi-
cient Integer-Arithmetic-Only Inference,” Dec. 2017, arXiv:1712.05877.

[29] “huyvnphan/PyTorch cifar10,” Jan. 2021. [Online]. Available:
https://zenodo.org/record/4431043


