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I. INTRODUCTION

Deep Neural Networks (DNNs) [START_REF] Lecun | Deep learning[END_REF] are currently one of the most intensively and widely used predictive models in the field of Machine Learning (ML). DNNs have proven to give very good results for many complex tasks and applications, such as object recognition in images/videos, natural language processing, satellite image recognition, robotics, aerospace, smart healthcare, and autonomous driving.

The network results can be affected not only by the inaccuracy of DNNs models, but also by hardware faults. The underlying hardware, where the DNN is executed, is subject to faults due to several sources, e.g., defects undetectable at time-zero postfabrication testing that manifest themselves later in the field of application, silicon ageing, and environmental stress, such as heat, humidity, vibration, and radiation [START_REF] Santos | Analyzing and increasing the reliability of convolutional neural networks on gpus[END_REF]. Although DNN models have the capability to circumvent to a large extent hardware faults during the learning process, faults can still occur after training. Thus, inference can be significantly affected, leading to DNN prediction failures that are likely to lead to a detrimental effect on the application [START_REF] Torres-Huitzil | Fault and error tolerance in neural networks: A review[END_REF]- [START_REF] Lotfi | Resiliency of automotive object detection networks on gpu architectures[END_REF]. Therefore, ensuring the reliability of DNN A 2-page abstract of this paper has been accepted at DATE2023 [START_REF] Traiola | A machine-learning-guided framework for faulttolerant DNNs[END_REF] is crucial, especially when deployed in safety-and mission-critical applications.

However, common reliability approaches, such as complete Triple Modular Redundancy (TMR) and Error Correction Codes (ECC), are not cost effective since they incur prohibitive overheads due to the large-sized DNNs and memories required for parameter storage. Therefore, to ensure the DNN reliability in a cost effective manner, the DNN resilience must be properly evaluated, the most critical parts should be identified and such an information can be used to drive the network protection.

The evaluation of the DNN resilience is typically based on simulation-based, hardware-based and radiation-based Fault Injection (FI) [START_REF] Ruospo | Pros and cons of fault injection approaches for the reliability assessment of deep neural networks[END_REF], [START_REF] Ruospo | A survey on deep learning resilience assessment methodologies[END_REF]. Simulation-based fault-injection is a commonly used technique as it is a low cost and high controllable approach. Software simulation-based FI is usually performed due to reduced FI time. Several approaches exist based on different models, e.g., based on PyTorch [START_REF] Mahmoud | Pytorchfi: A runtime perturbation tool for DNNs[END_REF] and TensorFlow [START_REF] Chen | Tensorfi: A flexible fault injection framework for tensorflow applications[END_REF], injecting permanent or transient faults at several fault locations, e.g., weights, activation, and operators [START_REF] Ruospo | Investigating data representation for efficient and reliable convolutional neural networks[END_REF]. Hardware-based FI is more time consuming, but it is more accurate as it takes into account the underlying hardware. For instance, approaches inject permanent and transient faults during inference at the hardware accelerator RTL [START_REF] Salami | On the resilience of rtl nn accelerators: Fault characterization and mitigation[END_REF]. To reduce simulation time, hybrid (or cross-layer) approaches are proposed to obtain fault models using hardware information and injected at the software level, e.g., high-level design information from architectural descriptions is used to model faults [START_REF] He | Fidelity: Efficient resilience analysis framework for deep learning accelerators[END_REF] and each line of code is mapped to the corresponding hardware component of the DNN accelerators [START_REF] Li | Understanding error propagation in deep learning neural network (DNN) accelerators and applications[END_REF], [START_REF] Bolchini | Fast and accurate error simulation for cnns against soft errors[END_REF].

However, exhaustive FI is not feasible, since every neuron and synapse is a FI candidate, whereas each FI requires performing inference on the complete test set to assess the fault effect, being intractable from a computation point of view. Therefore, the majority of approaches evaluate DNN resilience through statistical FI. Following such an approach, only the criticality of the parameters where faults have been injected can be estimated. To protect the DNN in a cost effective way, the criticality of all parameters should be evaluated.

To address this limitation, recent approaches combine FI with machine learning methods [START_REF] Chaudhuri | Efficient fault-criticality analysis for ai accelerators using a neural twin[END_REF], [START_REF] Zhang | Estimating vulnerability of all model parameters in DNN with a small number of fault injections[END_REF]. Approaches exist that focus on reducing the time of DNN reliability evaluation by reducing the number of FIs and combine the results with machine learning. For instance, a percentage of the parameters is selected for FI, and a set of features (absolute value, gradient, calculation time and layer location) is extracted and used with random forest regression for the vulnerability estimation [START_REF] Zhang | Estimating vulnerability of all model parameters in DNN with a small number of fault injections[END_REF]. However, such approaches do not leverage the obtained results in order to cost-effectively protect the DNNs. Other existing approaches focus on timing errors, e.g., first-order Taylor expansion approximates the weight sensitivity to design a DNN where sensitive weights are mapped to robust multiple-and-accumulate operators [START_REF] Choi | Sensitivity based error resilient techniques for energy efficient deep neural network accelerators[END_REF]. Other studies proposed the use of dedicated low-overhead correction codes to protect DNN parameters [START_REF] Huang | Functional Error Correction for Reliable Neural Networks[END_REF]- [START_REF] Cavagnero | Fault-Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead[END_REF]. However, they either apply the protection to all the NN parameters -regardless of their criticality -or rely on a modified training procedure. This can be problematic especially when dealing with DNNs with elevated training time and costs (weeks/months for industry-level production models, e.g., alphaGO [START_REF] Silver | Mastering the game of Go without human knowledge[END_REF], GPT-3 [START_REF] Brown | Language Models are Few-Shot Learners[END_REF]) and with billions of parameters.

This work extends the state-of-the art by proposing for the first time a comprehensive framework to (i) evaluate the resilience of large DNNs to faults impacting their parameters, (ii) estimate the criticality of all the DNN parameters and their bits, and (iii) use this information for cost-effective DNN protection. More precisely, the proposed framework performs, as a first step, a datatype-and-layerbased FI, driven by the characteristics of the targeted DNN model. As a second step, it uses the results of FI to train ML classification models. This allows predicting the bit-accurate criticality of all network parameters. Last, ECC codes are selectively inserted to protect the critical bits and critical parameters, achieving lowoverhead fault tolerance. Thanks to the proposed framework, we explored eight Convolutional Neural Networks and show memory savings up to 83% w.r.t. protecting all the network parameters with common ECC. Our framework is applied at post-training phase, and thus, does not require any special fault-aware training procedure.

The rest of the paper is organized as follows. Section II describes the proposed resilience evaluation and protection framework. Section III presents the results for eight case studies and Section IV draws conclusions.

II. PROPOSED FRAMEWORK

Figure 1 depicts the overview of the proposed framework, which consists of three main steps, described below.

Step I: datatype-and-layer-based fault injection campaign The first step of the proposed framework consists in performing a reduced number of targeted FIs, while keeping high the confidence of the FI outcome. This is achieved by considering a datatype-and-layer-based FI approach, to take into account the characteristics of the DNN model under study. DNNs consist of several layers, performing different operations, thus having different impact on the output. To capture the individual impact of the DNN layers, in this paper, we perform a layer-based simulationbased software FI, ensuring that a statistically significant number Step III: Selective Hardening

Step I: Statistical Fault Injection and Impact Learning

ML model NN structure

Step II: Criticality prediction Fig. 1: Overview of the proposed framework. of random faults is injected in each DNN layer. We target the parameters of the DNN stored in the memory. Similar approaches were previously adopted to study the statistical resilience of DNNs (e.g. in [START_REF] Ruospo | Investigating data representation for efficient and reliable convolutional neural networks[END_REF], [START_REF] Li | Understanding error propagation in deep learning neural network (DNN) accelerators and applications[END_REF]).

Furthermore, faults striking different bits of a given DNN parameter impact the DNN output in different ways [START_REF] Li | Understanding error propagation in deep learning neural network (DNN) accelerators and applications[END_REF]. Their criticality depends on the datatype and the position of the impacted bit in the DNN under study. Usually, the DNN training process generate parameters having values in a relatively small range [START_REF] Li | Understanding error propagation in deep learning neural network (DNN) accelerators and applications[END_REF], [START_REF] Lee | Value-aware Parity Insertion ECC for Fault-tolerant Deep Neural Network[END_REF]. Therefore, faults impacting data encoding approaches allowing large value ranges are more likely to generate out-ofscale values. For example, using floating-point datatype has a particularly negative effect for fault tolerance, since the possible data range is very extended. On the other hand, using fixed-point datatype allows the range of values to be reduced, mitigating the fault effect in DNNs [START_REF] Ruospo | Investigating data representation for efficient and reliable convolutional neural networks[END_REF], [START_REF] Li | Understanding error propagation in deep learning neural network (DNN) accelerators and applications[END_REF], [START_REF] Lee | Value-aware Parity Insertion ECC for Fault-tolerant Deep Neural Network[END_REF].

In this paper, as fault model we consider the Single Event Upset (SEU), which can be caused by a single energetic particle (e.g. cosmic rays and high energy protons) and is a soft (nondestructive) error [START_REF] Ziegler | Effect of cosmic rays on computer memories[END_REF]. To mimic this condition, we inject random faults in DNN parameters, according to the statistical fault injection formula proposed in [START_REF] Leveugle | Statistical fault injection: Quantified error and confidence[END_REF]:

f ault injections = N 1+e 2 × N -1 t 2 ×0.25
, where N is the number of NN parameters, e is the desired error margin (1% in our case), and t depends on the desired confidence level (we used t=2.5758 to achieve 99% confidence level). The FI procedure is done once and results can be used as many times as necessary in the next steps. The use of the approach in [START_REF] Leveugle | Statistical fault injection: Quantified error and confidence[END_REF] applied to DNNs has also been validated recently in [START_REF] Ruospo | Assessing convolutional neural networks reliability through statistical fault injections[END_REF], where the authors showed that it is necessary to apply the aforementioned formula to each layer of the DNN to obtain meaningful results. Therefore, as already mentioned, we assess the fault tolerance of every DNN layer through statistical FI. However, performing exhaustive injection may be feasible for layers having few parameters. Figure 2 shows the necessary injections in both statistical and exhaustive approaches as a function of layer parameters, along with the relative percentage of injection savings obtained with the statistical approach. For example, when a layer has 4164 parameters, the statistical FI allows performing 3331 injections, thus avoiding 20% of the injections. However, the user may be willing to pay the extra 20% in order to have an exhaustive characterization and not a MLbased prediction. Conversely, for big convolutional layers with a lot more parameters, it is simply not feasible to inject exhaustively. For example, the fourth layer of ResNet-18 has convolutional layers with 2,359,296 parameters; the statistical injection approach allows reducing the necessary injections to 16,525 faults (>99% savings) to characterize the layer criticality with 1% error and 99% confidence. The proposed framework lets the user choose the Injections 10% 10% 20% 20% 30% 30% 40% 40% 40% 50% 50% 50% 50% 60% 60% 60% 60% 60% 60% 70% 70% 70% 70% 70% 70% 70% 70% 70% 70% 70% 70% asymptote for statistical injection: 16641 exhaustive statistical Fig. 2: Necessary injections for statistical VS exhaustive approaches (according to [START_REF] Leveugle | Statistical fault injection: Quantified error and confidence[END_REF]), with percentage reduction.

percentage of injection savings under which a statistical FI is not deemed necessary because an exhaustive one is possible according to the available resources. Moreover, we inject on different bits of the selected parameters, depending on their datatype and width. For Floating-Point (FP) data, we inject the sign bit, linearly spaced exponent bits and linearly spaced mantissa bits. For Fixed-Point (FxP), we inject linearly spaced integer bits and linearly spaced fractional bits. To assess the impact of an injected fault, we execute the whole NN test set (i.e., we perform all the inferences) and compare the obtained results with the golden reference (i.e., the fault-free NN).

If the fault has a critical impact w.r.t. a user-defined metric (e.g. top-1 accuracy reduced more than a given value), we classify as critical both the injected bit and the parameter it belongs to. The framework user can choose how many and which bits to inject. In this paper, we kept the number of injected bits per parameter lower than 10. Then, as sketched in Figure 3, we consider the noninjected bits in a given parameter as critical if they have a lefthand-side (i.e., more significant) bit classified as critical. If a noninjected bit has a left-hand-side bit classified as acceptable (i.e., the impact of the fault was not critical), it is considered as acceptable. For FP, we apply this approach to both exponent and mantissa. For NNs having parameters encoded with low bit width data (e.g., 8 bits), we inject in every bit. MSB LSB Fig. 3: Classification injected and non-injected parameter bits.

Step II: ML-based parameter and bit criticality prediction

In the second step, the framework predicts the criticality of all NN parameters and bits where FI was not performed. To do so, we train an ML-classification model using as input training data the FI results obtained from step I. Within the proposed framework, the user can choose the ML model. For our experiments, in this paper we used the Random Forest (RF) model, which exhibits high degree of robustness to over-fitting and has efficient execution time even for large datasets. A similar choice was made in previous work, where an RF-based regression model was used [START_REF] Zhang | Estimating vulnerability of all model parameters in DNN with a small number of fault injections[END_REF], instead of classification. Furthermore, we will show that the RF model is sensible to imbalanced datasets obtained for some NN configurations; thus, we used also a balanced version of RF, i.e., Balanced Random Forest (BRF).

Step III: Selective hardening After steps I and II, the proposed framework is able to estimate the criticality of each parameter and bit.

Step III uses this information to apply efficient selective protection mechanisms and explore their effects. In this paper, we propose and evaluate a set of mechanisms, based on selective Hamming ECC (single bit correction), to cost-effectively protect the DNN: 1) ECC protecting all the bits of the Critical Parameters (CP).

2) ECC only protecting the Critical Bits of the Critical Parameters (CBCP). This category is further divided into two: a) each critical parameter has a dedicated ECC (CBCP-Single, or CBCP-S). b) an ECC code is produced for all critical bits of a block of parameters (CBCP-Block or CBCP-B).

For the last two categories, the framework also proposes the option to store the ECCs in the LSBs of the critical parameters themselves -to further reduce the area overhead -and explores whether this option has a negative impact on the NN result quality. For all the above mechanisms, additional memory is required to store the information about the criticality of NN parameters. The framework uses a classification signature: an array of bits -each one corresponding to an NN parameter -indicating whether the parameter has been classified as critical or not. Such classification signature could be further compressed with existing compression algorithms, to reduce memory. Finally, the classification signature needs to be protected with ECC to prevent faults from impacting the classification. For a coarse-grain ECC the overhead is negligible for big signatures. Indeed, using an m-bit Hamming ECC guarantees protection to 2 m -m -1 bits. For example, a signature vector of 1Mbits can be protected with only 20 bits of ECC code. Alternatively, the Hamming ECC for the classification signature can also be applied with high granularity, e.g. using 7 bits per 64bit signature chunk would result in a final ECC with an overhead of 0.34% for a 32-bit encoded NN. It is up to the user to choose the most suitable configuration, according to the requirements.

For the CBCP mechanism, different parameters may have different number of critical bits. The user can choose whether to store this information for each critical parameter, along with the classification signature, or to protect the same bits for all parameters within a layer and store only this information (i.e., which bits to protect for a given layer). In the second case, the framework protects a given bit in a layer if it is critical for at least one parameter in that layer. In this paper, we adopt the latter approach. As each layer is dedicated to a specific functionality, the parameters within a layer are expected to have similar characteristics, and thus, not large variations in the number of critical bits.

III. USE CASES FOR THE PROPOSED FRAMEWORK

We used the proposed framework to assess the fault tolerance and then protect two Convolutional Neural Networks, LeNet-5 and ResNet-18, each in four versions: (i) 32-bit floating-point (FP32), (ii) 32-bit fixed-point with 31 bits for fractional part (FxP32), (iii) 16-bit fixed-point with 15 bits for fractional part (FxP16), and (iv) 8-bit fixed-point with 7 bits for fractional part (FxP8), for a total of eight use cases. All versions of LeNet-5 were trained with the MNIST dataset and all versions of ResNet-18 were trained with the CIFAR10 dataset with an NVIDIA Quadro RTX 5000 GPU. The top-1 accuracy values of the NNs are reported in Table I, along with the training time. The FxP versions were trained using a quantization-aware training process [START_REF] Jacob | Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference[END_REF].

In step I, we performed a statistical FI of random bit flips. We injected, on average, 292,000 faults for LeNet-5 NNs and 2,100,000 faults for ResNet-18 NNs. The statistical FI is done only once per NN; thanks to a highly parallel computing grid, we kept the FI time reasonably low: it took us on average one hour to realize the statistical FI on LeNet-5 NNs and two days on ResNet-18 NNs. In step II, two ML classification models are used (i) Random Forest (RF) and (ii) Balanced Random Forest (BRF). We used as ML input features only structural properties of the NNs, in order to be able to apply the proposed approaches in a posttraining phase, unlike previous studies [START_REF] Lee | Value-aware Parity Insertion ECC for Fault-tolerant Deep Neural Network[END_REF], [START_REF] Cavagnero | Fault-Aware Design and Training to Enhance DNNs Reliability with Zero-Overhead[END_REF]. In particular, the used features are the injected parameter's sign, the position of the injected bit in the parameter, the injected NN layer, and the output feature map and filter channel affected by the fault, depicted in Figure 4. The ML models are evaluated with a k-fold cross validation process with k=10. The dataset ratio used to train/test the ML models is 70%/30%. As stated in Section II, the classification into critical and acceptable faults depends on a user-defined metric which provides the tolerated output quality degradation. Thus, we trained the ML models with 20 different tolerated top-1 accuracy degradation values, from 0.5 to 10 with step 0.5. The average training time for a ML model was lower than one hour, for all experiments.

In step III, we set at 120 the dimension of the block of parameters used in the CBCP-B approach. This allows a block of 120 parameters to be protected with only 7 ECC bits when having one critical bit, with 8 ECC bits when having 2 critical bits, and so on; indeed, as already mentioned, a m-bit Hamming ECC guarantees protection to 2 m -m-1 critical bits. In the interest of conciseness, in the next subsections we present a subset of the results per step.

Step I: datatype-and-layer-based fault injection campaign

This subsections reports the results of the FI campaigns. Table II shows the percentage of bits that have been classified as acceptable and as critical for all the explored networks as a result of the datatype-and-layer-based FI campaigns. As the trend is very clear and for the sake of conciseness, we report half of the results, omitting one every two. Overall, we observe that, when the network parameters are encoded using the FxP datatype, the impact of fault is less critical than in the FP case. As mentioned also in Section II, this happens because faults impacting data encoding approaches allowing narrow value ranges are less likely to generate out-of-scale values.

Step II: Machine-learning parameter & bit criticality prediction Firstly, we deem necessary to validate the effectiveness of the prediction w.r.t. real criticality, since the approach is build on top of statistical fault injection. To do so, we performed an exhaustive fault injection of all parameters of the FP32 version of LeNet and compared the results with the prediction of RF and BRF models, trained on statistical fault injection results. The results of such experiment showed that the difference between the number of real-critical parameters and the number of parameters predicted as critical is on average 0.09% (min 0.03%, max 0.17%) when RF is used, and 0.29% (min 0.12%, max 0.49%) when BRF is usedwell below the 1% error mentioned in Section II. Moreover, this difference is translated in the models always predicting more critical parameters than the exhaustive approach. This means that the predictions are conservative, i.e., we do not leave critical parameters unprotected but may protect some non-critical ones, especially with BRF. For example, with tolerate top-1 accuracy reduction of 0.5%, 52.86% of the parameters are critical (exhaustive), the RF prediction is 52.94% and the BRF is 53.12%. Thus, we can conclude that the prediction model trained on statistical fault injections delivers reliable criticality predictions. Therefore, from this point forward, we use conventional ML metrics to validate the models. Also, performing exhaustive FI on bigger NN, such as ResNet-18, is not feasible -which stresses the need of the proposed approach.

In Table III, we report prediction results regarding the criticality of the parameters' bits, for the FP32 and FxP8 datatypes. As done in Table II, we reduce the number of results, omitting one every two from 3.0% forward. For the other NN versions, the general trend is similar, thus we do not report all the results, for the sake of conciseness. We report FP32 to show that the RF model is sufficient to perform a correct prediction. For FxP data, a BRF model is sometimes necessary. We report FxP8 data to show the merit of the approach also when dealing with a low-precision data encoding. In the table, we report the Area under the ROC Curve (ROC AUC) metric and the ML prediction results (percentages of correctly/incorrectly predicted classes) ROC AUC ranges in value from 0 to 1. A model whose predictions are 100% wrong has an AUC of 0.0; one whose predictions are 100% correct has an AUC of 1.0. An overall observation is that our approach is able to provide accurate results for the classification of the parameters and their bits, given the general high values of ROC AUC. Note that, when n/a is reported, it means that in the experiment the critical faults were insufficient to (i) perform the model cross-validation (Mean ROC AUC columns) and (ii) perform the ML training (other columns).

When the network parameters are encoded with FxP, we observe a high percentage of mispredicted critical bits (compare columns 11 and 12). This is also highlighted by the Recall metric for Critical faults reported in the table. Recall measures between 0 and 1 the correct coverage of the class. High values mean that the critical faults are rarely predicted as Acceptable. This issue is likely due to the imbalanced number of samples in the two classes (i.e. few critical and lots of acceptable). To deal with this issue, we resorted to the balanced version of RF, highly reducing the percentage of critical bits predicted as acceptable, as shown in column 17. For instance, for 0.5% top-1 accuracy reduction, LeNet-5 with FxP8 has 0.2009% critical bits predicted as acceptable (recall 0.33), when RF is used, and 0% when BRF is used (recall 1.00). ResNet-18 with FxP8 has 0.4814% critical bits predicted as acceptable (recall 0.89), when RF is used, and 0.0451% (recall 0.99) when BRF is used. As a drawback of using BRF, we highlight that, while the number of mispredicted critical bits is reduced, the percentage of mispredicted acceptable bits increases (column 16). Note that, this only entails a protection overhead and not a hazard in terms of reliability. Nonetheless, the framework user can choose which RF version to use according to final requirements. So far, we reported results concerning bit criticality. As already mentioned, we consider a parameter as critical when it contains at least one critical bit. Hence, in Figure 5, we report the ML prediction results regarding the total number of critical and acceptable parameters for all versions of the NNs and for all tolerated top-1 accuracy reductions that we explored. With FP representation, we obtain significantly higher number of critical parameters compared to the FxP versions of the networks, in line with results observed in previous works investigating the fault tolerance of DNNs [START_REF] Ruospo | Investigating data representation for efficient and reliable convolutional neural networks[END_REF], [START_REF] Li | Understanding error propagation in deep learning neural network (DNN) accelerators and applications[END_REF]. Furthermore, as BRF is more conservative, the number of parameters considered as critical is increased compared to the RF. For instance, for 0.5% top-1 accuracy reduction, the RF model predicted LeNet-5 with FxP32 having 1,745 critical parameters, while BRF predicted 12,477 (total 44,190); for ResNet with FxP32, RF predicted 979,577 critical parameters, while BRF predicted 1,654,378 (total 10,992,320).

Step III: Selective hardening Table IV reports the results in terms of memory overhead for the proposed approaches (i.e., CP, CBCP-S, and CBCP-B) and compares them to the conventional ECC method, where ECC protects all parameters and all bits (AP). Results are reported for the case where an accuracy reduction of 0.5% was tolerated, thus the number of critical bits is high. Compared to AP, on average, CP achieves 61.22% reduction, CBCP-S 71.95% and CBCP-B 80.20%. As also reported in Section II, the classification signature can be protected with few bits of coarse-grain ECC -16 bits for LeNet-5 and 24 for ResNet-18 -or with very low overhead, e.g. 0.34% of fine-grain ECC overhead for a 32-bit encoded NN.

To further reduce the memory overhead, we explore the integration of the ECC obtained with the proposed approaches in the LSB of the critical parameters. In this case, the memory overhead comes only from the Classification Signature (i.e., the overhead for CP, CBCP-S/B in Table IV would be 0). However, this choice is likely to alter the value of the critical parameters, thus may affect the NN accuracy. Figure 6 shows the results of this approach in terms of percentage of the altered parameters and of how much this modification reduced the NN top-1 accuracy. While for 32-bit parameters the accuracy is not impacted (F(x)P32-CBCP-S in the figures), when reduced datatypes (especially 8 bits) are used, altering the LSBs of the parameters significantly impacts the accuracy, e.g., with a reduction of 3.65% for the FxP8 LeNet and 81.91% for FxP8 ResNet considering RF (FxP8-CBCP-S in the figures). Nonetheless, the results show that using the proposed CBCP-Block mechanism drastically reduces this limitation by altering a significantly lower amount of parameters and bits (FxP16-CBCP-B and FxP8-CBCP-B in the figures).

IV. CONCLUSIONS

We proposed a framework to enable the post-training fault tolerance characterization of all parameters of big DNNs, with the goal applying selective protection. This process is infeasible with conventional FI approaches, due to the dimensions of DNNs. The proposed framework is composed of three steps. The first one obtains data regarding the criticality of DNN parameters and bits through targeted FI campaigns. Then, in the second step, classification-based ML methods are trained with FI data and used to predict the criticality of all non-injected DNN parameters and bits. Using this information, the last step applies selective ECC to the DNN to cost-effectively protect it. Thanks to the proposed framework, the exploration of eight DNN models was possible. Results show memory savings up to 83% w.r.t. conventional ECC on LeNet-5 and ResNet-18 DNNs with different datatypes and widths.
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TABLE I :

 I Top-1 accuracy and training time of the NNs under study

		FP32	FxP32 FxP16 FxP8
	LeNet-5 top-1 accuracy	99.02%	98.7% 98.95% 98.81%
	ResNet-18 top-1 accuracy	92.59%	93.8% 93.59% 93.18%
	LeNet-5 training time(s)	1220	984	870	889
	ResNet-18 training time(s) pre-trained [29] 23989 23824 23929

TABLE II :

 II Fault Injection results.

	Tolerated				
	Top1 Acc.	FP32	FxP32	Fx16	FxP8
	Reduction	Accep. Critic. Accep. Critic. Accep. Critic. Accep. Critic.
			LeNet-5		
	0.50%	98.23% 1.77% 99.21% 0.79% 99.71% 0.29% 99.70% 0.30%
	1.50%	98.36% 1.64% 99.80% 0.20% 99.94% 0.06% 99.95% 0.05%
	2.50%	98.38% 1.62% 99.91% 0.09% 99.98% 0.02% 99.98% 0.02%
	3.50%	98.39% 1.61% 99.95% 0.05% 99.99% 0.01% 99.99% 0.01%
	4.50%	98.40% 1.60% 99.98% 0.02% 100% 0.00% 99.99% 0.01%
	5.50%	98.41% 1.59% 99.99% 0.01% 100% 0.00% 99.99% 0.01%
	6.50%	98.42% 1.58% 99.99% 0.01% 100% 0.00% 100% 0.00%
	7.50%	98.43% 1.57% 100% 0.00% 100% 0.00% 100% 0.00%
	8.50%	98.44% 1.56% 100% 0.00% 100% 0.00% 100% 0.00%
	9.50%	98.44% 1.56% 100% 0.00% 100% 0.00% 100% 0.00%
			ResNet-18		
	0.50%	91.56% 8.44% 95.38% 4.62% 95.56% 4.44% 95.78% 4.22%
	1.50%	91.58% 8.42% 96.91% 3.09% 97.02% 2.98% 97.98% 2.02%
	2.50%	91.64% 8.36% 97.61% 2.39% 97.66% 2.34% 98.62% 1.38%
	3.50%	91.70% 8.30% 98.01% 1.99% 98.05% 1.95% 98.94% 1.06%
	4.50%	91.74% 8.26% 98.28% 1.72% 98.31% 1.69% 99.14% 0.86%
	5.50%	91.76% 8.24% 98.50% 1.50% 98.52% 1.48% 99.28% 0.72%
	6.50%	91.78% 8.22% 98.68% 1.32% 98.69% 1.31% 99.39% 0.61%
	7.50%	91.79% 8.21% 98.83% 1.17% 98.84% 1.16% 99.47% 0.53%
	8.50%	91.80% 8.20% 98.96% 1.04% 98.96% 1.04% 99.54% 0.46%
	9.50%	91.80% 8.20% 99.07% 0.93% 99.07% 0.93% 99.60% 0.40%
	The reported numbers are referred to bits classified as Critical or Acceptable

TABLE III :

 III ML-based fault prediction model. Results are referred to bits of NN parameters.

					FP32						FxP8 with RF					FxP8 with BRF
	Tolerated Top1 Acc. Reduction	Mean ROC AUC	True Class:Acceptable True Class:Critical Critical Recall Predicted Predicted Predicted Predicted Acceptable Critical Acceptable Critical	Mean ROC AUC	True Class:Acceptable True Class:Critical Critical Recall Predicted Predicted Predicted Predicted Acceptable Critical Acceptable Critical	Mean ROC AUC	True Class:Acceptable True Class:Critical Critical Predicted Predicted Predicted Predicted Recall Acceptable Critical Acceptable Critical
											LeNet-5						
	0.5% 0.9965 98.17%	0.07%	0.03%	1.74%	0.98 0.9742 99.63%	0.07%	0.20%	0.10%	0.33 0.9951 93.59%	6.11%	0.00%	0.30%	1.00
	1.0% 0.9985 98.29%	0.04%	0.02%	1.66%	0.99 0.9762 99.84%	0.06%	0.07%	0.02%	0.25 0.9958 96.75%	3.15%	0.00%	0.10%	1.00
	1.5% 0.9994 98.33%	0.03%	0.01%	1.63%	0.99 0.9583 99.95%	0.00%	0.04%	0.00%	0.05 0.9917 97.78%	2.17%	0.00%	0.05%	1.00
	2.0% 0.9997 98.36%	0.02%	0.01%	1.61%	0.99 0.9639 99.97%	0.00%	0.03%	0.00%	0	0.9942 98.72%	1.25%	0.00%	0.03%	1.00
	2.5% 0.9997 98.36%	0.02%	0.01%	1.60%	0.99 0.9535 99.98%	0.00%	0.02%	0.00%	0	0.9987 97.81%	2.17%	0.00%	0.02%	1.00
	3.0% 0.9997 98.36%	0.02%	0.01%	1.60%	0.99 0.9493 99.99%	0.00%	0.01%	0.00%	0	0.9984 96.44%	3.54%	0.00%	0.01%	1.00
	4.0% 0.9998 98.38%	0.02%	0.02%	1.58%	0.99 0.9747 99.99%	0.00%	0.01%	0.00%	0	0.9983 95.91%	4.08%	0.00%	0.01%	1.00
	5.0% 0.9999 98.38%	0.02%	0.02%	1.57%	0.99 0.9998 99.99%	0.00%	0.01%	0.00%	0	0.9983 95.52%	4.47%	0.00%	0.01%	1.00
	6.0% 0.9999 98.40%	0.01%	0.02%	1.57%	0.99	n/a	99.99%	0.00%	0.01%	0.00%	0	nan	94.65%	5.35%	0.00%	0.01%	1.00
	7.0% 0.9999 98.40%	0.02%	0.02%	1.56%	0.99	n/a	100.00%	0.00%	0.00%	0.00%	0	nan	84.39%	15.61%	0.00%	0.00%	1.00
	8.0% 0.9999 98.42%	0.01%	0.01%	1.56%	0.99	n/a	100.00%	0.00%	0.00%	0.00%	0	nan	84.39%	15.61%	0.00%	0.00%	1.00
	9.0% 0.9999 98.42%	0.01%	0.01%	1.55%	0.99	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	10.0% 0.9998 98.44%	0.01%	0.00%	1.55%	1.00	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
											ResNet-18						
	0.5% 0.9999 91.53%	0.02%	0.01%	8.43%	1.00 0.9965 95.41%	0.37%	0.48%	3.74%	0.89 0.9978 92.87%	2.91%	0.05%	4.17%	0.99
	1.0% 0.9999 91.54%	0.03%	0.01%	8.42%	1.00 0.9968 96.98%	0.30%	0.47%	2.26%	0.83 0.9979 94.21%	3.06%	0.02%	2.71%	0.99
	1.5% 0.9999 91.55%	0.03%	0.01%	8.41%	1.00 0.9967 97.80%	0.18%	0.41%	1.61%	0.80 0.9980 94.85%	3.12%	0.01%	2.01%	0.99
	2.0% 0.9999 91.56%	0.05%	0.02%	8.37%	1.00 0.9965 98.24%	0.13%	0.32%	1.31%	0.80 0.9982 95.31%	3.06%	0.01%	1.62%	0.99
	2.5% 0.9999 91.56%	0.07%	0.03%	8.34%	1.00 0.9963 98.50%	0.12%	0.25%	1.13%	0.82 0.9983 95.68%	2.95%	0.01%	1.37%	1.00
	3.0% 0.9999 91.60%	0.08%	0.04%	8.29%	0.99 0.9957 98.66%	0.14%	0.22%	0.98%	0.81 0.9985 96.02%	2.77%	0.00%	1.20%	1.00
	4.0% 0.9999 91.65%	0.07%	0.05%	8.23%	0.99 0.9955 98.92%	0.13%	0.17%	0.78%	0.82 0.9986 96.80%	2.25%	0.01%	0.95%	0.99
	5.0% 0.9999 91.68%	0.07%	0.03%	8.22%	1.00 0.9950 99.10%	0.11%	0.16%	0.62%	0.80 0.9986 97.27%	1.94%	0.01%	0.78%	0.99
	6.0% 0.9999 91.70%	0.08%	0.02%	8.21%	1.00 0.9958 99.26%	0.08%	0.16%	0.50%	0.76 0.9986 97.57%	1.77%	0.00%	0.65%	0.99
	7.0% 0.9999 91.71%	0.08%	0.01%	8.20%	1.00 0.9959 99.35%	0.08%	0.15%	0.41%	0.73 0.9985 97.78%	1.65%	0.00%	0.57%	1.00
	8.0% 0.9999 91.71%	0.08%	0.01%	8.19%	1.00 0.9963 99.44%	0.07%	0.14%	0.35%	0.71 0.9985 97.94%	1.57%	0.00%	0.49%	0.99
	9.0% 0.9999 91.72%	0.08%	0.01%	8.19%	1.00 0.9961 99.52%	0.05%	0.13%	0.30%	0.69 0.9985 98.05%	1.52%	0.00%	0.43%	0.99
	10.0% 0.9999 91.71%	0.10%	0.01%	8.18%	1.00 0.9952 99.58%	0.04%	0.12%	0.26%	0.67 0.9986 98.11%	1.51%	0.00%	0.38%	0.99
	when n/a, the critical faults are insufficient to (i) perform the model cross-validation (Mean ROC AUC columns) and (ii) perform the ML training (other columns). See Table II.
	Percentage	0 50 100		FP32		FxP32-RF		FxP32-BRF	FxP16-RF	FxP16-BRF		FxP8-RF	FxP8-BRF
	Percentage	0 50 100	Accuracy Reduction (%) Tolerated Top-1 0 1 2 3 4 5 6 7 8 9 10												

TABLE IV :

 IV Memory overhead comparison FxP8 50.00% 2.476% 1.857% 0.046% 12.500% 70.049% 71.287% 74.907% Coarse-grain ECC size to protect the Classification Signature for LeNet-5 is 16 bits and for ResNet-18 is 24 bits, negligible compared to the dimension of the NNs.

		Overhead		Overhead reduction w.r.t. AP
		ECC	Class/tion	Class/tion Signature and
	AP	CP CBCP-S CBCP-B	Signature	CP CBCP-S CBCP-B
		LeNet-5	
	FP32 18.75% 9.926% 5.017% 0.126% 3.125% 30.396% 56.575% 82.662%
	FxP32 18.75% 0.740% 0.363% 0.009% 3.125% 79.384% 81.399% 83.286%
	FxP16 31.25% 0.383% 0.215% 0.009% 6.250% 78.773% 79.312% 79.972%
	FxP8 50.00% 0.583% 0.351% 0.012% 12.500% 73.835% 74.298% 74.975%
		ResNet-18	
	FP32 18.75% 13.488% 4.572% 0.132% 3.125% 11.398% 58.947% 82.630%
	FxP32 18.75% 1.671% 0.835% 0.019% 3.125% 74.422% 78.878% 83.234%
	FxP16 31.25% 2.668% 1.601% 0.036% 6.250% 71.462% 74.877% 79.885%