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Abstract: We study a transmission problem for the time harmonic Maxwell’s equations between
a classical positive material and a so-called negative index material in which both the permittivity
ε and the permeability µ take negative values. Additionally, we assume that the interface between
the two domains is smooth everywhere except at a point where it coincides locally with a conical
tip. In this context, it is known that for certain critical values of the contrasts in ε and in µ, the
corresponding scalar operators are not of Fredholm type in the usual H1 spaces. In this work,
we show that in these situations, the Maxwell’s equations are not well-posed in the classical L2

framework due to existence of hypersingular fields which are of infinite energy at the tip. By
combining the T-coercivity approach and the Kondratiev theory, we explain how to construct new
functional frameworks to recover well-posedness of the Maxwell’s problem. We also explain how
to select the setting which is consistent with the limiting absorption principle. From a technical
point of view, the fields as well as their curls decompose as the sum of an explicit singular part,
related to the black hole singularities of the scalar operators, and a smooth part belonging to some
weighted spaces. The analysis we propose rely in particular on the proof of new key results of
scalar and vector potential representations of singular fields.

Key words: Maxwell’s equations, negative index materials, Kondratiev theory, black hole singu-
larities, Mandelstam radiation principle, limiting radiation principle.
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1 Introduction

Recent progress in the conception of artificial microstructured materials with unusual effective
properties, related to exciting physical experiments, have led to the development of new fields of
research in applied mathematics. In particular, there has been a need to reconsider equations
of acoustics, electromagnetism and elastodynamics with material laws which do not fit into the
classical theories. In electromagnetism for example, it is generally assumed that the dielectric per-
mittivity ε and the magnetic permeability µ are real positive quantities or positive-definite tensors
for anisotropic materials. However, nowadays it seems possible to engine metamaterials which are
well-approximated in certain frequency ranges by effective ε, µ which are real negative functions
or negative-definite tensors. In practice, to obtain interesting devices for applications, one needs
to combine these non standard materials with classical ones to create interfaces where unusual
phenomena occur. For instance, as described by Veselago in his pioneering article [58], for a planar
interface, a plane wave impinging from one side is refracted to the other side in a direction which
is opposite to the standard one. This is the so-called negative refraction which may be useful to
create perfect lenses [52] and which has given the naming “negative index materials”. Mathemati-
cally, in time-harmonic regime, this leads to study non classical transmission problems which have
been the motivation for a series of articles that we present now.

In 2D, the Maxwell’s equations can be reduced to a scalar Helmholtz-type problem for which
the theory now is quite complete [5, 7, 9, 22, 47]. Let us give a brief summary of the main results.
In the analysis, the smoothness of the interface Σ between the so-called positive and negative
materials, as well as the contrast, defined as the ratio of the values of the negative coefficient over
the positive coefficient at Σ, play a key role. When Σ is of class C 1, there is no strong consequence
of the change of sign of the coefficients, except in the very critical case where the contrast is equal
to −1. The change of sign of the coefficients has a more striking effect when the interface has
geometric singularities. Thus, when Σ has corners, the operator associated with the problem in
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the classical Sobolev space H1 is not Fredholm for a whole interval of contrasts (the so-called crit-
ical interval) which contains −1. This is due to the existence of non classical singularities which
oscillates more and more when approaching the corner (see Figure 1 left).

r
O O

O

Figure 1: Left: real part of the radial behaviour of the hyper-singularity in 2D (ℜe riη = cos(η ln r)).
Right: schematic correspondence between the corner and waveguide problems.

To understand the phenomenon, it is convenient to rely on the analogy with a waveguide problem
which appears naturally when considering the change of variables (r, θ) 7→ (ln r, θ), where (r, θ)
are the polar coordinates centered at the corner. Observe that this map transforms the vicinity of
the corner into a semi-infinite strip (the waveguide) with the corner rejected to infinity (Figure 1
right). Moreover, singularities at the corner correspond to modes in the strip. Importantly, one
finds that propagating modes exist if and only if the contrast belongs to the critical interval. Back
in polar coordinates, propagating modes become what we call hyper-singularities or propagating
singularities. Their radial behaviour is of the form r±iη = e±iη ln r for some real η. Like for scatter-
ing problems in waveguides, it is necessary to impose a radiation condition at infinity in the strip,
or equivalently at the corner, to obtain a well-posed problem. This radiation condition allows one
to select the physically relevant solution in the sense that it is the limit of the solutions obtained
by adding some small dissipation to the medium, which corresponds to add a small uniformly
positive imaginary part to the sign-changing coefficient. This is the so-called limiting absorption
principle. Note that due to the sign-changing coefficient, the selection of the outgoing behaviour,
riη or r−iη, cannot be deduced from the sign of η. Instead, one uses energy considerations: the
outgoing propagating singularity is the one which carries energy to the corner and for this reason,
it is sometimes called black-hole wave. Justifying rigorously all this formal analysis and providing
a framework taking into account the black-hole wave to recover a well-posed problem is a task in
itself, which has been realized in [9] thanks to the theory of detached asymptotics in Kondratiev
spaces (see the reviews [42, 41]).

While the 2D scalar case has been intensively studied, the 3D Maxwell’s equations with sign-
changing coefficients have received much less attention. One of the reasons, in addition to intrinsic
difficulties of the analysis of Maxwell’s equations, is that a good knowledge of the corresponding
3D scalar problems (with sign-changing coefficients) is necessary to address the problem. And this
is much more complicated than in 2D as soon as the interface is not smooth. This explains why, up
to recently, the only references were [8] and [48]. In [48], the authors consider in detail the case of a
smooth interface between a material with negative ε, µ and another one with positive ε, µ. In [8], it
is proved that the Maxwell’s problem is well-posed in the classical framework, that is with electric
and magnetic fields E,H in L2, as soon as the contrasts in ε and in µ are not critical. Note that
if the interface is not smooth, it is known that the latter condition is satisfied for contrasts outside
of a given interval which contains −1. In the existing literature, let us also mention [15] where the
authors derive a homogenized model for a composite medium with periodically distributed small
inclusions of negative material.

The goal of the present article is to complement the previous studies and more precisely to consider
the time-harmonic 3D Maxwell’s equations in configurations involving non smooth interfaces with
critical contrasts so that a solution cannot be found in general with E,H in L2. We focus our
attention on situations where the interface is smooth except at one point where it coincides with
a conical tip, which is the 3D configuration that most closely looks like the case of the 2D corner.
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We also assume that the base of the conical tip is smooth, which excludes the possibility of having
edges.

The present study constitutes a follow-up to the article [10]. In that work, we addressed a part of
the difficulties by considering the case where ε is critical but µ is not. Additionally, we assumed
that the scalar problem for ε, which involves the differential operator div(ε∇·), admits exactly
one propagating singularity, like for 2D corners. Let us mention here that in 3D, the propagating
singularity behaves like r−1/2±iη with η ∈ R. We proved that, due to the black-hole effect at the
tip, the electric field E must not be searched in L2. Instead, it must be a linear combination of
a L2 function and the gradient of the propagating singularity. To prescribe this behaviour, we
adapted the theory of detached asymptotics in Kondratiev spaces to Maxwell’s equations, which
seems to be new. Note that even for the application of the more classical Kondratiev theory to
the standard Maxwell’s equations, there are only few works (see [21] and [55, 56]). Additionally,
it must be added that in the framework proposed in [10], curlE belongs to L2 (because µ is not
critical) while, as expected, H ∈ L2, curlH /∈ L2.

In this article, we extend the analysis of [10] in several directions. First, we suppose that both ε
and µ are critical, so that in general E, curlE, H, curlH are not in L2. In addition, we take
into account the fact that they may exist several black-hole singularities for the two scalar prob-
lems involving the differential operators div(ε∇·) and div(µ∇·) respectively. Note that roughly
speaking, the smaller the cone aperture, the higher the number of black-hole singularities. We will
see in §3.3 that the black-hole singularities are defined from eigenvalues and eigenfunctions of a
non-selfadjoint problem. For this reason, for certain exceptional values of the contrasts in ε or µ,
Jordan blocks occur. With the Mandelstam principle, we will provide mathematical frameworks
where well-posedness holds even in this case that was avoided in [10]. Finally, the geometric set-
ting that we consider here is a bit more general than the one of the previous article because we
allow the conical tip to touch the boundary of the domain (see Figure 2 center). This might seem
a minor technical point but it forces us to write more systematic proofs for the vector potential
representations of singular fields (see the appendix).

Let us mention that time-harmonic Maxwell’s equations with sign-changing coefficients also ap-
pear in the study of magnetized plasma, however with an important difference compare to what
is done here. Indeed, cold plasma models lead to consider smooth ε which vanish when changing
sign (which never happens for ε and µ below). This is responsible for the phenomenon of hybrid
resonance near the interface where ε is equal to zero (see [27, 49]). On the other hand, note that
there are several connections between the scalar operators with sign-changing coefficients and the
spectral theory of the Neumann-Poincaré operator. Indeed, the latter acts on functions defined on
a surface which plays a role similar to the interface in our work. It is known that when the surface
has corners in 2D [13] or tips in 3D [31], the spectrum of the Neumann-Poincaré operator contains
an interval of essential spectrum with possibly embedded eigenvalues [38, 11, 37]. This interval
of essential spectrum is in exact correspondence with our critical interval and is generated by the
same black-hole singularities. Similar results have been proved for the strongly singular volume
integral operator that describes the scattering of time-harmonic electromagnetic waves (see [18]
for 3D smooth interfaces and [19] for 2D Lipschitz interfaces).

The paper is organized as follows. We start by presenting the problem and the notation. In Section
3, we recall some properties concerning the scalar operators involved in the analysis of Maxwell’s
equations. In particular, we present how one should incorporate in the functional frameworks some
of the hypersingularities of the corresponding problems to get well-posedness. Section 4 constitutes
the heart of the article. There we propose a new functional framework to study the electric prob-
lem. The electric field decomposes on the hypersingularities associated with the scalar problem
for ε while its curl decomposes on the hypersingularities associated with the scalar problem for µ.
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Additionally, we show that the new framework satisfies the limiting absorption principle as soon
as the two scalar problems do. In Section 5, we summarize the results for the magnetic problem.
In Section 6, we prove that the Maxwell’s equations are not well-posed in the classical L2 setting.
Then we give a few words of conclusion before proving crucial results of representation by potential
as well as results of compact embeddings in weighted Sobolev spaces in Section 8. The main results
of this work are Theorem 4.15 for the electric field and Theorem 5.8 for the magnetic field.

2 Setting of the problem

2.1 General notation

Let Ω be an open, connected and bounded subset of R3 with a Lipschitz-continuous boundary
∂Ω. To simplify, we assume that Ω is simply connected and that ∂Ω is connected. When this
assumption is not satisfied, the results below can be adapted by working as in [8, §8.2]. For some
frequency ω ̸= 0, (ω ∈ R), the time-harmonic Maxwell’s equations are given by

curlE − iωµH = 0 and curlH + iωεE = J in Ω. (1)

Above E and H are respectively the electric and magnetic components of the electromagnetic
field while J stands for some current density injected in Ω. In this work, we suppose that Ω is
surrounded by a perfect conductor. This leads us to complete the previous system of equations
with the boundary conditions

E × ν = 0 and µH · ν = 0 on ∂Ω. (2)

Here ν denotes the unit outward normal vector to ∂Ω. The dielectric permittivity ε and the
magnetic permeability µ in (1) are assumed to be real valued functions such that ε, µ ∈ L∞(Ω)
and ε−1, µ−1 ∈ L∞(Ω). However their signs change in Ω as described below. As it is classical in
the study of Maxwell’s equations, we will work with the spaces

L2(Ω) := (L2(Ω))3

H1(Ω) := (H1(Ω))3

H1
0(Ω) := {φ ∈ H1(Ω) | φ = 0 on ∂Ω}

H1
#(Ω) := {φ ∈ H1(Ω) |

�
Ω

φ dx = 0}

H(curl ) := {H ∈ L2(Ω) | curlH ∈ L2(Ω)}
HN (curl ) := {E ∈ H(curl ) |E × ν = 0 on ∂Ω}.

The density current J in (1) belongs to a subspace of L2(Ω) that will be specified later and satisfies
divJ = 0 in Ω\{O}. This leads us to introduce, for ξ ∈ L∞(Ω), the spaces

XN (ξ) := {E ∈ HN (curl ) | div(ξE) = 0}
XT (ξ) := {H ∈ H(curl ) | div(ξH) = 0, ξH · ν = 0 on ∂Ω} .

(3)

We denote indistinctly by (·, ·)Ω the classical inner products of L2(Ω) and L2(Ω). Moreover, ∥ · ∥Ω
stands for the corresponding norms. We endow the spaces H(curl ), HN (curl ), XN (ξ), XT (ξ)
with the norm

∥ · ∥H(curl ) := (∥ · ∥2
Ω + ∥curl · ∥2

Ω)1/2.

Let us recall a well-known property for the particular spaces XN (1) and XT (1) (cf. [59, 1]).

Proposition 2.1. The embeddings of XN (1) in L2(Ω) and of XT (1) in L2(Ω) are compact. More-
over there is a constant C > 0 such that

∥u∥Ω ≤ C ∥curlu∥Ω, ∀u ∈ XN (1) ∪ XT (1).

Therefore, in XN (1) and in XT (1), ∥curl · ∥Ω is a norm which is equivalent to ∥ · ∥H(curl ).
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2.2 Description of the conical tip

In this paragraph, we detail the assumptions made on the geometry. We study a situation where
Ω is partitioned into two non empty subdomains Ω+ and Ω− corresponding respectively to the
positive and negative materials. We assume that Ω = Ω+ ∪ Ω−, Ω+ ∩ Ω− = ∅ and that both ∂Ω+,
∂Ω− are Lipschitz-continuous. The functions ε, µ are such that

ε =
ε+ > 0 in Ω+

ε− < 0 in Ω−,
µ =

µ+ > 0 in Ω+

µ− < 0 in Ω−,

where ε±, µ± are some constants. In the study of Problem (1)-(2), the contrasts κε, κµ defined by

κε := ε−/ε+, κµ := µ−/µ+

play a key role. Let us come now to the description of the conical tip. We assume that Ω− is of
class C 2 except at some point O where Ω− coincides locally with a cone K−. More precisely, we
choose the system of coordinates such that O = (0, 0, 0) and we assume that there is ρ > 0 as well
as some smooth domain ϖ− (of class C 2) of the unit sphere S2 := {x ∈ R3 | |x| = 1} such that

Ω− ∩ B(O, ρ) = K− ∩ B(O, ρ) with K− := {rθ | r > 0, θ ∈ ϖ−}. (4)

Here B(O, ρ) denotes the open ball centered at O and of radius ρ. Additionally, we assume that
the setting satisfies one of the two following assumptions:

Case 1: There holds O ∈ Ω and so we can choose ρ such that B(O, ρ) ⊂ Ω (internal
conical tip, see Figure 2 left). In that situation, we set ϖ := S2.

Case 2: There holds O ∈ ∂Ω (conical tip on the boundary). In that situation, to
simplify, we assume that Ω also coincides with a conical tip in a neighbourhood of O:

Ω ∩ B(O, ρ) = K ∩ B(O, ρ) with K := {rθ | r > 0, θ ∈ ϖ}

where ϖ is a smooth domain of S2 such that ϖ− ⊂ ϖ (see Figure 2 center).

(5)

Figure 2: Internal conical tip (left), conical tips on the boundary (center and right).

Remark 2.2. Admittedly, the case 2 above is rather academic. However it will force us to write
more systematic proofs. Note also that by rectifying the boundary with a diffeomorphism, adapting
for example the ideas of [39, §1.3.7, vol. 1], we could consider the case O ∈ ∂Ω where ∂Ω is smooth
in a neighbourhood of O (see Figure 2 right).

Now that the geometry is fixed, it remains to clarify the assumptions made on the contrasts κε, κµ.
The study of the Maxwell’s system is directly related to the properties of two scalar operators that
we present now. In this document, for a Banach space X, X∗ stands for the topological antidual
space of X (the set of continuous anti-linear forms on X). We denote by ⟨·, ·⟩ the corresponding
duality pairing. Define Aε : H1

0(Ω) → (H1
0(Ω))∗ such that

⟨Aεφ, φ′⟩ =
�

Ω
ε∇φ · ∇φ′ dx, ∀φ, φ′ ∈ H1

0(Ω) (6)
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and Aµ : H1
#(Ω) → (H1

#(Ω))∗ such that

⟨Aµφ, φ′⟩ =
�

Ω
µ∇φ · ∇φ′ dx, ∀φ, φ′ ∈ H1

#(Ω). (7)

It is proved in [8] that when the functions ε, µ are such that Aε, Aµ are of Fredholm type (without
assumption of sign for ε, µ), then the Maxwell’s system is also well-posed in the Fredholm sense
in the classical L2 framework (see Section 6 below for more details). In this work, our goal is to
study a situation where precisely Aε, Aµ are not of Fredholm type. When the sign of ε and µ is not
constant, determining if this holds or not is not straightforward. For a general Lipschitz-continuous
interface ∂Ω+ ∩ ∂Ω− between the materials, it is known that Aε (resp. Aµ) is of Fredholm type
if and only if κε ∈ R∗

−\Iε (resp. κµ ∈ R∗
−\Iµ), where Iε (resp. Iµ) is a bounded closed subset of

R∗
− := (−∞; 0) called the critical interval.

As mentioned in the introduction, when the interface is smooth, one can show that Iε = Iµ = {−1}
[22, 47]. When the interface is not smooth, the situation is different. This has been investigated in
details for the case of 2D interfaces with corners in [25, 7, 9] and for the case of 3D interfaces with
conical tips in [57, chapter 2]. In the latter works, it has been shown that in these configurations
Iε, Iµ are intervals with a non empty interior. In 2D for corners, the expressions of Iε, Iµ can
be derived explicitly. One finds that Iε, Iµ get even larger as the corner becomes sharp. For 3D
conical tips, there is a larger variety of situations and in general, we cannot get simple expressions
for Iε, Iµ. However we can still give a characterization of Iε, Iµ and that will be done in the next
section where we recall how to study the scalar problems. Let us mention that for wedges, which
will not be considered here, one may consult [7] and the more recent work [26].

3 Study of the scalar problems

3.1 Kondratiev spaces

We start by introducing weighted Sobolev spaces adapted to the kind of singularities we want to
handle. For β ∈ R and m ∈ N, we define the Kondratiev space (see [33, 39, 34]) Vm

β (Ω) as the
closure of C ∞

0 (Ω\{O}) for the norm

∥φ∥Vm
β

(Ω) =

 ∑
|α|≤m

∥r|α|−m+β∂α
x φ∥2

Ω

1/2

.

Here r = |x| and C ∞
0 (Ω\{O}) denotes the space of infinitely differentiable functions which are

supported in Ω\{O}. For m ∈ N∗ := {1, 2, . . . } and β ∈ R, we have the inclusion

Vm
β (Ω) ⊂ Vm−1

β−1 (Ω). (8)

Clearly there holds Vm
β (Ω) ⊂ Vm

γ (Ω) when β ≤ γ. Additionally, the elements of Vm
β (Ω) belong to

Hm of any region excluding a neighbourhood of O. Furthermore, we have the following compactness
result (see e.g. [34, Lemma 6.2.1]).

Lemma 3.1. For m ∈ N∗ and β < γ, the embedding Vm
β (Ω) ⊂ Vm−1

γ−1 (Ω) is compact.

It is obvious that V1
0(Ω) ⊂ H1(Ω). Moreover, since Ω is bounded, a classical Hardy inequality (see

e.g. [34, Theorem 7.1.1]) guarantees that H1(Ω) = V1
0(Ω) (note that this not true in 2D).

To study problems with Dirichlet boundary conditions, introduce the space V̊1
β(Ω) defined as

the closure of C ∞
0 (Ω\{O}) for the norm ∥ · ∥V1

β
(Ω) (note that in case 2 where O ∈ ∂Ω, see (5), one

gets C ∞
0 (Ω\{O}) = C ∞

0 (Ω)). We have the characterization

V̊1
β(Ω) = {φ ∈ V1

β(Ω) | φ = 0 on ∂Ω}.
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There holds H1
0(Ω) = V̊1

0(Ω) and for β > 0, one has the inclusions

V̊1
−β(Ω) ⊂ H1

0(Ω) ⊂ V̊1
β(Ω) and so (V̊1

β(Ω))∗ ⊂ (H1
0(Ω))∗ ⊂ (V̊1

−β(Ω))∗.

On the other hand, for 0 ≤ β ≤ 1, from (8), one gets H1
0(Ω) ⊂ V0

−β(Ω) ⊂ L2(Ω) which implies

L2(Ω) ⊂ V0
β(Ω) ⊂ (H1

0(Ω))∗.

Above, we have also used that (V0
β(Ω))∗ = V0

−β(Ω).

To study problems with Neumann boundary conditions, we will work in spaces of mean free
functions. To define them, first observe that for all β > −3/2, we have

�
Ω

r2β dx < +∞.

As a consequence, for u ∈ V1
β(Ω) with β < 5/2, we can write

∣∣∣ �
Ω

u dx
∣∣∣ ≤ ∥1∥V0

−β+1(Ω) ∥u∥V0
β−1(Ω) ≤ C ∥u∥V1

β
(Ω). (9)

This allows us to define for all β < 5/2, the space

V1
β(Ω) := {u ∈ V1

β(Ω)|
�

Ω
u dx = 0}.

Note in particular that we have H1
#(Ω) = V1

0(Ω).

3.2 Scalar operators in Kondratiev spaces

For β ∈ R, define the continuous operator Aβ
ε : V̊1

β(Ω) → (V̊1
−β(Ω))∗ such that

⟨Aβ
ε φ, φ′⟩ =

�
Ω

ε∇φ · ∇φ′ dx, ∀φ ∈ V̊1
β(Ω), φ′ ∈ V̊1

−β(Ω).

In the same way, for β ∈ (−5/2; 5/2), define Aβ
µ : V1

β(Ω) → (V1
−β(Ω))∗ such that

⟨Aβ
µφ, φ′⟩ =

�
Ω

µ∇φ · ∇φ′ dx ∀φ ∈ V1
β(Ω), φ′ ∈ V1

−β(Ω).

When applying the Kondratiev approach [33, 46, 39, 34, 25] and in particular, the Mellin transform,
to analyse, roughly speaking, the properties of Aβ

ε , Aβ
µ in a neighbourhood of O, one is led to

study the operators Lε(λ) : H1
0(ϖ) → H1

0(ϖ), Lµ(λ) : H1(ϖ) → H1(ϖ) defined via the Riesz
representation theorem such that for λ ∈ C,

(Lε(λ)φ, ϕ)H1(ϖ) =
�

ϖ
ε∇Sφ · ∇Sϕ dθ − λ(λ + 1)

�
ϖ

εφϕ dθ, ∀φ, ϕ ∈ H1
0(ϖ), (10)

(Lµ(λ)φ, ϕ)H1(ϖ) =
�

ϖ
µ∇Sφ · ∇Sϕ dθ − λ(λ + 1)

�
ϖ

µφϕ dθ, ∀φ, ϕ ∈ H1(ϖ). (11)

Above ϖ ⊂ S2 is the domain introduced in (5), H1
0(ϖ) := {φ ∈ H1(ϖ) | φ = 0 on ∂ϖ} (note that

H1
0(ϖ) = H1(ϖ) if ϖ = S2) while ∇S stands for the surface gradient on S2. Abusively, here for

σ = ε, µ, we redefine σ as the function such that σ = σ+ in ϖ+ := ϖ\ϖ− and σ = σ− in ϖ−.
Note that for σ = ε, µ, the symbol Lσ(·) appears naturally when looking for functions with
separate variables in coordinates (r,θ) such that div(σ∇s) = 0 in Ω ∩ B(O, ρ) together with the
homogeneous Dirichlet/Neumann (according to the case) boundary conditions on ∂Ω ∩ ∂B(O, ρ).
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βD

ℜe λ = −1/2

ℜe λ

ℑm λ

Figure 3: Schematic picture of the eigenvalues of Lε in the complex plane when Assumption 1 is
satisfied. One has something similar for Lµ.

We say that λ is in the spectrum of Lσ (λ ∈ spec(Lσ)) if Lσ(λ) is not invertible. Additionally, λ
is an eigenvalue of Lσ if ker Lσ(λ) ̸= {0}. Note that the analysis of the spectral properties of Lσ

is made complicated by the presence of the sign-changing coefficient σ both in the principal and
compact part which prevents from identifying inner products. For this reason, we are unable to
recast the spectra corresponding to (10), (11) as the the spectra of some self-adjoint operators and
actually, there are situations where complex eigenvalues exist. However, it has been shown in [57,
Chapter 3] that when κσ ̸= −1, the spectrum of Lσ is discrete, made of eigenvalues which do not
accumulate in bounded regions of C. Writing λ(λ + 1) = (λ + 1/2)2 − (1/2)2, one observes that if
λ ∈ spec(Lσ), then −1 − λ ∈ spec(Lσ) (symmetry with respect to the point −1/2 + 0i, see Figure
3). Additionally, using that σ is real valued, one finds that λ ∈ spec(Lσ) implies λ ∈ spec(Lσ)
(symmetry with respect to the line ℑm λ = 0). Then adapting the Kondratiev approach to the
present situation with sign-changing coefficients (see [57, Chapter 2] for the details), one establishes
the following result.

Proposition 3.2. For σ = ε, µ, assume that κσ ̸= −1. Then for β ∈ R, the operator Aβ
σ is of

Fredholm type if and only if Lσ has no eigenvalue on the line {λ ∈ C | ℜe λ = −1/2 + β}.

3.3 Hypersingularities

Figure 4: Restriction to K− of the imaginary part of a propagating singularity for an internal
circular conical tip.

Observe that since V̊1
0(Ω) = H1

0(Ω), V1
0(Ω) = H1

#(Ω), we have A0
ε = Aε and A0

µ = Aµ where Aε,
Aµ are defined in (6), (7). For this reason, for σ = ε, µ, the eigenvalues of Lσ located on the
energy line ℜe λ = −1/2 (β = 0) are of particular importance. Dividing (10), (11) by a constant if
necessary, we see that the spectrum of Lσ, which is a priori a function of σ+, σ− , depends only on
the contrast κσ = σ−/σ+. The Proposition 3.2 directly gives the following characterization result
for the set Iσ.

9



Proposition 3.3. For σ = ε, µ, we have

Iσ = {−1} ∪ {κσ ∈ R∗
− | Lσ has an eigenvalue on the line ℜe λ = −1/2}.

In this work, we shall make the following assumption.

Assumption 1. We suppose that ε and µ are such that κε ∈ Iε\{−1}, κµ ∈ Iµ\{−1}.

We say that κε, κµ are critical when, respectively, κε ∈ Iε\{−1}, κµ ∈ Iµ\{−1}. Note that in
this work, we shall systematically exclude the cases where κε = −1 or κµ = −1. In these latter
situations, somehow singularities appear not only at the tip but all along the interface. The anal-
ysis is then completely different and not fully understood yet. We refer the interested reader to
[50, 2, 51, 16, 47, 48] for more details in this direction.

Let us look at Assumption 1 in the simplest geometrical setting. Assume here that O ∈ Ω and
that K− coincides with a circular conical tip, that is

ϖ− = {(cos θ cos ϕ, sin θ cos ϕ, sin ϕ) | − π ≤ θ ≤ π, −π/2 ≤ ϕ < −π/2 + α} (12)

for some α ∈ (0; π) (see Figure 2 left). In this situation, as mentioned in [10, §2.1], adapting the
results of [32, 31, 37], one can show that Iε = Iµ = (−1; −ℵα) (resp. Iε = Iµ = (−ℵα; −1) when
α < π/2 (resp. α > π/2). Here ℵα is the constant defined by

ℵα := 2F1(1/2, 1/2, 1, cos2(α/2)) 2F1(3/2, 3/2, 2, sin2(α/2))
2F1(1/2, 1/2, 1, sin2(α/2)) 2F1(3/2, 3/2, 2, cos2(α/2)) > 0, (13)

where 2F1 stands for the Gauss’s hypergeometric function. Note that we have ℵα = 1/ℵπ−α

and ℵα ∈ (0; 1) for α ∈ (0; π/2). Additionally, there holds for example ℵπ/4 ≈ 0.218 as well as
limα→π/2 ℵα = 1, limα→0+ ℵα = 0+, limα→π− ℵα = +∞. As a consequence, for given materials
such that κε, κµ ∈ (−1; 0) (resp. κε, κµ ∈ (−∞; −1)), by taking α small enough (resp. large
enough), one can always find geometries such that Assumption 1 is satisfied.

We come back to the general analysis. According to Proposition 3.2, when Assumption 1 holds,
Aε, Aµ are not of Fredholm type. This is directly related to the existence of hypersingularities
supported by the tip that we describe now. For σ = ε, µ, we denote by

λσ
j = −1/2 + iησ

j , j = 1, . . . , nσ,

the eigenvalues of Lσ located on the line ℜe λ = −1/2. Let Iσ
j = dim ker Lσ(λσ

j ) stand for the
geometric multiplicity of λσ

j and let φσ
j,1,0, . . . , φσ

j,Iσ
j ,0 be a canonical system of eigenfunctions of

Lσ corresponding to the eigenvalue λσ
j . For certain contrasts, generalized eigenfunctions can also

exist that we have to take into account. Denote by κσ
j,k the partial multiplicity of λσ

j (see [34,
§5.1.1] for the definition). Finally, let

φσ
j,k,0, . . . , φσ

j,k,κσ
j,k

−1, k = 1, . . . , Iσ
j ,

be a canonical system of Jordan chains (see again [34, §5.1.1]) corresponding to the eigenvalue λσ
j .

For j = 1, . . . , nσ, k = 1, . . . , Iσ
j , l = 0, . . . , κσ

j,k − 1, we define the hypersingularity

sσ
j,k,l := r−1/2+iησ

j

l∑
p=0

1
p! (log r)pφσ

j,k,l−p(θ). (14)

Note that if λj = −1/2 + iηj is a simple eigenvalue (geometric multiplicity equal to one and no
generalized eigenfunction), we just have sσ

j,1,0 = r−1/2+iηφσ
j,1,0(θ) (see Figure 4 for a representation

of such function). Additionally, using the definition of Jordan chains, we find that for λσ
j ̸= −1/2,
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we have κσ
j,k = 1, i.e. absence of generalized eigenfunction associated with the eigenpair (λσ

j , φσ
j,k,0),

as soon as there holds �
ϖ

σφσ
j,k,0 φσ

j,k̃,0 dθ ̸= 0 for some k̃ ∈ {1, . . . , Iσ
j }.

The hypersingularities sσ in (14) satisfy

div(σ∇sσ) = 0 in Ω ∩ B(O, ρ) (15)

together with the homogeneous Dirichlet/Neumann (according to the case) boundary conditions
on ∂Ω ∩ ∂B(O, ρ). Moreover, they are in L2(Ω) but lay “just outside” of H1(Ω). More precisely,
we have sσ /∈ H1(Ω) and rτ sσ ∈ H1(Ω) for all τ > 0. This is directly related to the calculus

� 1

δ
|∇(r−1/2+iη)|2 r2dr = | − 1/2 + iη|2

� 1

δ
r−1dr = (1/4 + η2)| ln δ| −→

δ→0+
+∞.

The hypersingularities are also known as propagating or black hole singularities. In the following,
to simplify, we will simply call them singularities. They can be interpreted as waves guided by
the interface between the two materials that propagate to or from O. The group velocity of these
waves tend to 0 as r → 0 so that they never reach O (this is why they are called black hole waves).
Everything happens as if energy was trapped at the tip, see the important identity (37) below
to understand this sentence, and the point O plays the role of infinity. For adapted numerical
methods to catch them, one may look at [5, 29, 11, 30]. For related problems, we refer the reader
to [6, 54, 13, 12, 28, 53].

To discard in particular problems of boundary conditions on ∂Ω far from O, classically we multiply
the singularities by a cut-off function. Introduce χ ∈ C ∞(R) such that χ(r) = 1 for r ≤ ρ/2 and
χ(r) = 0 for r ≥ ρ. For σ = ε, µ, this leads us to define the space

Sσ := span{ χ(r)sσ
j,k,l(x) , j = 1, . . . , nσ, k = 1, . . . , Iσ

j , l = 0, . . . , κσ
j,k − 1}. (16)

Exploiting (15), for s ∈ Sσ, we obtain

div(σ∇s) ∈ L2(Ω) and div(σ∇s) = 0 in Ω ∩ B(O, ρ/2). (17)

The study of [57, Chapter 2] gives the following result.

Lemma 3.4. Suppose that Assumption 1 holds. Then Sε and Sµ are of finite dimension and their
dimensions are even, i.e. we have dim(Sε) = 2Nε, dim(Sµ) = 2Nµ with Nε, Nµ ∈ N∗.

Remark 3.5. In the particular case of the circular conical tip described in (12), one can show
that by taking contrasts κε, κµ close to −1, one can get dimensions Nε, Nµ as large as desired.

In what follows we explain in a brief way how to take into account the singularities in the functional
framework to get Fredholm operators.

3.4 Additional properties for the scalar operators in Kondratiev spaces

Introduce the quantities

βD := min{ℜe (λ − 1/2) | λ ∈ spec(Lε) and ℜe λ > −1/2},

βN := min({ℜe (λ − 1/2) | λ ∈ spec(Lµ) and ℜe λ > −1/2} ∪ {5/2})
(18)

(see the illustration of Figure 3). The results of [57, Chapter 2] guarantee that we have both
βD > 0 and βN > 0. With this definition, all the eigenvalues of Lε (resp. Lµ) in the strip
−βD < ℜe λ < βD (−βN < ℜe λ < βN ) are located on the line ℜe λ = −1/2. Additionally,
we have the following result (we recall that the index of a Fredholm operator is defined as the
difference of the dimensions of its kernel and of its cokernel).
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Proposition 3.6. Suppose that Assumption 1 holds.
For β ∈ (0; βD), Aβ

ε is of index Nε while A−β
ε is of index −Nε.

For β ∈ (0; βN ), Aβ
µ is of index Nµ while A−β

µ is of index −Nµ.

Note that we can prove that the dimension of ker A−β
ε (resp. ker A−β

µ ) is independent of β ∈ (0; βD)
(resp. β ∈ (0; βN )). Therefore A−β

ε (resp. A−β
µ ) is injective for all β ∈ (0; βD) (resp. β ∈ (0; βN ))

if and only if it is injective for one β ∈ (0; βD) (resp. one β ∈ (0; βN )). To simplify the analysis
below and to avoid to be obliged to handle kernels of finite dimensions, we shall make the

Assumption 2. We suppose that ε (resp. µ) is such that A−β
ε (resp. A−β

µ ) is injective for all
β ∈ (0; βD) (resp. β ∈ (0; βN )).

With Proposition 3.6, this gives the estimates

∀β ∈ [0; βD), ∥u∥V̊1
−β

(Ω) ≤ C ∥A−β
ε u∥(V̊1

β
(Ω))∗ , ∀u ∈ V̊1

−β(Ω),

∀β ∈ [0; βN ), ∥u∥V1
−β

(Ω) ≤ C ∥A−β
µ u∥(V1

β
(Ω))∗ , ∀u ∈ V1

−β(Ω).
(19)

With the help of the residue theorem applied to the symbols λ 7→ Lε(λ), λ 7→ Lµ(λ) (adapt [34,
Theorem 5.4.2]), one shows the following regularity result.

Proposition 3.7. Suppose that Assumptions 1-2 hold.
If u ∈ H1

0(Ω) satisfies div(ε∇u) ∈ (V̊1
β(Ω))∗ ⊂ (V̊1

−β(Ω))∗ for some β ∈ (0; βD), then u ∈ V̊1
−β(Ω).

If u ∈ H1
#(Ω) satisfies div(µ∇u) ∈ (V1

β(Ω))∗ ⊂ (V1
−β(Ω))∗ for some β ∈ (0; βN ), then u ∈ V1

−β(Ω).

The singularities belong to the domains of the operators Aβ
ε , Aβ

µ. However these operators are
not yet satisfactory because they are onto (as adjoints of injective operators) but not injective. In
order to construct isomorphisms, we have to make a selection of the singularities and incorporate
in the functional framework only some of them. This is the next step in the analysis.

3.5 Mandelstam radiation principle

The properties (17) ensure that for σ = ε, µ, we can define the form qσ(·, ·) : Sσ × Sσ → C such
that

qσ(u, v) =
�

Ω
−div(σ∇u)v + u div(σ∇v) dx ∀u, v ∈ Sσ.

Note that qσ(·, ·) is sesquilinear and anti-Hermitian, i.e. it is symplectic. Using the dominated
convergence theorem and integrating by parts, we obtain

qσ(u, v) = lim
δ→0

�
{|x|=δ}∩Ω

σ(∂ruv − ∂ruv) ds.

This shows that qσ(·, ·) does not depend on the choice of the cut-off function χ in (16). On the
other hand, we observe that for all u ∈ Sσ,

qσ(u, u) = 2iℑm(
�

Ω
u div(σ∇u) dx) ∈ iR.

Physically, the magnitude qσ(u, u) represents the energy transported by the wave u ∈ Sσ to or
from the point O (depending on the sign). A wave u ∈ Sσ is said to be outgoing (resp. incoming)
if ℑm(qσ(u, u)) > 0 (resp. ℑm(qσ(u, u)) < 0 ). If u ∈ Sσ satisfies qσ(u, u) = 0, we say that u is
unclassified. It has been shown in [57, Chapter 2] that qσ(·, ·) is non-degenerate (qσ(u, v) = 0 for
all v ∈ Sσ implies u ≡ 0). By applying the Sylvester’s law of inertia, we obtain the following result.

Lemma 3.8. Suppose that Assumption 1 holds. For σ = ε, µ, there exists (s±
σ,j)j=1,...,Nσ a basis

of Sσ such that we have

qσ(s±
σ,j , s±

σ,k) = ±iδj,k, qσ(s±
σ,j , s∓

σ,k) = 0 and s+
σ,j = s−

σ,j for j, k = 1, . . . , Nσ. (20)
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In the literature (see in particular [46, 43, 44]), the decomposition presented in the previous
lemma is known as the Mandelstam radiation principle. It means that the space of waves can be
decomposed as the sum of a space of outgoing waves and a space of incoming waves.

Remark 3.9. We emphasize that the choice of the basis (s±
σ,j)j=1,...,Nσ is not unique. More pre-

cisely, one can find an infinite number of bases satisfying all the conditions of Lemma 3.8. From
a mathematical point of view, this is not a problem and any choice of basis provides a functional
framework in which the corresponding scalar problem is well-posed. More physically however, in
most cases there is only one particular choice which is consistent with the limiting absorption
principle. We will come back to this point in §4.7.

From now on, for σ = ε, µ, we fix (s±
σ,j)j=1,...,Nσ a basis of Sσ satisfying the orthogonality relations

of Lemma 3.8. Moreover, we define the space

S+
σ := span{s+

σ,j , j = 1, . . . , Nσ}. (21)

Using (20), one gets directly the following result.

Lemma 3.10. Suppose that Assumption 1 holds. For σ = ε, µ, if s ∈ S+
σ satisfies qσ(s, s) = 0,

then s ≡ 0.

3.6 A new functional framework for the scalar problems

For β > 0, define the so-called space with detached asymptotics

V̊out
β (Ω) := V̊1

−β(Ω) ⊕ S+
ε .

Endowed with the norm

∥u∥V̊out
β

(Ω) := (∥ũ∥V1
−β

(Ω) + ∥s+
ε ∥V1

β
(Ω))1/2, u = ũ + s+

ε , ũ ∈ V̊1
−β(Ω), s+

ε ∈ S+
ε ,

this is a Banach space. Note that S+
ε is of finite dimension so that in this space ∥ · ∥V1

β
(Ω) is one

norm among others. However it will be convenient in the sequel. Then introduce the operator
Aout

ε : V̊out
β (Ω) → (V̊1

β(Ω))∗ such that

⟨Aout
ε u, v⟩ =

 
Ω

ε∇u · ∇v dx, ∀u = ũ + s+
ε ∈ V̊out

β (Ω), v ∈ V̊1
β(Ω),

where  
Ω

ε∇u · ∇v dx :=
�

Ω
ε∇ũ · ∇v dx −

�
Ω

div(ε∇s+
ε )v dx. (22)

We emphasize that since div(ε∇s+
ε ) vanishes in a neighbourhood of the origin, (22) is well defined

and we have ∣∣∣  
Ω

ε∇u · ∇v dx
∣∣∣ ≤ C ∥u∥V̊out

β
(Ω)∥v∥V1

β
(Ω)

where C is independent of u, v. This guarantees that Aout
ε : V̊out

β (Ω) → (V̊1
β(Ω))∗ is continuous.

Note also that for φ ∈ C ∞
0 (Ω\{O}), we simply have

⟨Aout
ε u, φ⟩ =

�
Ω

ε∇u · ∇φ dx.

Similarly, for β > 0, set

Vout
β (Ω) := {u ∈ V1

−β(Ω) ⊕ S+
µ |

�
Ω

u dx = 0}.
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Equipped with the norm

∥u∥Vout
β

(Ω) := (∥ũ∥V1
−β

(Ω) + ∥s+
µ ∥V1

β
(Ω))1/2, u = ũ + s+

µ , ũ ∈ V1
−β(Ω), s+

µ ∈ S+
µ ,

this is also a Banach space. For β ∈ (0; 5/2), define the continuous operator Aout
µ : Vout

β (Ω) →
(V1

β(Ω))∗ such that

⟨Aout
µ u, v⟩ =

 
Ω

µ∇u · ∇v dx, ∀u = ũ + s+
µ ∈ Vout

β (Ω), v ∈ V1
β(Ω)

where  
Ω

µ∇u · ∇v dx :=
�

Ω
µ∇ũ · ∇v dx −

�
Ω

div(µ∇s+
µ )v dx.

As for Aout
ε , note that for φ ∈ C ∞

0 (Ω\{O}), we simply have

⟨Aout
µ u, φ⟩ =

�
Ω

µ∇u · ∇φ dx.

Owing to [57, Chapter 2], finally we obtain the following crucial theorem for the scalar problems.

Theorem 3.11. Suppose that Assumptions 1-2 hold. Then for all β ∈ (0; βD) (resp. β ∈ (0; βN )),
the operator Aout

ε (resp. Aout
µ ) is an isomorphism. Here βD, βN are defined in (18).

Remark 3.12. Note that looking for solutions in V̊out
β (Ω), Vout

β (Ω) boils down to impose radiation
conditions at the origin.

4 A new framework for the electric problem

In Section 6 we will prove that when κε and κµ are critical, the Maxwell’s equations in the classical
L2 spaces are not well-posed. In this section, the heart of the article, we propose a new framework.
Let us fix β once for all such that

β ∈ (0; β⋆) with β⋆ := min{βD, βN , 1/2}. (23)

Here βD, βN are the weights appearing in (18). For m ∈ N, set

Vm
β (Ω) := (Vm

β (Ω))3

and endow this space with the norm

∥u∥Vm
β (Ω) :=

( 3∑
i=1

∥ui∥2
Vm

β
(Ω)

)1/2
, ∀u = (u1, u2, u3) ∈ Vm

β (Ω).

Then define

∇S+
ε := span{∇s+

ε,j , j = 1, . . . , Nε}, ∇S+
µ := span{∇s+

µ,j , j = 1, . . . , Nµ}

Hout,β
N (curl ) := {u ∈ ∇S+

ε ⊕ V0
−β(Ω) | curlu ∈ V0

β(Ω), u× ν = 0 on ∂Ω\{O}}

HHH out
N (curl ) := {u ∈ ∇S+

ε ⊕ V0
−β(Ω) | curlu ∈ µ∇S+

µ ⊕ V0
−β(Ω), u× ν = 0 on ∂Ω\{O}}.

To simplify the presentation of the results below, we adopt the following convention:
- if u ∈ Hout,β

N (curl ), let ũ, su,ε be the elements of V0
−β(Ω), S+

ε such that u = ũ+ ∇su,ε;
- if u ∈ HHH out

N (curl ), let ψu, su,µ be the elements of V0
−β(Ω), S+

µ such that curlu = ψu+ µ∇su,µ.
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We equip ∇S+
ε , ∇S+

µ with the norm V0
β(Ω), which is one norm among others in these spaces

of finite dimension. On the other hand, for u = ũ+ ∇s+
u,ε ∈ Hout,β

N (curl ), we set

∥u∥Hout,β
N (curl ) := (∥ũ∥2

V0
−β(Ω) + ∥∇s+

u,ε∥2
V0

β(Ω) + ∥curlu∥2
V0

β(Ω))
1/2,

while for u = ũ+ ∇s+
u,ε ∈ HHH out

N (curl ) such that curlu = ψu + µ∇su,µ , we denote

∥u∥HHH out
N (curl ) := (∥ũ∥2

V0
−β(Ω) + ∥∇s+

u,ε∥2
V0

β(Ω) + ∥ψu∥2
V0

−β(Ω) + ∥∇s+
u,µ∥2

V0
β(Ω))

1/2.

Endowed with their associated norms, all the previous spaces are hilbertian. Note also that we
have the continuous inclusions

HHH out
N (curl ) ⊂ Hout,β

N (curl ) ⊂ V0
β(Ω)

and that these spaces are not empty because they contain CCC ∞
0 (Ω\{O}) := C ∞

0 (Ω\{O})3. Observe
also that we have both HHH out

N (curl ) ̸⊂ HN (curl ) and HN (curl ) ̸⊂ HHH out
N (curl ).

Remark 4.1. Note that if u ∈ HHH out
N (curl ), according to (17), we have

divψu = −div(µ∇su,µ) ∈ L2(Ω). (24)

4.1 Definition of the electric problem

In §4.7 below, we explain that the limiting absorption principle leads to look for an electric field
in the space HHH out

N (curl ). For this reason, we consider the following electric problem associated
with (1)-(2)

Find u ∈ HHH out
N (curl ) such that

curl (µ−1curlu) − ω2εu = iωJ in Ω\{O}
u× ν = 0 on ∂Ω\{O}.

(25)

Above we wrote the equations in Ω\{O} and not in Ω to allow for singular behaviours at the origin.
The next step consists in writing a variational formulation of (25). We assume that J belongs
to V0

−η(Ω) for some η > 0 and satisfies divJ = 0 in Ω\{O}. Note that if u ∈ HHH out
N (curl ), the

relation curlu = ψu + µ∇su,µ implies

curl (µ−1curlu) = curl (µ−1ψu) in Ω\{O}.

Exploiting this, we consider the problem
Find u ∈ HHH out

N (curl ) such that�
Ω

µ−1ψu · curlv dx − ω2
 

Ω
εu · v dx = iω

�
Ω
J · v dx, ∀v ∈ Hout,β

N (curl ), (26)

where for u ∈ HHH out
N (curl ), v ∈ Hout,β

N (curl ), we set 
Ω

εu · v dx :=
�

Ω
εũ · ṽ dx +

�
Ω

ε∇su,ε · ṽ dx +
�

Ω
εũ · ∇sv,ε dx −

�
Ω

div(ε∇su,ε) sv,ε dx.

It is not difficult to show that the sesquilinear form

(u,v) 7→
 

Ω
εu · v dx

is well-defined for u, v ∈ Hout,β
N (curl ) and is continuous in this space. However, it is not hermitian.

Indeed, for u,v ∈ Hout,β
N (curl ), we have

 
Ω

εu · v dx −
 

Ω
εv · u dx = −

�
Ω

div(ε∇su,ε)sv,ε dx +
�

Ω
su,ε div(ε∇sv,ε) dx = qε(su,ε, sv,ε). (27)

Note that in (26) the solution and the test functions do not belong to the same space. The interest
of this formulation is justified by the following result.

15



Proposition 4.2. Every solution of (25) solves (26). Conversely, every solution of (26) solves
(25).

Proof. Since CCC ∞
0 (Ω\{O}) ⊂ Hout,β

N (curl ), any solution to (26) is a solution to (25). Now, let us
show the converse statement. To proceed, we start by observing that if u solves (25), then using
Proposition 8.10 which guarantees that CCC ∞

0 (Ω\{O}) is dense in {v ∈ Hout,β
N (curl ) | sv,ε = 0}, we

find that u satisfies�
Ω

µ−1ψu · curlv dx − ω2
�

Ω
εu · v dx = iω

�
Ω
J · v dx, ∀v ∈ Hout,β

N (curl ) such that sv,ε = 0.

Therefore, it only remains to prove that (26) holds true for v = ∇φ ∈ ∇S+
ε . Introduce (φn)n a

sequence of elements of C ∞
0 (Ω\{O}) that converges to φ in V̊1

β(Ω). Using Lemma 4.3 below, we
can write�

Ω
µ−1ψu · curlv dx − ω2

 
Ω

εu · v dx

= −ω2
 

Ω
εu · ∇φ dx = lim

n→+∞
−ω2

�
Ω

εu · ∇φn dx = lim
n→+∞

iω

�
Ω
J · ∇φn dx = iω

�
Ω
J · v dx.

This ends the proof

Lemma 4.3. Let u be a field of Hout,β
N (curl ) and (φn)n a sequence of elements of C ∞

0 (Ω\{O})
that converges to some φ ∈ V̊1

β(Ω). Then we have

lim
n→+∞

�
Ω

εu · ∇φn dx =
 

Ω
εu · ∇φ dx.

Proof. By integrating by parts, we obtain�
Ω

εu · ∇φn dx =
�

Ω
εũ · ∇φn dx −

�
Ω

div(ε∇su,ε) φn dx.

Since div(ε∇su,ε) ∈ L2(Ω) vanishes in a neighbourhood of O (see (17)) and since the convergence
of (φn)n to φ in V̊1

β(Ω) implies the convergence of (∇φn)n to ∇φ in V0
β(Ω) as well as the one of

(φn)n to φ in L2(Ω\B(O, δ)) for any given δ > 0, we obtain the desired result.

4.2 Equivalent formulation of the electric problem

For all φ ∈ V̊1
−β(Ω), we have ∇φ ∈ HHH out

N (curl ). Using this remark, we deduce that (26) with
ω = 0 has a kernel of infinite dimension. To deal with this issue, we work as with κε, κµ outside of
the critical intervals and take into account the divergence free condition. This leads us to introduce
the spaces

Xout,β
N := {u ∈ Hout,β

N (curl ) | div(εu) = 0 in Ω\{O}},

XXX out
N := {u ∈ HHH out

N (curl ) | div(εu) = 0 in Ω\{O}}.
(28)

We endow Xout,β
N , XXX out

N respectively with the norms of Hout,β
N (curl ), HHH out

N (curl ).

Remark 4.4. Let us make two observations concerning the elements u ∈ Xout,β
N .

1) The constraint div(εu) = 0 in Ω\{O} must be understood as�
Ω

εu · ∇φ dx = 0, ∀φ ∈ C ∞
0 (Ω\{O}).

Therefore, from Lemma 4.3, we infer that if u ∈ Xout,β
N , we have 

Ω
εu · ∇v dx = 0, ∀v ∈ V̊1

β(Ω). (29)

2) If u = ũ+ su,ε ∈ Xout,β
N , then we have

div(εũ) = −div(ε∇su,ε) ∈ L2(Ω). (30)
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By replacing HHH out
N (curl ), Hout,β

N (curl ) respectively by XXX out
N , Xout,β

N in (26), we get the problem

Find u ∈ XXX out
N such that�

Ω
µ−1ψu · curlv dx − ω2

 
Ω

εu · v dx = iω

�
Ω
J · v dx, ∀v ∈ Xout,β

N .
(31)

As for (26), observe that in (31) the solution and the test functions do not belong to the same
space. This feature is important to show the well-posedness of the problem and we have not been
able to get rid of it (see Remark 4.9 for explanations). Besides, we emphasize that in XXX out

N , the
space for the solution, both the field and its curl are singular at the origin.

Proposition 4.5. Assume that ω ̸= 0.
• Every solution of (26) solves (31).
• Suppose that Assumptions 1-2 hold. Then every solution of (31) solves (26).

Proof. To show the first part of the statement, one needs to justify that every solution u of
(26) satisfies the equation div(εu) = 0 in Ω\{O}. To proceed, take v = ∇φ in (26) with φ ∈
C ∞

0 (Ω\{O}) and use that divJ = 0 in Ω\{O}.
The proof of the second part is a bit more involved. Assume that u ∈ XXX out

N solves (31). Since
XXX out

N ⊂ HHH out
N (curl ), it suffices to show that the variational identity (31) is also valid for v ∈

Hout,β
N (curl ). Consider some v = ṽ + ∇sv,ε ∈ Hout,β

N (curl ) with ṽ ∈ V0
−β(Ω) and sv,ε ∈ S+

ε . The
first item of Proposition 8.4 guarantees that the function ṽ admits the decomposition

ṽ = ∇φ + curl ζ (32)

with φ ∈ V̊1
−β(Ω) and ζ ∈ XT (1) such that curl ζ ∈ V0

−β(Ω). Since we have div(ε(curl ζ +
∇sv,ε)) ∈ (V̊1

β(Ω))∗, Theorem 3.11 guarantees that there is a unique ϕ ∈ V̊out
β (Ω) such that

⟨Aout
ε ϕ, ϕ′⟩ =

 
Ω

ε∇ϕ · ∇ϕ′ dx =
 

Ω
ε(curl ζ + ∇sv,ε) · ∇ϕ′ dx, ∀ϕ′ ∈ V̊1

β(Ω).

Now, set v̂ := curl ζ + ∇sv,ε − ∇ϕ = v − ∇φ − ∇ϕ. By observing that div(εv̂) = 0 in Ω\{O}, we
deduce that v̂ ∈ Xout,β

N . As a result, one can take v̂ as a test function in (31). But, on the other
hand, using (29) and the fact that divJ = 0 in Ω\{O}, we obtain

�
Ω

µ−1ψu · curlv dx =
�

Ω
µ−1ψu · curl ¯̂v dx

 
Ω

εu · v dx =
 

Ω
εu · ¯̂v dx +

 
Ω

εu · ∇(φ + ϕ) dx =
 

Ω
εu · ¯̂v dx

�
Ω
J · v dx =

�
Ω
J · v̂ dx.

This shows that u satisfies (26) and ends the proof of the second item.

In the rest of this section, we focus our attention on the study of Problem (31). Define the
continuous operators Aout

N , Kout
N : XXX out

N → (Xout,β
N )∗ such that for u ∈ XXX out

N , v ∈ Xout,β
N ,

⟨Aout
N u,v⟩ =

�
Ω

µ−1ψu · curlv dx, ⟨Kout
N u,v⟩ =

 
Ω

εu · v dx. (33)

Finally, set A out
N (ω) := Aout

N − ω2Kout
N so that for u ∈ XXX out

N , v ∈ Xout,β
N ,

⟨A out
N (ω)u,v⟩ =

�
Ω

µ−1ψu · curlv dx − ω2
 

Ω
εu · v dx. (34)
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Before getting into details, observe that for u,v ∈ XXX out
N , using relation (24), we obtain

⟨Aout
N u,v⟩ =

�
Ω

µ−1ψu ·ψv dx +
�

Ω
div(µ∇su,µ) sv,µ dx. (35)

On the other hand, exploiting (29), (30), we can write, for u ∈ XXX out
N , v ∈ Xout,β

N ,

⟨Kout
N u,v⟩ =

�
Ω

εu · ṽ dx =
�

Ω
εũ · ṽ dx +

�
Ω
su,ε div(ε∇sv,ε) dx. (36)

As a consequence, for u,v ∈ XXX out
N , we obtain

⟨A out
N (ω)u,v⟩ − ⟨A out

N (ω)v,u⟩ = −qµ(su,µ, sv,µ) − ω2qε(su,ε, sv,ε). (37)

This is an important identity. The terms on the right hand side are the ones which are left when
integrating twice by parts. For v = u, they represent the energy which is trapped at the tip. A
part of it comes from the singularity of the field, another from the singularity of the curl of the
field.

4.3 Equivalent norms in Xout,β
N and XXX out

N

The goal of this section is to introduce new “simpler” equivalent norms in Xout,β
N and XXX out

N . First,
consider the space Xout,β

N .

Proposition 4.6. Suppose that Assumptions 1-2 hold. There is a constant C > 0 such that

∥ũ∥V0
−β(Ω) + ∥∇su,ε∥V0

β(Ω) ≤ C ∥curlu∥V0
β(Ω), ∀u ∈ Xout,β

N . (38)

Consequently, the norms ∥ · ∥Hout,β
N (curl ) and ∥curl · ∥V0

β(Ω) are equivalent in Xout,β
N .

Proof. Let u be an element of Xout,β
N . By definition of Xout,β

N , we have u = ũ + ∇su,ε with
ũ ∈ V0

−β(Ω) and su,ε ∈ S+
ε . By means of item iii) of Proposition 8.1, one can decompose ũ as

ũ = ∇φ + curlψ (39)

with φ ∈ H1
0(Ω) and ψ ∈ XT (1). Remarking that curl (curlψ) = curlu ∈ V0

β(Ω) and that
curlψ × ν = 0 on ∂Ω\{O} yields

curlψ ∈ Zβ
N := {v ∈ L2(Ω) | curlv ∈ V0

β(Ω), div v = 0, v × ν = 0 on ∂Ω\{O}}. (40)

Therefore, according to Proposition 8.9, we obtain curlψ ∈ V0
−β(Ω) with the estimate

∥curlψ∥V0
−β(Ω) ≤ C ∥curlu∥V0

β(Ω). (41)

Besides, since div(εu) = 0 in Ω\{O}, there holds

⟨Aout
ε (su,ε + φ), ϕ′⟩ =

 
Ω

ε∇(su,ε + φ) · ∇ϕ′ dx = −
�

Ω
ε curlψ · ∇ϕ′ dx, ∀ϕ′ ∈ V̊1

β(Ω).

Exploiting that Aout
ε : V̊out

β (Ω) → (V̊1
β(Ω))∗ is an isomorphism (Theorem 3.11), we get

∥∇φ∥V0
−β(Ω) + ∥∇su,ε∥V0

β(Ω) ≤ C ∥curlψ∥V0
−β(Ω).

By combining (39), (41) and the previous estimate, we obtain the desired result.

Now, we turn our attention to XXX out
N .
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Proposition 4.7. Suppose that Assumptions 1-2 hold. There is a constant C > 0 such that

∥ũ∥V0
−β(Ω) + ∥∇su,ε∥V0

β(Ω) ≤ C ∥ψu∥V0
−β(Ω), ∀u ∈ XXX out

N with curlu = ψu + µ∇su,µ. (42)

Consequently, in XXX out
N the map u 7→ ∥ψu∥V0

−β(Ω) is a norm which is equivalent to ∥ · ∥HHH out
N (curl ).

Proof. Since there holds XXX out
N ⊂ Xout,β

N , from Proposition 4.6 we see that it is enough to show
that we have

∥curlu∥V0
β(Ω) ≤ C ∥ψu∥V0

−β(Ω), ∀u ∈ XXX out
N . (43)

Consider some u ∈ XXX out
N . We have

curlu = ψu + µ∇su,µ = ψu + µ∇(su,µ − cu) with cu := 1
|Ω|

�
Ω
su,µ.

The relation u × ν = 0 on ∂Ω\{O} implies curlu · ν = 0 on ∂Ω\{O}. Furthermore, given that
div(curlu) = 0, we deduce that su,µ and ψu satisfy

⟨Aout
µ (su,µ − cu), ϕ′⟩ =

 
Ω

µ∇(su,µ − cu) · ∇ϕ′ dx = −
�

Ω
ψu · ∇ϕ′ dx, ∀ϕ′ ∈ V1

β(Ω).

Note that su,µ − cu is indeed an element of Vout
β (Ω) because 1 ∈ V1

−γ(Ω) for all γ < 1/2 and there
holds β < 1/2. Using that Aout

µ : Vout
β (Ω) → (V1

β(Ω))∗ is an isomorphism (Theorem 3.11), we
obtain

|cu| + ∥su,µ∥V1
β

(Ω) ≤ C ∥ψu∥V0
−β(Ω)

where here and below C is independent of u. This gives

∥∇su,µ∥V0
β(Ω) ≤ C ∥ψu∥V0

−β(Ω).

and inserting this estimate into

∥curlu∥V0
β(Ω) ≤ C(∥∇su,µ∥V0

β(Ω) + ∥ψu∥V0
β(Ω)) ≤ C(∥∇su,µ∥V0

β(Ω) + ∥ψu∥V0
−β(Ω))

finally leads to (43).

4.4 Analysis of the principal part

In this section, we study the operator Aout
N = A out

N (0) defined in (33). We emphasize that the
operator T that we construct in the next proposition constitutes the main ingredient in the analysis
of the electric problem.

Proposition 4.8. Suppose that Assumptions 1-2 hold. There exists a continuous operator T :
Xout,β

N → XXX out
N such that

⟨Aout
N ◦ Tu,v⟩ =

�
Ω

r2βcurlu · curlv dx, ∀u,v ∈ Xout,β
N . (44)

Remark 4.9. Note that considering a variational formulation (31) with test functions in XXX out
N ⊂

Xout,β
N would lead us to work with an operator Ãout

N : XXX out
N → (XXX out

N )∗. Then to prove invertibility
of Ãout

N would require to construct some continuous operator T̃ : XXX out
N → XXX out

N such that ⟨Ãout
N ◦

T̃ ·, ·⟩ is coercive in XXX out
N . But the norm of XXX out

N is more restrictive than the one of Xout,β
N and

we do not know if we can find such a T̃.
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Proof. Pick some u ∈ Xout,β
N . Let us work in three steps.

Step 1. The operator Aout
µ : Vout

β (Ω) → (V1
β(Ω))∗ is an isomorphism. As a result, there is a unique

φ = φ̃ + s+
µ ∈ Vout

β (Ω), φ̃ ∈ V1
−β(Ω), s+

µ ∈ S+
µ , such that

⟨Aout
µ φ, φ′⟩ =

 
Ω

µ∇φ · ∇φ′ dx = −
�

Ω
µ r2βcurlu · ∇ϕ′ dx, ∀ϕ′ ∈ V1

β(Ω).

Additionally, we have the estimate

∥φ̃∥V1
−β

(Ω) + ∥∇s+
µ ∥V0

β(Ω) ≤ C ∥r2βcurlu∥V0
−β(Ω) = C ∥curlu∥V0

β(Ω). (45)

Step 2. Define the function F := µ(∇φ + r2βcurlu) ∈ V0
β(Ω). There holds

divF = 0 in Ω
F · ν = 0 on ∂Ω.

Since β ∈ (0; 1/2), Proposition 8.5 guarantees that there exists a unique ζ ∈ Zβ
N (see (40)) for the

definition of Zβ
N ) such that

curl ζ = F = µ(∇φ + r2βcurlu).
Furthermore, Proposition 8.9 ensures that ζ ∈ V0

−β(Ω).

Step 3. Since Aout
ε : V̊out

β (Ω) → (V̊1
β(Ω))∗ is an isomorphism, there is a unique ϕ = ϕ̃ + s+

ε ∈
V̊out

β (Ω), ϕ̃ ∈ V̊1
−β(Ω), s+

ε ∈ S+
ε , such that

⟨Aout
ε ϕ, ϕ′⟩ =

 
Ω

ε∇ϕ · ∇ϕ′ dx =
�

Ω
ε ζ · ∇ϕ′ dx, ∀ϕ′ ∈ V̊1

β(Ω).

Finally, we set Tu = ζ − ∇ϕ. One can check that Tu belongs to XXX out
N . In addition, we have

curl (Tu) = ψT(u) + µ∇sT(u),µ with

ψT(u) = µ(∇φ̃ + r2βcurlu), sT(u),µ = s+
µ . (46)

Using (45), obtain
∥ψT(u)∥V0

−β(Ω) ≤ C ∥curlu∥V0
β(Ω).

With Proposition 4.7, this shows that T : Xout,β
N → XXX out

N is continuous. Besides, using (33), (46),
we find

⟨Aout
N ◦ Tu,v⟩ =

�
Ω

µ−1ψTu · curlv dx =
�

Ω
r2βcurlu · curlv dx, ∀v ∈ Xout,β

N ,

which is nothing but the desired identity (44).

Theorem 4.10. Suppose that Assumptions 1-2 hold. Then the operator Aout
N : XXX out

N → (Xout,β
N )∗

is an isomorphism.

Proof. Let T be the operator of Proposition 4.8. From identity (44) together with the Lax-Milgram
theorem and the result of Proposition 4.6, we infer that Aout

N ◦ T : Xout,β
N → (Xout,β

N )∗ is an
isomorphism. This guarantees that Aout

N is onto. It remains to show that Aout
N is injective. Let u

be an element of XXX out
N such that ⟨Aout

N u,v⟩ = 0 for all v ∈ Xout,β
N . By definition of XXX out

N , we have
curlu = ψu + µ∇su,µ. Taking v = u in the relation (37) with ω = 0 and using Lemma 3.10, we
infer that su,µ = 0. From (35), this implies

0 = ⟨Aout
N u,v⟩ =

�
Ω

µ−1ψu ·ψv dx = ⟨Aout
N v,u⟩, ∀v ∈ XXX out

N .

By taking v = Tu in the previous relation, according to (44), we obtain curlu = 0 and so ψu = 0.
From Proposition 4.7, we deduce that u ≡ 0.
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4.5 Compactness result

Now we focus our attention on the operator Kout
N defined in (33).

Theorem 4.11. Suppose that Assumptions 1-2 hold. Then Kout
N : XXX out

N → (Xout,β
N )∗ is compact.

Proof. Using (36), we obtain the estimate

∥Kout
N u∥(Xout,β

N )∗ ≤ C(∥ũ∥V0
−β(Ω) + ∥su,ε∥V1

β(Ω), ∀u ∈ XXX out
N , (47)

where C > 0 is independent of u. Now consider (un)n a bounded sequence of elements of XXX out
N .

By definition of XXX out
N , one can introduce, for all n ∈ N, ũn ∈ V0

−β(Ω) and sn ∈ S+
ε such that

un = ũn + sn. The sequences (sn)n, (ũn)n are bounded respectively in V1
β(Ω) and in V0

−β(Ω).
Since S+

ε is of finite dimension, one can extract a sub-sequence from (sn)n, still denoted (sn)n, that
converges in S+

ε . Therefore, to prove our claim, thanks to (47), it is enough to show that up to a
subsequence, (ũn)n converges in V0

−β(Ω). Owing to Proposition 8.4, for all n ∈ N, the vector field
ũn decomposes as

ũn = ∇φn + curlψn,

where φn ∈ V̊1
−β(Ω) and ψn ∈ XT (1) is such that ψn ∈ V0

−β(Ω) (Proposition 8.7). Given that
∇φn × ν = 0 on ∂Ω and curl curlψn = curlun ∈ V0

β(Ω), we infer that curlψn ∈ Zβ
N (see (40)).

Since by assumption β ∈ (0; 1/2), one deduces, using Proposition 8.9, that (curlψn)n converges,
up to a sub-sequence still denoted (curlψn)n, in V0

−β(Ω). Besides, we know that div(εun) = 0 in
Ω\{O}. This implies

⟨Aout
ε φn, φ′⟩ =

 
Ω

ε∇φn · ∇φ′ dx = −
 

Ω
ε(∇sn + curlψn) · ∇φ′ dx, ∀φ′ ∈ V̊1

β(Ω).

By noting that the functional appearing in the right hand side above converges in (V̊1
β(Ω))∗ and

by using that Aout
ε is an isomorphism, we deduce that (φn)n converges in V̊1

−β(Ω). This gives the
desired result: (ũn)n converges, up to a sub-sequence, in V0

−β(Ω).

4.6 Main result for the electric problem

Finally, we come to the properties of the operator A out
N (ω) = Aout

N −ω2Kout
N introduced in (34). By

combining Theorems 4.10, 4.11 and the analytical Fredholm theorem (note that A out
N (0) = Aout

N

is injective according to Theorem 4.10), we obtain the following result.
Theorem 4.12. Suppose that Assumptions 1-2 hold.
• The operator A out

N (ω) is Fredholm of index zero for all ω ∈ R.
• A out

N (ω) is an isomorphism for all ω ∈ R\SE where SE is a discrete set which can accumulate
only at infinity.
The rest of this paragraph is devoted to the study of SE , the set of values of ω ∈ R such that
A out

N (ω) is not injective.
Proposition 4.13. Suppose that Assumptions 1-2 hold. The set SE appearing in Theorem 4.12
is independent of the choice of β satisfying (23).
Proof. Let u be an element of ker A out

N (ω) for some β satisfying (23). Then we have ⟨A out
N (ω)u,u⟩−

⟨A out
N (ω)u,u⟩ = 0, which according to (37) implies

qµ(su,µ, su,µ) + ω2qε(su,ε, su,ε) = 0.

Given that su,ε ∈ S+
ε and su,µ ∈ S+

µ , we infer that qε(su,ε, su,ε) = qµ(su,µ, su,µ) = 0. Then Lemma
3.10 guarantees that su,ε = su,µ = 0. This shows that u belongs to XN (ε) and satisfies the
equation curl (µ−1curlu) = ω2εu. We deduce that µ−1curlu ∈ XT (µ). Owing to Proposition
8.8 this implies that u, curlu ∈ V0

−β(Ω) for all β satisfying (23). Thus u ∈ ker A out
N (ω) for all β

satisfying (23).

21



In the same vein, we have the following result.

Proposition 4.14. Suppose that Assumptions 1-2 hold and let ω ∈ R\SE. The solution of (31)
is independent of the choice of β satisfying (23)).

Proof. Let β1 < β2 satisfying (23). For j = 1, 2, denote by
uj the solution of (31)
A out

N,j (ω) the operator defined in (34)
XXX out

N,j the space introduced in (28)

for β = βj . Since β1 < β2, we have XXX out
N,2 ⊂ XXX out

N,1. As a consequence, the function e := u1 − u2
belongs to XXX out

N,1.
⋆ When ω ̸= 0, by exploiting Propositions 4.2 and 4.5, we find that both u1 and u2 satisfy the
equations of (25) in the sense of distributions of Ω\{O}. This implies that e is an element of
ker A out

N,1 (ω). Since ω ∈ R\SE , we obtain e ≡ 0 and so u1 ≡ u2.
⋆ When ω = 0, we work as in the end of the proof of Theorem 4.10. First, by observing that
⟨A out

N,1 (0)e, e⟩ = 0, we get, thanks to (37),

0 = ⟨A out
N,1 (0)e, e⟩ − ⟨A out

N,1 (0)e, e⟩ = −qµ(se,µ, se,µ).

From Lemma 3.10, this gives se,µ ≡ 0 and so

⟨A out
N,1 (0)e,v⟩ =

�
Ω

µ−1ψe ·ψv dx = 0, ∀v ∈ XXX out
N,1.

By taking v = Te in the previous relation, where T is the operator of Proposition 4.8 constructed
with β = β1, we obtain ψe = 0. From Proposition 4.7, we deduce that e ≡ 0 and so u1 ≡ u2.

Now, by gathering Proposition 4.5 and Theorem 4.12, we can state the main result of the section.

Theorem 4.15. Suppose that Assumptions 1-2 hold, J ∈ V0
−η(Ω) for some η > 0 and divJ = 0

in Ω.
• For all ω ∈ R\SE, where SE appears in Theorem 4.12, the problem (31) (or equivalently (26)
when ω ̸= 0) admits a unique solution.
• When ω ∈ SE the problem (31) (or equivalently (26)) is well-posed in the Fredholm sense.
Moreover, it has a kernel of finite dimension that is independent of β satisfying (23).

Remark 4.16. Above we could remove the assumption divJ = 0 in Ω\{O} and simply suppose
that J ∈ V0

−η(Ω). In this situation, to study the electric problem, the first step would be to introduce
some potential p ∈ V̊out

β (Ω), β ∈ (0; min(βD, η)), such that Aout
ε p = −(iω)−1divJ ∈ (V̊1

β(Ω))∗, and
then to work with E0 := E − ∇p.

Up to now, we have shown that given spaces of outgoing propagating singularities S+
ε and S+

µ lead
to a functional framework in which the electric problem is well posed. On the other hand, there is
an infinite number of choices for S+

ε , S+
µ (see Remark 3.9) and they all provide different functional

frameworks for the Maxwell’s problem. The goal of the next section is to explain how to identify
the one that is coherent with the limiting absorption principle.

4.7 Limiting absorption principle

Let J be as in Theorem 4.15. To model the dissipation of the materials, introduce, for δ > 0, the
functions εδ := ε + iδ and µδ := µ + iδ. Denote by Aεδ

: H1
0(Ω) → (H1

0(Ω))∗, Aµδ
: H1

#(Ω) →
(H1

#(Ω))∗ the operators defined as Aε, Aµ in (6), (7) with ε, µ replaced by εδ, µδ. Since the
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imaginary part of εδ, µδ is positive in Ω, the Lax-Milgram theorem ensures that Aεδ
, Aµδ

are
isomorphisms for all δ > 0. Moreover, it guarantees that for all ω ∈ R, the problem

Find uδ ∈ XN (εδ) such that
curl (µ−1

δ curluδ) − ω2εδuδ = iωJ in Ω
(48)

admits a unique solution. Roughly speaking, our goal is to show that if the spaces S+
ε , S+

µ in (21)
have been chosen such that the limiting absorption principle holds for the scalar problems, then
(uδ)δ converges to the solution of (31), in other words that the limiting absorption principle is
valid for the electric problem written in the framework (31). Let us make this more precise.

Assumption 3. Suppose that Assumptions 1-2 hold. Assume that S+
ε , S+

µ are such that

• if (fδ)δ>0 converges to f in (V̊1
β(Ω))∗ ⊂ (H1

0(Ω))∗, then lim
δ→0+

∥(Aεδ
)−1fδ − (Aout

ε )−1f∥V1
β

(Ω) = 0;

• if (fδ)δ>0 converges to f in (V1
β(Ω))∗ ⊂ (H1

#(Ω))∗, then lim
δ→0+

∥(Aµδ
)−1fδ − (Aout

µ )−1f∥V1
β

(Ω) = 0.

Note that the previous assumption requires that the frameworks obtained for the scalar prob-
lems via the limiting absorption principle satisfies the Mandelstam radiation principle. Generally
spaeaking, this seems to happen most of the times but may be wrong in certain rare circumstances.
In the articles [45, 44], the author gives examples of problems involving elliptic PDEs in unbounded
domains for which the two principles contradict each other at the so-called cut-off frequencies. In
our case, it can be shown (see [57, Chapter 2]) that the validity of the previous assumption depends
on the behaviour of the spectrum, eigenfunctions and generalized eigenfunctions of Lεδ

, Lµδ
, the

Mellin symbols defined as Lε , Lµ in (10), (11) with ε, µ replaced by εδ, µδ. For the particular
case of the circular conical tip (12), it is proved in [57, Chapter 2] that Assumption 3 is valid
except for a discrete set of contrasts.

The main result of this section is given by the following theorem which justifies the physical
relevance of Problem (25).

Theorem 4.17. Suppose that Assumptions 1-2-3 hold, J is as in Theorem 4.15 and ω ∈ R\SE,
where SE is defined in Theorem 4.12. We have

lim
δ→0+

∥uδ − u∥V0
β(Ω) + ∥curluδ − curlu∥V0

β(Ω) = 0

where uδ, u denote respectively the solutions of (48), (25).

The proof of the previous theorem is mainly based on the following proposition.

Proposition 4.18. Suppose that Assumptions 1-2-3 hold. Let (uδ)δ be a sequence of elements of
XN (εδ) (resp. XT (µδ)) such that (curluδ)δ is bounded in V0

β(Ω). Then, up to a sub-sequence,
(uδ)δ converges in V0

β(Ω) to an element of ∇S+
ε ⊕ V0

−β(Ω) (resp. ∇S+
µ ⊕ V0

−β(Ω)) as δ → 0+.

Proof. Let (uδ)δ>0 be a sequence of elements of XN (εδ) such that (curluδ)δ is bounded in V0
β(Ω).

Owing to item iii) of Proposition 8.1, for all δ > 0, we have the decomposition

uδ = ∇φδ + curlψδ (49)

with φδ ∈ H1
0(Ω) and ψδ ∈ XT (1). Additionally, there holds curlψδ ∈ Zβ

N (see (40) for the
definition of this space). But Proposition 8.9 ensures that in Zβ

N , ∥curl · ∥V0
β(Ω) is a norm which

is equivalent to the natural one, and that Zβ
N is compactly embedded in V0

−β(Ω). From this, we
infer that, up to a subsequence, (curlψδ)δ converges in V0

−β(Ω) as δ → 0+.
Since we have div(εδ uδ) = 0 in Ω, we deduce that there holds Aεδ

φδ = −div(εδ curlψδ). On the
other hand, the fact that curlψδ ∈ V0

−β(Ω) implies that div(εδ curlψδ) ∈ (V̊1
β(Ω))∗. Furthermore,
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since (curlψδ)δ converges in V0
−β(Ω), it follows that (div(εδ curlψδ))δ converges in (V̊1

β(Ω))∗ as
δ → 0+. As a consequence, under Assumption 3, we infer that up to a sub-sequence, (φδ)δ

converges in V̊1
β(Ω) to an element of V̊out

β (Ω). With (49), this gives the desired result. The proof
for a bounded sequence of elements of XT (µδ) is similar.

Proof of Theorem 4.17. Let (δn)n be a sequence of positive numbers that converges to zero as
n → +∞. Denote εn = ε + iδn, µn = µ + iδn for all n ∈ N. Denote by un the solution to (48)
for δ = δn. Let us proceed in two steps. First, we establish the desired result by assuming that
(curlun)n is bounded in V0

β(Ω). Then we show that this hypothesis is indeed satisfied.

Step 1. Assume that (curlun)n is bounded in V0
β(Ω). According to the previous proposition,

we know that up to a subsequence, (un)n converges in V0
β(Ω) to an element u of ∇S+

ε ⊕ V0
−β(Ω).

This implies in particular that (un)n is bounded in V0
β(Ω). Next, for all n ∈ N, we define the

vector field vn := µ−1
n curlun. There holds div(µnvn) = 0 in Ω\{O} and µnvn · ν = 0 on ∂Ω\{O}.

Furthermore, by observing that

curlvn = ω2εnun + iωJ in Ω\{O}, (50)

we conclude that vn ∈ XT (µn) and that (curlvn)n is bounded in V0
β(Ω). Applying again the

previous proposition, we deduce that (curlun)n converges in V0
β(Ω) to an element of µ−1∇S+

µ ⊕
V0

−β(Ω) which is nothing but curlu (use the convergence in the sense of distributions of Ω\{O}
to establish this latter property). Thus we have

lim
n→+∞

∥u− un∥V0
β(Ω) + ∥curlu− curlun∥V0

β(Ω) = 0

and by taking the limit in (50) (again in the sense of distributions of Ω\{O}), we get

curl (µ−1curlu) − ω2εu = iωJ in Ω\{O}.

This implies in particular that u belongs to XXX out
N . Given that ω ∈ R\SE , this shows that u is

the solution of (31). Thus, we obtain the desired result.
Step 2. Assume that there exists a sequence (un)n of solutions to (48), associated to some
sequence (δn)n that tends to zero, such that ∥curlun∥V0

β(Ω) → +∞ as n → +∞. By considering
the sequence (un/∥curlun∥V0

β(Ω))n and using the result proved in the first step, we obtain a
contradiction.

5 A new framework for the magnetic problem

In this section, we provide an adapted framework to study the magnetic problem when the con-
trasts κε, κµ satisfy Assumption 1. The procedure is similar to what has been done above for the
electric field. For this reason, we do not give the details and simply state the main results.

For β satisfying (23), we define the spaces

Hout,β(curl ) := {u ∈ ∇S+
µ ⊕ V0

−β(Ω) | curlu ∈ V0
β(Ω)}

HHH out(curl ) := {u ∈ ∇S+
µ ⊕ V0

−β(Ω) | curlu ∈ ε∇S+
ε ⊕ V0

−β(Ω)}.

For u = ũ+ ∇s+
u,µ ∈ Hout,β(curl ), we set

∥u∥Hout,β(curl ) := (∥ũ∥2
V0

−β(Ω) + ∥∇s+
u,µ∥2

V0
β(Ω) + ∥curlu∥2

V0
β(Ω))

1/2

while for u = ũ+ ∇s+
u,µ ∈ HHH out(curl ) such that curlu = ψu + ε∇su,ε , we denote

∥u∥HHH out(curl ) := (∥ũ∥2
V0

−β(Ω) + ∥∇s+
u,µ∥2

V0
β(Ω) + ∥ψu∥2

V0
−β(Ω) + ∥∇s+

u,ε∥2
V0

β(Ω))
1/2.
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We adopt the following convention:
- if u ∈ Hout,β(curl ), let ũ, su,µ be the elements of V0

−β(Ω), S+
µ such that u = ũ+ ∇su,µ;

- if u ∈ HHH out(curl ), let ψu, su,ε be the elements of V0
−β(Ω), S+

ε such that curlu = ψu + ε∇su,ε.

5.1 Definition of the magnetic problem

Regarding what has been done for the electric problem and using the fact that the magnetic field
H and the electric field E are linked by (1), we are led to look for H in HHH out(curl ). More
precisely, we consider the problem

Find u ∈ HHH out(curl ) such that
curl (ε−1curlu) − ω2µu = curl (ε−1J) in Ω\{O}

µu · ν = 0 on ∂Ω\{O}.

(51)

This time we assume that J belongs to V0
−β(Ω) where β satisfies (23). Then we consider the

variational problem

Find u ∈ HHH out(curl ) such that�
Ω

ε−1ψu · curlv dx − ω2
 

Ω
µu · v dx =

�
Ω

ε−1 J · curlv dx, ∀v ∈ Hout,β(curl ), (52)

in which the term
 

Ω
µu · v dx is defined by

 
Ω

µu · v dx :=
�

Ω
µũ · ṽ dx +

�
Ω

µ∇su,µ · ṽ dx +
�

Ω
µũ · ∇sv,µ dx −

�
Ω

div(µ∇su,µ) sv,µ dx.

By working as in the proof of Proposition 4.2, we obtain the

Proposition 5.1. Every solution of (51) solves (52). Conversely, every solution of (52) solves
(51).

5.2 Equivalent formulation for the magnetic field

In order to take into account the divergence free condition, we define the spaces

Xout,β
T := {u ∈ Hout,β(curl ) | div(µu) = 0 in Ω\{O}, µu · ν = 0 on ∂Ω\{O}},

XXX out
T := {u ∈ HHH out(curl ) | div(µu) = 0 in Ω\{O}, µu · ν = 0 on ∂Ω\{O}}.

(53)

We endow Xout,β
T , XXX out

T respectively with the norms of Hout,β(curl ), HHH out(curl ). By replacing
Hout,β(curl ), HHH out(curl ) respectively by Xout,β

T , XXX out
T in (52), we get the problem

Find u ∈ XXX out
T such that�

Ω
ε−1ψu · curlv dx − ω2

 
Ω

µu · v dx =
�

Ω
ε−1 J · curlv dx, ∀v ∈ Xout,β

T .
(54)

The analogue of Proposition 4.5 writes

Proposition 5.2. Assume that ω ̸= 0.
• Every solution of (52) solves (54).
• Suppose that Assumptions 1-2 hold. Then every solution of (54) solves (52).
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Define the continuous operators Aout
T , Kout

T : XXX out
T → (Xout,β

T )∗ such that for all u ∈ XXX out
T ,

v ∈ Xout,β
T ,

⟨Aout
T u,v⟩ =

�
Ω

ε−1ψu · curlv dx, ⟨Kout
T u,v⟩ =

 
Ω

µu · v dx.

Finally, set A out
T (ω) := Aout

T − ω2Kout
T so that for u ∈ XXX out

T , v ∈ Xout,β
T ,

⟨A out
T (ω)u,v⟩ =

�
Ω

ε−1ψu · curlv dx − ω2
 

Ω
µu · v dx.

Similarly to (37), we have the important identity, for u,v ∈ XXX out
T ,

⟨A out
T (ω)u,v⟩ − ⟨A out

T (ω)v,u⟩ = −qε(su,ε, sv,ε) − ω2qµ(su,µ, sv,µ). (55)

5.3 Equivalent norms in Xout,β
T and XXX out

T

Similarly to Propositions 4.6, 4.7, we have the following results.
Proposition 5.3. Suppose that Assumptions 1-2 hold. There is a constant C > 0 such that

∥ũ∥V0
−β(Ω) + ∥∇su,µ∥V0

β(Ω) ≤ C ∥curlu∥V0
β(Ω), ∀u ∈ Xout,β

T . (56)

Consequently, the norms ∥ · ∥Hout,β(curl ) and ∥curl · ∥V0
β(Ω) are equivalent in Xout,β

T .

Proposition 5.4. Suppose that Assumptions 1-2 hold. There is a constant C > 0 such that

∥ũ∥V0
−β(Ω) + ∥∇su,µ∥V0

β(Ω) ≤ C ∥ψu∥V0
−β(Ω), ∀u ∈ XXX out

T with curlu = ψu + ε∇su,ε. (57)

Consequently, in XXX out
T the map u 7→ ∥ψu∥V0

−β(Ω) is a norm which is equivalent to ∥ · ∥HHH out(curl ).

5.4 Main results for the magnetic problem

By exchanging the roles of ε and µ in the proofs of §4.4, §4.5, we obtain the following theorem.
Theorem 5.5. Suppose that Assumptions 1-2 hold. Then the operator Aout

T : XXX out
T → (Xout,β

T )∗

is an isomorphism while Kout
T : XXX out

T → (Xout,β
T )∗ is compact.

This allows one to deduce the following theorem.
Theorem 5.6. Suppose that Assumptions 1-2 hold.
• The operator A out

T (ω) is Fredholm of index zero for all ω ∈ R.
• A out

T (ω) is an isomorphism for all ω ∈ R\SH where SH is a discrete set which can accumulate
only at infinity.
• The set SH is independent of β satisfying (23).
• If ω ∈ R\SH , the solution of (54) for J ∈ V0

−β⋆
(Ω) is independent of β satisfying (23) (β⋆ is

defined in (23)).
Remark 5.7. Coming back to the initial Maxwell’s equations (1)- (2) in the sense of distributions
in Ω\{O} thanks to Propositions 4.2, 4.5, 5.1, 5.2, one can prove that SH coincides with the set
SE appearing in Theorem 4.15.
Finally, we state the main result for the magnetic field:
Theorem 5.8. Suppose that Assumptions 1-2 hold and that J ∈ V0

−β(Ω) with β satisfying (23).
• For all ω ∈ R\SH the problem (54)(or equivalently (52) when ω ̸= 0) admits a unique solution.
• When ω ∈ SH the problem (54) (or equivalently (52)) is well-posed in the Fredholm sense.
Moreover, it has a kernel of finite dimension that is independent of β satisfying (23).
Remark 5.9. One can check that the results of §4.7 concerning the limiting absorption hold when
considering the magnetic problem instead of the electric one.
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6 Classical Maxwell framework

In this section, we consider the initial system (1)-(2) when looking for fields E, H in the classical
space L2(Ω). This leads us to consider the problems (compare with (25), (51))

Find E ∈ HN (curl ) such that
curl (µ−1curlE) − ω2εE = iωJ in Ω

E × ν = 0 on ∂Ω

Find H ∈ H(curl ) such that
curl (ε−1curlH) − ω2µH = curl (ε−1J) in Ω

µH · ν = 0 on ∂Ω.

Here the volumic equations are written in the sense of distributions of Ω. These problems are
equivalent to the following variational formulations

Find E ∈ HN (curl ) such that�
Ω

µ−1curlE · curlv − ω2εE · v dx = iω

�
Ω
J · v dx, ∀v ∈ HN (curl )

Find H ∈ H(curl ) such that�
Ω

ε−1curlH · curlv − ω2µH · v dx =
�

Ω
ε−1J · curlv dx, ∀v ∈ H(curl ).

Our goal here is to show that this is not a satisfactory framework when κε, κµ are critical. Define
the continuous operators AN (ω) : HN (curl ) → (HN (curl ))∗ and AT (ω) : H(curl ) → (H(curl ))∗

such that

⟨AN (ω)u,v⟩ =
�

Ω
µ−1curlu · curlv − ω2εu · v dx, ∀u,v ∈ HN (curl )

⟨AT (ω)u,v⟩ =
�

Ω
ε−1curlu · curlv − ω2µu · v dx, ∀u,v ∈ H(curl ).

Proposition 6.1. Suppose that Assumptions 1-2 hold. Then the operators AN (ω) and AT (ω) are
not of Fredholm type.

Proof. Let us work on AN (ω), the reasoning being similar for AT (ω). If ω = 0, ∇H1
0(Ω) belongs

to the kernel of AN (0). Since this space is of infinite dimension, we infer that AN (ω) is not of
Fredholm type. Note that this true also when κε, κµ are not critical, in particular when κε, κµ are
positive, contrary to what follows.
Assume now that ω ̸= 0. We proceed by contradiction and assume that AN (ω) is of Fredholm
type. Since AN (ω) is symmetric, necessarily it is of index zero.

If additionally AN (ω) is injective, then it is an isomorphism and there is a constant c > 0 such
that there holds

∥u∥H(curl ) ≤ c ∥AN (ω)u∥(HN (curl ))∗ , ∀u ∈ HN (curl ). (58)

Let us show that this is impossible. To proceed, for n ∈ N∗, define the field

un := ∇sn with sn := r1/ns and s(x) := χ(r)sε
1,1,0(x), (59)

where χ and sε
1,1,0 appear respectively in (16) and (14). Due to the multiplication by the regu-

larization term r1/n, the function sn belongs to H1
0(Ω), which ensures that un is in HN (curl ).

Moreover, we have

∥un∥2
H(curl ) = ∥∇sn∥2

Ω ≥ C

� ρ/2

0
|∇(r−1/2+iησ

1 +1/n)|2 r2dr

= C
n

2 | − 1/2 + 1/n + iησ
1 |2

(
ρ

2

)2/n

−→
n→+∞

+∞.

(60)
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Here and below C > 0 stands for a constant which may change from line to another but which
remains independent of n. Now let us compute ∥AN (ω)un∥(HN (curl ))∗ . Since un = ∇sn, we simply
have

∥AN (ω)un∥(HN (curl ))∗ = sup
v∈HN (curl )\{0}

∣∣∣∣ ω2
�

Ω
ε∇sn · v dx

∣∣∣∣
∥v∥H(curl )

. (61)

According to the item iii) of Proposition 8.1, any v ∈ HN (curl ) admits the decomposition v =
∇φ + curlψ with φ ∈ H1

0(Ω) and ψ ∈ XT (1). By observing that curlψ belongs to XN (1) and by
applying Proposition 8.7, we deduce that curlψ ∈ V0

−γ(Ω) for some γ > 0. Furthermore, we have

∥∇φ∥Ω + ∥curlψ∥V0
−γ(Ω) ≤ C ∥v∥H(curl ). (62)

Let us write �
Ω

ε∇sn · v dx =
�

Ω
ε∇sn · ∇φ dx +

�
Ω

ε∇sn · curlψ dx. (63)

To estimate the second integral of the right hand side of (63), we can remark that

∥∇sn∥V0
γ(Ω) ≤ ∥r1/n∇s∥V0

γ(Ω) + ∥r1/n−1s∥V0
γ(Ω) ≤ C∥∇s∥V1

γ(Ω) ≤ C,

which yields, together with (62),∣∣∣∣ �
Ω

ε∇sn · curlψ dx

∣∣∣∣ ≤ C ∥∇sn∥V0
γ(Ω) ∥curlψ∥V0

−γ(Ω) ≤ C∥v∥H(curl ). (64)

The first integral of the right hand side of (63) can be expanded as
�

Ω
ε∇sn · ∇φ dx=

�
Ω

ε∇s · ∇(r1/nφ) dx +
�

Ω
εs∇(r1/n) · ∇φ dx −

�
Ω

ε∇s · ∇(r1/n)φ dx

=−
�

Ω
div(ε∇s) r1/nφ dx +

�
Ω

εs∇(r1/n) · ∇φ dx −
�

Ω
ε∇s · ∇(r1/n)φ dx.

(65)

Exploiting that div(ε∇s) = 0 for r ≤ ρ/2, we obtain∣∣∣∣ �
Ω

div(ε∇s) r1/nφ dx

∣∣∣∣ =
∣∣∣∣ �

Ω\B(O,ρ/2)
div(ε∇s) r1/nφ dx

∣∣∣∣ ≤ C ∥∇φ∥Ω. (66)

Besides, using the Cauchy-Schwarz inequality, we can write∣∣∣∣ �
Ω

εs∇(r1/n) · ∇φ dx

∣∣∣∣ ≤
C

n

∣∣∣∣ �
Ω

r−2|s|2r2/n dx

∣∣∣∣1/2
∥∇φ∥Ω

≤
C

n

∣∣∣∣ �
Ω

r−3+2/n dx

∣∣∣∣1/2
∥∇φ∥Ω ≤

C
√

n
∥∇φ∥Ω.

(67)

For the third term of the right hand side of (65), we have
∣∣∣∣ �

Ω
ε∇s · ∇(r1/n)φ dx

∣∣∣∣ ≤
C

n

∣∣∣∣ �
Ω

r−2|s|2r2/n dx

∣∣∣∣1/2
∥r−1φ∥Ω

≤
C

n

∣∣∣∣ �
Ω

r−3+2/n dx

∣∣∣∣1/2
∥∇φ∥Ω ≤

C
√

n
∥∇φ∥Ω.

(68)

Using (66)–(68) into (65), thanks to (62), we get∣∣∣∣ �
Ω

ε∇sn · ∇φ dx

∣∣∣∣ ≤ C ∥∇φ∥Ω ≤ C∥v∥H(curl ). (69)
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Gathering (64) and (69) in (63), from the definition (61), we conclude that

∥AN (ω)un∥(HN (curl ))∗ ≤ C. (70)

Together with (60), this contradicts (58) and proves that AN (ω) cannot be an isomorphism.

To complete the proof, it remains to consider the case where AN (ω) is assumed to have a kernel
of dimension K. In that situation, let λ1, . . . ,λK , K ≥ 1, be an orthonormal basis of kerAN (ω).
Set

H̃N (curl ) := {u ∈ HN (curl ) | (u,λk)H(curl ) = 0, k = 1, . . . K}
H := {F ∈ (HN (curl ))∗ | ⟨F ,λk⟩ = 0, k = 1, . . . K}

and define the continuous operator ÃN (ω) := AN (ω)|H̃N (curl ). Then ÃN (ω) : H̃N (curl ) → H is
an isomorphism so that there is a constant c > 0 such that there holds

∥u∥H(curl ) ≤ c ∥ÃN (ω)u∥(HN (curl ))∗ , ∀u ∈ H̃N (curl ). (71)

Let us show that this is impossible. For n ∈ N∗, take un as in (59) and set

ũn := un −
K∑

k=1
ak

n λ
k with ak

n := (un,λk)H(curl ) = (∇sn,λk)Ω.

The field ũn clearly belongs to H̃N (curl ). Moreover one observes that the λk are not only in
HN (curl ) but also in XN (ε) (see (3) for the definition of this space). From the proof of Proposition
4.13, we infer that the λk are in V0

−γ(Ω) for a certain fixed γ > 0. Since un does not belong to
V0

−γ(Ω) for n large enough, we deduce that ũn is non zero for n large enough. On the other hand,
since (ak

n)n converges to (∇s,λk)Ω as n tends to +∞, from (60) we get

lim
n→+∞

∥ũn∥H(curl ) = +∞.

Finally, since ÃN (ω)ũn = AN (ω)un, estimate (70) guarantees that (∥ÃN (ω)ũn∥(HN (curl ))∗)n re-
mains bounded when n tends to +∞. From this, we deduce that the estimate (71) cannot hold.
This completes the proofs of the fact that AN (ω) cannot be Fredholm of index zero.

7 Concluding remarks

In this article, we investigated the time-harmonic Maxwell’s equations in a setting involving an
inclusion of negative index material whose geometry is smooth except at a point where it has a
conical tip. We proved that when the contrasts of the electromagnetic parameters take certain
critical values, the Maxwell’s equations are no longer well-posed in the classical framework due
to the existence of hypersingularities also known as black-hole singularities. We explained how
to take into account certain of these singularities, by imposing radiation conditions at the tip, to
get new frameworks in which Fredholmness is recovered. Let us mention that for the correspond-
ing solutions, both the field and the curl of the field are singular. The selection of the outgoing
behaviour is realized by applying the Mandelstam radiation principle to the two scalar operators
for ε and µ which appear in the analysis. However the Mandelstam radiation principle does not
provide a unique setting where the problem is well-posed. To select the one which is interesting
from a physical point of view, additionally we applied the limiting absorption principle that we
were able to justify when it holds for the scalar problems.

In the possible continuations of this work, one could consider situations where the negative in-
dex inclusion has some edges. In that case, the coefficient in front of the hypersingularities should
be replaced by a function. This makes the analysis more involved. Another interesting direction
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would be to study the approximation of the solution in the new framework by numerical methods.
For this, the difficulty lies in the fact that since the field and the curl of the field are infinitely
oscillating when approaching the tip, simple mesh based methods fail to capture the phenomenon
and produce spurious reflections. In [5], a method using Perfectly Matched Layers (PMLs) has
been proposed to deal with the 2D scalar case. More precisely, the idea is to implement PMLs
in a neighbourhood of the corner to absorb the energy leaving the domain through the black-hole
singularities. For the moment it is not clear if it can be adapted to the Maxwell problem. In
practice, the coefficients ε and µ depend on the frequency ω. Therefore it would be relevant to
incorporate this aspect in the analysis as it has been done for the scalar problems in [28]. For
the Maxwell’s equations in the singular geometry considered here, however, this seems far from
being obvious because the number of black-hole waves and their features (the singular exponent
in particular) depend on ω.

8 Appendix

We remind the reader that by assumption, Ω is simply connected and that its boundary is con-
nected. When this hypothesis is not satisfied, the results below must be adapted.

8.1 Classical Helmholtz decompositions

We start with some well-known results.

Proposition 8.1.
i) According to [1, Theorem 3.12], if u ∈ L2(Ω) satisfies divu = 0 in Ω, then there exists a unique
ψ ∈ XT (1) such that u = curlψ.

ii) According to [1, Theorem 3.17]), if u ∈ L2(Ω) satisfies divu = 0 in Ω and u · ν = 0 on
∂Ω, then there exists a unique ψ ∈ XN (1) such that u = curlψ.

iii) According to [40, Thereom 3.45], every u ∈ L2(Ω) can be decomposed as u = ∇p + curlψ,
with p ∈ H1

0(Ω) and ψ ∈ XT (1) which are uniquely defined.

iv) According to [40, Remark 3.46], every u ∈ L2(Ω) can be decomposed as u = ∇p + curlψ,
with p ∈ H1

#(Ω) and ψ ∈ XN (1) which are uniquely defined.

In our analysis, we needed some representation results with potentials similar to above but in
weighted Sobolev spaces. To establish them, we recall results concerning the classical Laplace
operator in weighted Sobolev spaces. For the proofs, we refer the reader to the monographs
[34, 36, 39] (see also [23, 24]).

8.2 Classical Laplace operator

For γ ∈ R, define the linear and continuous operator Aγ
D : V̊1

γ(Ω) → (V̊1
−γ(Ω))∗ such that

⟨Aγ
Dφ, φ′⟩ =

�
Ω

∇φ · ∇φ′ dx, ∀φ ∈ V̊1
γ(Ω), φ′ ∈ V̊1

−γ(Ω).

In the same way, for γ ∈ (−5/2; 5/2), define Aγ
N : V1

γ(Ω) → (V1
−γ(Ω))∗ such that

⟨Aγ
N φ, φ′⟩ =

�
Ω

∇φ · ∇φ′ dx, ∀φ ∈ V1
γ(Ω), φ′ ∈ V1

−γ(Ω).

Here the subscripts D, N stand for Dirichlet and Neumann. Similarly to βD, βN in (18), set

γD := min{ℜe (λ − 1/2) | λ ∈ spec(LD) and ℜe λ > −1/2},

γN := min({ℜe (λ − 1/2) | λ ∈ spec(LN ) and ℜe λ > −1/2} ∪ {5/2})
(72)
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where the symbols LD, LN are defined as Lε, Lµ (see (10), (11)) with ε ≡ 1, µ ≡ 1.
Proposition 8.2.
• For γ ∈ (−γD; γD), the operator Aγ

D : V̊1
γ(Ω) → (V̊1

−γ(Ω))∗ is an isomorphism.
• For γ ∈ (−γN ; γN ), the operator Aγ

N : V1
γ(Ω) → (V1

−γ(Ω))∗ is an isomorphism.
Remark 8.3. The values for γD, γN depend on the geometry of Ω near O (see [36, §2.2] as well
as [34, §6.6] for the Dirichlet problem and [36, §2.3] for the Neumann problem). When O ∈ Ω
(case 1 in (5)), one has γD = γN = 1/2. When O ∈ ∂Ω and K coincides with a half-space (case
2 in (5)), there holds γD = 3/2, γN = 1/2. Note that we have always γD ≥ 1/2, γN ≥ 1/2. This
latter property is used in the definition of β⋆ in (23) and ensures that β⋆ ≤ γD, β⋆ ≤ γN .

8.3 Decompositions in weighted Sobolev spaces

The next result generalizes the items iii), iv) of Proposition 8.1.
Proposition 8.4.
• Fix γ ∈ [0; γD). Any u ∈ V0

−γ(Ω) decomposes as u = ∇φ + curlψ with φ ∈ V̊1
−γ(Ω) and

ψ ∈ XT (1) satisfying curlψ ∈ V0
−γ(Ω).

• Fix γ ∈ [0; γN ). Any u ∈ V0
−γ(Ω) satisfying u · ν = 0 on ∂Ω decomposes as u = ∇φ + curlψ

with φ ∈ V1
−γ(Ω) and ψ ∈ XN (1) satisfying curlψ ∈ V0

−γ(Ω).
Proof. Fix γ ∈ [0; γD) and consider some u ∈ V0

−γ(Ω). Since V0
−γ(Ω) ⊂ L2(Ω), the item iii) of

Proposition 8.1 guarantees that we have u = ∇φ + curlψ with φ ∈ H1
0(Ω) and ψ ∈ XT (1). By

observing that ∆φ = divu ∈ (V̊1
γ(Ω))∗ and by using Proposition 8.2, we conclude that φ belongs

to V̊1
−γ(Ω). This ends the proof of the first item. The second one can be established similarly.

Now we generalize the results of items i), ii) of Proposition 8.1. For γ ∈ R, introduce the spaces
Zγ

N := {u ∈ L2(Ω) | curlu ∈ V0
γ(Ω), divu = 0 in Ω, u× ν = 0 on ∂Ω\{O}}

Zγ
T := {u ∈ L2(Ω) | curlu ∈ V0

γ(Ω), divu = 0 in Ω, u · ν = 0 on ∂Ω\{O}}.

We endow Zγ
N and Zγ

T with the norm ∥ · ∥Zγ := (∥ · ∥2
Ω + ∥curl · ∥2

V0
γ(Ω))

1/2. Set

γ̃D := min(γD, 1), γ̃N := min(γN , 1). (73)
Proposition 8.5. Let γ̃D, γ̃N be as in (73).
• Fix γ ∈ [0; γ̃D). If u ∈ V0

γ(Ω) satisfies divu = 0 in Ω\{O}, then there exists a unique ψ ∈ Zγ
T

such that u = curlψ.
• Fix γ ∈ [0; γ̃N ). If u ∈ V0

γ(Ω) satisfies divu = 0 in Ω\{O} and u · ν = 0 on ∂Ω\{O}, then there
exists a unique ψ ∈ Zγ

N such that u = curlψ.
Remark 8.6. This result also extends the one obtained in [10, Appendix B] where only the case
O ∈ Ω has been considered. Furthermore, here we give a simpler proof.
Proof. Let u ∈ V0

γ(Ω) with γ ∈ [0; γ̃D) such that divu = 0 in Ω\{O}. Proposition 8.7 ensures
that XN (1) ⊂ V0

−γ(Ω). This shows that we have V0
γ(Ω) ⊂ (XN (1))∗ so that we can consider the

problem
Find ζ ∈ XN (1) such that�
Ω

curl ζ · curl ζ′ dx =
�

Ω
u · ζ′ dx, ∀ζ′ ∈ XN (1).

Using Proposition 2.1, one proves classically that it has a unique solution ζ ∈ XN (1). Additionally,
by exploiting that divu = 0 in Ω\{O}, one obtains

curl (curl ζ) = u in Ω\{O}.

Set ψ := curl ζ. Then ψ is an element of Zγ
T such that u = curlψ. This ends the proof of the

first item. The demonstration of the second one follows the same steps.
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8.4 Compact embedding results

In this paragraph, we prove results of compact embedding of Maxwell’s spaces into weighted
Sobolev spaces. Let us mention that this has some connections with the work [14]. In our approach,
we will study the regularity of fields in a neighbourhood of O. To proceed, we set O := Ω∩B(O, ρ),
where ρ is defined in (4), and introduce the spaces

YN (O) := {u ∈ L2(O) | curlu ∈ L2(O), divu ∈ L2(O), u× ν = 0 on ∂O}
YT (O) := {u ∈ L2(O) | curlu ∈ L2(O), divu ∈ L2(O), u · ν = 0 on ∂O}
HN (O) := YN (O) ∩ H1(O)
HT (O) := YT (O) ∩ H1(O).

When O is convex, in particular when O ⊂ Ω, we have that YN (O) = HN (O), YT (O) = HT (O)
(see [17]). However this is not true for all conical tips O. Generally speaking however, it is
known that the quotient spaces YN (O)/HN (O), YT (O)/HT (O) are always of finite dimension
[20] and that the latter depend on the features of the conical tip, more precisely on ϖ. In case
where this dimension is positive, the Birman-Solomyak decomposition (see [3, Theorem 3.1], [4],
[20, Theorem 1.1]) ensures that there exist some finite dimensional spaces SD ⊂ H1

0(O)\H2(O),
SN ⊂ H1

#(O)\H2(O) such that

YN (O) = HN (O) ⊕ ∇SD, YT (O) = HT (O) ⊕ ∇SN . (74)

Additionally the elements of the bases of SD, SN can be chosen such that their laplacian belong
to C ∞(O\{O}).

This said, we begin with a result concerning the classical spaces XN (1), XT (1) which general-
izes [10, Proposition A.2] where only the case O ∈ Ω has been considered.

Proposition 8.7. Let γ̃D, γ̃N be as in (73).
• Fix γ ∈ [0; γ̃D). The space XN (1) is compactly embedded in V0

−γ(Ω). Moreover, there is C > 0
independent of u such that

∥u∥V0
−γ(Ω) ≤ C ∥curlu∥Ω, ∀u ∈ XN (1).

• Fix γ ∈ [0; γ̃N ). The space XT (1) is compactly embedded in V0
−γ(Ω). Moreover, there is C > 0

independent of u such that

∥u∥V0
−γ(Ω) ≤ C ∥curlu∥Ω, ∀u ∈ XT (1).

Proof. For γ = 0, this is nothing but the classical result recalled in Proposition 2.1. Now we treat
the case γ ̸= 0. Let (un)n be a bounded sequence of elements of XN (1). For n ∈ N, write

un = vn +wn with vn := χun, wn := (1 − χ)un, (75)

where χ ∈ C ∞(R) is the cut-off function introduced before (16) such that χ(r) = 1 for r ≤ ρ/2
and χ(r) = 0 for r ≥ ρ. Let us study the behaviours of (vn), (wn) separately.
⋆ We start by (wn). We have curlwn = −∇χ×un +(1−χ) curlun and divwn = −∇χ ·un in Ω.
Therefore the sequences (wn), (curlwn) and (divwn) are bounded in L2(Ω). Since additionally
there holds wn × ν = 0 on ∂Ω, we infer from [59] that we can extract a subsequence from (un)
such that (wn) converges in L2(Ω). Observe that since wn vanishes in Ω ∩ B(O, ρ/2), this ensures
that (wn) converges in V0

γ(Ω) for all γ ∈ R.
⋆ Now we work with (vn). Note that vn is an element of YN (O). According to the Birman-
Solomyak decomposition (74), for all n ∈ N, we have

vn = vreg
n + ∇φn (76)
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with vreg
n ∈ HN (O) and φn ∈ SD such that ∇φn ∈ YN (O) (simply take φn ≡ 0 when O is convex).

Moreover this comes with the estimate

∥vreg
n ∥H1(O) + ∥∇φn∥O + ∥∆φn∥O ≤ C ∥curlvn∥O

where C is independent of n. Using that ∆ : V2
η(O) ∩ H1

0(O) → V0
η(O) is an isomorphism for

all η ∈ (1 − γD; 1) (see [34, 36, 39]) and that L2(O) ⊂ V0
η(O) for all η ≥ 0, we deduce that

(φn) is bounded in V1
γ(O) for all γ ∈ (1 − γ̃D; 1). From Lemma 3.1, this implies that we can

extract from (φn) a subsequence such that (∇φn) converges in V0
γ(O) for all γ ∈ (−γ̃D; 0). On the

other hand, since H1(O) = V1
0(O), Lemma 3.1 also guarantees that we can extract from (vreg

n ) a
subsequence such that (vreg

n ) converges in V0
γ−1(O) for all γ > 0. Combining these two results with

the decomposition (76), we deduce that we can extract from (vn) a subsequence which converges
in V0

−γ(O) for all γ ∈ (0; γ̃D).
Using the results for (wn), (vn) in (75) gives the proof of the first item. The demonstration of the
second one follows the same steps.

We continue by studying the spaces XN (ε), XT (µ).

Proposition 8.8. Suppose that Assumptions 1-2 hold.
• Fix γ ∈ (0; β̃D) where β̃D = min(βD, γD, 1). The space XN (ε) is compactly embedded in V0

−γ(Ω).
Moreover, there is a constant C > 0 independent of u such that

∥u∥V0
−γ(Ω) ≤ C ∥curlu∥Ω, ∀u ∈ XN (ε).

• Fix γ ∈ (0; β̃N ) where β̃N = min(βN , γN , 1). The space XT (µ) is compactly embedded in V0
−γ(Ω).

Moreover, there is a constant C > 0 independent of u such that

∥u∥V0
−γ(Ω) ≤ C ∥curlu∥Ω, ∀u ∈ XT (µ).

Proof. Let u ∈ XN (ε). By means of item iii) of Proposition 8.1, introduce φ ∈ H1
0(Ω) and

ψ ∈ XT (1) such that u = ∇φ + curlψ. By observing that curlψ belongs to XN (1) and by
applying Proposition 8.7, we deduce that curlψ ∈ V0

−γ(Ω) for γ ∈ (0; β̃D). Furthermore, we have

∥curlψ∥V0
−γ(Ω) ≤ C ∥curl (curlψ)∥Ω = C ∥curlu∥Ω. (77)

By observing that div(ε∇φ) = −div(ε curlψ) ∈ (V̊1
γ(Ω))∗ for all γ ∈ (0; β̃D), one deduces from

Proposition 3.7 and (19) that φ ∈ V̊1
−γ(Ω) with the estimate

∥∇φ∥V0
−γ(Ω) ≤ C ∥curlψ∥V0

−γ(Ω) ≤ C ∥curlu∥Ω. (78)

This shows that u ∈ V0
−γ(Ω). By combining (77) and (78), we obtain the desired estimate. Now,

let us prove the compactness result. Consider (un)n a bounded sequence of elements of XN (ε). For
n ∈ N, we have the decomposition un = ∇φn+curlψn with φn ∈ H1

0(Ω) and ψn ∈ XT (1). Thanks
to Proposition 8.7, we infer that up to a sub-sequence, still indexed by n, (curlψn)n converges
in V0

−γ(Ω) for all γ ∈ (0; β̃D). The estimate (78) implies that (∇φn)n is a Cauchy sequence in
V0

−γ(Ω) and thus it converges in V0
−γ(Ω). This ends the proof of the first item. The second one

can be shown similarly.

Proposition 8.9. Fix γ ∈ [0; 1/2). The spaces Zγ
N and Zγ

T are compactly embedded in V0
−η(Ω)

for all η < 1/2. Moreover, there is a constant C > 0 independent of u such that

∥u∥V0
−η(Ω) ≤ C ∥curlu∥V0

γ(Ω), ∀u ∈ Zγ
N ∪ Zγ

T .
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Proof. Let (un)n be a bounded sequence of elements of Zγ
N . For n ∈ N, write

un = vn +wn with vn := ζun, wn := (1 − ζ)un, (79)

where ζ ∈ C ∞(R) is a cut-off function such that ζ(r) = 1 for r ≤ ρ/4 and ζ(r) = 0 for r ≥ ρ/2.
Let us study the behaviours of (vn), (wn) separately.
⋆ We start by (wn). As in (75), using that the support of wn does not meet the origin, we find
that the sequences (wn), (curlwn) and (divwn) are bounded in L2(Ω). Since additionally there
holds wn × ν = 0 on ∂Ω, we infer from [59] that we can extract a subsequence from (un) such
that (wn) converges in L2(Ω). Moreover, exploiting again that wn vanishes in Ω ∩ B(O, ρ/4), this
ensures that (wn) converges in V0

η(Ω) for all η ∈ R.
⋆ Now we work with (vn). The item i) of Proposition 8.1 ensures that for all n ∈ N, there is a
unique ψn ∈ XT (1) such that un = curlψn. Then we obtain curl (curlψn) = curlun in Ω\{O}
and so

− ∆ψn = curlun ∈ V0
γ(Ω) (80)

because we have divψn = 0 in Ω\{O}. The desired result will be a consequence of a regularization
property for Problem (80) that we describe now.

Let χ ∈ C ∞(R) be the cut-off function appearing in (16) such that χ(r) = 1 for r ≤ ρ/2 and
χ(r) = 0 for r ≥ ρ. Note that we have χ ≡ 1 on the support of ζ. The function Φn := χψn

satisfies
−∆Φn = fn := χcurlun −ψn∆χ − 2∇ψn∇χ in O

Φn · ν = 0 on ∂O

curl (Φn) × ν = (∇χ ×ψn) × ν + χcurlψn × ν = 0 on ∂O.

(81)

To obtain the third line above, we have used in particular that on ∂O, both ψn and ∇χ are
tangential. Working with localization functions from the equation (80), one can show that there
holds ψn ∈ H1(O\B(O, ρ/2)) with the estimate

∥ψn∥H1(O\B(O,ρ/2)) ≤ C (∥curlun∥V0
γ(Ω) + ∥un∥Ω)).

Here and below, C > 0 is a constant which may change from one line to another but which
remains independent of n. From this, we infer that the fn in (81) is an element of V0

η(O) for all
η ∈ (1/2; 3/2) (because in this case V0

γ(O) is continuously embedded in V0
η(O)) and we have

∥fn∥V0
η(O) ≤ C (∥curlun∥V0

γ(Ω) + ∥un∥Ω)).

On the other hand, from the Birman-Solomyak decomposition (74), for all n ∈ N, we have

Φn = Φreg
n + ∇φn

with Φreg
n ∈ HT (O) and φn ∈ SN such that ∇φn ∈ YT (O) (simply take φn ≡ 0 when O is convex).

This comes with the estimate

∥∇φn∥O + ∥∆φn∥O ≤ C (∥div Φn∥O + ∥curl Φn∥O) ≤ C ∥curlψn∥Ω = C ∥un∥Ω.

Using that SN is of finite dimension and spanned by some functions whose laplacian belongs to
C ∞(O\{O}), we deduce that Φreg

n solves the problem

−∆Φreg
n = f̃n := fn + ∇(∆φn) in O

Φreg
n · ν = 0 on ∂O

curl (Φreg
n ) × ν = 0 on ∂O

(82)

where f̃n is such that for all η ∈ (1/2; 3/2),

∥f̃n∥V0
η(O) ≤ C (∥curlun∥V0

γ(Ω) + ∥un∥Ω)).
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As a consequence of Theorem 8.11, we infer that Φreg
n belongs to V2

η(O) for all η ∈ (1/2; 3/2) with
the estimate

∥Φreg
n ∥V2

η(O) ≤ C (∥curlun∥V0
γ(Ω) + ∥un∥Ω)).

Therefore (curl Φreg
n ) is bounded in V1

η(O). Since there holds

vn = ζun = ζcurlψn = ζcurl Φn = ζcurl Φreg
n

because χ = 1 on the support of ζ, we infer that (vn) is bounded in V1
η(Ω). From Lemma 3.1,

this implies that we can extract a subsequence such that (vn) converges in V0
η−1+δ(Ω) for all δ > 0.

Finally, gathering the results for (vn) and (wn) in the decomposition (79) yields the statement for
the space Zγ

N . The proof for Zγ
T can be obtained by obvious modifications of the above lines.

8.5 Density result

For γ ∈ R, set

H−γ,γ
N (curl ) := {u ∈ V0

−γ(Ω) | curlu ∈ V0
γ(Ω), u× ν = 0 on ∂Ω\{O}} (83)

Proposition 8.10. The space CCC ∞
0 (Ω\{O}) is dense in H−γ,γ

N (curl ) for γ ∈ [0; 1/2).

Proof. Let ζ ∈ C ∞(R) be the cut-off function appearing in the proof of Proposition 8.9 such that
ζ(r) = 1 for r ≤ ρ/4 and ζ(r) = 0 for r ≥ ρ/2. Consider some u in H−γ,γ

N (curl ). Observe that
(1 − ζ)u belongs to HN (curl ) and vanishes in a neighbourhood of O. Therefore, classically, it can
be approximated by a sequence of elements of CCC ∞

0 (Ω\{O}). Now let us focus our attention on the
approximation of ζu. Since ζu ∈ V0

−γ(Ω), according to Proposition 8.9, we have the decomposition

ζu = ∇φ + curlψ

with φ ∈ V̊1
−γ(Ω) and ψ ∈ XT (1) such that curlψ ∈ V0

−γ(Ω). Using that ζχ = ζ, we get

ζu = χ∇φ + χcurlψ. (84)

The proof of Proposition 8.9 ensures that χcurlψ belongs to

Hγ
N (O) := {u ∈ V1

γ(O) |u× ν = 0 on ∂O\{O}}. (85)

Since C ∞
0 (Ω\{O}) is dense in V̊1

−γ(Ω), we can find a sequence (φn) of elements of C ∞
0 (Ω\{O})

which converges to φ in V̊1
−γ(Ω). Then we get

∥χ∇φ − χ∇φn∥V0
−γ(O) + ∥curl (χ∇φ) − curl (χ∇φn)∥V0

γ(O)
= ∥χ∇(φ − φn)∥V0

−γ(O) + ∥∇χ × ∇(φ − φn)∥V0
γ(O) −→

n→+∞
0.

On the other hand, using that CCC ∞
0 (O\{O}) is dense in Hγ

N (O), we can find a sequence (ϕn) of
elements of CCC ∞

0 (O\{O}) which converges to χcurlψ in Hγ
N (O). This allows us to write

∥χcurlψ − ϕn∥V0
−γ(O) + ∥curl (χcurlψ) − curlϕn∥V0

γ(O) ≤ C ∥χcurlψ − ϕn∥V1
γ(O) −→

n→+∞
0.

Above we used that for γ ∈ [0; 1/2), there holds γ − 1 < −γ which ensures that we have the
continuous embeddings V1

γ(O) ⊂ V0
γ−1(O) ⊂ V0

−γ(O). From (84), this shows that (χ∇φn + ϕn)
is a sequence of elements of CCC ∞

0 (O\{O}) which converges to ζu in H−γ,γ
N (curl ). This ends the

proof.
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8.6 Homogeneous Maxwell’s operators in domains with conical tips

In this paragraph, we present regularity results concerning the Maxwell’s operators in domains
with conical tips. We work in O = Ω ∩ B(O, ρ) and consider the problems

curl (curlu) − ∇divu = f in O
u× ν = 0 on ∂O
divu = 0 on ∂O

(86)

curl (curlu) − ∇divu = f in O
u · ν = 0 on ∂O

curlu× ν = 0 on ∂O.
(87)

where f ∈ V0
γ(O) for all γ > 1/2. Define the bilinear form a(·, ·) such that

a(u,v) =
�

O
curlu · curlv + div(u)div(v) dx

and introduce the problems

Find u ∈ HN (O) such that

a(u,v) =
�

Ω
f · v dx, ∀v ∈ HN (O),

Find u ∈ HT (O) such that

a(u,v) =
�

Ω
f · v dx, ∀v ∈ HT (O). (88)

Observe that if v ∈ H1(O) = V1
0(O), then v ∈ V0

−1(O) which guarantees that the right hand sides
in the above problems define linear forms respectively on HN (O), HT (O). On the other hand, it is
known (see [17]) that a(·, ·) is coercive both in HN (O) and in HT (O). Therefore the problems (88)
admit unique solutions which solve respectively (86), (87). The next theorem presents a weighted
regularity result for these solutions.

Theorem 8.11.
• The unique solution of (86) in HN (O) belongs to V2

γ(O) for all γ > 1/2.
• The unique solution of (87) in HT (O) belongs to V2

γ(O) for all γ > 1/2.
Moreover, for each solution, we have the estimate, for all γ ∈ (1/2; 3/2),

∥u∥V2
γ(O) ≤ C ∥f∥V0

γ(O)

where C > 0 is independent of f .

Proof. We only give the strategy to prove the first item, the second one can be obtained similarly.
For γ ∈ R, define the continuous operator A

γ
N : Hγ

N (O) → (H−γ
N (O))∗ such that

⟨Aγ
Nu,v⟩ = a(u,v), ∀u ∈ Hγ

N (O), v ∈ H−γ
N (O).

Here H±γ
N (O) stand for the spaces appearing in (85) and such that

H±γ
N (O) = {u ∈ V1

±γ(O) |u× ν = 0 on ∂O\{O}}

Observe that for γ ≤ 0, we have Hγ
N (O) ⊂ H0

N (O) = HN (O). As mentioned in [20], the system
is elliptic. As a consequence, we can apply the Kondratiev approach [33] to study it. Denote
by LE(·) the symbol obtained when applying the Mellin transform to (86). The ellipticity of
the problem allows one to show that the spectrum of LE(·) is discrete. Additionally, using that
curl curlu− ∇divu = −∆u and adapting [35], one can show that LE(·) has no eigenvalue in the
energy strip (as called in [36]) {λ ∈ C | ℜe λ ∈ (−1; 0)}. Note that this result is also mentioned at
the end of [20, §4.f]. As a consequence, the general theory presented in [34] ensures that for all
γ ∈ (−1/2; 1/2), Aγ

N is Fredholm of index zero. Moreover we know that ker A
γ
N is independent of

γ ∈ (−1/2; 1/2). Since A0
N is injective (because we have H0

N (O) = HN (O)), we infer that Aγ
N is an
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isomorphism for all γ ∈ (−1/2; 1/2). This ensures that the solution in HN (O) belongs to V1
γ(O)

for all γ ∈ (−1/2; 1/2). Additionally, since ∂ϖ is smooth, the Kondratiev theory [33] guarantees
that ∆ is an isomorphism from

{u ∈ V2
γ(O) |u× ν = 0 on ∂O\{O}, divu = 0 on ∂O\{O}}

to V0
γ(O) for all γ ∈ (1/2; 3/2). As a consequence, the solution in HN (O) also belongs to V2

γ(O)
for all γ ∈ (1/2; 3/2). This ends the proof.
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