
HAL Id: hal-04087358
https://hal.science/hal-04087358v3

Preprint submitted on 18 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Linear Solvers for Incompressible CFD Simulations
with Compatible Discrete Operator Schemes

Yongseok Jang, Jerome Bonelle, Carola Kruse, Frank Hülsemann, Ulrich Rüde

To cite this version:
Yongseok Jang, Jerome Bonelle, Carola Kruse, Frank Hülsemann, Ulrich Rüde. Fast Linear Solvers for
Incompressible CFD Simulations with Compatible Discrete Operator Schemes. 2023. �hal-04087358v3�

https://hal.science/hal-04087358v3
https://hal.archives-ouvertes.fr

Fast linear solvers for incompressible CFD simulations with
compatible discrete operator schemes

Yongseok Jang1*, Jérôme Bonelle2, Carola Kruse3, Frank Hülsemann4, Ulrich

Rüde3,5

1ONERA, Université Paris-Saclay, Châtillon, France.
2EDF Lab Chatou, Chatou, France.

3Cerfacs, Toulouse, France.
4EDF Lab Paris-Saclay, Palaiseau, France.

5Department of Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany.

*Corresponding author(s). E-mail(s): yongseok.jang@onera.fr;yongseok.jang@lip6.fr;
Contributing authors: jerome.bonelle@edf.fr; carola.kruse@cerfacs.fr;

frank.hulsemann@edf.fr; ulrich.ruede@fau.de;

Abstract

Finding a robust and efficient solver for (non-)symmetric systems that arise in
incompressible Computational Fluid Dynamics (CFD) is of great interest to both
academia and industry. We consider the Compatible Discrete Operator (CDO)
discretization that has recently been devised for CFD simulations in the context
of incompressible Stokes and Navier–Stokes flows. The discrete problems result-
ing from CDO schemes yield large saddle-point systems that require relevant
numerical methods suitable to deal with large indefinite and poorly conditioned
linear systems. In this paper, we focus on two segregated methods: the augmented
Lagrangian Uzawa method and the generalized Golub-Kahan bidiagonalization,
as well as a monolithic method based on an algebraic transformation by change
of variables. We also employ algebraic multigrid (AMG) preconditioned Krylov
solvers such as the Flexible Conjugate Gradient (FCG) method, and the Flexible
Generalized Minimal Residual (FGMRES) method, to solve the linear systems.
Using the CFD software code saturne, we compare the numerical performance
with respect to the choice of linear solvers and numerical strategies for the saddle-
point problem. In the numerical experiments, the AMG preconditioned Krylov
methods show robustness in test cases of Stokes and Navier–Stokes problems.

Keywords: Algebraic multigrid method, Compatible discrete operator, Incompressible
Navier–Stokes, Saddle–point problems

MSC Classification: 65F08 , 65F10 , 65M22 , 76D05

1

1 Introduction

Problems in Computational Fluid Dynamics (CFD) arise in many academic and indus-
trial fields, e.g., aerospace, petroleum and nuclear engineering. In this paper, we focus
on the steady Stokes and Navier–Stokes equations in the case of incompressible flows.
Let Ω ⊂ Rd, d = 2, 3 be an open bounded connected polytopal Lipschitz domain and
∂Ω be its boundary. The velocity is a vector-valued field denoted by u⃗ and the pressure
is a scalar-valued field denoted by p such that:

−ν∆u⃗+ χ ((u⃗ · ∇)u⃗) +∇p = f⃗ in Ω, (1.1)

∇ · u⃗ = 0 in Ω. (1.2)

Equation (1.1) refers to the conservation of the momentum and (1.2) to the incom-
pressibility constraint, ensuring that the velocity field conserves mass. Here we assume
a constant mass density. The parameter ν > 0 denotes the fluid viscosity and f⃗ is the
volumetric forcing term. −ν∆u⃗ is the viscous term and (u⃗ ·∇)u⃗ is the convection term.
The choice χ = 0 corresponds to the Stokes equations whereas the choice χ = 1 to
the Navier–Stokes equations. Dirichlet boundary conditions are enforced on ∂Ω. The
pressure is uniquely defined by enforcing

∫
Ω
p = 0. To manage the nonlinearity of the

Navier–Stokes equation in the convection term, we introduce Picard’s iteration yield-
ing the following linearized Navier–Stokes equation (also known as Oseen problem)
such that

−ν∆u⃗(k) + (u⃗(k−1) · ∇)u⃗(k) +∇p(k) = f⃗ in Ω, (1.3)

∇ · u⃗(k) = 0 in Ω, (1.4)

for each iteration k, starting from an arbitrary initial guess (u⃗(0), p(0)).
The discretization of equations (1.1) and (1.2) has been extensively studied in the

literature. Depending on the choice of the velocity-pressure coupling (segregated or
coupled), the definition and location of the degrees of freedom (DoF), the resulting lin-
ear system(s) can have quite different structure and different features. In what follows,
we consider the Compatible Discrete Operator (CDO) schemes introduced in [1] for the
spatial discretization. CDO schemes belong to a class of space discretization schemes
called mimetic, structure-preserving or compatible. These schemes have been inspired
by the seminal works of Bossavit [2] and of Hyman & Scovel [3]. They have shed a new
light on the way to devise the discretization of partial differential equations (PDE)
thanks to some concepts of differential geometry and algebraic topology. During the
last two decades, several other discretization schemes belonging to this latter class have
emerged, e.g., the Discrete Exterior Calculus (DEC) schemes [4], the Discrete Geo-
metric Approach (DGA) [5], the Mimetic Spectral Element method [6], the Mimetic
Finite Difference schemes [7], the Hybrid Mixed Mimetic (HHM) framework [8], the
Finite Element Exterior Calculus (FEEC) schemes [9] or the De Rham complexes [10].
More recently, extensions to higher order discretizations have been devised in Virtual
Element Methods (VEM) [11], Hybrid High Order (HHO) schemes [12] or the Discrete
De Rham framework [13].

2

In this paper, we focus on CDO face-based schemes with a full velocity/pressure
coupling. As explained in [14], this choice leads to a low-order approximation of the
Navier–Stokes equations. The stability and the approximation properties are fulfilled
on a wide range of meshes: from Cartesian meshes to polyhedral, non-matching and/or
distorted meshes. The CDO face-based discretization is a stable method (cf. Section 2).
The resulting linear system is a saddle-point problem formulated as Ax = b, where

A =

[
A BT

B O

]
, x =

[
u
p

]
and b =

[
f
g

]
. (1.5)

Here, A ∈ Rn×n, B ∈ Rm×n, O ∈ Rm×m is the null matrix, u ∈ Rn, f ∈ Rn, p ∈ Rm

and g ∈ Rm for n ≥ m. The blocks A, BT , B and O are commonly referred to as the
(1,1)-, (1,2)-, (2,1)- and (2,2)-blocks, respectively. In the case of the Stokes equations, A
is a symmetric positive definite (SPD) matrix corresponding to the viscous (diffusion)
term, while B is associated with the divergence operator for the velocity field and
BT with the pressure gradient operator. In the case of the (linearized) Navier–Stokes
equations, A is a non-symmetric matrix due to the addition of a convective term to
the viscous term.

Different types of saddle-point problems occur in many applications of applied
mathematics and engineering. To solve the corresponding linear systems, numerous
techniques have been proposed and developed during the previous decades; please refer
to the comprehensive introduction of Benzi, Golub and Liesen [15] on the resolution
of saddle-point problems. In what follows, one splits these techniques to solve (1.5)
into two categories: segregated techniques working iteratively on a subset of blocks and
monolithic techniques working on the full system (all blocks at once). For these two
categories, linear systems have to be solved either with a direct method or an iterative
method.

Direct methods are robust with respect to the properties of the linear system
(symmetry and conditioning for instance) but their computational cost in terms of
CPU and mainly memory usage can become prohibitive on large scale systems. In this
work, we consider parallel multi-frontal algorithms available in MUMPS [16] as direct
solver.

Krylov subspace methods [17] are our choice of iterative methods: for instance,
GMRES [18] on non-symmetric systems and CG [19] on symmetric positive definite
systems. Krylov subspace methods can become very competitive solvers when com-
bined with efficient preconditioning techniques. To employ variable preconditioning,
i.e., the preconditioner can be modify at each iteration (e.g. inner-outer Krylov meth-
ods), flexible variants of those methods have been developed such as FGMRES [20],
GCR [21, 22] or FCG [23]. For more details for non-symmetric problem solvers, we
refer to [24, 25] and the references therein. The efficiency of the iterative solver relies
mainly on the choice of the preconditioner. In this paper, one considers multilevel
preconditioning technique based on algebraic multigrid (AMG) methods. These meth-
ods have been proven to work efficiently on large scale linear systems stemming from
unstructured grids without needing geometric grid information; see [26] for a compar-
ison of multigrid preconditioners. The main ingredients composing the design of AMG

3

methods are the choice of the cycle (V-cycle for instance), that of the smoother (a sym-
metric Gauss-Seidel for instance) and the coarsening algorithm. There are two main
classes of coarsening strategies: independent-set based AMG, such as classical AMG
[27–30] and aggregation-based AMG, such as smoothed aggregation AMG [31] and
pairwise aggregation AMG [22, 32]. Please refer to [33] for more references and details
about AMG methods. More recently, Notay [34] then Bacq and Notay [35] investi-
gated aggregation-based AMG for the Stokes problems and (linearized) Navier–Stokes
problems, respectively, including a two-grid analysis.

In the manner of segregated techniques, one option is to utilize stationary iterations
and Uzawa-like algorithms [15, 36], including the variant known as the Augmented-
Lagrangian Uzawa (ALU) algorithm [37]. Another approach involves the Golub–Kahan
Bidiagonalization (GKB) algorithm [38], which has recently emerged as a method for
solving symmetric saddle-point systems.

Regarding monolithic techniques, apart from direct methods applied to the full sys-
tem, other techniques vary in their approach to defining an efficient preconditioner for
a Krylov subspace method. ILU type preconditioning or null space methods [15] are
possible choices. An approximated block LU factorization has also been introduced in
[39]. More generally, block preconditioning are among the most explored techniques of
this category. In this case, the approximation of the Schur complement[40] (in our case,
equal to −BA−1BT) is often required. In this situation, the quality of this approxi-
mation is a key ingredient to get an efficient solver. More specifically in the context
of the incompressible Navier–Stokes problems Semi-Impicit Pressure Linked Equation
(SIMPLE) type preconditioning [41] have been investigated. Other approaches, such
as augmented Lagrangian preconditioning, which is applicable for high Reynolds num-
ber [42, 43] cases, and a vector penalty projection method [44] are other techniques of
interest. Additionally, an algebraic transformation of the saddle-point system relying
on a change of variables has been devised in [34] in the context of the Stokes prob-
lem. This transformation allows one to use multigrid methods on the (monolithic)
transformed system.

Our main contribution is to present a first comparative study of algorithms used
to solve saddle-point systems that arise from the CDO face-based discretization of
the Stokes and Navier–Stokes equations. This discretization differs from the standard
Finite Elements schemes since one performs a static condensation of the (1,1)-block (cf.
Section 2). We focus on three algorithms: two segregated techniques, the Augmented-
Lagrangian Uzawa (ALU) algorithm [37] and the Golub–Kahan Bidiagonalization
(GKB) algorithm [38] and, one monolithic technique, the Notay’s algebraic transfor-
mation [34]. To our knowledge, this is the first application of the CDO scheme with
the GKB algorithm to solve the Stokes problem and with algebraic transformation
for both the Stokes and Navier–Stokes problems. Additionally, several Krylov solvers
preconditioned with different AMG strategies are compared either on the resolution
of the (1,1)-block or on the resolution of the transformed saddle-point problem. These
comparative studies are performed on the key ingredients that underpin the defini-
tion of an AMG, such as the type of cycle, the type of smoothers, and the coarsening
strategy. Specifically, we consider an in-house implementation of the K-cycle algorithm

4

based on Notay’s work [22, 45], BoomerAMG from the HYPRE library [46, 47], and
GAMG/HMG from the PETSc library [48].

The remainder of the paper is structured as follows. After the introduction, we
describe the main features and ingredients of the CDO face-based discretization in
Section 2, along with the resulting saddle-point problem. In Sections 3 and 4, we
provide detailed explanations of the different algorithms used in our comparative stud-
ies, as well as the various strategies and configurations of the multilevel algorithms
used as a preconditioner for a Krylov solver. Numerical experiments to compare their
numerical performance are reported in Section 5. At the end, conclusion and prospect
for future improvements are presented in Section 6. We note that all the algorithms
and discretizations described in this paper are freely available in the latest version of
code saturne1.

2 The Compatible Discrete Operator (CDO)
framework

The discretization of the Stokes and Navier–Stokes equations under consideration rely
on the CDO framework, as developed during Bonelle’s PhD[49, 50]. It encompasses
several discretizations according to the location of the degrees of freedom (DoF):
vertex-based, edge-based, face-based and cell-based schemes.

In this work, we focus on the CDO face-based schemes for the discretization of
the steady Stokes and Navier–Stokes equations. The velocity DoFs are hybrid in the
sense that they are located in the cells and at the faces (see Figure 1; Left part). They
are defined as the mean-value of the velocity vector-field in a cell and on a face for
each component. The main ingredients underpinning the discretization (the velocity
gradient reconstruction operator and the velocity divergence operator) are recalled
and we refer to [14, 51] for more details. The resulting CDO face-based scheme is
analyzed in [51] and references therein (stability, consistency, a priori error estimates,
etc.). In particular, the stability results imply that A, defined in (1.5), is invertible.
Namely, the solvability conditions [15, Theorem 3.4]

ker(H) ∩ ker(B) = {0} and ker(BT) = {0}, (2.1)

where H is the symmetric part of A are fulfilled since A is non-singular and B is a
full rank operator (LBB inf-sup condition).

Notation

Let C (resp. F) be the set of the mesh cells (resp. mesh faces). The number of elements
in a set X is denoted by #X (e.g. #C is the number of mesh cells). The set of faces
associated to a cell c ∈ C is denoted by Fc. The set of faces is split into two subsets:
the set of boundary faces F ∂ := {f ∈ F |f ⊂ ∂Ω} and the set of the interior faces
F ◦ := F \ F ∂ . For a face f , |f | corresponds to its surface and x⃗f to its barycenter.
One chooses an arbitrary orientation n⃗f to each face and one denotes n⃗f,c its outward

1https://www.code-saturne.org

5

normal such that n⃗f,c = ιf,cn⃗f with ιf,c = ±1 according to the arbitrary choice. For
a cell c, |c| and x⃗c denote its volume and barycenter, respectively.

The vector-valued piecewise constant polynomial space in a cell c ∈ C (resp. on a
face f ∈ F) is denoted by Pd

0(c) (resp. Pd
0(f)) with d the dimension of Ω (here d = 3).

The scalar-valued piecewise constant polynomial space in a cell c ∈ C is denoted by
P0(c). The local space of velocity DoFs (i.e. associated to a cell c ∈ C) is denoted by
U(c) and the local space of pressure DoFs by P(c) such that

U(c) :=

(
ą

f∈Fc

Pd
0(f)

)
ą

Pd
0(c) and P(c) := P0(c).

For c ∈ C, an element uc ∈ U(c) is such that uc := ((u⃗f)f∈Fc
, u⃗c) ∈ Rd(#Fc+1) and

pc ∈ P(c) is simply a constant value inside the cell c. U(Ω) denotes the global space of
velocity DoFs and P(Ω) the global space of pressure DoFs. These spaces are defined by

U(Ω) :=

(
ą

f∈F

Pd
0(f)

)
×

(
ą

c∈C

Pd
0(c)

)
and P(Ω) :=

ą

c∈C

P0(c).

An element u ∈ U(Ω) is such that u := ((u⃗f)f∈F , (u⃗c)c∈C) ∈ Rd(#F+#C). An element
p ∈ P(Ω) is such that p := (pc)c∈C ∈ R#C . The space of pressure DoFs is denoted
by P∗(Ω) when a zero mean-value is prescribed on the pressure DoFs. The space of
velocity DoFs is denoted by U◦(Ω) when homogeneous Dirichlet boundary conditions
are enforced on ∂Ω. For the sake of clarity, we only focus on this kind of boundary
conditions. These two spaces are defined as follows:

P∗(Ω) := {p ∈ P(Ω) |
∑
c∈C

pc|c| = 0} and U◦(Ω) = {u ∈ U(Ω) | u⃗f = 0 ∀f ∈ F ∂}.

Main operators

The two main operators used to discretize the Stokes problem (1.1)- (1.2) are the
velocity gradient reconstruction operator and the velocity divergence operator. The
pressure gradient is simply obtained as the adjoint operator of the velocity divergence.
For a cell c ∈ C, the local reconstruction operator for the velocity gradient is denoted
by Gc and is defined by a piecewise constant tensor in each pyramid pf,c associated to
a face f ∈ Fc (see Figure 1). Let PFc

:= {pf,c}f∈Fc
be the set of all pyramids in the

cell c. Gc : U(c) 7→ Pd×d
0 (PFc

) such that

Gc(uc)|pf,c
= G0,c(uc) + η

|f |
|pf,c|

((u⃗f − u⃗c)− G0,c(uc)(x⃗f − x⃗c))⊗ n⃗f,c

where η > 0 is a scaling coefficient related to the stability of the reconstruction.
Depending on the value of this coefficient, one can recover the Generalization of the
Crouzeix–Raviart framework [52] with η = 1, the Discrete Geometric Approach [5]
with η = 1/d or the Hybrid Finite Volume method [8] with η = 1/

√
d.

6

1 Pvols

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

5

pe,c

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

5

pv,c

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

5

pf,c

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

•
xv

�
xe

×
xf

◦
xc

5

sv,e,f,c

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

5

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

5

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

5

pe,c

pv,c

pf,c

1

Fig. 1 Left: Example in a hexahedral cell of the locations of the velocity DoFs (three components
on each face in orange and three components in the cell in blue), and the pressure DoF (the mean-
value in the cell – the blue bullet). Right: Example of a pyramid of basis the face f . The velocity
gradient is constant inside this volume.

G0,c(uc) is a piecewise constant tensor in the cell c corresponding to the
P0-consistent gradient reconstruction defined as

G0,c : U(c) 7→ Pd×d
0 (c) s.t. G0,c(uc) :=

1

|c|
∑
f∈Fc

|f |(u⃗f − u⃗c)⊗ n⃗f,c. (2.2)

The global velocity gradient reconstruction operator is simply defined by collecting
the local velocity gradient reconstruction operators. The definition of the velocity
divergence relies on the identity ∇ · (u⃗) = trace(∇u⃗). For each cell c ∈ C, the local
velocity divergence operator Dc is defined as

Dc : U(c) 7→ P(c) s.t. Dc(uc) :=
1

|c|
∑
f∈Fc

|f |u⃗f · n⃗f,c. (2.3)

In the case of the Navier–Stokes equations, one also introduces a convection operator,
see [51] for more details.

Weak formulation of the discrete Stokes problem

The discrete weak formulation for the Stokes problem stated in (1.1)–(1.2) with χ = 0
relies on the two previous operators. With homogeneous Dirichlet boundary conditions
on the velocity field, this yields: find (u,p) ∈ U◦(Ω)×P∗(Ω) such that ∀w ∈ U◦(Ω)
and ∀q ∈ P∗(Ω),

∑
c∈C

∫
c

νGc(uc) : Gc(wc)−
∑
c∈C

∫
c

Dc(wc)pc =
∑
c∈C

∫
c

f⃗ · w⃗c (2.4)

−
∑
c∈C

∫
c

Dc(uc) qc = 0. (2.5)

7

Algebraic viewpoint

Switching to the algebraic viewpoint, the different summands in equations (2.4)–(2.5)

correspond to the different blocks of the local saddle-point systems Âcx̂c = b̂c associ-
ated to each cell c ∈ C with x̂c and b̂c, two arrays restricted to all the face and cell
DoFs associated to a cell. Elements which will be modified by the static condensation
are written with a hat symbol. More specifically, the system corresponds to

Âc :=

[
Â(c) BT (c)
B(c) 0

]
and b̂c :=

[
f̂(c)
g(c)

]
(2.6)

where Â(c) is a square matrix of size d(#Fc + 1) associated to
∫
c
νGc(uc) : Gc(wc)

and B(c) is a rectangular matrix of size d × d(#Fc + 1) associated to
∫
c
Dc(uc) qc.

The static condensation modifies the velocity block Â(c) and its right-hand side f̂(c).
To detail this operation, one splits the system (2.6) to make appear the contribution
stemming from the face and cell velocity DoFs.

Âc :=

 ÂFF (c) AFC(c) BT
F (c)

ACF (c) ACC(c) 0
BF (c) 0 0

 and b̂c :=

 f̂F (c)

f̂C(c)
g(c)

 (2.7)

Since the block ACC(c) is a diagonal square matrix of size d, the static condensation
technique [53] allows one to reduce easily the size of the local system by removing the
cell DoFs related to the velocity as follows:

Ac :=

[
Ac BT

F (c)
BF (c) 0

]
and bc :=

[
f(c)
g(c)

]
(2.8)

where the velocity block Ac := ÂFF (c)−AFC(c) ·A−1
CC(c) ·ACF (c) is a square matrix

of size d#Fc and f(c) := f̂F (c) − AFC(c) · A−1
CC(c)fC(c). The resulting system (1.5)

with n = d#F and m = #C stems from the cell-wise assembly process of the local
systems detailed in (2.8).

3 Some strategies to solve saddle-point problems

Here we introduce three algorithms for solving saddle-point problems obtained in
stable discretizations of the Stokes or Navier–Stokes equations. In general, a direct
solver is a robust and precise option to solve the system (1.5), especially when the
(1,1)-block is non-symmetric and ill-conditioned. Most direct solvers rely on factorizing
a matrix which requires a high computational complexity and memory storage. For
2D problems, direct solvers are an efficient option, but for a large sparse matrix as
in typical 3D problems or a dense matrix, this makes direct solvers prohibitively
expensive in terms of computation time and/or memory usage. Hence, we focus on
iterative methods for solving saddle-point systems.

8

For the special case of the Stokes problem, i.e. χ = 0 in (1.1)-(1.2), the system
(1.5) is symmetric. We first introduce the Craig’s variant of the Golub-Kahan bidiag-
onalization (GKB) for symmetric saddle-point systems. It shows a good performance
in terms of iteration count and solution time, however, it is only applicable for sym-
metric matrices and thus its usage in code saturne is limited. As explained earlier,
we solve the Navier–Stokes problem with Picard (fixed-point) iterations, where each
iteration corresponds to an Oseen problem (1.3)- (1.4). The saddle-point matrix is
non-symmetric due to the presence of the advective field defined as u⃗(k−1). The sec-
ond algorithm that we introduce is the Augmented Lagrangian Uzawa (ALU) method
suited for symmetric or non-symmetric indefinite matrices. In the practical cases of
this paper and with some well-chosen parameter, it solves the problem in an acceptably
small number of iterations. As a third alternative, we use an algorithm that we call
Notay’s algebraic transformation. It can be applied to symmetric or non-symmetric
problems and the obtained transformed matrices can be solved with an efficient AMG
solver or with a Krylov subspace method preconditioned with an AMG.

3.1 Golub-Kahan bidiagonalization

We briefly summarize the generalized GKB method that has been introduced in [38].
The algorithm solves symmetric saddle-point systems, which implies that the GKB
method can only be applied to the Stokes equations in our context. As a first step, we
need to transform the saddle-point system to obtain a zero vector in the upper part
of the right-hand side vector. We furthermore use a common regularization technique
[54], known as the augmented Lagrangian approach. Let therefore γ ≥ 0 be a scaling
factor and W ∈ Rm×m be an SPD matrix. By recalling the solvability condition (2.1),
we can replace (1.5) by the equivalent augmented system Aγx

∗
γ = b∗γ with

Aγ =

[
Aγ BT

B O

]
, x∗

γ =

[
u∗
γ

p

]
, b∗γ =

[
0
g∗
γ

]
, (3.1)

where Aγ = A+γBTW−1B, u∗
γ = u−A−1

γ (f+γBTW−1g) and g∗
γ = g−BA−1

γ f . After
the regularization, in a similar way with Lanczos process, bidiagonalization leads us
to derive the following GKB formulation: find V ∈ Rn×n, Q ∈ Rm×m and D ∈ Rn×m

such that 
BTQ = AγV

[
D
O

]
, V TAγV = In,

BV = WQ
[
DT O

]
, QTWQ = Im,

(3.2)

9

with D being an upper bidiagonal matrix

D =



α1 β1 0 · · · 0

0 α2 β2 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 αn−1 βn−1

0 · · · 0 0 αn


,

with entries αi and βi computed successively as given in Algorithm 1. By multiplying
the augmented system Aγx

∗
γ = b∗γ with the block-diagonal matrix with diagonal

elements V T and QT from the left, and using the change of variables u∗
γ = V y and

p = Qz, we obtain with (3.2) [
In D
DT O

] [
y
z

]
=

[
0

QTg∗
γ

]
. (3.3)

Hence, once we derive V and Q, we can also get the solution of the augmented sys-
tem by solving (3.3). Craig’s variant algorithm [38, Algorithm 3.1] used to solve the
augmented system is presented in Algorithm 1. In each iteration of the algorithm, we
compute column by column the matrices V and Q and obtain the next update of the
solution u∗

γ (and thus u) and p from the system (3.3). This algorithm is a three-term
recurrence, hence it is not necessary to store all the basis vectors of V and Q, but
only the previous ones are needed. Please note that in each Golub-Kahan iteration,
we have to solve a linear system defined by the matrix Aγ . We call this solution step
the inner iteration. Depending on the size of the system, a direct solver or another
iterative solver may be applied.

In Algorithm 1, the stopping criterion check() is yet undefined. In the following we
will use a lower bound estimate of the energy error as in [38, 55]. The Aγ orthogonality
of V implies

∥e(k)∥2Aγ
=

n∑
j=k+1

ζ2j > ξ2k,l :=

k+l+1∑
j=k+1

ζ2j ,

with e(k) = u∗
γ −u

(k)
γ being the error, ζj defined in Algorithm 1 and l > 1 an integer.

The quantity ξk,l is a lower bound for the error at step k− l. To obtain a lower bound
estimate for e(k), the algorithm thus needs to run l more iterations. With a stopping
tolerance ϵ < 1, the stopping criterion is then defined as

if ξ/ξ̄ ≤ ϵ, then convergence=true, where ξ =

k∑
j=k−l+1

ζ2j and ξ̄2 =

k∑
j=1

ζ2j .

We set l = 5 as default in our experiments. For more details on bounds of ∥e(k)∥2Aγ
,

we refer to [38, 55].

10

Algorithm 1 Craig’s variant algorithm.

Input: Aγ , B, W , b∗γ , maxit.
Output: u∗

γ , p.

1: β1 = ∥b∗γ∥W−1 ; q1 = W−1b∗γ/β1; r = A−1
γ BTq1; α1 = ∥r∥Aγ

; v1 = r/α1.

2: ζ1 = β1/α1; d1 = q1/α1; u
(1)
γ = ζ1v1; p(1) = −ζ1d1.

3: k = 0; convergence = false.
4: while convergence = false & k < maxit do
5: k = k + 1.
6: s = W−1(Bvk − αkWqk).
7: βk+1 = ∥s∥W ; qk+1 = s/βk+1.
8: r = A−1

γ (BTqk+1 − βk+1Aγvk); αk+1 = ∥r∥Aγ ; vk+1 = r/αk+1.
9: ζk+1 = −(βk+1/αk+1)ζk; dk+1 = (qk+1 − βk+1dk)/αk+1.

10: u
(k+1)
γ = u

(k)
γ + ζk+1vk+1; p

(k+1) = p(k) − ζk+1dk+1.
11: convergence ← check()
12: end while
13: u∗

γ ← u
(k+1)
γ ; p← p(k+1).

14: return u∗
γ and p

We will conclude with a remark about the choice of the matrix W . The matrix W
can generally be any SPD matrix, and it can play two important roles. In the first case,
we can relax the condition on the definiteness of A, such that it may only be symmet-
ric positive semi-definite. With (2.1), the (1,1)-block Aγ is then SPD and the GKB
algorithm can be applied. If A is however already SPD, this manipulation is not the
purpose of the augmentation. The goal is then to obtain a linear system that is easier
to solve, which translates into an improvement in convergence. For many matrices, the
simple choice of W being the identity is enough [54]. In [55], the authors show that
for the augmentation parameter γ being big enough, the algorithm converges in only
a few iterations and mesh-independent convergence can be achieved. We emphasize,
however, that while the iteration count for the outer Golub-Kahan method decreases,
the matrix Aγ becomes more and more ill-conditioned. When an inner iterative solver
is used, the number of inner iterations thus increases. It is important to find a good
balance, and when the (1,1)-block exhibits favorable properties for certain solvers, it
might be more efficient in terms of computation time to discard the augmentation. For
the Stokes equation, the symmetric (1,1)-block corresponds to the discretization of the
Laplace operator, for which efficient multigrid solvers exist. After experimentation,
(see, e.g., [56, 57]) we decided not to use the augmentation of the (1,1)-block in Section
5 and set the parameter γ = 0. The transformation to obtain a zero vector in the
upper right-hand side is still to be kept by using the matrix A in the transformation.

3.2 Augmented Lagrangian Uzawa method

The Augmented Lagrangian–Uzawa (ALU) method is an efficient variant of the clas-
sical Uzawa method [36]. As explained in [15, Section 8.2], it has the same solution
as the saddle-point system (1.5). As before, let γ ≥ 0 be a scaling factor for the

11

augmentation term BTW−1B. The ALU method corresponds to the Uzawa method
applied to the system Aγx = bγ where Aγ is defined in (3.1) and bγ = [fγ , g]

T

with fγ = f + γBTW−1g. In code saturne, an incremental formulation of the ALU
method as detailed in Algorithm 2 is considered. The previous discussion about the
choice of the matrix W remains also true for ALU. We choose a diagonal matrix with
entries equal to the volume of each mesh cell for W . An initial guess on the pressure
(resp. velocity) field p0 (resp. u0) is needed in this method. It is either a null array in
the steady case or the latest known pressure (resp. velocity) field in an unsteady case.
The efficiency and convergence of the ALU method relies on the value of the param-
eter γ. As mentioned in [15], convergence holds for γ ∈ (0, 2/ρ) where ρ is the largest
eigenvalue of the Schur complement −BA−1

γ BT . A too large value for the parameter
γ induces an ill-conditioned system which slows down the convergence of the inner
linear system defined by Aγ . Once again, a trade-off between the iteration count and
the cost of the inner resolution has to be found. In the experiments in Section 5, we
choose γ = 100.

Algorithm 2 Augmented Lagrangian–Uzawa algorithm (incremental form).

Input: A, B, W , f , g, u0, p0, γ, ϵ, kmax.
Output: u, p.
1: Initialise Aγ = A+ γBTW−1B; fγ = f + γBTW−1g and k = 1.

2: Velocity solve: Aγu
(1) = fγ −BTp0; δu

(1) = u(1) − u0.

3: Pressure update: δp(1) = γW−1(Bu(1) − g); p(1) = p0 + δp(1).

4: while ∥δu(k)∥ < ϵ∥δu(1)∥ & k < kmax do

5: Solve the velocity increment: Aγδu
(k+1) = −BT δp(k)

6: Velocity update: u(k+1) = δu(k+1) + u(k).
7: Pressure update: δp(k+1) = γW−1(Bu(k+1) − g); p(k+1) = p(k) + δp(k+1).
8: k = k + 1.
9: end while

10: u← u(k) and p← p(k).
11: return u and p.

3.3 Notay’s algebraic transformation

The following approach of algebraically transforming the linear system in (1.5) by a
change of variables was initially introduced by Y. Notay in [34]. To keep our pre-
sentation self-contained, we briefly present the main idea. Notay’s right-hand side
transformation introduces the change of variables(

u
p

)
=

(
I −αD−1

A BT

O I

)(
ũ
p̃

)
(3.4)

12

which, when combined with a change of sign of the divergence constraint, yields the
system Ãx̃ = b̃ where

Ã :=

(
A (I − αAD−1

A)BT

−B αBD−1
A BT

)
, x̃ =

[
ũ
p̃

]
and b̃ =

[
f
−g

]
(3.5)

with a positive constant α and DA being the diagonal matrix built from A. Hereafter,
we assume α = 1. Other transformations, e.g. the two-sided variant introduced in [58],
are not considered in this work since they appear less efficient [34].

When we consider the vector v of the null space of Ã, we can decompose it with
respect to the velocity and the pressure. It follows

Ãv = 0⇐⇒
{
Avu + (I − αAD−1

A)BTvp = 0
−Bvu + αBD−1

A BTvp = 0
,

and since A is invertible, we have vu = −A−1(I − αAD−1
A)BTvp. By substitution of

vu into −Bvu + αBD−1
A BTvp = 0, we can derive BA−1BTvp = 0 so that

vT
p BA−1BTvp = 0⇐⇒ vp ∈ ker(BA−1BT) = ker(BT).

By recalling the fact that the CDO discretization satisfies the solvability conditions
(2.1) (e.g. ker(BT) = 0), it implies that the kernel of Ã is trivial, therefore the
transformed matrix is invertible.

The (2,2)-block BD−1
A BT of (3.5) is the product of a discrete divergence with a

discrete gradient which is similar to a discrete Laplacian [58]. If we replace D−1
A with

A−1, so that the (2,2)-block is the exact Schur complement of A, Ã becomes a lower
triangular block system which can be easily solved. However, the computation of A−1

in a large problem is often too expensive so that we may want to use an approximation
of the Schur complement, instead. We also refer to [59] for sparse approximations of
the Schur complement.

4 Algebraic multigrid preconditioning for Krylov
solvers

Multigrid methods are among the most relevant methods to solve large-scale systems.
They can be used as a solver or preconditioner. In this paper, multigrid methods
are always used as preconditioners. Multigrid methods have shown to be efficient
preconditioners in different settings, in particular for scalar diffusion and convection-
diffusion problems [22, 30, 60–62]. Let us recall that the suboptimal performance of
plain aggregation AMG schemes for diffusion operators is well known and documented
in the literature [30] which has motivated the research on approaches like smoothed
aggregration and the K-cycle, for instance.

The methods considered in this article expose a considerable number of options to
the user. So, these AMG methods can be extensively tuned. Nevertheless, an exhaus-
tive search of the combinatorial parameter space is beyond the scope of our current

13

work. Their performance on a given system depends on a certain number of param-
eters, such as the choice of the smoother, the number of smoother iterations, the
coarsening operator (pairwise or N-times pairwise for the aggregration schemes or dif-
ferent aggressive coarsening techniques for the C/F schemes) and the number of levels,
the interpolation strategy between grids, etc. Finding an appropriate or even optimal
set of coarsening parameters is non-trivial. For example, one has to strike a balance
between coarsening factors and computational costs. A too strong coarsening factor
(which translates into a smaller number of levels and in the case of plain aggregation
AMG in general also implies lower operator complexities) tends to increase the num-
ber of iterations to solve linear systems while its memory requirement is reduced. On
the other hand, a too small coarsening factor requires a larger number of levels to
reduce the size of the coarsest system below a given threshold. In general, an AMG
setting leads to a coarsening factor (τ) and an operator complexity (C) such that

2 ≤ τ ≤ 4 and 1.3 ≤ C ≤ 2,

where τ and C are defined by

τ =
1

L

L∑
ℓ=1

nℓ

nℓ−1
and C = 1

nnz(AL)

L∑
ℓ=0

nnz(Aℓ),

on a hierarchy of matrices Aℓ, 0 ≤ ℓ ≤ L, A0 being the matrix on the coarsest and AL

the matrix on the finest level with nℓ and nnz(Aℓ) denoting the number of unknowns
and the number of nonzero elements of Aℓ on each level, respectively. Following the
recent work of Lin, Shadid and Tsuji [63], we have included Krylov smoothers in our
comparison.

5 Numerical experiments

In this section, we present numerical results for the solution of the saddle-point lin-
ear system (1.5) arising from a CDO face-based discretization with the algorithms
described previously. We will use the GKB method for the solution of the Stokes
equations and ALU for the Navier–Stokes equations and will then compare both of
them to the Notay’s algebraic transformation method.

The test problems were run with the open source CFD software code saturne,
which in addition to in-house implementations of several Krylov solvers and precondi-
tioners, provides interfaces to external solvers, such as MUMPS [16], Hypre [46, 47, 64]
and PETSc [65] (e.g., please see Appendix A for the usage). In the following experi-
ments, we employ Hypre through the PETSc interface. In our comparison, we tested
different AMG approaches:

• (in-house) K-cycle of code saturne inspired by the algorithm described in [22].
It combines therefore multiple passes pairwise aggregation coarsening with Krylov-
acceleration on the intermediate levels.

• BoomerAMG of the Hypre library with the classical C/F (Ruge-Stüben) or the
HMIS coarsening [29, 30, 66] with/without aggressive coarsening

14

• GAMG of the PETSc library [48] with plain and smoothed aggregation schemes [31]
• HMG of the PETSc library which is a recent hybrid AMG toolbox [67]

More precisely, HMG allows us to choose any available PETSc solver/precondi-
tioner as smoother and as coarse solver while using Hypre BoomerAMG, GAMG, or
other multilevel methods for the construction of coarser level matrices and interpola-
tion. For example, in our test cases, we combine the context of Hypre BoomerAMG
for coarsening and the context of GAMG for smoothing. We refer to [65] for more
details of the usage of HMG. Furthermore, we provide Appendix B for the example of
PETSc options to use AMG preconditioning in our numerical experiments.

code saturne is not able to perform sparse matrix-matrix multiplications and
computations with non-square matrices up to now. These operations have to be done
in an external environment. We use the PETSc library for this purpose and thus
only consider linear solvers available through PETSc when using Notay’s algebraic
transformation.

Table 1 sums up the main characteristics of the AMG methods used in the
computations.

Table 1 Settings for the algebraic multigrid preconditioners.

K-cycle GAMG BoomerAMG

Applied through code saturne PETSc PETSc
Type of cycle K-cycle V-cycle V-cycle
Type of coarsening pairwise

aggregation [22]
smoothed
aggregation [31]

classical or HMIS
coarsening [66]

aggreg. limit / threshold mesh dependent, but factors satisfying τ ≈ 4 or C ≈ 1.3
max. levels 10 (i.e. L ≤ 10)

Smoothers

Pre-/post-smoothing Default: one step each; otherwise stated explicitly
symm. Gauss-Seidel yes yes yes
Krylov smoother no GMRES(10) GMRES(10)

(through HMG)

Stop. criterion Kryl. sm. N/A max 10 iter / tol = 10−3 max 10 iter / tol = 10−3

General setting for outer solvers

We compare and discuss combinations of solvers and preconditioners for the three
methods GKB, ALU and Notay’s algebraic transformation. The choice of settings for
the GKB and ALU method with respect to the inner and outer solvers and a symmetric
or non-symmetric inner system can be found in Table 2. For the non-symmetric matrix
in the algebraic transformation, we use FGMRES. We choose 10−8 as the stopping
tolerance and set the maximum number of iterations to 10 000. As preconditioners for
this system, as well as for the inner systems in the ALU and GKB methods, we use
algebraic multigrid methods. The setups and different combinations are given in Table
1. We want to emphasize that the choice of parameters, i.e. to define a threshold, for
the construction of aggregation or prolongation is a significantly important matter.
In particular, in case of GAMG for Stokes systems, this parameter must not be low

15

and to provide relevant coarser levels, we found that C ≈ 1.3. Further particular
configurations are discussed during the description of the numerical experiments.

Configuration setup for the test cases

We finish this section with giving the configurations for the test cases:

• Hardware: Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz, 32GB
• The version of code saturne: code saturne 7.2.2
• The version of PETSc: 3.15.0
• The version of HYPRE: 2.20
• The version of MUMPS: 5.3.5
• No parallel computing (neither MPI nor openMP), i.e. sequential run.

Table 2 Settings for the GKB and ALU algorithms.

GKB ALU
Outer tolerance 10−8 10−7

Augment. parameter γ 0 100

Inner solver settings

Inner tolerance 10−8 10−7

symm. inner solver FCG -
non-symm. inner solver - FGMRES
Preconditionner (PETSc) Hypre, GAMG
Preconditionner (code saturne) K-cycle

5.1 Taylor-Green Vortex problem (3D Stokes problem)

The first test case is an adaptation of the Taylor-Green Vortex (TGV) problem with
an analytic solution consisting of the product of sine and cosine functions. Its analytic
solution satisfies the steady Stokes equations, i.e. the equations (1.1) and (1.2) with
χ = 0 and ν = 1. The analytic solution is given by

u⃗ =

 0.5 sin(2πx) cos(2πy) cos(2πz)
0.5 cos(2πx) sin(2πy) cos(2πz)
− cos(2πx) cos(2πy) sin(2πz)

 and p = sin(2πx) sin(2πy) sin(2πz),

where (x, y, z) ∈ [0, 1]3 and f⃗ is given to fulfil (1.1). The solution is presented
graphically in Figure 2.

For the discretization, we will use two types of meshes. The first one is Cartesian
and the second one is tetrahedral. In the abbreviations used in the following, we denote
the Cartesian meshes by H and the tetrahedral ones by T . These letters are followed by
the number of elements. The resulting numbers of degrees of freedom for the velocity
and pressure components are given in Table 3. Since this 3D TGV problem leads to a
symmetric matrix, we may use the GKB algorithm. We will compare its performance
to Notay’s algebraic transformation approach.

16

Fig. 2 3D TGV problem: pressure field (left) and velocity field (right).

Table 3 3D TGV problem: the degrees of freedom
with respect to meshes.

Degrees of freedom

Mesh Velocity Pressure Total unknowns

H32 304 128 32 768 336 896
H64 2 396 160 262 144 2 658 304
T5 188 361 30 480 218 841
T6 374 964 61 052 436 016

5.1.1 Solution by GKB

The GKB algorithm is a segregated method for matrices of type (1.5) with a symmetric
(1,1)-block and we need, as explained earlier, an inner iterative solver for the (1,1)-
block. Here, we choose a preconditioned flexible conjugate gradient method. In general,
we can employ the GKB algorithm via PETSc or directly in code saturne, but in
the following experiments we choose the in-house implementation. Since the system of
inner iterations is symmetric, we are able to use GAMG with smoothed aggregation.
Table 4 illustrates the elapsed times and the numbers of iterations, where each column
corresponds to the respective preconditioner of FCG. The numbers of iterations are
sufficiently good for those three preconditioners. However, in terms of setup time, the
in-house K-cycle aggregation step shows a much better performance than PETSc. To
summarise the result of Table 4, we have

Setup time: K-cycle < Hypre BoomerAMG < GAMG
Solution time: GAMG < K-cycle < Hypre BoomerAMG

Total time for H32: K-cycle < GAMG < Hypre BoomerAMG
Total time for H64: GAMG < K-cycle < Hypre BoomerAMG

The number of iterations: Hypre BoomerAMG < GAMG < K-cycle

These results show that a higher setup time might be recovered by a faster solution
process, and also that a low number of iterations might not necessarily mean that the

17

method performs best in practice. We furthermore see that the performance of the
solvers is mesh-independent. The winner in the total time to solution is GAMG for
H64, whereas for H32, it is the in-house K-cycle (although, admittedly, not by far).

Table 4 3D Stokes: performance of numerical methods for Stokes system with GKB and AMG
preconditioned FCG as inner solver.

Strategy GKB

Mesh H32 H64

Preconditioner K-cycle Hypre GAMG K-cycle Hypre GAMG

Setup time (s) 0.96 2.84 3.77 7.97 25.6 31.8
Solution time (s) 18.1 21.6 15.9 173.6 187.4 140.5
Total time (s) 19.1 24.4 19.7 181.6 213.0 172.3
iterations

13/21/283 5/21/105 7/21/147 13/23/299 5/22/110 7/23/161
(inner/outer/total)

Remark 5.1 In our numerical experiments, the GKB algorithm is used without augmentation,
i.e., we set γ = 0. On the other hand, the ALU algorithm requires a rather large augmentation
parameter to show a good performance even in the symmetric case. The downside is the
resulting, more ill-conditioned matrix Aγ in the inner solution step. As pointed out in [51], due
to its favorable performance caused mainly by an efficient inner solution, the GKB algorithm
is preferred to the ALU algorithm in Stokes problems. Therefore, we do not provide any
further discussion for the ALU method in the symmetric case.

5.1.2 Solution by algebraic transformation

As second approach, we apply Notay’s algebraic transformation and solve the result-
ing system with FGMRES preconditioned by multigrid. For BoomerAMG, we keep
the settings of Table 1, whereas we follow the official PETSc manual (please see
[65, Section Algebraic Multigrid (AMG) Preconditiners]) for recommended settings
of GAMG parameters for non-symmetric problems (e.g., see Appendix B.2). Results
are presented in Table 5. Although Hypre requires a higher time for setup, its overall
solution time is smaller than the one of GAMG. This effect is especially visible for the
mesh H64.

For comparing these results to the GKB method, the measure of numbers of iter-
ations can not be used, since the transformed matrix is of another size than Aγ and
thus the cost of one iteration is different. Comparing the time to solution in Tables 4
and 5, we observe that Hypre on the transformed system is faster than the any of the
tested multigrid preconditioners in the GKB formulation.

We have carried out further test cases to study the influence of different cycle-
types for the multigrid method. As seen in Table 6, using multigrid cycles other than
V(1,1) in BoomerAMG does not show any improvement in terms of iteration numbers
and solution times, since the interpolation operator of BoomerAMG is good enough.
We observe that increasing the number of relaxation steps in GAMG reduces iteration

18

Table 5 3D Stokes: algebraic transformation with AMG
preconditioned FGMRES.

Strategy Algebraic transformation

Mesh H32 H64

Preconditioner Hypre GAMG Hypre GAMG

Setup time (s) 6.344 4.029 54.707 32.965
Solution time (s) 12.243 16.589 105.760 315.444
Total time to solution 18.587 20.618 160.467 348.409
iterations 36 64 36 168

counts, see Table 6. For the non-symmetric system under consideration, BoomerAMG
outperforms GAMG. We have empirically tried to figure out optimal settings for the
usage of GAMG, but no choice worked satisfactorily. Thus, hereafter, only Hypre
BoomerAMG is used in combination with symmetric Gauss-Seidel smoothing for the
preconditioning step in the algebraic transformation strategy.

Table 6 3D Stokes: algebraic transformation with respect to multigrid
cycles on H32.

Iterative solver FGMRES

Preconditioner Hypre BoomerAMG GAMG

Multigrid cycle V(1,1) V(2,2) V(3,3) V(1,1) V(2,2) V(3,3)

Total time (s) 11.540 14.911 18.832 17.317 18.174 19.407
iterations 26 28 30 123 77 59

In a second trial, we solved the system arising in the change of variable approach
on the tetrahedral meshes T5 and T6 with Hyper BoomerAMG. Table 7 indicates
that the algebraic transformation of the matrix works also well for tetrahedral meshes.
While increasing the number of smoothing steps does not improve iteration numbers
on the Cartesian grid (Table 6), more pre- and post-smoothing steps do reduce the
number of iterations for tetrahedral meshes, see Table 7, since the tetrahedral meshes
are more complex. In terms of the elapsed time, V(3,3) is however slower than V(1,1).

Table 7 3D Stokes: V(1,1) and V(3,3) on tetrahedral
meshes with Hypre BoomerAMG.

Iterative solver FGMRES

Mesh T5 T6

Multigrid cycle V(1,1) V(3,3) V(1,1) V(3,3)

Total time (s) 21.608 27.648 58.962 71.328
iterations 37 26 37 27

19

Stationary and relatively basic algorithms such as the (weighted) Jacobi or Gauss-
Seidel iterations are frequently used as smoothers in multigrid cycles. However,
according to [63, 68] Krylov methods can be relevant as smoothers in multigrid settings
as well.

In the following, we report on FGMRES preconditioned by AMG (here, GAMG)
with Krylov-smoothing for the non-symmetric problems. For the Krylov smoother, we
allow up to 10 GMRES iterations combined with an inner tolerance of 10−3, which
stops when either one or the other criterion is reached. We may now think in a nested
way and precondition the smoother itself, e.g., the Gauss-Seidel method as precondi-
tioner for the smoother GMRES(10). At the coarsest level, we solve the system with
a direct solver. Table 8 shows that Krylov smoothing reduces in general the number
of iterations. However, comparing these results to Table 5, the elapsed time is greater
than for Gauss-Seidel smoothing. Furthermore, we see a dependence of the solver
performances on the meshes, i.e., the iteration numbers are unstable.

Table 8 3D Stokes: GAMG with Krylov
smoothers
FGMRES[30](GAMG(GMRES(10)+X)).

Mesh Smoother # it Time (s)

H32
GMRES 29 175.226
GMRES+SGS 3 39.534

H64
GMRES 48 2426.144
GMRES+SGS 29 2980.572

T6
GMRES 84 715.284
GMRES+SGS 11 187.401

Although Krylov smoothing cannot decrease the elapsed time in GAMG, it may
lead to smaller iteration numbers for combinations of meshes and solvers. The HMG
context of PETSc allows us to combine Krylov smoothers with classical AMG coars-
ening in Hypre. In Table 9, it is shown that HMG with symmetric Gauss-Seidel
smoothing shows similar numerical results as Hypre BoomerAMG. On the other hand,
using Krylov smoothers sometimes reduces the number of iterations, whereas more
time is spent in the solver. Similarly, as for Krylov smoothing in GAMG, the perfor-
mances depend on the mesh and the experiments failed for fine meshes. Thus, we do
not observe any advantage from using HMG with Krylov smoothing in Stokes systems
for our particular test cases.

5.1.3 Summary for the Stokes test case

Our study compared the GKB and algebraic transformation methods in the Stokes
test case. We found that AMG preconditioned GMRES solvers were robust in solv-
ing the inner system of the GKB method. The three distinct coarsening strategies
yielded comparable results and are independent of mesh sizes. In the algebraic trans-
formation, only the classical AMG via Hypre BoomerAMG showed robustness. We
attempted to improve the numerical performance of GAMG by employing Krylov
smoothers, but this approach required much more computational cost and the results

20

Table 9 3D Stokes: HMG preconditioning
FGMRES[30](HMG), Boomer classical
coarsening with max it=200 (if # it≥ 200,
the test fails).

Mesh Smoother # it Time (s)

H32
SGS 28 13.483
GMRES+SGS 135 338.316

H64
SGS 29 119.388
GMRES+SGS Failed

T6
SGS 32 52.344
GMRES+SGS Failed

depended on the meshes. Furthermore, with the proper use of AMG precondition-
ing, the algebraic transformation approach was slightly faster than the GKB method.
Therefore, we recommend using the algebraic transformation with α = 1 in combina-
tion with BoomerAMG and the symmetric Gauss-Seidel smoother in practice, as it is
a monolithic method that yields better numerical performance.

5.2 Burggraf problem (2D Navier–Stokes)

As second test case, we consider the steady incompressible Navier–Stokes problem
given by equations (1.1) and (1.2) with χ = 1 and ν = 1/Re. To resolve the non-
linearity, we apply Picard’s iteration and solve the Oseen’s problem (1.3)-(1.4). As
for the Stokes problem, we are interested in solving the saddle-point systems arising
from a CDO discretization scheme. Due to the convection terms of the velocity fields,
the (1,1)-block becomes non-symmetric. The test problem in the following is a 2D
Burggraf flow [69], which is a 2D analytic polynomial solution to the Navier–Stokes
equation. The exact solution is given by

u⃗ =

(
16x2(x2 − 2x+ 1)y(2y2 − 1)

−16x(2x2 − 3x+ 1)y2(y2 − 1)

)
,

p =
8

Re

(
24x3(0.2x2 − 0.5x+ 1/3) + 4x(2x2 − 3x+ 1)(12y2 − 2) + (24x− 12)

(
y2(y2 − 1)

))
+ 64

(
0.5

(
x2(x2 − 2x+ 1)

)2(
24y3(y2 − 1)− 2y(12y2 − 2)(2y2 − 1)

)
− 2y3(y2 − 1)(2y2 − 1)

(
x2(x2 − 2x+ 1)(12x2 − 12x+ 2)− 4x2(2x2 − 3x+ 1)2)

))
.

For more details about the exact solution, we refer to [51, 69]. As a default parameter,
we assume the Reynolds number to be Re = 100. A centered convection scheme is used.
Furthermore the relative (resp. absolute) stopping criterion for the Picard iteration is
set to 10−6 (resp. 10−12). The maximal number of Picard iterations is equal to 50.

The solution is graphically presented in Figure 3. For the 2D Burggraf model, we
consider the Cartesian meshes H64, H128, H256 and H512. The numbers of degrees of
freedom for u and p on these meshes along with the discrete L2 error norms for the
velocity at cells, E2(u), and for the pressure, E2(p), are gathered in Table 10. The
expected second order of convergence rate is reached for the velocity. One recovers also
a second order convergence rate for the pressure which is higher than the expected

21

first order. This super-convergence stems from the smoothness of the solution and
the usage of uniform Cartesian meshes. These results also validate the values of the
stopping criteria for the Picard iterations and the iterative solvers.

Fig. 3 2D Burggraf flow with Re = 100: pressure field (left) and velocity field (right).

Table 10 2D Burggraf problem at Re = 100: Errors norms and convergence rates for the
velocity and the pressure fields at cells along with the number of degrees of freedom.

Degrees of freedom Errors

Mesh Velocity Pressure Total unknowns E2(u) rate(u) E2(p) rate(p)

H64 49 536 4 096 53 632 4.40e-3 – 3.60e-3 –
H128 197 376 16 384 213 760 1.10e-3 2.0 9.06e-4 2.0
H256 787 968 65 536 853 504 2.76e-4 2.0 2.28e-4 2.0
H512 3 148 800 262 144 3 410 944 6.89e-5 2.0 5.72e-5 2.0

Due to the non-symmetry of the (1,1)-block, the GKB method is no longer appli-
cable but see also [70]. Notably, the algebraic transform approach remains a viable
option in this scenario. For comparison, we also employ the ALU method, as described
in Section 3.2.

5.2.1 Solution by ALU method

The ALU method is set with a relative (resp. absolute) tolerance equal to 10−6 (resp.
10−12) and a maximal number of iteration equal to 50. Many settings have been tested
in order to keep the best one between the default settings and the tested ones. Here
is the list of the strategies used to solve the augmented inner linear system associated
to Aγ :

(MUMPS) LU factorization performed with the MUMPS library. An analysis by
block relying on the Approximate Minimal Degree (AMD) [71] is used.

22

(HMG) FGMRES with right preconditioning, a restart after 25 iterations and a
relative tolerance set to 10−6. Upper triangular block preconditioning is used (relying
on the fieldsplit feature of PETSc) and one applies one V-cycle of HMG on each
diagonal block. 1 iteration of SGS is applied as down and up smoother.
(GAMG) Same as above but HMG preconditioner is replaced by GAMG. GAMG
relies on the smooth aggregation (2 steps)
(BAMG) Same as above but HMG preconditioner is replaced by boomerAMG.
BoomerAMG is set with a strong threshold equal to 0.30 and uses 2 levels of aggres-
sive coarsening. Moreover, the SGS smoother is replaced by a forward Gauss-Seidel
for down smoothers and by a backward Gauss-Seidel for up smoothers.

The main parameter associated to this method is the scaling coefficient related to
the augmentation term. Figure 4 illustrates a sensitivity study on the scaling coefficient
γ with respect to the CPU time, the number of iterations of the ALU method and the
total number of iterations associated to the inner linear system. The optimal value of γ
is different between a direct and an iterative inner solver but the number of iterations
of the ALU method is very close. γ ∈

[
10, 104

]
delivers optimal performances for a

direct solver, while γ ∈ [0.1, 0.5] delivers the best performances for an iterative solver.
For an iterative inner solver, the optimal value corresponds to a trade-off between the
number of ALU iterations needed at each Picard iteration and the mean number of
iterations needed by the inner solver at each ALU iteration. These results show the
robustness of a direct approach and the strong influence of γ on the conditioning of
the Aγ matrix.

We then collect the detailed results related to the ALU method for the best can-
didate in each strategy in Table 11. A comparative study of the performance of
the different strategies with respect to the mesh refinement is plotted in Figure 5.
The strategy ALU(100).MUMPS is the most efficient tested strategy for this 2D
case. The strategy ALU(0.2).HMG and ALU(0.2).BAMG are h-independent. One can
expect from the slopes of the plot CPU time vs. number of velocity DoFs that the
ALU(0.2).HMG strategy will outperform the ALU(100).MUMPS strategy after 1 or
2 additional mesh refinements.

5.2.2 Solution by algebraic transformation

A first set of computations with the algebraic transformation is done using a LU
factorization with MUMPS through the PETSc library. This reference is compared to
iterative strategies relying on:

(HMG) FGMRES with right preconditioning, a restart after 60 iterations and with a
relative (resp. absolute) tolerance set to 10−8 (resp. 10−14). An upper triangular block
preconditioning is used (relying on the fieldsplit feature of PETSc) and one applies
one V-cycle from the HMG toolbox using 1 step of a local forward Gauss-Seidel as
down smoother and 1 step of local backward Gauss-Seidel as up smoother.
(GAMG) Same settings as above but HMG is replaced by GAMG relying on the
smooth aggregation (default settings) and 1 iteration of SGS as smoother.

23

Fig. 4 2D Burggraf flow test case at Re = 100 with the mesh H128: Sensitivity of the scaling
coefficient γ in the ALU method with respect to the number of (cumulated) ALU iterations (top
left), to the total number of iterations (top right) and to the CPU time (bottom).

We first perform a sensitivity analysis to the tolerance criterion for the mesh H128
since the stopping criterion holds on the transformed system. The results are collected
in the Table 12. We observe that the same level of accuracy on the error norms is
obtained with a stronger tolerance compared to the ALU method. The pressure field
and the approximation of the velocity divergence are the two quantities where this
loss of accuracy appears first. To circumvent this issue, the relative tolerance on the
FGMRES is set to 10−8 (10−14 for the absolute one). The mean number of iterations
of the FGMRES is also higher than with the ALU method so that a sensitivity to the
number of iterations before restarting the FMGRES has been done. A value equal to
60 is a good trade-off between the efficiency and the memory usage.

To further reduce the cost of this approach, we investigate also the influence of
the scaling parameter α used in the change variable (3.4). The results of these tests
collected in Figure 6 indicates that α = 10 is a good value.

24

Fig. 5 2D Burggraf flow test case at Re = 100 using the ALU method: Evolution of the CPU time
with respect to the mesh refinement (left) and with respect to the total number of iterations of the
inner solver (right) for the different strategies used as inner solver.

Table 11 2D Burggraf test case at Re = 100: Results for the different strategies
relying on the ALU(γ) method.

Mesh strategy
iterations Time [s]

Picard ALU Total inner setup solve

H128

ALU(100).MUMPS 13 36 36 11.0 14.2
ALU(0.2).HMG 13 102 1 204 12.9 36.1
ALU(0.2).GAMG 13 104 1 618 13.8 53.2
ALU(0.2).BAMG 13 104 1 451 13.2 63.4

H256

ALU(100).MUMPS 13 37 37 41.9 55.1
ALU(0.2).HMG 13 103 1 146 56.2 171.7
ALU(0.2).GAMG 13 106 1 652 61.9 250.6
ALU(0.2).BAMG 13 106 1 499 54.8 271.9

H512

ALU(100).MUMPS 13 39 39 252.2 310.7
ALU(0.2).HMG 13 108 1 128 226.0 658.2
ALU(0.2).GAMG 15 122 1 895 265.1 1 081.6
ALU(0.2).BAMG 13 110 1 441 229.9 1 071.4

Table 12 2D Burggraf test case at Re = 100: Sensitivity of the relative tolerance for the
algebraic transformation with the GAMG strategy, α = 10 and the mesh H128.

relative tolerance
iterations Time [s] Error norms ||div(u)||∞

Picard Total inner solve E2(u) E2(p)

10−6 13 299 22.7 1.51e-3 1.84e-3 4.0e-3
10−7 13 415 25.9 1.10e-3 8.80e-4 3.4e-4
10−8 13 529 28.3 1.10e-3 9.04e-4 2.5e-5
10−9 13 633 32.1 1.10e-3 9.06e-4 2.8e-6
10−10 13 737 34.7 1.10e-3 9.06e-4 2.5e-7

25

Fig. 6 2D Burggraf flow test case at Re = 100 using the algebraic transformation and GAMG as
preconditioner: Evolution of the total number of iterations with respect to the scaling parameter α
for the mesh H64, H128 and H256 (left); Evolution of the CPU time with respect to the scaling
parameter α for the mesh H64, H128 and H256 (right).

The detailed results for the algebraic transformation are gathered in Table 13 and
the evolution of the CPU time and that of the total number of iterations are displayed
in Figure 7. One observes that the performance of the algebraic transformation when
refining the mesh deteriorates slightly with MUMPS and GAMG. The strategy relying
on HMG is not h-robust. GAMG exhibits much better performances than HMG.

Table 13 2D Burggraf test case at Re = 100: Results for the different strategies relying on
the algebraic transformation. Each strategy is denoted by Notay(α).XXX where XXX is a
shortcut of the strategy used to solve the transformed system.

Mesh Solver strategy
iterations Time [s] Error norm

Picard Total inner setup solve E2(u) E2(p)

H128
Notay(1).MUMPS 13 13 24.1 25.1 1.10e-3 9.06e-4
Notay(10).HMG 13 1 660 9.3 53.7 1.10e-3 9.06e-4
Notay(10).GAMG 13 529 9.9 29.7 1.10e-3 9.04e-4

H256
Notay(1).MUMPS 13 13 119.6 123.1 2.76e-4 2.28e-4
Notay(10).HMG 13 3 620 42.0 418.6 2.76e-4 2.28e-4
Notay(10).GAMG 13 545 43.5 128.8 2.76e-4 2.29e-4

H512
Notay(1).MUMPS 13 13 655.8 673.0 6.89e-5 5.72e-5
Notay(10).HMG 13 6 637 169.8 2 936.8 6.89e-5 5.77e-5
Notay(10).GAMG 13 660 168.1 568.5 7.38e-5 6.40e-5

Remark 5.2 There is no influence of the value of the α parameter when using a direct solver.
Results with BoomerAMG are not detailed with the algebraic transformation since the dif-
ferent tested settings deliver poor performances when α = 1 and lack of robustness when

26

α > 1. For instance, the CPU time to solve the system with BoomerAMG is equal to 952.9s
for the mesh H256.

Remark 5.3 Krylov smoothers like GMRES/ILU(0) have also been tested but yield poor
performances too.

Fig. 7 2D Burggraf flow test case at Re = 100 using the algebraic transformation: Evolution of
the CPU time with respect to the mesh refinement (left) and with respect to the total number of
iterations (right) for the different strategies.

Fig. 8 Comparison of the performances of the best strategies used to solve the 2D Burggraf flow
test case at Re = 100: Evolution of the CPU time with respect to the mesh refinement (left) and
with respect to the total number of iterations (right).

27

The algebraic transformation is less efficient than the ALU method since the ALU
method with MUMPS is the most efficient tested strategy for this test case. However,
focusing on iterative approaches, the algebraic approach with GAMG is faster than
the best strategy with an ALU method (HMG); see Figure 8.

5.2.3 Reynolds numbers

Lastly, we investigate how the variation of the Reynolds number influences the per-
formance of the solver. As the Reynolds number increases, the nonlinear term in the
Navier–Stokes equation becomes increasingly important, which makes the system of
equations more difficult to solve. In particular, the (1,1)-block A becomes dominated
by the convective term and more and more ill-conditioned.

Results are gathered in Table 14 for the ALU method and in Table 15 for the
algebraic transformation. The main conclusion for all the tested strategies of resolution
is that only a direct solver is robust with respect toRe. Moreover, the ALU(γ).MUMPS
strategy appears as the most efficient tested strategy. Indeed, the CPU per Picard
iteration remains stable with a direct approach. In the case of ALU, it is even more
efficient at higher Re but the value of γ should be adapted at low Re to recover the
same level of efficiency. For instance, the CPU time to solve the problem goes down
to 4.4s using γ = 1000 at Re = 1. The algebraic transformation at Re = 1000 fails to
converge with the settings which is tuned for Re = 100.

Table 14 2D Burggraf test case: Efficiency with respect to Re on the mesh H128 for the ALU
method. The column mean corresponds to the mean number of iterations needed to reach the tolerance
at each ALU iteration.

Strategy Re
iterations Time [s] Error norm

Picard ALU mean total solve solve/Picard E2(u) E2(p)

ALU(100)
1 4 16 1 16 7.6 1.9 1.97e-4 6.50e-4

10 6 18 1 18 8.7 1.4 2.14e-4 7.08e-4

MUMPS
100 13 36 1 36 14.2 1.1 1.10e-3 9.06e-4

1 000 25 83 1 83 24.9 1.0 1.76e-2 1.50e-2

ALU(0.2)
1 4 685 5 3 841 97.6 24.4 1.97e-4 6.50e-4

10 6 137 7 1 031 27.9 4.6 2.14e-4 7.08e-4

HMG
100 13 102 11 1 204 36.1 2.8 1.10e-3 9.04e-4

1 000 24 681 66 45 531 1 129.9 47.1 1.76e-2 1.50e-2

Remark 5.4 The value of γ = 0.2 is optimal only for Re = 100. For instance, the CPU time
needed to solve the problem with ALU(20).HMG at Re = 1 is equal to 13.0s and 18.1s with
ALU(2).HMG at Re = 10.

28

Table 15 2D Burggraf test case: Efficiency with respect to Re on the mesh H128 for the algebraic
transformation.

Strategy Re
iterations Time [s] Error norm

Picard mean total solve solve/Picard E2(u) E2(p)

Notay(1).MUMPS

1 4 1 4 7.9 2.0 1.97e-4 6.50e-4
10 6 1 6 12.1 2.0 2.14e-4 7.08e-4

100 13 1 13 25.1 1.9 1.10e-3 9.06e-4
1 000 25 1 25 50.1 2.0 1.76e-2 1.50e-2

Notay(10).GAMG

1 4 50 200 10.0 3.9 1.97e-4 6.50e-4
10 6 43 258 14.5 3.5 2.14e-4 7.08e-4

100 13 40 529 29.7 2.3 1.10e-3 9.04e-4
1 000 Failed – – – – – –

5.3 Lid driven cavity benchmark (2D Navier–Stokes)

We now consider the classical “Lid driven cavity” validation benchmark for the steady
incompressible Navier–Stokes equations. This benchmark corresponds to a flow inside
a unit square cavity induced by the movement of the top horizontal wall. A homo-
geneous Dirichlet boundary condition on the velocity is enforced on the two vertical
boundaries and on the bottom horizontal boundary. A unit velocity field aligned with
the horizontal axis is enforced on the top horizontal boundary. The value of the vis-
cosity is set so that Re = 1/ν. Contrary to the previous Burggraf test case, there is
no analytical solution and the solution presents singularities on the velocity field at
the two top corners which makes this test case more challenging. Among the broad
literature available, we focus on the configuration at Re = 100 and refer to the work
of Ghia et al. [72].

Cartesian meshes are used. They are slightly different to those used in the Burggraf
test case in order to avoid interpolating the cell velocity vector used to plot the hori-
zontal and vertical profiles gathered in Figure 9. Postprocessings of the velocity field
are depicted in Figure 10. Results are very close to those obtained in [72].

We collect a synthesis of the performance results for two strategies (MUMPS and
HMG) of the ALU method in Table 16 and for two strategies (MUMPS and GAMG)
of the algebraic transformation in Table 17. The observations made in the Burggraf
problem remain valid for the Lid driven cavity problem.

5.4 Summary for the Navier–Stokes test cases

As in the Stokes problem, we could solve the linearized Navier–Stokes operator by
AMG preconditioned FGMRES with the algebraic transformation strategy. For the
fixed Reynolds number of 100 and the moderately sized matrices used, the ALU
method with an inner direct solver outperformed other methods. However, these results
may not remain valid as the system size increases beyond a critical point, making it
impractical to use a direct solver. In such cases, iterative solvers become necessary.
Thanks to a tuning of γ in the ALU method or of α in the algebraic transforma-
tion, iterative solvers can reduce the gap with the ALU.MUMPS strategy. Encouraged

29

Fig. 9 2D Lid driven cavity flow at Re = 100: Vertical component of the velocity field along an
horizontal profile through the cavity center (left) and horizontal component of the velocity along a
vertical profile through the cavity center (right).

Fig. 10 2D Lid driven cavity flow at Re = 100: Magnitude of the velocity field (left) and streamlines
of the velocity field (right).

Table 16 Lid driven cavity problem at Re = 100 solved by the ALU(γ)
method: Evolution of the performance with respect to the mesh refinement for
the two best tested strategies.

Mesh strategy
iterations Time [s]

Picard ALU Total inner setup solve

H127
ALU(100).MUMPS 11 31 31 7.1 9.8
ALU(0.2).HMG 12 80 1 069 13.4 41.5

H255
ALU(100).MUMPS 11 31 31 28.0 38.6
ALU(0.2).HMG 12 87 1 058 54.1 161.1

H511
ALU(100).MUMPS 11 32 32 132.8 176.9
ALU(0.2).HMG 12 88 1 028 218.4 641.4

30

Table 17 Lid driven cavity problem at Re = 100 solved by the
Notay(α) algebraic transformation: Evolution of the performance with
respect to the mesh refinement for the two best tested strategies.

Mesh strategy
iterations Time [s]

Picard Total inner setup solve

H127
Notay(1).MUMPS 11 11 19.7 20.1
Notay(10).GAMG 11 533 9.0 28.4

H255
Notay(1).MUMPS 11 11 93.8 95.6
Notay(10).GAMG 11 569 34.6 117.3

H511
Notay(1).MUMPS 11 11 481.9 490.6
Notay(10).GAMG 11 689 142.2 563.1

by the found best choice, we also compared its numerical performance for varying
Reynolds numbers. While ALU.MUMPS is robust with respect to the Reynolds num-
ber, this is not the case for the iterative strategies ALU.HMG or Notay.GAMG. A
tuning specific to the Reynods number can improve the performance of ALU.HMG
at low Reynolds. However, if a high Reynolds number is imposed, our tested methods
show poor results or fail. Therefore, our recommendation is valid with low Reynolds
numbers and further investigation is required for the case of higher ones.

6 Conclusion and discussion

This paper addresses the steady-state incompressible Stokes and Navier–Stokes prob-
lems using CDO face-based discretization schemes. We compare three different
numerical approaches, the Augmented Lagrangian–Uzawa (ALU), the Golub–Kahan
Bidiagonalization (GKB) and the algebraic transformation, to solve saddle-point prob-
lems. Overall, the algebraic transformation exhibits the benefits of the monolithic
scheme by the absence of additional outer iterations and shows better numerical
performance when using iterative solvers.

In the Stokes case, the GKB strategy is found to be robust when using any AMG
preconditioned GMRES solver, whereas the algebraic transformation requires Hypre
BoomerAMG for robustness. For the Navier–Stokes problem, the ALU method with
a direct solver shows reasonable performances on a broad range of Reynolds num-
bers. This is not the case for ALU with iterative solvers due to the ill-conditioned
inner systems imposed by the augmented terms. However, the algebraic transforma-
tion remains well-suited to GAMG preconditioned Krylov solvers for low Reynolds
number problems.

Statements and Declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Acknowledgments. The authors would like to acknowledge the support from EDF
R&D.

Author contributions.

31

• Y.Jang: Writing- Original draft preparation, Writing - Review & Editing, Investi-
gation, Software, Visualization.

• J.Bonelle: Writing - Review & Editing, Methodology, Software, Resources.
• C.Kruse: Writing - Review & Editing, Methodology.
• F.Hülsemann: Writing - Review & Editing, Conceptualization.
• U.Rüde: Writing - Review & Editing, Supervision.

Data availability. The data that support the findings of this study are available
from the corresponding author, Y. Jang, upon reasonable request. The CFD tool
code saturne is freely available and we refer to Appendix and an official document
in https://www.code-saturne.org.

ORCID.

Yongseok Jang https://orcid.org/0000-0002-2036-558X
Jérôme Bonelle https://orcid.org/0000-0002-8164-4646
Carola Kruse https://orcid.org/0000-0002-4142-7356
Frank Hülsemann https://orcid.org/0000-0001-5736-4532
Ulrich Rüde https://orcid.org/0000-0001-8796-8599

References

[1] Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for elliptic
problems on polyhedral meshes. ESAIM. Math. Model. Numer. Anal 48(2), 553–
581 (2014) https://doi.org/10.1051/m2an/2013104

[2] Bossavit, A.: On the geometry of electromagnetism. J. Japan Soc. Appl.
Electromagn. & Mech. 6, 17–281 (1998)

[3] Hyman, J., Scovel, J.: Deriving mimetic difference approximations to differential
operators using algebraic topology. Los Alamos National Laboratory (1988)

[4] Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete Exterior Calculus
(2005). http://arxiv.org/abs/math/0508341

[5] Codecasa, L., Specogna, R., Trevisan, F.: A new set of basis functions for the
discrete geometric approach. J. Comput. Phys. 229(19), 7401–7410 (2010) https:
//doi.org/10.1016/j.jcp.2010.06.023

[6] Palha, A., Pinto Rebelo, P., Hiemstra, R., Kreeft, J., Gerritsma, M.: Physics-
compatible discretization techniques on single and dual grids, with application to
the Poisson equation of volume forms. J. Comput. Phys. 257, 1394–1422 (2014)
https://doi.org/10.1016/j.jcp.2013.08.005

[7] Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the Mimetic Finite Differ-
ence method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal
43(5), 1872–1896 (2005) https://doi.org/10.1137/040613950

32

https://www.code-saturne.org
https://orcid.org/https://orcid.org/0000-0002-2036-558X
https://orcid.org/0000-0002-2036-558X
https://orcid.org/https://orcid.org/0000-0002-8164-4646
https://orcid.org/0000-0002-8164-4646
https://orcid.org/https://orcid.org/0000-0002-4142-7356
https://orcid.org/0000-0002-4142-7356
https://orcid.org/https://orcid.org/0000-0001-5736-4532
https://orcid.org/0000-0001-5736-4532
https://orcid.org/https://orcid.org/0000-0001-8796-8599
https://orcid.org/0000-0001-8796-8599
https://doi.org/10.1051/m2an/2013104
http://arxiv.org/abs/math/0508341
https://doi.org/10.1016/j.jcp.2010.06.023
https://doi.org/10.1016/j.jcp.2010.06.023
https://doi.org/10.1016/j.jcp.2013.08.005
https://doi.org/10.1137/040613950

[8] Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to Mimetic
Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods.
Math. Model. Methods Appl. Sci. 20(2), 265–295 (2010) https://doi.org/10.1142/
S0218202510004222

[9] Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from
Hodge theory to numerical stability. Bull. Amer. Math. Soc. (N.S.) 47, 281–354
(2010) https://doi.org/10.1090/S0273-0979-10-01278-4

[10] Lashuk, I.V., Vassilevski, P.S.: The construction of the coarse de rham complexes
with improved approximation properties. Computational Methods in Applied
Mathematics 14(2), 257–303 (2014) https://doi.org/10.1515/cmam-2014-0004

[11] Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo,
A.: Basic principles of Virtual Element Methods. Math. Model. Methods Appl.
Sci. 23(1), 199–214 (2013) https://doi.org/10.1142/S0218202512500492

[12] Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil
discretization of diffusion on general meshes based on local reconstruction oper-
ators. Comput. Methods Appl. Math. 14(4), 461–472 (2014) https://doi.org/10.
1515/cmam-2014-0018

[13] Di Pietro, D.A., Droniou, J.: An Arbitrary-Order Discrete de Rham Com-
plex on Polyhedral Meshes: Exactness, Poincaré Inequalities, and Consis-
tency. Found. Comput. Math. 23(1), 85–164 (2023) https://doi.org/10.1007/
s10208-021-09542-8

[14] Bonelle, J., Ern, A., Milani, R.: Compatible discrete operator schemes for the
steady incompressible Stokes and Navier–Stokes equations. In: Klöfkorn, R., Kei-
legavlen, E., Radu, F.A., Fuhrmann, J. (eds.) International Conference on Finite
Volumes for Complex Applications, pp. 93–101 (2020). https://doi.org/10.1007/
978-3-030-43651-3 6 . Springer

[15] Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems.
Acta numer. 14, 1–137 (2005) https://doi.org/10.1017/S0962492904000212

[16] Amestoy, P., Duff, I., L’Excellent, J.-Y.: A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41
(2020) https://doi.org/10.1137/S0895479899358194

[17] Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia
(2003). https://doi.org/10.1137/1.9780898718003

[18] Saad, Y., Schultz, M.H.: GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 7(3), 856–869
(1986) https://doi.org/10.1137/0907058

33

https://doi.org/10.1142/S0218202510004222
https://doi.org/10.1142/S0218202510004222
https://doi.org/10.1090/S0273-0979-10-01278-4
https://doi.org/10.1515/cmam-2014-0004
https://doi.org/10.1142/S0218202512500492
https://doi.org/10.1515/cmam-2014-0018
https://doi.org/10.1515/cmam-2014-0018
https://doi.org/10.1007/s10208-021-09542-8
https://doi.org/10.1007/s10208-021-09542-8
https://doi.org/10.1007/978-3-030-43651-3_6
https://doi.org/10.1007/978-3-030-43651-3_6
https://doi.org/10.1017/S0962492904000212
https://doi.org/10.1137/S0895479899358194
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/0907058

[19] Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear
systems. Journal of research of the National Bureau of Standards 49, 409–435
(1952) https://doi.org/10.6028/jres.049.044

[20] Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci.
Comput. 14(2), 461–469 (1993) https://doi.org/10.1137/0914028

[21] Eisenstat, S.C., Elman, H.C., Schultz, M.H.: Variational iterative methods for
nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20(2), 345–357
(1983) https://doi.org/10.1137/0720023

[22] Notay, Y.: An aggregation-based algebraic multigrid method. Electron. T. Numer.
Ana. 37(6), 123–146 (2010)

[23] Notay, Y.: Flexible conjugate gradients. SIAM J. Sci. Comput. 22(4), 1444–1460
(2000) https://doi.org/10.1137/S1064827599362314

[24] Farahbakhsh, I.: Krylov Subspace Methods with Application in Incompress-
ible Fluid Flow Solvers. Wiley, Hoboken, NJ (2020). https://doi.org/10.1002/
9781119618737

[25] Meurant, G., Tebbens, J.D.: Krylov Methods for Nonsymmetric Linear Systems:
From Theory to Computations. Spr. S. Comp. Math. Springer International
Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-55251-0

[26] Ahmed, N., Bartsch, C., John, V., Wilbrandt, U.: An assessment of some
solvers for saddle point problems emerging from the incompressible Navier-
Stokes equations. Comput. Methods in Appl. Mech. Eng. 331, 492–513 (2018)
https://doi.org/10.1016/j.cma.2017.12.004

[27] Brandt, A., McCormick, S., Huge, J.: Algebraic multigrid (AMG) for sparse
matrix equations. Sparsity and its Applications 257 (1985)

[28] Brandt, A.: Algebraic multigrid theory: The symmetric case. Appl. Math.
Comput. 19(1-4), 23–56 (1986)

[29] Ruge, J.W., Stüben, K.: 4. Algebraic Multigrid, pp. 73–130. https://doi.
org/10.1137/1.9781611971057.ch4 . https://epubs.siam.org/doi/abs/10.1137/1.
9781611971057.ch4

[30] Stüben, K.: A review of algebraic multigrid. J. Comput. Appl. Math. 128(1), 281–
309 (2001) https://doi.org/10.1016/S0377-0427(00)00516-1 . Numerical Analysis
2000. Vol. VII: Partial Differential Equations

[31] Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation
for second and fourth order elliptic problems. Computing 56(3), 179–196 (1996)
https://doi.org/10.1007/BF02238511

34

https://doi.org/10.6028/jres.049.044
https://doi.org/10.1137/0914028
https://doi.org/10.1137/0720023
https://doi.org/10.1137/S1064827599362314
https://doi.org/10.1002/9781119618737
https://doi.org/10.1002/9781119618737
https://doi.org/10.1007/978-3-030-55251-0
https://doi.org/10.1016/j.cma.2017.12.004
https://doi.org/10.1137/1.9781611971057.ch4
https://doi.org/10.1137/1.9781611971057.ch4
https://epubs.siam.org/doi/abs/10.1137/1.9781611971057.ch4
https://epubs.siam.org/doi/abs/10.1137/1.9781611971057.ch4
https://doi.org/10.1016/S0377-0427(00)00516-1
https://doi.org/10.1007/BF02238511

[32] Notay, Y.: Aggregation-based algebraic multigrid for convection-diffusion
equations. SIAM J. Sci. Comput. 34(4), 2288–2316 (2012) https://doi.org/10.
1137/110835347

[33] Xu, J., Zikatanov, L.: Algebraic multigrid methods. Acta Numer. 26, 591 (2017)
https://doi.org/10.1017/S0962492917000083

[34] Notay, Y.: Algebraic multigrid for Stokes equations. SIAM J. Sci. Comput. 39(5),
88–111 (2017) https://doi.org/10.1137/16M1071419

[35] Bacq, P.-L., Notay, Y.: A new semialgebraic two-grid method for Oseen prob-
lems. SIAM J. Sci. Comput. 0(0), 226–253 (2022) https://doi.org/10.1137/
21M1429011

[36] Arrow, K.J., Hurwicz, L., Uzawa, H.: Studies in Linear and Nonlinear Program-
ming. Stanford University Press, Stanford (1958)

[37] Fortin, M., Glowinski, R.: Augmented Lagrangian Methods: Applications to
the Numerical Solution of Boundary-Value Problems vol. 15 in Studies in
Mathematics and its Applications. North-Holland Publishing Co., Amsterdam
(1983)

[38] Arioli, M.: Generalized Golub–Kahan Bidiagonalization and Stopping Criteria.
SIAM J. Matrix Anal. Appl. 34(2), 571–592 (2013) https://doi.org/10.1137/
120866543

[39] Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers:
With Applications in Incompressible Fluid Dynamics, 2nd edn. Oxford Uni-
versity Press, Oxford, New York (2014). https://doi.org/10.1093/acprof:oso/
9780199678792.001.0001

[40] Ur Rehman, M., Geenen, T., Vuik, C., Segal, G., MacLachlan, S.: On iterative
methods for the incompressible Stokes problem. Int. J. Numer. Methods Fluids
65(10), 1180–1200 (2011) https://doi.org/10.1002/FLD.2235

[41] Segal, A., Ur Rehman, M., Vuik, C.: Preconditioners for incompressible Navier-
Stokes solvers. Numer. Math. Theor. Meth. Appl. 3(3), 245–275 (2010) https:
//doi.org/10.4208/nmtma.2010.33.1

[42] Benzi, M., Olshanskii, M.A., Wang, Z.: Modified augmented Lagrangian precon-
ditioners for the incompressible Navier–Stokes equations. Int. J. Numer. Methods
Fluids 66(4), 486–508 (2011) https://doi.org/10.1002/fld.2267

[43] Farrell, P.E., Mitchell, L., Wechsung, F.: An Augmented Lagrangian Precondi-
tioner for the 3D Stationary Incompressible Navier–Stokes Equations at High
Reynolds Number. SIAM J. Sci. Comp. 41(5), 3073–3096 (2019) https://doi.org/
10.1137/18M1219370

35

https://doi.org/10.1137/110835347
https://doi.org/10.1137/110835347
https://doi.org/10.1017/S0962492917000083
https://doi.org/10.1137/16M1071419
https://doi.org/10.1137/21M1429011
https://doi.org/10.1137/21M1429011
https://doi.org/10.1137/120866543
https://doi.org/10.1137/120866543
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1002/FLD.2235
https://doi.org/10.4208/nmtma.2010.33.1
https://doi.org/10.4208/nmtma.2010.33.1
https://doi.org/10.1002/fld.2267
https://doi.org/10.1137/18M1219370
https://doi.org/10.1137/18M1219370

[44] Angot, P., Caltagirone, J.-P., Fabrie, P.: A new fast method to compute saddle-
points in constrained optimization and applications. Appl. Math. Lett. 25(3),
245–251 (2012) https://doi.org/10.1016/j.aml.2011.08.015

[45] Notay, Y., Vassilevski, P.S.: Recursive Krylov-based multigrid cycles. Numer.
Linear Algebra Appl. 15(5), 473–487 (2008) https://doi.org/10.1002/nla.542

[46] hypre: High Performance Preconditioners. https://llnl.gov/casc/hypre, https://
github.com/hypre-space/hypre

[47] Falgout, R.D., Yang, U.M.: hypre: A library of high performance preconditioners.
In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) Computa-
tional Science — ICCS 2002, Lec. Notes Comp. Sc., pp. 632–641. Springer, Berlin,
Heidelberg (2002). https://doi.org/10.1007/3-540-47789-6 66

[48] Balay, S., Abhyankar, S., Adams, M.F., Benson, S., Brown, J., Brune, P.,
Buschelman, K., Constantinescu, E.M., Dalcin, L., Dener, A., Eijkhout, V.,
Faibussowitsch, J., Gropp, W.D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D.,
Kaushik, D., Knepley, M.G., Kong, F., Kruger, S., May, D.A., McInnes, L.C.,
Mills, R.T., Mitchell, L., Munson, T., Roman, J.E., Rupp, K., Sanan, P., Sarich,
J., Smith, B.F., Zampini, S., Zhang, H., Zhang, H., Zhang, J.: PETSc Web page.
https://petsc.org/ (2022). https://petsc.org/

[49] Bonelle, J.: Compatible discrete operator schemes on polyhedral meshes for ellip-
tic and Stokes equations. PhD thesis, Université Paris-Est – École des Ponts
(2014)

[50] Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for the
Stokes equations on polyhedral meshes. IMA J. Numer. Anal. 35(4), 1672–1697
(2015) https://doi.org/10.1093/imanum/dru051

[51] Milani, R.: Compatible Discrete Operator schemes for the unsteady, incompress-
ible Navier-Stokes equations. PhD Thesis, Université Paris Est (2020)

[52] Di Pietro, D.A., Lemaire, S.: An extension of the Crouzeix-Raviart space to
general meshes with application to quasi-incompressible linear elasticity and
Stokes flow. Math. Comput. 84(291), 1–31 (2015) https://doi.org/10.1090/
S0025-5718-2014-02861-5

[53] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer series
in computational mathematics. Springer, New York (1991). https://doi.org/10.
1007/978-1-4612-3172-1

[54] Golub, G.H., Greif, C.: On solving block-structured indefinite linear sys-
tems. SIAM J. Sci. Comput. 24(6), 2076–2092 (2003) https://doi.org/10.1137/
S1064827500375096

36

https://doi.org/10.1016/j.aml.2011.08.015
https://doi.org/10.1002/nla.542
https://llnl.gov/casc/hypre
https://github.com/hypre-space/hypre
https://github.com/hypre-space/hypre
https://doi.org/10.1007/3-540-47789-6_66
https://petsc.org/
https://petsc.org/
https://doi.org/10.1093/imanum/dru051
https://doi.org/10.1090/S0025-5718-2014-02861-5
https://doi.org/10.1090/S0025-5718-2014-02861-5
https://doi.org/10.1007/978-1-4612-3172-1
https://doi.org/10.1007/978-1-4612-3172-1
https://doi.org/10.1137/S1064827500375096
https://doi.org/10.1137/S1064827500375096

[55] Kruse, C., Darrigrand, V., Tardieu, N., Arioli, M., Rüde, U.: Application of an
iterative Golub-Kahan algorithm to structural mechanics problems with multi-
point constraints. Adv. Model. Simul. Eng. Sci. 7(1), 45 (2020) https://doi.org/
10.1186/s40323-020-00181-2

[56] Kruse, C., Sosonkina, M., Arioli, M., Tardieu, N., Rüde, U.: Parallel perfor-
mance of an iterative solver based on the Golub-Kahan Bidiagonalization. In:
Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K. (eds.) Parallel
Processing and Applied Mathematics. Lecture Notes in Computer Science, pp.
104–116. Springer International Publishing, Cham (2020). https://doi.org/10.
1007/978-3-030-43229-4 10

[57] Kruse, C., Sosonkina, M., Arioli, M., Tardieu, N., Rüde, U.: Parallel solution
of saddle point systems with nested iterative solvers based on the Golub-Kahan
bidiagonalization. Concur. Comp.-Pract. E. 33(11), 5914 (2021) https://doi.org/
10.1002/cpe.5914

[58] Notay, Y.: A new multigrid approach for Stokes problems. Numer. Math. 132,
51–84 (2016) https://doi.org/10.1007/s00211-015-0710-0

[59] Giraud, L., Haidar, A., Saad, Y.: Sparse approximations of the Schur complement
for parallel algebraic hybrid linear solvers in 3d. Numer. Math. Theor. Meth.
Appl. 3, 276–294 (2010) https://doi.org/10.4208/nmtma.2010.33.2

[60] Brandt, A., Livne, O.E.: Multigrid Techniques: 1984 Guide with Applications to
Fluid Dynamics, Revised Edition. SIAM, Philadelphia (2011). https://doi.org/
10.1137/1.9781611970753

[61] Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial. SIAM,
Philadelphia (2000). https://doi.org/10.1137/1.9780898719505

[62] Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Elsevier, San Diego
(2000)

[63] Lin, P.T., Shadid, J.N., Tsuji, P.H.: In: Brummelen, H., Corsini, A., Perotto, S.,
Rozza, G. (eds.) Krylov Smoothing for Fully-Coupled AMG Preconditioners for
VMS Resistive MHD, pp. 277–286. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-30705-9 24

[64] Falgout, R.D., Jones, J.E., Yang, U.M.: The design and implementation of hypre,
a library of parallel high performance preconditioners. In: Bruaset, A.M., Tveito,
A. (eds.) Numerical Solution of Partial Differential Equations on Parallel Comput-
ers, pp. 267–294. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/
3-540-31619-1 8

[65] Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G.,

37

https://doi.org/10.1186/s40323-020-00181-2
https://doi.org/10.1186/s40323-020-00181-2
https://doi.org/10.1007/978-3-030-43229-4_10
https://doi.org/10.1007/978-3-030-43229-4_10
https://doi.org/10.1002/cpe.5914
https://doi.org/10.1002/cpe.5914
https://doi.org/10.1007/s00211-015-0710-0
https://doi.org/10.4208/nmtma.2010.33.2
https://doi.org/10.1137/1.9781611970753
https://doi.org/10.1137/1.9781611970753
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1007/978-3-030-30705-9_24
https://doi.org/10.1007/978-3-030-30705-9_24
https://doi.org/10.1007/3-540-31619-1_8
https://doi.org/10.1007/3-540-31619-1_8

May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith,
B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Technical Report
ANL-95/11 - Revision 3.15, Argonne National Laboratory (2021)

[66] De Sterck, H., Yang, U.M., Heys, J.J.: Reducing complexity in parallel algebraic
multigrid preconditioners. SIAM J. Matrix Anal. Appl. 27(4), 1019–1039 (2006)
https://doi.org/10.1137/040615729

[67] Kong, F., Wang, Y., Gaston, D.R., Permann, C.J., Slaughter, A.E., Lindsay, A.D.,
DeHart, M.D., Martineau, R.C.: A highly parallel multilevel Newton–Krylov–
Schwarz method with subspace-based coarsening and partition-based balancing
for the multigroup neutron transport equation on three-dimensional unstructured
meshes. SIAM J. Sci. Comput. 42(5), 193–220 (2020) https://doi.org/10.1137/
19M1249060

[68] Bank, R.E., Douglas, C.C.: Sharp estimates for multigrid rates of convergence
with general smoothing and acceleration. SIAM Journal on Numerical Analysis
22(4), 617–633 (1985) https://doi.org/10.1137/0722038

[69] Burggraf, O.R.: Analytical and numerical studies of the structure of steady
separated flows. J. Fluid Mech. 24(1), 113–151 (1966) https://doi.org/10.1017/
S0022112066000545

[70] Dumitrasc, A., Kruse, C., Ruede, U.: Generalized Golub-Kahan bidiagonalization
for nonsymmetric saddle point systems (2023). https://doi.org/10.48550/arXiv.
2310.06952

[71] Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering
algorithm. SIAM Journal on Matrix Analysis and Applications 17(4), 886–905
(1996) https://doi.org/10.1137/S0895479894278952

[72] Ghia, U., Ghia, K.N., Shin, C.T.: High-re solutions for incompressible flow using
the navier–stokes equations and a multigrid method. J. Comput. Phys. 48(3),
387–411 (1982) https://doi.org/10.1016/0021-9991(82)90058-4

38

https://doi.org/10.1137/040615729
https://doi.org/10.1137/19M1249060
https://doi.org/10.1137/19M1249060
https://doi.org/10.1137/0722038
https://doi.org/10.1017/S0022112066000545
https://doi.org/10.1017/S0022112066000545
https://doi.org/10.48550/arXiv.2310.06952
https://doi.org/10.48550/arXiv.2310.06952
https://doi.org/10.1137/S0895479894278952
https://doi.org/10.1016/0021-9991(82)90058-4

Appendix A code saturne options

Here, we provide parameter options to use a saddle-point problems solvers and K-
cycle AMG in the context of code saturne. Note that for the K-cycle, we rely on the

Option Value Result

CS NSKEY SLES STRATEGY

"gkb" or "gkb saturne" GKB method via code saturne in house
"gkb petsc" GKB method via PETSc
"uzawa al" ALU method
"notay" Algebraic transformation

CS NSKEY GD SCALE COEF "γ" Set an augmented parameter γ ≥ 0
CS NSKEY NL ALGO RTOL "tol" Set the relative tolerance for

Picard’s iterations to tol > 0
CS NSKEY MAX NL ALGO ITER "max it" Set the maximal number of

Picard’s iterations to max it ∈ N
CS NSKEY IL ALGO RTOL "tol" Set the relative tolerance for

outer iterations to tol > 0
CS NSKEY MAX IL ALGO ITER "max it" Set the maximal number of

outer iterations to max it ∈ N

CS EQKEY SOLVER FAMILY
"cs" Use a linear solver from code saturne in house

"petsc" Use a linear solver from PETSc library

CS EQKEY ITSOL
"fcg" FCG solver

"fgmres" FGMRES solver
"mumps" Direct solver (through MUMPS or PETSc)

CS EQKEY ITSOL EPS "tol" Set the tolerance for
iterative solvers to tol > 0

CS EQKEY ITSOL MAX ITER "max it" Set the maximal number of
iterative solvers to max it ∈ N

implementation in code saturne. Then,

cs multigrid set solver options() and cs multigrid set coarsening options()

allow us to set multigrid parameters for smoothing and coarsening, respectively. For
more details of the usage of code saturne, we refer to the official document2

Appendix B PETSc options

In this appendix, we present the example sets of PETSc options that we used for our
numerical tests.

B.1 Hypre BoomerAMG

Option Value Result
-pc type "hypre" HypreBoomerAMG

-pc hypre type "boomeramg" as a preconditioner

-pc hypre boomeramg coarsen type
"Falgout" The classical coarsening

("HMIS" or "PMIS") (with lower complexity)
-pc hypre boomeramg agg nl "0" No aggressive coarsening

-pc hypre boomeramg relax type down
"symmetric-SOR/Jacobi" SGS smoothing

-pc hypre boomeramg relax type up

2https://www.code-saturne.org/documentation/7.1/doxygen/src/index.html

39

https://www.code-saturne.org/documentation/7.1/doxygen/src/index.html

For more details of PETSc options and the full list of options, we refer to the main
Hypre website3 and MOOSE website4.

B.2 GAMG

Option Value Result
-pc type "gamg" GAMG

-pc gamg type "agg" as a preconditioner
-pc gamg agg nsmooths "1" One smoothing step to use

with smoothed aggregation
-pc gamg sym graph "true"(if a matrix is non-symmetric) Symmetrize the graph
-mg levels ksp type "richardson"

SGS smoothing
-mg levels pc type "sor"

Note that GAMG is basically built with the smoothed aggregation scheme so
that it is more applicable for symmetric systems. In practice, by turning on
-pc gamg sym graph, it is required to symmetrize the graph for non-symmetric
systems. Moreover, to consider unsmoothed aggregation coarsening, we should set
-pc gamg agg nsmooths=0.

With GAMG, it is possible to use Krylov smoothers. For example, we can employ
the preconditioned GMRES for each smoothing step as following.

Option Value Result
-mg levels ksp type "richardson"

Krylov smoothing by GMRES
-mg levels pc type "bjacobi"
-mg coarse pc type "tfs"

-mg levels pc bjacobi blocks "1"
-mg levels sub ksp type "gmres"

-mg levels sub ksp max it "10" Maximum 10 GMRES smoothing steps

-mg levels sub ksp rtol "1e-3" Set a tolerance of the GMRES smoother to 10−3

-mg levels sub pc type "sor" SGS preconditioning for the GMRES smoother
-mg levels sub pc type "ilu"

ILU(0) preconditioning for the GMRES smoother
-mg levels sub pc factor levels "0"

B.3 HMG

Using HMG, we can combine the coarsening schemes from Hypre BoomerAMG and
the smoothing operators from GAMG in PETSc as following.

Option Value Result
-pc type "hmg"

HMG preconditioner with the classical coarsening
-hmg inner pc type "hypre"

To set up smoothing process, it follows the same way of GAMG.

3https://hypre.readthedocs.io/en/latest/index.html
4https://mooseframework.inl.gov/releases/moose/v1.0.0/application development/hypre.html

40

https://hypre.readthedocs.io/en/latest/index.html
https://mooseframework.inl.gov/releases/moose/v1.0.0/application_development/hypre.html

	Introduction
	The Compatible Discrete Operator (CDO) framework
	Some strategies to solve saddle-point problems
	Golub-Kahan bidiagonalization
	Augmented Lagrangian Uzawa method
	Notay's algebraic transformation

	Algebraic multigrid preconditioning for Krylov solvers
	Numerical experiments
	Taylor-Green Vortex problem (3D Stokes problem)
	Solution by GKB
	Solution by algebraic transformation
	Summary for the Stokes test case

	Burggraf problem (2D Navier–Stokes)
	Solution by ALU method
	Solution by algebraic transformation
	Reynolds numbers

	Lid driven cavity benchmark (2D Navier–Stokes)
	Summary for the Navier–Stokes test cases

	Conclusion and discussion
	Conflict of interest
	Acknowledgments
	Author contributions
	Data availability
	ORCID

	code_saturne options
	PETSc options
	Hypre BoomerAMG
	GAMG
	HMG

