
HAL Id: hal-04087358
https://hal.science/hal-04087358

Preprint submitted on 3 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Linear Solvers for Incompressible CFD Simulations
with Compatible Discrete Operator Schemes

Yongseok Jang, Jerome Bonelle, Carola Kruse, Frank Hülsemann, Ulrich
Ruede

To cite this version:
Yongseok Jang, Jerome Bonelle, Carola Kruse, Frank Hülsemann, Ulrich Ruede. Fast Linear Solvers
for Incompressible CFD Simulations with Compatible Discrete Operator Schemes. 2023. �hal-
04087358�

https://hal.science/hal-04087358
https://hal.archives-ouvertes.fr

Fast Linear Solvers for Incompressible CFD Simulations with Compatible
Discrete Operator Schemes

Yongseok Janga,�, Jérôme Bonelleb, Carola Krusea, Frank Hülsemannc, Ulrich Rüdea,d

aCERFACS, Toulouse, France.
bEDF R&D, EDF Lab Chatou, Chatou, France.

cEDF R&D, EDF Lab Paris-Saclay, Palaiseau, France.
dDepartment of Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany.

Abstract

Finding a robust and efficient solver for (non-)symmetric systems that arise in incompressible Computational
Fluid Dynamics (CFD) is of great interest to both academia and industry. We consider the Compatible
Discrete Operator (CDO) discretization that has recently been devised for CFD simulations in the context
of incompressible Stokes and Navier–Stokes flows. The discrete problems resulting from CDO schemes yield
large saddle-point systems that require relevant numerical methods suitable to deal with large indefinite
and poorly conditioned linear systems. In this paper, we focus on two segregated methods: the augmented
Lagrangian Uzawa method and the generalized Golub-Kahan bidiagonalization, as well as a monolithic
method based on an algebraic transformation by change of variables. We also employ algebraic multigrid
(AMG) preconditioned Krylov solvers such as the Flexible Conjugate Gradient (FCG) method, and the
Flexible Generalized Minimal Residual (FGMRES) method, to solve the linear systems. Using the CFD
software code saturne, we compare the numerical performance with respect to the choice of linear solvers and
numerical strategies for the saddle-point problem. In the numerical experiments, the AMG preconditioned
Krylov methods show robustness in test cases of Stokes and Navier–Stokes problems.

Keywords: Algebraic multigrid method, Compatible discrete operator, Incompressible Navier–Stokes,
saddle-point problems
2020 MSC: 65F08, 65F10, 65M22, 76D05

1. Introduction

Problems in Computational Fluid Dynamics (CFD) arise in many academic and industrial fields, e.g.,
aerospace, petroleum and nuclear engineering. In this paper, we focus on the steady Stokes and Navier–
Stokes equations in the case of incompressible flows. Let Ω � R

d, d � 2, 3 be an open bounded connected
polytopal domain and BΩ be its boundary. The velocity is a vector-valued field denoted by ~u and the
pressure is a scalar-valued field denoted by p such that:

�ν∆~u� χ pp~u �∇q~uq �∇p � ~f in Ω, (1.1)

∇ � ~u � 0 in Ω. (1.2)

Equation (1.1) refers to the conservation of the momentum and (1.2) to the incompressibility constraint,
ensuring that the velocity field conserves mass. Here we assume a constant and unitary mass density. The

�Corresponding author. Present address: DAAA, ONERA, Université Paris Saclay, F-92322, Châtillon, France.
Email addresses: yongseok.jang@onera.fr (Yongseok Jang), jerome.bonelle@edf.fr (Jérôme Bonelle),

carola.kruse@cerfacs.fr (Carola Kruse), frank.hulsemann@edf.fr (Frank Hülsemann), ulrich.ruede@fau.de (Ulrich
Rüde)

Preprint submitted to Elsevier

parameter ν ¡ 0 is the fluid viscosity and ~f is the volumetric forcing term. �ν∆~u is the viscous term
and p~u � ∇q~u is the convection term. The choice χ � 0 corresponds to the Stokes equations whereas the
choice χ � 1 to the Navier–Stokes equations. Boundary conditions such as Dirichlet boundary conditions
are enforced on BΩ. The pressure is uniquely defined by enforcing

³
Ω
p � 0. To manage the nonlinearity of

the Navier–Stokes equation in the convection term, we introduce Picard’s iteration to obtain the following
linearized Navier–Stokes equation (also known as Oseen problem) such that

�ν∆~upkq � p~upk�1q �∇q~upkq �∇ppkq � ~f in Ω, (1.3)

∇ � ~upkq � 0 in Ω, (1.4)

for each iteration k, starting from an arbitrary initial guess p~up0q, pp0qq.
Discretizing equations (1.1) and (1.2) is treated intensively in the literature. Depending on the choice of

the velocity-pressure coupling (segregated or coupled), the definition and location of the degrees of freedom
(DoF), the resulting linear system(s) can have quite different structure and different features. In what
follows, we consider the Compatible Discrete Operator (CDO) schemes introduced in [1] for the spatial
discretization. CDO schemes belong to a class of space discretization schemes called mimetic, structure-
preserving or compatible. These schemes have been inspired by the seminal works of Bossavit [2] and of
Hyman & Scovel [3]. They have shed a new light on the way to devise the discretization of partial differential
equations (PDE) thanks to some concepts of differential geometry and algebraic topology. During the last
two decades, several other discretization schemes belonging to this latter class have emerged, e.g., the
Discrete Exterior Calculus (DEC) schemes [4], the Discrete Geometric Approach (DGA) [5], the Mimetic
Spectral Element method [6], the Mimetic Finite Difference schemes [7], the Hybrid Mixed Mimetic (HHM)
framework [8] or the Finite Element Exterior Calculus (FEEC) schemes [9]. More recently, extensions to
higher order discretizations have been devised in Virtual Element Methods (VEM) [10], Hybrid High Order
(HHO) schemes [11] or the Discrete De Rham framework [12].

In this paper, we focus on CDO face-based schemes with a full velocity/pressure coupling. As explained
in [13], this choice leads to a low-order approximation of the Navier–Stokes equations which is robust on
a wide range of meshes: from Cartesian meshes to polyhedral, non-matching and/or distorted meshes.
The CDO face-based discretization is a stable method (cf. Section 2). The resulting linear system is a
saddle-point problem formulated as Ax � b, where

A �
�
A BT

B O

�
, x �

�
u
p

�
and b �

�
f
g

�
. (1.5)

Here, A P R
n�n, B P R

m�n, O P R
m�m is the null matrix, u P R

n, f P R
n, p P R

m and g P R
m for

n ¥ m. The blocks A, BT , B and O are commonly referred to as the (1,1)-, (1,2)-, (2,1)- and (2,2)-
blocks, respectively. In the case of the Stokes equations, A is a symmetric positive definite (SPD) matrix
corresponding to the viscous (diffusion) term, while B is associated with the divergence operator for the
velocity field and BT with the pressure gradient operator. In the case of the (linearized) Navier–Stokes
equations, A is a non-symmetric matrix due to the addition of a convective term to the viscous term.

Different types of saddle-point problems occur in many applications of applied mathematics and engi-
neering. To solve the corresponding linear systems, numerous techniques have been proposed and developed
during the previous decades; please refer to the comprehensive introduction of Benzi, Golub and Liesen [14]
on the resolution of saddle-point problems. In what follows, one splits these techniques to solve (1.5) into
two categories: segregated techniques working iteratively on a subset of blocks and monolithic techniques
working on the full system (all blocks at once). For these two categories, linear systems have to be solved
either with a direct method or an iterative method.

Direct methods (parallel multi-frontal algorithms) available in MUMPS [15] are our choice of direct solver
in this work. Direct methods are robust with respect to the properties of the linear system (symmetry and
conditioning for instance) but their computational cost in terms of CPU and mainly memory usage can
become prohibitive on large scale systems.

Krylov subspace methods [16] are our choice of iterative methods: for instance, GMRES [17] on non-
symmetric systems and CG [18] on symmetric systems. Krylov subspace methods can very competitive

2

solvers when combined with efficient preconditioning techniques. To employ variable preconditioning, i.e.,
the preconditioner can be modify at each iteration (e.g. inner-outer Krylov methods), flexible variants of
those methods have been developed such as FGMRES [19], GCR [20, 21] or FCG [22]. For more details
for non-symmetric problem solvers, we refer to [23, 24] and the references therein. The efficiency of the
iterative solver relies mainly on the choice of the preconditioner. In this paper, one considers multilevel
preconditioning technique based on algebraic multigrid (AMG) methods. These methods have been proven
to work efficiently on large scale linear systems stemming from unstructured grids without needing geometric
grid information; see [25] for a comparison of multigrid preconditioners. The main ingredients composing
the design of AMG methods are the choice of the cycle (V for instance), that of the smoother (a symmetric
Gauss-Seidel for instance) and the coarsening algorithm. There are two main classes of coarsening strategies:
independent-set based AMG, such as classical AMG [26, 27, 28, 29] and aggregation-based AMG, such
as smoothed aggregation AMG [30] and pairwise aggregation AMG [21, 31]. Please refer to [32] for more
references and details about AMG methods. More recently, Notay [33] then Bacq and Notay [34] investigated
aggregation-based AMG for the Stokes problems and (linearized) Navier–Stokes problems, respectively,
including a two-grid analysis.

Regarding segregated techniques, stationary iterations and Uzawa-like algorithms [35, 14] and its variant
as the Augmented-Lagrangian Uzawa (ALU) algorithm [36] are a first possibility. More recently, Golub–
Kahan Bidiagonalization (GKB) algorithm [37] have been introduced to solve symmetric saddle-point sys-
tems. An algebraic splitting method based on the Algebraic Chorin Temam (ACT) splitting has also been
recently developed in [38].

Regarding monolithic techniques, excepted for a direct method applied to the full system, other tech-
niques differs on the way to define an efficient preconditioner to a Krylov subspace method. ILU type
preconditioning or null space methods [14] are possible choices. An approximated block LU factorization
has also been introduced in [39]. More generally, block preconditioning are among the most explored tech-
niques of this category. In this case, the approximation of the Schur complement[40] (in our case, equal
to �BA�1BT) is often required. In this situation, the quality of this approximation is a key ingredient
to get an efficient solver. More specifically in the context of the incompressible Navier–Stokes problems
Semi-Impicit Pressure Linked Equation (SIMPLE) type preconditioning [41] have been investigated. Other
approaches, such as augmented Lagrangian preconditioning, which is applicable for high Reynolds number
[42, 43] cases, and a vector penalty projection method [44] are other techniques of interest. Additionally,
an algebraic transformation of the saddle-point system relying on a change of variables has been devised
in [33] in the context of the Stokes problem. This transformation allows one to use multigrid methods on
the (monolithic) transformed system.

Our main contribution is to present a first comparative study of algorithms used to solve saddle-point
systems that arise from the CDO discretization of the Stokes and Navier–Stokes equations. We focus
on three algorithms: two segregated techniques, the Augmented-Lagrangian Uzawa (ALU) algorithm [36]
and the Golub–Kahan Bidiagonalization (GKB) algorithm [37] and, one monolithic technique, the Notay’s
algebraic transformation [33]. To our knowledge, this is the first time that the GKB algorithm is used to
solve the Stokes problem and one considers the Notay’s algebraic transformation not only in the context
of the Stokes problem but also in the context of the Navier–Stokes problem. Additionally, several Krylov
solvers preconditioned with an AMG are compared either on the resolution of the (1,1)-block or on the
resolution of the transformed saddle-point problem. These comparative studies are performed on the key
ingredients that underpin the definition of an AMG, such as the type of cycle, the type of smoothers, and the
coarsening strategy. Specifically, we consider an in-house K-cycle algorithm based on Notay’s work [45, 21],
BoomerAMG from the HYPRE library [46, 47], and GAMG/HMG from the PETSc library [48].

The remainder of the paper is structured as follows. Following the introduction, we describe the main
features and ingredients of the CDO face-based discretization in Section 2, along with the resulting saddle-
point problem. In Sections 3 and 4, we provide detailed explanations of the different algorithms used in our
comparative studies, as well as the various strategies and configurations of the multilevel algorithms used
as a preconditioner for a Krylov solver. Numerical experiments to compare their numerical performance are
reported in Section 5. At the end, conclusion and prospect for future improvements are presented in Section
6. We note that all the algorithms and discretizations described in this paper are freely available in the

3

latest version of code saturne 1.

2. The Compatible Discrete Operator (CDO) framework

The discretization of the Stokes and Navier–Stokes equations under consideration rely on the CDO
framework, as developed during Bonelle’s PhD[49, 50]. It encompasses several discretizations according to
the location of the degrees of freedom (DoF): vertex-based, edge-based, face-based and cell-based schemes.

In this work, we focus on the CDO face-based schemes for the discretization of the steady Stokes and
Navier–Stokes equations. The velocity DoFs are hybrid in the sense that they are located in the cells and
at the faces (see Figure 1; Left part). They are defined as the mean-value of the velocity vector-field in a
cell and on a face for each component. The main ingredients underpinning the discretization (the velocity
gradient reconstruction operator and the velocity divergence operator) are recalled and we refer to [13, 51]
for more details. The resulting CDO face-based scheme is analysed in [51] and references therein (stability,
consistency, a priori error estimates. . .). In particular, the stability results imply that A, defined in (1.5),
is invertible. Namely, the solvability conditions [14, Theorem 3.4]

kerpHq X kerpBq � t0u and kerpBT q � t0u, (2.1)

where H is the symmetric part of A are fulfilled since A is non-singular and B is a full rank operator (LBB
inf-sup condition).

Notation. Let C (resp. F) be the set of the mesh cells (resp. mesh faces). The number of elements in a set
X is denoted by #X (e.g. #C is the number of mesh cells). The set of faces associated to a cell c P C is
denoted by Fc. The set of faces is split into two subsets: the set of boundary faces F B :� tf P F |f � BΩu
and the set of the interior faces F � :� F zF B. For a face f , |f | corresponds to its surface and ~xf to its
barycenter. One chooses an arbitrary orientation ~nf to each face and one denotes ~nf,c its outward normal
such that ~nf � ιf,c~nf with ιf,c � �1 according to the arbitrary choice. For a cell c, |c| and ~xc denote its
volume and barycenter, respectively.

The vector-valued piecewise constant polynomial space in a cell c P C (resp. on a face f P F) is denoted
by P

d
0pcq (resp. P

d
0pfq) with d the dimension of Ω (here d � 3). The scalar-valued piecewise constant

polynomial space in a cell c P C is denoted by P0pcq. The local space of velocity DoFs (i.e. associated to a
cell c P C) is denoted by Upcq and the local space of pressure DoFs by Ppcq such that

Upcq :�
�¡
fPFc

P
d
0pfq

�¡
P
d
0pcq and Ppcq :� P0pcq.

For c P C, an element uc P Upcq is such that uc :� pp~uf qfPFc , ~ucq � R
dp#Fc�1q and pc P Ppcq is simply a

constant value inside the cell c. UpΩq denotes the global space of velocity DoFs and PpΩq the global space
of pressure DoFs. These spaces are defined by

UpΩq :�
�¡
fPF

P
d
0pfq

�
�
�¡
cPC

P
d
0pcq

�
and PpΩq :�

¡
cPC

P0pcq.

An element u P UpΩq is such that u :� pp~uf qfPF , p~ucqcPCq � R
dp#F�#Cq. An element p P PpΩq is such

that p :� ppcqcPC � R
#C . The space of pressure DoFs is denoted by P�pΩq when a zero mean-value is

prescribed on the pressure DoFs. The space of velocity DoFs is denoted by U�pΩq when homogeneous
Dirichlet boundary conditions are enforced on BΩ. For the sake of clarity, we only focus on this kind of
boundary conditions. These two spaces are defined as follows:

P�pΩq :� tp P PpΩq |
¸
cPC

pc|c| � 0u and U�pΩq � tu P UpΩq | ~uf � 0 @f P F Bu.

1https://www.code-saturne.org

4

1 Pvols

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

5

pe,c

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

5

pv,c

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

5

pf,c

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

•
xv

�
xe

×
xf

◦
xc

5

sv,e,f,c

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

5

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

5

3 Discrete Functional Norms

•
v

�

�
�

×
×

×

◦

×
f

◦

•

•

�
e×

×◦

5

pe,c

pv,c

pf,c

1

Figure 1: Left: Example of locations of the velocity and pressure DoFs in a hexahedral cell. Right: Example of a pyramid of
basis the face f . The velocity gradient is constant inside this volume.

Main operators. The two main operators used to discretize the Stokes problem (1.1)- (1.2) are the velocity
gradient reconstruction operator and the velocity divergence operator. The pressure gradient is simply
obtained as the adjoint operator of the velocity divergence. For a cell c P C, the local reconstruction
operator for the velocity gradient is denoted by Gc and is defined by a piecewise constant tensor in each
pyramid pf,c associated to a face f P Fc (see Figure 1). Let PFc :� tpf,cufPFc be the set of all pyramids in
the cell c.

Gc : Upcq ÞÑ P
d�d
0 pPFcq s.t. Gcpucq|pf,c � G0,cpucq � η

|f |
|pf,c| pp~uf � ~ucq � G0,cpucqp~xf � ~xcqq b ~nf,c

where η ¡ 0 is a scaling coefficient related to the stability of the reconstruction. Depending on the value of
this coefficient, one can recover the Generalization of the Crouzeix–Raviart framework [52] with η � 1, the
Discrete Geometric Approach [5] with η � 1{d or the Hybrid Finite Volume method [8] with η � 1{?d.

G0,cpucq is a piecewise constant tensor in the cell c corresponding to the P0-consistent gradient recon-
struction defined as

G0,c : Upcq ÞÑ P
d�d
0 pcq s.t. G0,cpucq :� 1

|c|
¸
cPC

|f |p~uf � ~ucq b ~nf,c. (2.2)

The global velocity gradient reconstruction operator is simply defined by collecting the local velocity gradient
reconstruction operators. The definition of the velocity divergence relies on the identity ∇ � p~uq � tracep∇~uq.
For each cell c P C, the local velocity divergence operator Dc is defined as

Dc : Upcq ÞÑ Ppcq s.t. Dcpucq :� 1

|c|
¸
cPC

|f |~uf � ~nf,c. (2.3)

In the case of the Navier–Stokes equations, one also introduces a convection operator, see [51] for more
details.

Weak formulation of the discrete Stokes problem. The discrete weak formulation for the Stokes problem
stated in (1.1)–(1.2) with χ � 0 relies on the two previous operators. With homogeneous Dirichlet boundary
conditions on the velocity field, this yields: find pu,pq P U�pΩq � P�pΩq such that @w P U�pΩq and
@q P P�pΩq,

¸
cPC

»
c

νGcpucq : Gcpwcq�
¸
cPC

»
c

Dcpwcqpc �
¸
cPC

»
c

~f � ~wc (2.4)

�
¸
cPC

»
c

Dcpucq qc � 0. (2.5)

5

Algebraic viewpoint. Switching to the algebraic viewpoint, the different summands in equations (2.4)–(2.5)

correspond to the different blocks of the local saddle-point systems Âcxc � b̂c associated to each cell c P C
with xc and b̂c, two arrays restricted to the DoFs associated to a cell. More specifically,

Âc :�
�
Âpcq BT pcq
Bpcq 0

�
and b̂c :�

�
f̂pcq
gpcq

�
(2.6)

where Âpcq is a square matrix of size dp#Fc� 1q associated to
³
c
νGcpucq : Gcpwcq and Bpcq is a rectangular

matrix of size d � dp#Fc � 1q associated to
³
c
Dcpucq qc. Looking at (2.6) by splitting the contribution

stemming from the face and cell DoFs, we end up with:

Âc :�
�
� ÂFF pcq AFCpcq

ACF pcq ACCpcq
BTF pcq

0

BF pcq 0 0

�
� and b̂c :�

�
� f̂F pcq
f̂Cpcq
gpcq

�
� (2.7)

where the block ACCpcq is a diagonal square matrix of size d. Using a static condensation technique [53]
allows one to reduce the size of the local system as follows:

Ac :�
�

Ac BTF pcq
BF pcq 0

�
and bc :�

�
fpcq
gpcq

�
(2.8)

where the cell-wise velocity block Ac :� ÂFF pcq �AFCpcq �A�1
CCpcq �ACF pcq is a square matrix of size d#Fc

and fpcq :� f̂F pcq �AFCpcq �A�1
CCpcqfCpcq. The resulting system (1.5) with n � d#F and m � #C stems

from the cell-wise assembly process of the local systems detailed in (2.8).

3. Some strategies to solve saddle-point problems

Here we introduce three algorithms for solving saddle-point problems obtained in stable discretizations
of the Stokes or Navier–Stokes equations. In general, a direct solver is a robust and precise option to
solve the system (1.5), especially when the (1,1)-block is non-symmetric and ill-conditioned. However,
when the systems become too large or less sparse as in typical 3D problems, then a direct solver is no longer
applicable. For the special case of the Stokes problem, i.e. χ � 0 in (1.1)-(1.2), the system (1.5) is symmetric.
We therefore first introduce the Craig’s variant of the Golub-Kahan bidiagonalization (GKB) for symmetric
saddle-point systems. It shows a good performance in terms of iteration count and solution time, however, it
is only applicable for symmetric matrices and thus its usage in code saturne is limited. As explained earlier,
we solve the Navier–Stokes problem with Picard (fixed-point) iterations, where each iteration corresponds
to an Oseen problem (1.3)- (1.4). The saddle-point matrix is non-symmetric due to the presence of the
advective field defined as ~upk�1q. The second algorithm that we introduce is the Augmented Lagrangian
Uzawa (ALU) method suited for symmetric or non-symmetric indefinite matrices. In the practical cases of
this paper and with some well-chosen parameter, it solves the problem in an acceptably small number of
iterations. As a third alternative, we use an algorithm that we call Notay’s algebraic transformation. It can
be applied to symmetric or non-symmetric problems and the obtained transformed matrices can be solved
with an efficient AMG solver or with a Krylov subspace method preconditioned with an AMG.

3.1. Golub-Kahan bidiagonalization

We briefly summarize the generalized GKB method that has been introduced in [37]. The algorithm
solves symmetric saddle-point systems, which implies that the GKB method can only be applied to the
Stokes equations in our context. As a first step, we need to transform the saddle-point system to obtain a
zero vector in the upper part of the right-hand side vector. We furthermore use a common regularization
technique [54], known as the augmented Lagrangian approach. Let therefore γ ¥ 0 be a scaling factor and

6

W P Rm�m be an SPD matrix. By recalling the solvability condition (2.1), we can replace (1.5) by the
equivalent augmented system Aγx

�
γ � b�γ with

Aγ �
�
Aγ BT

B O

�
, x�γ �

�
u�γ
p

�
, b�γ �

�
0
g�γ

�
, (3.1)

where Aγ � A � γBTW�1B, u�γ � u � A�1
γ f and g�γ � g � BA�1

γ f . Then the GKB method follows as:
Find V P Rn�n, Q P Rm�m and D P Rn�m such that$''&

''%
BTQ � AγV

�
D
O

�
, V TAγV � In,

BV �WQ
�
DT O

�
, QTWQ � Im,

(3.2)

with D being an upper bidiagonal matrix

D �

�
����������

α1 β1 0 � � � 0

0 α2 β2 � � � 0
...

. . .
. . .

. . .
...

0 � � � 0 αn�1 βn�1

0 � � � 0 0 αn

�
����������
,

with entries αi and βi computed successively as given in Algorithm 1. By multiplying the augmented system
Aγx

�
γ � b�γ with the block-diagonal matrix with diagonal elements V T and QT from the left, and using the

change of variables u�γ � V y and p � Qz, we obtain with (3.2)

�
In D
DT O

� �
y
z

�
�
�

0
QTg�γ

�
. (3.3)

Hence, once we derive V and Q, we can also get the solution of the augmented system by solving (3.3).
Craig’s variant algorithm [37, Algorithm 3.1] used to solve the augmented system is presented in Algorithm 1.
In each iteration of the algorithm, we compute column by column the matrices V and Q and obtain the
next update of the solution u�γ (and thus u) and p from the system (3.3). This algorithm is a three-term
recurrence, hence it is not necessary to store all the basis vectors of V and Q, but only the previous ones
are needed. Please note that in each Golub-Kahan iteration, we have to solve a linear system defined by
the matrix Aγ . We call this solution step the inner iteration. Depending on the size of the system, a direct
solver or another iterative solver may be applied.

In Algorithm 1, the stopping criterion check() is yet undefined. In the following we will use a lower
bound estimate of the energy error as in [37, 55]. The Aγ orthogonality of V implies

‖epkq‖2
Aγ �

ņ

j�k�1

ζ2
j ¡ ξ2

k,d :�
k�d�1¸
j�k�1

ζ2
j ,

with epkq � u�γ � upkqγ being the error, ζj defined in Algorithm 1 and d ¡ 1 an integer. The quantity ξk,d
is a lower bound for the error at step k � d. To obtain a lower bound estimate for epkq, the algorithm thus
needs to run d more iterations. With a stopping tolerance ε 1, the stopping criterion is then defined as

if ξ{ξ̄ ¤ ε, then convergence�true, where ξ �
ķ

j�k�d�1

ζ2
j and ξ̄2 �

ķ

j�1

ζ2
j .

7

Algorithm 1: Craig’s variant algorithm

Data: Aγ , B, W , b�γ , maxit
Result: u�γ , p

β1 � ‖b�γ‖W�1 ; q1 �W�1b�γ{β1; r � A�1
γ BTq1; α1 � ‖r‖Aγ ; v1 � r{α1;

ζ1 � β1{α1; d1 � q1{α1; u
p1q
γ � ζ1v1; pp1q � �ζ1d1;

k � 0; convergence � false;
while convergence � false & k maxit do

k � k � 1;
s �W�1pBvk � αkWqkq; βk�1 � ‖s‖W ; qk�1 � s{βk�1;

r � A�1
γ pBTqk�1 � βk�1Aγvkq; αk�1 � ‖r‖Aγ ; vk�1 � r{αk�1;

ζk�1 � � βk�1

αk�1
ζk; dk�1 � pqk�1 � βk�1dkq{αk�1;

u
pk�1q
γ � upkqγ � ζk�1vk�1; ppk�1q � ppkq � ζk�1dk�1;

convergence Ð check()
end

u�γ Ð u
pk�1q
γ ; pÐ ppk�1q;

return

We set d � 5 as default in our experiments. For more details on bounds of ‖epkq‖2
Aγ

, we refer to [37, 55].
We will conclude with a remark about the choice of the matrix W . The matrix W can generally be

any SPD matrix, and it can play two important roles. In the first case, we can relax the condition on the
definiteness of A, such that it may only be symmetric positive semi-definite. With (2.1), the (1,1)-block
Aγ is then SPD and the GKB algorithm can be applied. If A is however already SPD, this manipulation
is not the purpose of the augmentation. The goal is then to obtain a linear system that is easier to
solve, which translates into an improvement in convergence. For many matrices, the simple choice of W
being the identity is enough [54]. In [55], the authors show that for the augmentation parameter γ being big
enough, the algorithm converges in only a few iterations and mesh-independent convergence can be achieved.
We emphasize, however, that while the iteration count for the outer Golub-Kahan method decreases, the
matrix Aγ becomes more and more ill-conditioned. When an inner iterative solver is used, the number of
inner iterations thus increases. It is important to find a good balance, and when the (1,1)-block exhibits
favorable properties for certain solvers, it might be more efficient in terms of computation time to discard
the augmentation. For the Stokes equation, the symmetric (1,1)-block corresponds to the discretization of
the Laplace operator, for which efficient multigrid solvers exist. After experimentation, (see, e.g., [56, 57])
we decided not to use the augmentation of the (1,1)-block in Section 5 and set the parameter γ � 0. The
transformation to obtain a zero vector in the upper right-hand side is still to be kept by using the matrix A
in the transformation.

3.2. Augmented Lagrangian Uzawa method

The Augmented Lagrangian–Uzawa (ALU) method is an efficient variant of the classical Uzawa method [35].
As explained in [14, Section 8.2], it has the same solution as the saddle-point system (1.5). As before, let
γ ¥ 0 be a scaling factor for the augmentation term BTW�1B. The ALU method corresponds to the
Uzawa method applied to the system Aγx � bγ where Aγ is defined in (3.1) and bγ � rfγ , gsT with

fγ � f � γBTW�1g. In code saturne, an incremental formulation of the ALU method as detailed in
Algorithm 2 is considered. The previous discussion about the choice of the matrix W remains also true for
ALU. We choose a diagonal matrix with entries equal to the volume of each mesh cell for W . An initial
guess on the pressure (resp. velocity) field p0 (resp. u0) is needed in this method. It is either a null array
in the steady case or the latest known pressure (resp. velocity) field in an unsteady case. The efficiency and
convergence of the ALU method relies on the value of the parameter γ. As mentioned in [14], convergence
holds for γ P p0, 2{ρq where ρ is the largest eigenvalue of the Schur complement �BA�1

γ BT . A too large
value for the parameter γ induces an ill-conditioned system which slows down the convergence of the inner

8

linear system defined by Aγ . Once again, a trade-off between the iteration count and the cost of the inner
resolution has to be found. In the experiments in Section 5, we choose γ � 100.

Algorithm 2: Augmented Lagrangian–Uzawa algorithm (incremental form)

Data: A,B,W , f , g, u0, p0, γ, ε, kmax

Result: u, p
Initialise Aγ :� A� γBTW�1B; fγ :� f � γBTW�1g and k = 1;

Velocity solve: Aγu
p1q � fγ �BTp0; δup1q � up1q � u0;

Pressure update: δpp1q :� γW�1pBup1q � gq, pp1q � p0 � δpp1q;
while }δupkq} ε}δup1q} & k kmax do

Solve the velocity increment: Aγδu
pk�1q � �BT δppkq;

Velocity update: upk�1q � δupk�1q � upkq;
Pressure update: δppk�1q :� γW�1pBupk�1q � gq; ppk�1q � ppkq � δppk�1q;
k � k � 1;

end

uÐ upkq and pÐ ppkq;
return

3.3. Notay’s algebraic transformation

The following approach of algebraically transforming the linear system in (1.5) by a change of variables
was initially introduced by Y. Notay in [33]. To keep our presentation self-contained, we briefly present the
main idea. Notay’s right-hand side transformation introduces the change of variables�

u
p

�
�

I �αD�1
A BT

O I

�
ũ
p̃

. (3.4)

which, when combined with a change of sign of the divergence constraint, yields the system Ãx̃ � b̃ where

Ã :�
�

A pI � αAD�1
A qBT

�B αBD�1
A BT

, x̃ �

�
ũ
p̃

�
and b̃ �

�
f
�g
�

(3.5)

with a positive constant α and DA being the diagonal matrix built from A. Hereafter, we assume α � 1.
Other transformations, e.g. the two-sided variant introduced in [58], are not considered in this work since
they appear less efficient [33].

When we consider the vector v of the null space of Ã, we can decompose it with respect to the velocity
and the pressure. It follows

Ãv � 0 ðñ
"
Avu � pI � αAD�1

A qBTvp � 0
�Bvu � αBD�1

A BTvp � 0
,

and since A is invertible, we have vu � �A�1pI � αAD�1
A qBTvp. By substitution of vu into �Bvu �

αBD�1
A BTvp � 0, we can derive BA�1BTvp � 0 so that

vTpBA
�1BTvp � 0 ðñ vp P kerpBA�1BT q � kerpBT q.

By recalling the fact that the CDO discretization satisfies the solvability conditions (2.1) (e.g. kerpBT q � 0),
it implies that the kernel of Ã is trivial, therefore the transformed matrix is invertible.

The (2,2)-block BD�1
A BT of (3.5) is the product of a discrete divergence with a discrete gradient which

is similar to a discrete Laplacian [58]. If we replace D�1
A with A�1, so that the (2,2)-block is the exact Schur

complement of A, Ã becomes a lower triangular block system which can be easily solved, i.e. we have

Ã �
�

A O
�B BA�1BT

.

9

However, the computation of A�1 in a large problem is often too expensive so that we may want to use an
approximation of the Schur complement, instead. Furthermore, we can consider alternative ways of approx-
imating the Schur complement. For instance, we can apply a partial incomplete LU (ILU) factorization to
A to approximate the inverse of A, i.e. using A � LU where L and U are lower and upper incomplete factors
of A. Hence we can define the (1,2)- and (2,2)-blocks by

pI �AU�1L�1qBT and BU�1L�1BT ,

respectively. For more details of sparse approximations of the Schur complement, we refer to [59]. Also, we

can consider the diagonal matrix of the inverse of A by solving Ad̂ � 1 for d̂. Then we have the diagonal
matrix D̂ consisting of d̂ and the approximate Schur complement can be defined with the component D̂
rather than D�1

A .

4. Algebraic multigrid preconditioning for Krylov solvers

Multigrid methods have shown to be efficient preconditioners in different settings, in particular for scalar
diffusion and convection-diffusion problems [60, 61, 62, 21, 29]. In our computations, they will be applied
either to the coupled velocity-pressure system in the case of monolithic solvers or to some sub-systems in
the ALU and GKB methods. As code saturne works with unstructured meshes of arbitrary polyhedra, we
concentrate on algebraic multigrid methods. Furthermore, we limit ourselves to freely available software
in line with the open source distribution of code saturne. In our comparison, we have representatives of
different AMG approaches:

� BoomerAMG of the hypre library [47, 63, 46] relies on C/F or Ruge-Stüben coarsening [28],

� GAMG of PETSc [48] provides plain and smoothed aggregation schemes

� the (in-house) K-cycle of code saturne is inspired by the algorithm described in [21] and combines
therefore multiple passes pairwise aggregation coarsening with Krylov-acceleration on the intermediate
levels.

Let us recall that the suboptimal performance of plain aggregation AMG schemes for diffusion operators
is well known and documented in the literature [29]. The K-cycle and the smoothed aggregation approaches
were developed to overcome the shortcomings of the plain aggregation scheme, with the K-cycle having the
advantage to be applicable to non-symmetric problems.

The methods considered in this article, BoomerAMG, GAMG and HMG, expose a considerable number
of options to the user. So, these AMG methods can be extensively tuned. Nevertheless, an exhaustive
search of the combinatorial parameter space is beyond the scope of our current work. Their performance on
a given system depends on a certain number of parameters, such as the choice of the smoother, the number
of smoother iterations, the coarsening strategy (pairwise or N-times pairwise for the aggregration schemes
or different aggressive coarsening techniques for the C/F schemes) and the number of levels. While it is easy
to handle unstructured meshes, finding an appropriate or even optimal set of coarsening parameters is non-
trivial. For example, one has to strike a balance between coarsening factors and computational costs. A too
large coarsening factor (which translates into a small number of levels and in the case of plain aggregation
AMG in general also implies low operator complexities) tends to increase the number of iterations to solve
linear systems while its memory requirement is reduced. On the other hand, a too small coarsening factor
requires a larger number of levels to reduce the size of the coarsest system below a given threshold. Most
common choices of coarsening factors and complexities of operators are given by

2 ¤ τ ¤ 4 and 1.3 ¤ C ¤ 2,

where τ is the coarsening factor and C denotes the operator complexity, defined by

τ � 1

L

Ļ

`�1

n`
n`�1

and C � 1

nnzpALq
Ļ

`�0

nnzpA`q,

10

K-cycle GAMG BoomerAMG

Applied through code saturne PETSc PETSc

Type of cycle K-cycle V-cycle V-cycle

Type of coarsening pairwise aggregation [21] smoothed aggregation [30] classical interpolation [65]

aggreg. limit / threshold mesh dependent, but factors satisfying τ � 4 or C � 1.3

max. levels 10 (i.e. L ¤ 10)

Smoothers

Pre-/post-smoothing Default: one step each; otherwise stated explicitly

symm. Gauss-Seidel yes yes yes

Krylov smoother no GMRES(10) GMRES(10) (through HMG)

Stop. criterion Kryl. sm. N/A max 10 iter / tol = 10�3 max 10 iter / tol = 10�3

Table 1: Settings for the algebraic multigrid preconditioners

on a hierarchy of matrices A`, 0 ¤ ` ¤ L, A0 being the matrix on the coarsest and AL the matrix on the
finest level with n` and nnzpA`q denoting the number of unknowns and the number of nonzero elements of
A` on each level, respectively. Table 1 sums up the main characteristics of the AMG methods used in the
computations. Following the recent work of Lin, Shadid and Tsuji [64], we have included Krylov smoothers
in our comparison.

5. Numerical experiments

In this section, we present numerical results for the solution of the saddle-point linear system (1.5)
arising from a CDO face-based discretization with the algorithms described previously. We will use the
GKB method for the solution of the Stokes equations and ALU for the Navier–Stokes equations and will
then compare both of them to Notay’s algebraic transformation method.

The test problems were run with the open source CFD software package code saturne, which in addition
to in-house implementations of several Krylov solvers and preconditioners, provides interfaces to external
solvers, such as MUMPS [15], Hypre [47] and PETSc [66] (e.g., please see Appendix A for the usage). In the
following experiments, we will, however, call Hypre always through the PETSc interface. As described earlier,
multigrid methods are among the most promising methods to solve large-scale systems and they can be used
as a solver or preconditioner. In what follows, multigrid methods are always used as preconditioners. Via the
interfaces to PETSc and Hypre, we also have the possibility to use the highly efficient Hypre BoomerAMG
library, as well as the multigrid frameworks GAMG and HMG as preconditioners. Hypre BoomerAMG
follows classical AMG coarsening [28, 29] with/without aggressive coarsening, while in GAMG, we use
the smoothed aggregation option [30]. HMG is a hybrid version of preconditioning and one of the latest
developments in the PETSc preconditioner package. It is able to employ hybrid preconditioning such as
Hypre BoomerAMG, GAMG, or other multilevel methods for the construction of coarser level matrices and
interpolation. More precisely, it allows us to choose any available PETSc preconditioner as smoother and the
coarse solver. For example, in our test cases, we combine the context of Hypre BoomerAMG for coarsening
and the context of GAMG for smoothing. We refer to [66, 67] for more details of the usage of HMG.
Furthermore, we provide Appendix B for the example of PETSc options to use AMG preconditioning in our
numerical experiments. code saturne is not able to perform matrix-matrix multiplications and computations
with non-square matrices up to now. When using Notay’s algebraic transformation, these operations have
to be done in an external environment. For practical reasons, we will then employ the linear solvers given
in the PETSc library without the use of the in-house K-cycle multigrid implementation in code saturne.

For the non-symmetric system matrix Ã of Notay’s algebraic transformation, we combine adequate
Krylov methods with GAMG or Hypre (BoomerAMG) preconditioners. While we apply coarsening schemes
only to Aγ in GKB and ALU, the construction of coarser level operators for the whole transformed A will
be required for the algebraic transformation.

11

GKB ALU

Outer tolerance 10�8 10�7

Augment. parameter γ 0 100

Inner solver settings
Inner tolerance 10�8 10�7

symm. inner solver FCG -
non-symm. inner solver - FGMRES

Preconditionner (PETSc) Hypre, GAMG
Preconditionner (code saturne) K-cycle

Table 2: Settings for the GKB and ALU algorithms

General setting for outer solvers. We compare and discuss combinations of solvers and preconditioners for
the three methods GKB, ALU and Notay’s algebraic transformation. The choice of settings for the GKB
and ALU method with respect to the inner and outer solvers and a symmetric or non-symmetric inner
system can be found in Table 2. For the non-symmetric matrix in the algebraic transformation, we use
FGMRES. We choose 10�8 as the stopping tolerance and set the maximum number of iterations to 10 000.
As preconditioners for this system, as well as for the inner systems in the ALU and GKB methods, we
use algebraic multigrid methods. The setups and different combinations are given in Table 1. We want to
emphasize that the choice of parameters, i.e. to define a threshold, for the construction of aggregation or
prolongation is a significantly important matter. In particular, in case of GAMG for Stokes systems, this
parameter must not be low and to provide relevant coarser levels, we found that C � 1.3. Further particular
configurations are discussed during the description of the numerical experiments.

Computational setup for the test cases. We finish this section with giving the configurations for the test
cases:

- Hardware: Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz, 32GB

- The version of code saturne: code saturne 7.1-alpha

- The version of PETSc: 3.15.0

- No parallel computing (neither MPI nor openMP), i.e. running sequentially

5.1. Stokes problem (3D TGV problem)

The first test case is an adaptation of the Taylor–Green Vortices (TGV) problem with an analytic
solution consisting of the product of sine and cosine functions. Its strong solution satisfies the steady Stokes
equations, i.e. the equations (1.1) and (1.2) with χ � 0 and ν � 1. The strong solution is given by

~u �
�
� 0.5 sinp2πxq cosp2πyq cosp2πzq

0.5 cosp2πxq sinp2πyq cosp2πzq
� cosp2πxq cosp2πyq sinp2πzq

�
 and p � sinp2πxq sinp2πyq sinp2πzq,

where px, y, zq P r0, 1s3 and ~f is given to fulfil (1.1). The solution is presented graphically in Figure 2.
For the discretization, we will use two types of meshes. The first one is Cartesian and the second one

is tetrahedral. In the abbreviations used in the following, we denote the Cartesian meshes by H and the
tetrahedral ones by T . These letters are followed by the number of elements. The resulting numbers of
degrees of freedom for the velocity and pressure components are given in Table 3. Since this 3D TGV
problem leads to a symmetric matrix, we may use the GKB algorithm. We will compare its performance to
Notay’s algebraic transformation approach.

12

Figure 2: 3D TGV problem: pressure field (left) and velocity field (right)

Mesh
Degrees of freedom

Velocity Pressure Total unknowns
H32 304 128 32 768 336 896
H64 2 396 160 262 144 2 658 304
T5 188 361 30 480 218 841
T6 374 964 61 052 436 016

Table 3: 3D TGV problem: the degrees of freedom with respect to meshes

5.1.1. Solution by GKB

The GKB algorithm is a segregated method for matrices of type (1.5) with a symmetric (1,1)-block and
we need, as explained earlier, an inner iterative solver for the (1,1)-block. Here, we choose a preconditioned
flexible conjugate gradient method. In general, we can employ the GKB algorithm via PETSc or directly in
code saturne, but in the following experiments we choose the in-house implementation. Since the system of
inner iterations is symmetric, we are able to use GAMG with smoothed aggregation. Table 4 illustrates the
elapsed times and the numbers of iterations, where each column corresponds to the respective preconditioner
of FCG. The numbers of iterations are sufficiently good for those three preconditioners. However, in terms
of setup time, the in-house K-cycle aggregation step shows a much better performance than PETSc. To
summarise the result of Table 4, we have

Setup time: K-cycle Hypre BoomerAMG GAMG
Solution time: GAMG K-cycle Hypre BoomerAMG

Total time for H32: K-cycle GAMG Hypre BoomerAMG
Total time for H64: GAMG K-cycle Hypre BoomerAMG

The number of iterations: Hypre BoomerAMG GAMG K-cycle

These results show that a higher setup time might be recovered by a faster solution process, and also
that a low number of iterations might not necessarily mean that the method performs best in practice. We
furthermore see that the performance of the solvers is mesh-independent. The winner in the total time to
solution is GAMG for H64, whereas for H32, it is the in-house K-cycle (although, of course, not by far).

Remark. In our numerical experiments, the GKB algorithm is used without augmentation, i.e., we set
γ � 0. On the other hand, the ALU algorithm requires a rather large augmentation parameter to show a
good performance even in the symmetric case. The downside is the resulting, more ill-conditioned matrix

13

Strategy GKB
Mesh H32 H64

Preconditioner K-cycle Hypre GAMG K-cycle Hypre GAMG
Setup time (s) 0.96 2.84 3.77 7.97 25.6 31.8

Solution time (s) 18.1 21.6 15.9 173.6 187.4 140.5
Total time (s) 19.1 24.4 19.7 181.6 213.0 172.3
iterations

13/21/283 5/21/105 7/21/147 13/23/299 5/22/110 7/23/161
(inner/outer/total)

Table 4: 3D Stokes: performance of numerical methods for Stokes system with GKB and AMG preconditioned FCG as inner
solver.

Aγ in the inner solution step. As pointed out in [51], due to its favorable performance caused mainly by an
efficient inner solution, the GKB algorithm is preferred to the ALU algorithm in Stokes problems. Therefore,
we do not provide any further discussion for the ALU method in the symmetric case.

5.1.2. Solution by algebraic transformation

As second approach, we apply Notay’s algebraic transformation and solve the resulting system with
FGMRES preconditioned by multigrid. For BoomerAMG, we keep the settings of Table 1, whereas we
follow the official PETSc manual (please see [66, Section 4.4.5]) to choose settings of GAMG that render
the solver more adapted to non-symmetric problems (e.g., see Appendix B.2). Results are presented in
Table 5. Although Hypre requires a higher time for setup, its overall solution time is smaller than the one
of GAMG. This effect is especially visible for the mesh H64. One explanation is that although GAMG does
work in solving non-symmetric problems, it is not a good choice, since it is basically designed for the use of
smoothed aggregation which assumes symmetry. This has also been stated in the PETSc manual and user
meeting. Hypre performs better for non-symmetric problems, as this algorithm does not require symmetry
as much as smoothed aggregation. For comparing these results to the GKB method, the measure of numbers
of iterations can not be used, since the transformed matrix is of another size than Aγ and thus the cost
of one iteration is different. We thus compare the solution times directly. Although it takes more time on
setup, the algebraic transformation with Hypre leads to a smaller total solution time than GKB. However,
the use of GAMG shows a poor performance and GKB is better in this case.

Strategy Algebraic transformation
Mesh H32 H64

Preconditioner Hypre GAMG Hypre GAMG
Setup time (s) 6.344 4.029 54.707 32.965

Solution time (s) 12.243 16.589 105.760 315.444
Total time to solution 18.587 20.618 160.467 348.409

iterations 36 64 36 168

Table 5: 3D Stokes: performance of numerical methods for Stokes system with algebraic transformation and AMG precondi-
tioned FGMRES for the transformed block system.

We have carried out further test cases to study the influence of different cycle-types for the multigrid
method. As seen in Table 6, using multigrid cycles other than V(1,1) in BoomerAMG does not show
any improvement in terms of iteration numbers and solution times, since the interpolation operator of
BoomerAMG is good enough. We observe that increasing the number of relaxation steps in GAMG reduces
iteration counts, see Table 6. For the non-symmetric system under consideration, BoomerAMG outperforms
GAMG. We have empirically tried to figure out optimal settings for the usage of GAMG, but no choice
worked satisfactorily. Thus, hereafter, only Hypre BoomerAMG is used in combination with symmetric
Gauss-Seidel smoothing for the preconditioning step in the algebraic transformation strategy.

In a second trial, we solved the system arising in the change of variable approach on the tetrahedral
meshes T5 and T6 with Hyper BoomerAMG. Table 7 indicates that the algebraic transformation of the

14

Iterative solver FGMRES
Preconditioner Hypre BoomerAMG GAMG
Multigrid cycle V(1,1) V(2,2) V(3,3) V(1,1) V(2,2) V(3,3)
Total time (s) 11.540 14.911 18.832 17.317 18.174 19.407
iterations 26 28 30 123 77 59

Table 6: 3D Stokes: algebraic transformation with respect to multigrid cycles on H32

matrix works also well for tetrahedral meshes. While increasing the number of smoothing steps does not
improve iteration numbers on the Cartesian grid (Table 6), more pre- and post-smoothing steps do reduce
the number of iterations for tetrahedral meshes, see Table 7, since the tetrahedral meshes are more complex.
In terms of the elapsed time, V(3,3) is however slower than V(1,1).

Iterative solver FGMRES
Mesh T5 T6

Multigrid cycle V(1,1) V(3,3) V(1,1) V(3,3)
Total time (s) 21.608 27.648 58.962 71.328
iterations 37 26 37 27

Table 7: 3D Stokes: V(1,1) and V(3,3) on tetrahedral meshes with Hypre BoomerAMG

For the sake of simplicity, choosing stationary, non-Krylov smoothers such as Gauss-Seidel methods for
relaxing up and down is most reasonable. In fact, Krylov methods do not have good smoothing properties,
since they target the whole spectrum to minimise residuals or some norms of errors. Also, Krylov smoothers
have a more expensive computational cost from more dot products. Nevertheless, Krylov smoothers are
sometimes beneficial, in particular for some difficult problems, see e.g. [64]. Inspired by it, we investigate
Krylov smoothers for improving performance.

In the following, we mainly employ FGMRES preconditioned by AMG (here, GAMG) as a linear solver
as well as a smoother for the non-symmetric problems. However, when being used as a smoother, a V(1,1)-
cycle is insufficient, since it executes only one smoothing step, i.e., one GMRES iteration. Hence, we allow
up to 10 smoothing iterations. At the same time, we impose a stopping tolerance of τ � 10�3 on GMRES.
We then set GMRES(10) as our smoother with an inner tolerance 10�3, which stops when either one or the
other criterion is reached. We may now think in a nested way and precondition the smoother itself, e.g.,
the Gauss-Seidel method as preconditioner for the smoother GMRES(10). At the coarsest level, we solve
the system with a direct solver. Table 8 shows that Krylov smoothing reduces in general the number of
iterations. However, comparing these results to Table 5, the elapsed time is greater than for Gauss-Seidel
smoothing. Furthermore, we see a dependence of the solver performances on the meshes, i.e., the iteration
numbers are unstable.

Mesh Smoother # it Time (s)

H32
GMRES 29 175.226

GMRES+SGS 3 39.534

H64
GMRES 48 2426.144

GMRES+SGS 29 2980.572

T6
GMRES 84 715.284

GMRES+SGS 11 187.401

Table 8: 3D Stokes: GAMG with Krylov smoothers FGMRES[30](GAMG(GMRES(10)+X))

Although Krylov smoothing cannot decrease the elapsed time in GAMG, it may lead to smaller iteration
numbers for combinations of meshes and solvers. Encouraged by this result, we also tried a Krylov smoother
in Hypre BoomerAMG by using the HMG context in PETSc. Originally, Hypre only provides simple

15

smoothers such as Jacobi or Gauss-Seidel, but the HMG framework allows to relax up and down with
Krylov methods as in GAMG. Hence, following the previous experiments, we employ GMRES and HMG
preconditioning with the classical AMG coarsening strategy considering different choices of smoothers. In
Table 9, it is shown that HMG with symmetric Gauss-Seidel smoothing shows similar numerical results
as Hypre BoomerAMG. On the other hand, using Krylov smoothers sometimes reduces the number of
iterations, whereas more time is spent in the solver. Similarly, as for Krylov smoothing in GAMG, the
performances depend on the mesh and the experiments failed for fine meshes. Thus, we do not observe any
advantage from using HMG with Krylov smoothing in Stokes systems for our particular test cases.

Mesh Smoother # it Time (s)

H32
SGS 28 13.483

GMRES+SGS 135 338.316

H64
SGS 29 119.388

GMRES+SGS Failed

T6
SGS 32 52.344

GMRES+SGS Failed

Table 9: 3D Stokes: HMG preconditioning FGMRES[30](HMG), Boomer classical coarsening with max it=200 (if # it¥ 200,
the test fails)

5.1.3. Conclusions for this test case

Our study compared the GKB and algebraic transformation methods in the Stokes test case. We found
that AMG preconditioned GMRES solvers were robust in solving the inner system of the GKB method. The
three distinct coarsening strategies yielded comparable results and are independent of mesh sizes. In the
algebraic transformation , only the classical AMG via Hypre BoomerAMG showed robustness. We attempted
to improve the numerical performance of GAMG by employing Krylov smoothers, but this approach required
much more computational cost and the results depended on the meshes. Furthermore, with the proper use
of AMG preconditioning, the algebraic transformation approach was slightly faster than the GKB method.
Therefore, we recommend using the algebraic transformation with BoomerAMG employing the symmetric
Gauss-Seidel smoother in practice, as it is a monolithic method that yields better numerical performance.

5.2. Navier–Stokes problem (2D Burggraf problem)

As second test case, we consider the steady incompressible Navier–Stokes problem given by equations
(1.1) and (1.2) with χ � 1 and ν � 1{Re. To resolve the non-linearity, we apply Picard’s iteration and solve
the Oseen’s problem (1.3)-(1.4). As for the Stokes problem, we are interested in solving the saddle-point
systems arising from a CDO discretization scheme. Due to the convection terms of the velocity fields, the
(1,1)-block becomes non-symmetric. The test problem in the following is a 2D Burggraf flow [68], which is
a 2D analytic polynomial solution to the Navier–Stokes equation. The exact solution is given by

~u �
�

16x2px2 � 2x� 1qyp2y2 � 1q
�16xp2x2 � 3x� 1qy2py2 � 1q

,

p � 8

Re

�
24x3p0.2x2 � 0.5x� 1{3q � 4xp2x2 � 3x� 1qp12y2 � 2q � p24x� 12q�y2py2 � 1q�

� 64

�
0.5
�
x2px2 � 2x� 1q�2�24y3py2 � 1q � 2yp12y2 � 2qp2y2 � 1q�

� 2y3py2 � 1qp2y2 � 1q�x2px2 � 2x� 1qp12x2 � 12x� 2q � 4x2p2x2 � 3x� 1q2q�
.
For more details about the exact solution, we refer to [68, 51]. As a default parameter, we assume the

Reynolds number to be Re � 100. The solution is graphically presented in Figure 3. For the 2D Burggraf

16

model, we only consider the Cartesian meshes H128 and H256. The numbers of degrees of freedom for u
and p on these two meshes are given in Table 10. Furthermore we use the stopping criterion∥∥~uk � ~uk�1

∥∥ ¤ 10�7 or max k � 50.

for the Picard’s iteration scheme.

Figure 3: 2D Burggraf flow with Re � 100: pressure field (left) and velocity field (right)

Mesh
Degrees of freedom

Velocity Pressure Total unknowns
H128 197 376 16 384 213 760
H256 787 968 65 536 853 504

Table 10: 2D Burggraf problem: the degrees of freedom with respect to meshes

Due to the non-symmetry of the (1,1)-block, the GKB method is no longer applicable, but Notay’s
change of variable approach stays also applicable here. Additionally, we use the ALU method as described
in Section 3.2 for comparison.

5.2.1. ALU method

As first test, we use the ALU method with an augmentation parameter γ � 100. For the inner solver,
we compare the LU factorization of MUMPS with GMRES preconditioned by Hypre BoomerAMG. The
results in Table 11 show that with both inner solvers, BoomerAMG or MUMPS, ALU converges in only
three iterations and the Picard’s iterations need three to five steps. In terms of computation time, the usage
of an inner iterative solver is not competitive. Here we see the influence of the paramemer γ. With γ � 100,
the outer ALU method converges in only 3 iterations, and this for a direct or an iterative inexact solver
inside. However the inner matrix Aγ becomes ill-conditioned and thus GMRES needs a high number of
iterations to converge, also to the required, rather relaxed, tolerance of 10�8.

5.2.2. Algebraic transformation

As next experiment, we first transform the matrix along Notay’s change of variable approach and then
solve the resulting matrix either with MUMPS or GMRES preconditioned by BoomerAMG with symmetric
Gauss-Seidel smoothing. The results are given in Table 12. Also here, we see that for these medium size
2D Navier–Stokes test cases, the direct solver MUMPS leads to a smaller computation time than GMRES.

17

Strategy ALU
Mesh H128 H256

Inner Solver MUMPS GMRES MUMPS GMRES
Precond. - Hypre - Hypre
Time(s) 7.330 752.140 23.150 6,071.680

Picard It 4 5 3 4
ALU It 3 3 3 3

inner It (average) 1 4 121 1 9 446

Table 11: 2D Navier–Stokes: ALU (γ � 100) at Re � 100.

Compared to ALU, the latter converges faster. This is explained by the size of the matrices to be solved.
While in the algebraic transformation approach, the whole system is solved by Mumps, the linear system in
the ALU method is only of the size of the velocity block. However, when we use a Krylov iterative solvers
in both approaches, then the algebraic transformation wins in terms of computation time.

Strategy algebraic transformation
Mesh H128 H256
Solver MUMPS GMRES MUMPS GMRES

Precond. - Hypre - Hypre
Time(s) 13.798 58.235 46.540 304.380

Picard It 4 4 3 3
It 1 139 1 190

Table 12: 2D Navier–Stokes: algebraic transformation at Re � 100.

As earlier for the Stokes system, we have carried out numerical simulations using AMG combined with
Krylov smoothing. In particular, the smoother consists of GMRES(10) with the ILU(0) preconditioner. The
results in Table 13 show that comparing the different solver combinations by the number of required iterations
might be misleading. While GAMG with Krylov smoothers on the H128 mesh divides the iteration count
of BoomerAMG with the simple symmetric Gauss-Seidel smoother by a factor of 5, the total computation
time is however about three-times more than the HMG case with symmetric Gauss-Seidel smoothing. On
the finer mesh H256, HMG with the Krylov smoother even fail to converge. As for BoomerAMG, HMG
on H128 with symmetric Gauss-Seidel smoothing is faster than its counterpart with Krylov smoothing. For
both of them, it is interesting to note that the iteration count increases only slightly from H128 to H256.
Among these two solvers, HMG with a symmetric Gauss-Seidel smoother has shown the fastest convergence,
is however still beaten by the ALU method with MUMPS as inner solver.

Mesh AMG Smoother
iterations Time (s)

Picard inner total setup solve

H128

Hypre SGS 4 139 557 6.155 58.235
GAMG GMRES+ILU 4 27 109 7.264 113.461

HMG
SGS 4 111 447 6.749 36.720

GMRES+ILU 4 83 333 6.778 466.188

H256

Hypre SGS 3 190 570 20.552 304.380
GAMG GMRES+ILU 3 109 328 21.862 1191.965

HMG
SGS 3 158 475 23.700 178.412

GMRES+ILU Failed N/A

Table 13: 2D Navier–Stokes: Hypre BoomerAMG, GAMG and HMG in the algebraic transformation with max it =200

18

5.2.3. Reynolds numbers

Lastly, we investigate how the variation of the Reynolds number influences the performance in the
algebraic transformation. As the Reynolds number increases, the nonlinear term in the Navier–Stokes
equation becomes increasingly important, which makes the system of equations more difficult to solve. This
is because the nonlinear term causes the solution to depend on itself, which leads to an iteration cycle that
can be difficult to resolve. In particular, the (1,1)-block A is ill-conditioned and dominated by the convective
term. Although the Picard iteration can be an effective approach for solving nonlinear systems of equations,
linearizing the equation can lead to convergence issues, especially for highly nonlinear problems. Careful
attention must be paid to the initial guess and other aspects of the method to ensure convergence to a
solution.

Previously, we observed that the ALU method was not well-suited to iterative solvers due to the aug-
mentation parameter yielding the ill-conditioned Aγ , while the algebraic transformation worked well with
Krylov solvers. To investigate the robustness of AMG preconditioned Krlov solvers, we should consider the
algebraic transformation approach in this experiment. We focus on the numerical performance of the alge-
braic transformation varying with Reynolds numbers. We therefore first transform the system algebraically
and apply the best solver combination up to date, i.e. GMRES preconditioned by HMG with symmetric
Gauss-Seidel smoothing.

Table 14 indicates that the HMG framework works well for low Reynolds numbers, but the performance
deteriorates for higher ones. For Re � 10 000, the solution even diverged. Indeed, low Reynolds numbers
imply that the velocity block is dominated by the diffusion terms, this means that it has relatively good
spectral properties. In contrast, high Reynolds numbers make the transformed matrix difficult to solve
with iterative methods. Therefore, it is necessary to find another numerical remedy. This might already
begin with exchanging the standard way of Picard iterations with another method, as they might not
be sufficiently suitable for numerical simulations of flows with high Reynolds numbers. Hence, another
numerical treatment might be needed such as introducing artificial terms, e.g. the augmented Lagrangian
formula [43, 42]. Moreover, we refer to [69] and [70, 44] for a rotation form and a vector projection method,
respectively.

Mesh Re
iterations Time (s)

Picard inner total setup solve

H128

1 2 23 46 3.009 5.751
10 2 25 51 3.021 6.190
100 4 111 447 6.749 36.720

1 000 9 403 5 492 23.400 534.129

Table 14: 2D Navier–Stokes: GMRES[30](HMG(SGS)) in the algebraic transformation with respect to Re on H128

5.2.4. Conclusions

As for the Stokes problem, we could solve the linearized Navier–Stokes operator by AMG preconditioned
FGMRES with the algebraic transformation strategy. For the fixed Reynolds number of 100 and the moder-
atly sized matrices used, the ALU method with an inner direct solver could not been beaten. These results
are unlikely to still be valid, once a critical size of the system has been reached, i.e., when it is no longer
feasible to apply a direct solver. We then have to use iterative solvers. Encouraged by the found best
choice, we also compared its numerical performance for varying Reynolds numbers. It is observed that the
numerical performance is similar to the case of Stokes when the Reynolds number is low. However, if a high
Reynolds number is imposed, our method shows poor results or fails. Therefore, our recommendation is
valid with low Reynolds numbers and further investigation is required for the case of higher ones.

6. Conclusion and discussion

This paper addressed the steady-state incompressible Stokes and Navier–Stokes problems using CDO
face-based discretization schemes. We compared three different numerical approaches to solve saddle-point

19

problems. In the Stokes case, the GKB strategy was found to be robust when using any AMG preconditioned
GMRES solver, whereas the algebraic transformation required Hypre BoomerAMG for robustness. For the
Navier–Stokes problem, the ALU method showed reasonable performance only with a direct solver due to
the ill-conditioned inner systems imposed by the augmented terms. However, the algebraic transformation
remained well-suited to AMG preconditioned Krylov solvers for low Reynolds number problems. When
good coarsening operators were not available, Krylov smoothers improved convergence, but at the cost of
increased computational expenses and varying numerical performance depending on the problem.

For high Reynolds number problems, the AL formula has been commonly used, see [43, 42]. Whereas
AL form was implemented with Uzawa method in ALU algorithm, we can consider the change of variable
to solve AL formulation. Recall the saddle-point problem in the AL formulation (3.1). After the right-hand
transformation (3.5), we can solve the augmented system in a monolithic way. Thus, we want to solve

Ãγx̃ �
�

Aγ pI � αAγD
�1
Aγ
qBT

�B αBD�1
Aγ
BT

��
ũh
p̃h

�
�
f � γBTW�1g

�g

� b̃γ , (6.1)

then we have �
uh
ph

�
�

I �αD�1
Aγ
BT

O I

�
ũh
p̃h

. (6.2)

Note that too large γ induces an ill-conditioned system; hence it is essential to find appropriate values, e.g.
see [14].

When γ Ñ 8 or Re Ñ 8, the augmented block Aγ becomes nearly singular hence simple relaxation
schemes such as Gauss-Seidel do not work properly on account of the difficulty in computing the solution
components belonging to kerpBTBq. To resolve this issue, the subspace correction method was proposed
[71, 72]. Moreover, the additive restricted Schwarz (RAS) method [73] could be concerned as preconditioning.
Also RAS 2-level preconditioning involved Nicolaides subspace corrections [74] might be of interest to solve
the nearly singular system.

Turning back to a choice of linear solvers for the AL (transformed) systems, Krylov smoother could solve
high Reynold number problems with γ robustness. For instance, we can introduce GMRES + AMG with
RAS preconditioned GMRES smoothing steps. Furthermore, we could employ GMRES as a preconditioner.
Then, the iterative solver consists of outer FGMRES, inner FGMRES, AMG preconditioning for inner
iterations and symmetric Gauss-Seidel/Krylov smoothers. These combinations of linear solvers will be
investigated for future work.

Acknowledgement

The authors would like to acknowledge the support from EDF R&D.

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The data that support the findings of this study are available from the corresponding author, Y. Jang,
upon reasonable request. The CFD tool code saturne is freely available and we refer to Appendix and an
official document in https://www.code-saturne.org.

20

https://www.code-saturne.org

References

[1] J. Bonelle, A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes, Esaim.
Math. Model. Numer. Anal 48 (2) (2014) 553–581. doi:10.1051/m2an/2013104.

[2] A. Bossavit, On the geometry of electromagnetism, J. Japan Soc. Appl. Electromagn. & Mech. 6 (1998) 17–28 (no 1),
114–23 (no 2), 233–40 (no 3), 318–26 (no 4).

[3] J. Hyman, J. Scovel, Deriving mimetic difference approximations to differential operators using algebraic topology, Los
Alamos National Laboratory (1988).

[4] M. Desbrun, A. N. Hirani, M. Leok, J. E. Marsden, Discrete Exterior Calculus (2005).
URL http://arxiv.org/abs/math/0508341

[5] L. Codecasa, R. Specogna, F. Trevisan, A new set of basis functions for the discrete geometric approach, J. Comput. Phys.
229 (19) (2010) 7401–7410. doi:10.1016/j.jcp.2010.06.023.

[6] A. Palha, P. Pinto Rebelo, R. Hiemstra, J. Kreeft, M. Gerritsma, Physics-compatible discretization techniques on single
and dual grids, with application to the Poisson equation of volume forms, J. Comput. Phys. 257 (2014) 1394–1422.
doi:https://doi.org/10.1016/j.jcp.2013.08.005.

[7] F. Brezzi, K. Lipnikov, M. Shashkov, Convergence of the Mimetic Finite Difference method for diffusion problems on
polyhedral meshes, SIAM J. Numer. Anal 43 (5) (2005) 1872–1896. doi:10.1137/040613950.

[8] J. Droniou, R. Eymard, T. Gallouët, R. Herbin, A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and
Mixed Finite Volume methods, Math. Model. Methods Appl. Sci. 20 (2) (2010) 265–295. doi:10.1142/S0218202510004222.

[9] D. N. Arnold, R. S. Falk, R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability, Bull.
Amer. Math. Soc. (N.S.) 47 (2010) 281–354. doi:10.1090/S0273-0979-10-01278-4.

[10] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, A. Russo, Basic principles of Virtual Element
Methods, Math. Model. Methods Appl. Sci. 23 (1) (2013) 199–214. doi:10.1142/S0218202512500492.

[11] D. A. Di Pietro, A. Ern, S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on gen-
eral meshes based on local reconstruction operators, Comput. Methods Appl. Math. 14 (4) (2014) 461–472. doi:

10.1515/cmam-2014-0018.
[12] D. A. Di Pietro, J. Droniou, An Arbitrary-Order Discrete de Rham Complex on Polyhedral Meshes: Exactness,

PoincaréInequalities, and Consistency, Found. Comput. Math. 23 (1) (2023) 85–164. doi:10.1007/s10208-021-09542-8.
[13] J. Bonelle, A. Ern, R. Milani, Compatible discrete operator schemes for the steady incompressible Stokes and Navier–

Stokes equations, in: R. Klöfkorn, E. Keilegavlen, F. A. Radu, J. Fuhrmann (Eds.), International Conference on Finite
Volumes for Complex Applications, Springer, 2020, pp. 93–101. doi:10.1007/978-3-030-43651-3_6.

[14] M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta numer. 14 (2005) 1–137. doi:

10.1017/S0962492904000212.
[15] P. Amestoy, I. Duff, J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling,

SIAM J. Matrix Anal. Appl. 23 (1) (2020) 15–41. doi:10.1137/S0895479899358194.
[16] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003. doi:10.1137/1.9780898718003.
[17] Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,

SIAM J. Sci. Stat. Comp. 7 (3) (1986) 856–869. doi:10.1137/0907058.
[18] M. R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of research of the National

Bureau of Standards 49 (1952) 409–435. doi:10.6028/jres.049.044.
[19] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput. 14 (2) (1993) 461–469. doi:

10.1137/0914028.
[20] S. C. Eisenstat, H. C. Elman, M. H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations,

SIAM J. Numer. Anal. 20 (2) (1983) 345–357. doi:10.1137/0720023.
[21] Y. Notay, An aggregation-based algebraic multigrid method, Electron. T. Numer. Ana. 37 (6) (2010) 123–146.
[22] Y. Notay, Flexible conjugate gradients, SIAM J. Sci. Comput. 22 (4) (2000) 1444–1460. doi:10.1137/S1064827599362314.
[23] I. Farahbakhsh, Krylov Subspace Methods with Application in Incompressible Fluid Flow Solvers, Wiley, 2020. doi:

10.1002/9781119618737.
[24] G. Meurant, J. D. Tebbens, Krylov Methods for Nonsymmetric Linear Systems: From Theory to Computations, Spr. S.

Comp. Math., Springer International Publishing, 2020. doi:10.1007/978-3-030-55251-0.
[25] N. Ahmed, C. Bartsch, V. John, U. Wilbrandt, An assessment of some solvers for saddle point problems emerging

from the incompressible Navier-Stokes equations, Comput. Methods in Appl. Mech. Eng. 331 (2018) 492–513. doi:

10.1016/j.cma.2017.12.004.
[26] A. Brandt, S. McCormick, J. Huge, Algebraic multigrid (AMG) for sparse matrix equations, Sparsity and its Applications

257.
[27] A. Brandt, Algebraic multigrid theory: The symmetric case, Appl. Math. Comput. 19 (1-4) (1986) 23–56.
[28] J. W. Ruge, K. Stüben, Algebraic multigrid, in: Multigrid methods, SIAM, 1987, pp. 73–130. doi:10.1137/1.

9781611971057.ch4.
[29] K. Stüben, A review of algebraic multigrid, J. Comput. Appl. Math. 128 (1) (2001) 281 – 309, Numerical Analysis 2000.

Vol. VII: Partial Differential Equations. doi:10.1016/S0377-0427(00)00516-1.
[30] P. Vaněk, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic

problems, Computing 56 (3) (1996) 179–196. doi:10.1007/BF02238511.
[31] Y. Notay, Aggregation-based algebraic multigrid for convection-diffusion equations, SIAM J. Sci. Comput. 34 (4) (2012)

A2288–A2316. doi:10.1137/110835347.
[32] J. Xu, L. Zikatanov, Algebraic multigrid methods, Acta Numer. 26 (2017) 591. doi:10.1017/S0962492917000083.

21

http://dx.doi.org/10.1051/m2an/2013104
http://arxiv.org/abs/math/0508341
http://arxiv.org/abs/math/0508341
http://dx.doi.org/10.1016/j.jcp.2010.06.023
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2013.08.005
http://dx.doi.org/10.1137/040613950
http://dx.doi.org/10.1142/S0218202510004222
http://dx.doi.org/10.1090/S0273-0979-10-01278-4
http://dx.doi.org/10.1142/S0218202512500492
http://dx.doi.org/10.1515/cmam-2014-0018
http://dx.doi.org/10.1515/cmam-2014-0018
http://dx.doi.org/10.1007/s10208-021-09542-8
http://dx.doi.org/10.1007/978-3-030-43651-3_6
http://dx.doi.org/10.1017/S0962492904000212
http://dx.doi.org/10.1017/S0962492904000212
http://dx.doi.org/10.1137/S0895479899358194
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1137/0914028
http://dx.doi.org/10.1137/0914028
http://dx.doi.org/10.1137/0720023
http://dx.doi.org/10.1137/S1064827599362314
http://dx.doi.org/10.1002/9781119618737
http://dx.doi.org/10.1002/9781119618737
http://dx.doi.org/10.1007/978-3-030-55251-0
http://dx.doi.org/10.1016/j.cma.2017.12.004
http://dx.doi.org/10.1016/j.cma.2017.12.004
http://dx.doi.org/10.1137/1.9781611971057.ch4
http://dx.doi.org/10.1137/1.9781611971057.ch4
http://dx.doi.org/10.1016/S0377-0427(00)00516-1
http://dx.doi.org/10.1007/BF02238511
http://dx.doi.org/10.1137/110835347
http://dx.doi.org/10.1017/S0962492917000083

[33] Y. Notay, Algebraic multigrid for Stokes equations, SIAM J. Sci. Comput. 39 (5) (2017) S88–S111. doi:10.1137/

16M1071419.
[34] P.-L. Bacq, Y. Notay, A new semialgebraic two-grid method for Oseen problems, SIAM J. Sci. Comput. 0 (0) (2022)

S226–S253. doi:10.1137/21M1429011.
[35] K. J. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Nonlinear Programming, Stanford University Press, 1958.
[36] M. Fortin, R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value

problems, Vol. 15 in Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam, 1983.
[37] M. Arioli, Generalized Golub–Kahan Bidiagonalization and Stopping Criteria, SIAM J. Matrix Anal. Appl. 34 (2) (2013)

571–592. doi:10.1137/120866543.
[38] L. G. Rebholz, A. Viguerie, M. Xiao, Analysis of Algebraic Chorin Temam splitting for incompressible NSE and comparison

to Yosida methods, J. Comput. Appl. Math. 365 (2020) 112366. doi:10.1016/j.cam.2019.112366.
[39] H. Elman, D. Silvester, A. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid

Dynamics, 2nd Edition, Oxford University Press, Oxford, New York, 2014. doi:10.1093/acprof:oso/9780199678792.

001.0001.
[40] M. Ur Rehman, T. Geenen, C. Vuik, G. Segal, S. MacLachlan, On iterative methods for the incompressible Stokes problem,

Int. J. Numer. Methods Fluids 65 (10) (2011) 1180–1200. doi:10.1002/FLD.2235.
[41] A. Segal, M. Ur Rehman, C. Vuik, Preconditioners for incompressible Navier-Stokes solvers, Numer. Math. Theor. Meth.

Appl. 3 (3) (2010) 245–275. doi:10.4208/nmtma.2010.33.1.
[42] M. Benzi, M. A. Olshanskii, Z. Wang, Modified augmented Lagrangian preconditioners for the incompressible Navier–

Stokes equations, Int. J. Numer. Methods Fluids 66 (4) (2011) 486–508. doi:10.1002/fld.2267.
[43] P. E. Farrell, L. Mitchell, F. Wechsung, An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible

Navier–Stokes Equations at High Reynolds Number, SIAM J. Sci. Comp. 41 (5) (2019) A3073–A3096. doi:10.1137/

18M1219370.
[44] P. Angot, J.-P. Caltagirone, P. Fabrie, A new fast method to compute saddle-points in constrained optimization and

applications, Appl. Math. Lett. 25 (3) (2012) 245–251. doi:10.1016/j.aml.2011.08.015.
[45] Y. Notay, P. S. Vassilevski, Recursive Krylov-based multigrid cycles, Numer. Linear Algebra Appl. 15 (5) (2008) 473–487.

doi:10.1002/nla.542.
[46] hypre: High performance preconditioners, https://llnl.gov/casc/hypre, https://github.com/hypre-space/hypre.
[47] R. D. Falgout, U. M. Yang, hypre: A library of high performance preconditioners, in: P. M. A. Sloot, A. G. Hoekstra,

C. J. K. Tan, J. J. Dongarra (Eds.), Computational Science — ICCS 2002, Lec. Notes Comp. Sc., Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002, pp. 632–641. doi:10.1007/3-540-47789-6_66.

[48] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E. M. Constantinescu, L. Dalcin,
A. Dener, V. Eijkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G.
Knepley, F. Kong, S. Kruger, D. A. May, L. C. McInnes, R. T. Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp,
P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, H. Zhang, J. Zhang, PETSc Web page, https://petsc.org/

(2022).
URL https://petsc.org/

[49] J. Bonelle, Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations, Ph.D. thesis,

Université Paris-Est – École des Ponts (2014).
[50] J. Bonelle, A. Ern, Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes, IMA

J. Numer. Anal. 35 (4) (2015) 1672–1697. doi:10.1093/imanum/dru051.
[51] R. Milani, Compatible Discrete Operator schemes for the unsteady, incompressible Navier-Stokes equations, PhD Thesis,

Université Paris Est (2020).
[52] D. A. Di Pietro, S. Lemaire, An extension of the Crouzeix-Raviart space to general meshes with application

to quasi-incompressible linear elasticity and stokes flow, Math. Comput. 84 (291) (2015) 1–31. doi:10.1090/

S0025-5718-2014-02861-5.
[53] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer series in computational mathematics, Springer-

Verlag, 1991. doi:10.1007/978-1-4612-3172-1.
[54] G. H. Golub, C. Greif, On solving block-structured indefinite linear systems, SIAM J. Sci. Comput. 24 (6) (2003) 2076–

2092. doi:10.1137/S1064827500375096.
[55] C. Kruse, V. Darrigrand, N. Tardieu, M. Arioli, U. Rüde, Application of an iterative Golub-Kahan algorithm to

structural mechanics problems with multi-point constraints, Adv. Model. Simul. Eng. Sci. 7 (1) (2020) 45. doi:

10.1186/s40323-020-00181-2.
[56] C. Kruse, M. Sosonkina, M. Arioli, N. Tardieu, U. Rüde, Parallel Performance of an Iterative Solver Based on the Golub-

Kahan Bidiagonalization, in: R. Wyrzykowski, E. Deelman, J. Dongarra, K. Karczewski (Eds.), Parallel Processing and
Applied Mathematics, Lecture Notes in Computer Science, Springer International Publishing, Cham, 2020, pp. 104–116.
doi:10.1007/978-3-030-43229-4_10.

[57] C. Kruse, M. Sosonkina, M. Arioli, N. Tardieu, U. Rüde, Parallel solution of saddle point systems with nested iterative
solvers based on the Golub-Kahan bidiagonalization, Concur. Comp.-Pract. E. 33 (11) (2021) e5914. doi:10.1002/cpe.

5914.
[58] Y. Notay, A new multigrid approach for Stokes problems, Numer. Math. 132 (2016) 51–84. doi:10.1007/

s00211-015-0710-0.
[59] L. Giraud, A. Haidar, Y. Saad, Sparse approximations of the Schur complement for parallel algebraic hybrid linear solvers

in 3d, Numer. Math. Theor. Meth. Appl. 3 (2010) 276–294. doi:10.4208/nmtma.2010.33.2.
[60] A. Brandt, O. E. Livne, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition, SIAM,

22

http://dx.doi.org/10.1137/16M1071419
http://dx.doi.org/10.1137/16M1071419
http://dx.doi.org/10.1137/21M1429011
http://dx.doi.org/10.1137/120866543
http://dx.doi.org/10.1016/j.cam.2019.112366
http://dx.doi.org/10.1093/acprof:oso/9780199678792.001.0001
http://dx.doi.org/10.1093/acprof:oso/9780199678792.001.0001
http://dx.doi.org/10.1002/FLD.2235
http://dx.doi.org/10.4208/nmtma.2010.33.1
http://dx.doi.org/10.1002/fld.2267
http://dx.doi.org/10.1137/18M1219370
http://dx.doi.org/10.1137/18M1219370
http://dx.doi.org/10.1016/j.aml.2011.08.015
http://dx.doi.org/10.1002/nla.542
https://llnl.gov/casc/hypre
https://github.com/hypre-space/hypre
http://dx.doi.org/10.1007/3-540-47789-6_66
https://petsc.org/
https://petsc.org/
https://petsc.org/
http://dx.doi.org/10.1093/imanum/dru051
http://dx.doi.org/10.1090/S0025-5718-2014-02861-5
http://dx.doi.org/10.1090/S0025-5718-2014-02861-5
http://dx.doi.org/10.1007/978-1-4612-3172-1
http://dx.doi.org/10.1137/S1064827500375096
http://dx.doi.org/10.1186/s40323-020-00181-2
http://dx.doi.org/10.1186/s40323-020-00181-2
http://dx.doi.org/10.1007/978-3-030-43229-4_10
http://dx.doi.org/10.1002/cpe.5914
http://dx.doi.org/10.1002/cpe.5914
http://dx.doi.org/10.1007/s00211-015-0710-0
http://dx.doi.org/10.1007/s00211-015-0710-0
http://dx.doi.org/10.4208/nmtma.2010.33.2

2011. doi:10.1137/1.9781611970753.
[61] W. L. Briggs, V. E. Henson, S. F. McCormick, A multigrid tutorial, SIAM, 2000. doi:10.1137/1.9780898719505.
[62] U. Trottenberg, C. W. Oosterlee, A. Schüller, Multigrid, Elsevier, 2000.
[63] R. D. Falgout, J. E. Jones, U. M. Yang, The design and implementation of hypre, a library of parallel high performance

preconditioners, in: A. M. Bruaset, A. Tveito (Eds.), Numerical Solution of Partial Differential Equations on Parallel
Computers, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 267–294. doi:10.1007/3-540-31619-1_8.

[64] P. T. Lin, J. N. Shadid, P. H. Tsuji, Krylov smoothing for fully-coupled AMG preconditioners for VMS resistive
MHD, in: Numerical Methods for Flows, Lec. Notes Comp. Sci., Springer, Cham, 2020, pp. 277–286. doi:10.1007/

978-3-030-30705-9_24.
[65] H. De Sterck, U. M. Yang, J. J. Heys, Reducing complexity in parallel algebraic multigrid preconditioners, SIAM J. Matrix

Anal. Appl. 27 (4) (2006) 1019–1039. doi:10.1137/040615729.
[66] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D.

Gropp, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F.
Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.15, Argonne National
Laboratory (2021).

[67] F. Kong, Y. Wang, D. R. Gaston, C. J. Permann, A. E. Slaughter, A. D. Lindsay, M. D. DeHart, R. C. Martineau, A
highly parallel multilevel Newton–Krylov–Schwarz method with subspace-based coarsening and partition-based balancing
for the multigroup neutron transport equation on three-dimensional unstructured meshes, SIAM J. Sci. Comput. 42 (5)
(2020) C193–C220. doi:10.1137/19M1249060.

[68] O. R. Burggraf, Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech. 24 (1) (1966)
113–151. doi:10.1017/S0022112066000545.

[69] M. Benzi, A generalization of the Hermitian and skew-Hermitian splitting iteration, SIAM J. Matrix Anal. Appl. 31 (2)
(2009) 360–374. doi:10.1137/080723181.

[70] P. Angot, J.-P. Caltagirone, P. Fabrie, A fast vector penalty-projection method for incompressible non-homogeneous or
multiphase Navier–Stokes problems, Appl. Math. Lett. 25 (11) (2012) 1681–1688. doi:10.1016/j.aml.2012.01.037.

[71] J. Schöberl, Multigrid methods for a parameter dependent problem in primal variables, Numer. Math. 84 (1) (1999)
97–119. doi:10.1007/s002110050465.

[72] Y.-J. Lee, J. Wu, J. Xu, L. Zikatanov, Robust subspace correction methods for nearly singular systems, Math. Mod. Meth.
Appl. S. 17 (11) (2007) 1937–1963. doi:10.1142/S0218202507002522.

[73] E. Efstathiou, M. J. Gander, Why restricted additive Schwarz converges faster than additive Schwarz, BIT Numer. Math.
43 (5) (2003) 945–959. doi:10.1023/B:BITN.0000014563.33622.1d.

[74] R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value problems, SIAM J. Numer. Anal.
24 (2) (1987) 355–365. doi:10.1137/0724027.

Appendix A. code saturne options

Here, we provide parameter options to use a saddle-point problems solvers and K-cycle AMG in the
context of code saturne.

Option Value Result

CS NSKEY SLES STRATEGY

"gkb" or "gkb saturne" GKB method via code saturne in house
"gkb petsc" GKB method via PETSc
"uzawa al" ALU method
"notay" Algebraic transformation

CS NSKEY GD SCALE COEF "γ" Set an augmented parameter γ ¥ 0

CS NSKEY NL ALGO RTOL "tol" Set the relative tolerance for Picard’s iterations to tol ¡ 0
CS NSKEY MAX NL ALGO ITER "max it" Set the maximal number of Picard’s iterations to max it P N

CS NSKEY IL ALGO RTOL "tol" Set the relative tolerance for outer iterations to tol ¡ 0
CS NSKEY MAX IL ALGO ITER "max it" Set the maximal number of outer iterations to max it P N

CS EQKEY SOLVER FAMILY
"cs" Use a linear solver from code saturne in house

"petsc" Use a linear solver from PETSc library

CS EQKEY ITSOL

"fcg" FCG solver
"fgmres" FGMRES solver
"mumps" Direct solver (through MUMPS or PETSc)

CS EQKEY ITSOL EPS "tol" Set the tolerance for iterative solvers to tol ¡ 0
CS EQKEY ITSOL MAX ITER "max it" Set the maximal number of iterative solvers to max it P N

Note that K-cycle AMG is only available associated with code saturne in house iterative solver. Then,

cs multigrid set solver options() and cs multigrid set coarsening options()

23

http://dx.doi.org/10.1137/1.9781611970753
http://dx.doi.org/10.1137/1.9780898719505
http://dx.doi.org/10.1007/3-540-31619-1_8
http://dx.doi.org/10.1007/978-3-030-30705-9_24
http://dx.doi.org/10.1007/978-3-030-30705-9_24
http://dx.doi.org/10.1137/040615729
http://dx.doi.org/10.1137/19M1249060
http://dx.doi.org/10.1017/S0022112066000545
http://dx.doi.org/10.1137/080723181
http://dx.doi.org/10.1016/j.aml.2012.01.037
http://dx.doi.org/10.1007/s002110050465
http://dx.doi.org/10.1142/S0218202507002522
http://dx.doi.org/10.1023/B:BITN.0000014563.33622.1d
http://dx.doi.org/10.1137/0724027

allow us to set multigrid parameters for smoothing and coarsening, respectively. For more details of the
usage of code saturne, we refer to the official document2

Appendix B. PETSc options

In this appendix, we present the example sets of PETSc options that we used for our numerical tests.

Appendix B.1. Hypre BoomerAMG

Option Value Result

-pc type "hypre"
HypreBoomerAMG as a preconditioner

-pc hypre type "boomeramg"

-pc hypre boomeramg coarsen type
"Falgout" The classical coarsening

("HMIS" or "PMIS") (with lower complexity)

-pc hypre boomeramg agg nl "0" No aggressive coarsening

-pc hypre boomeramg relax type down
"symmetric-SOR/Jacobi" Symmetric Gauss-Seidel smoothing

-pc hypre boomeramg relax type up

For more details of PETSc options and the full list of options, we refer to the main Hypre website3 and
MOOSE website4.

Appendix B.2. GAMG

Option Value Result

-pc type "gamg"
GAMG as a preconditioner

-pc gamg type "agg"

-pc gamg agg nsmooths "1" One smoothing step to use with smoothed aggregation

-pc gamg sym graph "true"(if a matrix is non-symmetric) Symmetrize the graph

-mg levels ksp type "richardson"
Symmetric Gauss-Seidel smoothing

-mg levels pc type "sor"

Note that GAMG is basically built with the smoothed aggregation scheme so that it is more applicable
for symmetric systems. In practice, it is required to symmetrize the graph for non-symmetric systems by
turning on -pc gamg sym graph. Moreover, to consider unsmoothed aggregation coarsening, we should set
-pc gamg agg nsmooths=0.

With GAMG, it is able to use Krylov smoothers. For example, we can employ the preconditioned
GMRES for each smoothing step as following.

Option Value Result

-mg levels ksp type "richardson"

Krylov smoothing by GMRES
-mg levels pc type "bjacobi"

-mg coarse pc type "tfs"

-mg levels pc bjacobi blocks "1"

-mg levels sub ksp type "gmres"

-mg levels sub ksp max it "10" Maximum 10 GMRES smoothing steps

-mg levels sub ksp rtol "1e-3" Set a tolerance of the GMRES smoother to 10�3

-mg levels sub pc type "sor" SGS preconditioning for the GMRES smoother

-mg levels sub pc type "ilu"
ILU(0) preconditioning for the GMRES smoother

-mg levels sub pc factor levels "0"

2https://www.code-saturne.org/documentation/7.1/doxygen/src/index.html
3https://hypre.readthedocs.io/en/latest/index.html
4https://mooseframework.inl.gov/releases/moose/v1.0.0/application_development/hypre.html

24

https://www.code-saturne.org/documentation/7.1/doxygen/src/index.html
https://hypre.readthedocs.io/en/latest/index.html
https://mooseframework.inl.gov/releases/moose/v1.0.0/application_development/hypre.html

Appendix B.3. HMG

With using HMG, we can combine the coarsening schemes from Hypre BoomerAMG and the smoothing
operators from GAMG in PETSc as following.

Option Value Result

-pc type "hmg"
HMG preconditioner with the classical coarsening

-hmg inner pc type "hypre"

To set up smoothing process, it follows the same way of GAMG.

25

	Introduction
	The Compatible Discrete Operator (CDO) framework
	Some strategies to solve saddle-point problems
	Golub-Kahan bidiagonalization
	Augmented Lagrangian Uzawa method
	Notay's algebraic transformation

	Algebraic multigrid preconditioning for Krylov solvers
	Numerical experiments
	Stokes problem (3D TGV problem)
	Solution by GKB
	Solution by algebraic transformation
	Conclusions for this test case

	Navier–Stokes problem (2D Burggraf problem)
	ALU method
	Algebraic transformation
	Reynolds numbers
	Conclusions

	Conclusion and discussion
	code_saturne options
	PETSc options
	Hypre BoomerAMG
	GAMG
	HMG

