Yongseok Jang
email: yongseok.jang@onera.fr

Jerome Bonelle
email: jerome.bonelle@edf.fr

Carola Kruse
email: carola.kruse@cerfacs.fr

Frank Hülsemann
email: frank.hulsemann@edf.fr

Ulrich Ruede
email: ulrich.ruede@fau.de

Jérôme Bonelle

Ulrich Rüde

Fast Linear Solvers for Incompressible CFD Simulations with Compatible Discrete Operator Schemes

Keywords: Algebraic multigrid method, Compatible discrete operator, Incompressible Navier-Stokes, saddle-point problems 2020 MSC: 65F08, 65F10, 65M22, 76D05

come L'archive ouverte pluridisciplinaire

Introduction

Problems in Computational Fluid Dynamics (CFD) arise in many academic and industrial fields, e.g., aerospace, petroleum and nuclear engineering. In this paper, we focus on the steady Stokes and Navier-Stokes equations in the case of incompressible flows. Let Ω R d , d 2, 3 be an open bounded connected polytopal domain and fΩ be its boundary. The velocity is a vector-valued field denoted by u and the pressure is a scalar-valued field denoted by p such that:

¡ν∆ u χ pp u ¤ ∇q uq ∇p f in Ω, (1.1)
∇ ¤ u 0 in Ω. (1.2)
Equation (1.1) refers to the conservation of the momentum and (1.2) to the incompressibility constraint, ensuring that the velocity field conserves mass. Here we assume a constant and unitary mass density. The parameter ν ¡ 0 is the fluid viscosity and f is the volumetric forcing term. ¡ν∆ u is the viscous term and p u ¤ ∇q u is the convection term. The choice χ 0 corresponds to the Stokes equations whereas the choice χ 1 to the Navier-Stokes equations. Boundary conditions such as Dirichlet boundary conditions are enforced on fΩ. The pressure is uniquely defined by enforcing ³ Ω p 0. To manage the nonlinearity of the Navier-Stokes equation in the convection term, we introduce Picard's iteration to obtain the following linearized Navier-Stokes equation (also known as Oseen problem) such that ¡ν∆ u pkq p u pk¡1q ¤ ∇q u pkq ∇p pkq f in Ω, (

∇ ¤ u pkq 0 in Ω, (1.4) for each iteration k, starting from an arbitrary initial guess p u p0q , p p0q q.

Discretizing equations (1.1) and (1.2) is treated intensively in the literature. Depending on the choice of the velocity-pressure coupling (segregated or coupled), the definition and location of the degrees of freedom (DoF), the resulting linear system(s) can have quite different structure and different features. In what follows, we consider the Compatible Discrete Operator (CDO) schemes introduced in [START_REF] Bonelle | Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes[END_REF] for the spatial discretization. CDO schemes belong to a class of space discretization schemes called mimetic, structurepreserving or compatible. These schemes have been inspired by the seminal works of Bossavit [START_REF] Bossavit | On the geometry of electromagnetism[END_REF] and of Hyman & Scovel [START_REF] Hyman | Deriving mimetic difference approximations to differential operators using algebraic topology[END_REF]. They have shed a new light on the way to devise the discretization of partial differential equations (PDE) thanks to some concepts of differential geometry and algebraic topology. During the last two decades, several other discretization schemes belonging to this latter class have emerged, e.g., the Discrete Exterior Calculus (DEC) schemes [START_REF] Desbrun | Discrete Exterior Calculus[END_REF], the Discrete Geometric Approach (DGA) [START_REF] Codecasa | A new set of basis functions for the discrete geometric approach[END_REF], the Mimetic Spectral Element method [START_REF] Palha | Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms[END_REF], the Mimetic Finite Difference schemes [START_REF] Brezzi | Convergence of the Mimetic Finite Difference method for diffusion problems on polyhedral meshes[END_REF], the Hybrid Mixed Mimetic (HHM) framework [START_REF] Droniou | A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods[END_REF] or the Finite Element Exterior Calculus (FEEC) schemes [START_REF] Arnold | Finite element exterior calculus: from Hodge theory to numerical stability[END_REF]. More recently, extensions to higher order discretizations have been devised in Virtual Element Methods (VEM) [START_REF] Beirão Da Veiga | Basic principles of Virtual Element Methods[END_REF], Hybrid High Order (HHO) schemes [START_REF] Di Pietro | An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators[END_REF] or the Discrete De Rham framework [START_REF] Di Pietro | An Arbitrary-Order Discrete de Rham Complex on Polyhedral Meshes: Exactness, PoincaréInequalities, and Consistency[END_REF].

In this paper, we focus on CDO face-based schemes with a full velocity/pressure coupling. As explained in [START_REF] Bonelle | Compatible discrete operator schemes for the steady incompressible Stokes and Navier-Stokes equations[END_REF], this choice leads to a low-order approximation of the Navier-Stokes equations which is robust on a wide range of meshes: from Cartesian meshes to polyhedral, non-matching and/or distorted meshes. The CDO face-based discretization is a stable method (cf. Section 2). The resulting linear system is a saddle-point problem formulated as Ax b, where (1.5)

Here, A R n¢n , B R m¢n , O R m¢m is the null matrix, u R n , f R n , p R m and g R m for n ¥ m. The blocks A, B T , B and O are commonly referred to as the (1,1)-, (1,2)-, (2,1)-and (2,2)blocks, respectively. In the case of the Stokes equations, A is a symmetric positive definite (SPD) matrix corresponding to the viscous (diffusion) term, while B is associated with the divergence operator for the velocity field and B T with the pressure gradient operator. In the case of the (linearized) Navier-Stokes equations, A is a non-symmetric matrix due to the addition of a convective term to the viscous term. Different types of saddle-point problems occur in many applications of applied mathematics and engineering. To solve the corresponding linear systems, numerous techniques have been proposed and developed during the previous decades; please refer to the comprehensive introduction of Benzi, Golub and Liesen [START_REF] Benzi | Numerical solution of saddle point problems[END_REF] on the resolution of saddle-point problems. In what follows, one splits these techniques to solve (1.5) into two categories: segregated techniques working iteratively on a subset of blocks and monolithic techniques working on the full system (all blocks at once). For these two categories, linear systems have to be solved either with a direct method or an iterative method.

Direct methods (parallel multi-frontal algorithms) available in MUMPS [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF] are our choice of direct solver in this work. Direct methods are robust with respect to the properties of the linear system (symmetry and conditioning for instance) but their computational cost in terms of CPU and mainly memory usage can become prohibitive on large scale systems.

Krylov subspace methods [START_REF] Saad | Iterative methods for sparse linear systems[END_REF] are our choice of iterative methods: for instance, GMRES [START_REF] Saad | GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[END_REF] on nonsymmetric systems and CG [START_REF] Hestenes | Methods of conjugate gradients for solving linear systems[END_REF] on symmetric systems. Krylov subspace methods can very competitive solvers when combined with efficient preconditioning techniques. To employ variable preconditioning, i.e., the preconditioner can be modify at each iteration (e.g. inner-outer Krylov methods), flexible variants of those methods have been developed such as FGMRES [START_REF] Saad | A flexible inner-outer preconditioned GMRES algorithm[END_REF], GCR [START_REF] Eisenstat | Variational iterative methods for nonsymmetric systems of linear equations[END_REF][START_REF] Notay | An aggregation-based algebraic multigrid method[END_REF] or FCG [START_REF] Notay | Flexible conjugate gradients[END_REF]. For more details for non-symmetric problem solvers, we refer to [START_REF] Farahbakhsh | Krylov Subspace Methods with Application in Incompressible Fluid Flow Solvers[END_REF][START_REF] Meurant | Krylov Methods for Nonsymmetric Linear Systems: From Theory to Computations[END_REF] and the references therein. The efficiency of the iterative solver relies mainly on the choice of the preconditioner. In this paper, one considers multilevel preconditioning technique based on algebraic multigrid (AMG) methods. These methods have been proven to work efficiently on large scale linear systems stemming from unstructured grids without needing geometric grid information; see [START_REF] Ahmed | An assessment of some solvers for saddle point problems emerging from the incompressible Navier-Stokes equations[END_REF] for a comparison of multigrid preconditioners. The main ingredients composing the design of AMG methods are the choice of the cycle (V for instance), that of the smoother (a symmetric Gauss-Seidel for instance) and the coarsening algorithm. There are two main classes of coarsening strategies: independent-set based AMG, such as classical AMG [START_REF] Brandt | Algebraic multigrid (AMG) for sparse matrix equations[END_REF][START_REF] Brandt | Algebraic multigrid theory: The symmetric case[END_REF][START_REF] Ruge | Algebraic multigrid[END_REF][START_REF] Stüben | A review of algebraic multigrid[END_REF] and aggregation-based AMG, such as smoothed aggregation AMG [START_REF] Vaněk | Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems[END_REF] and pairwise aggregation AMG [START_REF] Notay | An aggregation-based algebraic multigrid method[END_REF][START_REF] Notay | Aggregation-based algebraic multigrid for convection-diffusion equations[END_REF]. Please refer to [START_REF] Xu | Algebraic multigrid methods[END_REF] for more references and details about AMG methods. More recently, Notay [START_REF] Notay | Algebraic multigrid for Stokes equations[END_REF] then Bacq and Notay [START_REF] Bacq | A new semialgebraic two-grid method for Oseen problems[END_REF] investigated aggregation-based AMG for the Stokes problems and (linearized) Navier-Stokes problems, respectively, including a two-grid analysis.

Regarding segregated techniques, stationary iterations and Uzawa-like algorithms [START_REF] Arrow | Studies in Linear and Nonlinear Programming[END_REF][START_REF] Benzi | Numerical solution of saddle point problems[END_REF] and its variant as the Augmented-Lagrangian Uzawa (ALU) algorithm [START_REF] Fortin | Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value problems[END_REF] are a first possibility. More recently, Golub-Kahan Bidiagonalization (GKB) algorithm [START_REF] Arioli | Generalized Golub-Kahan Bidiagonalization and Stopping Criteria[END_REF] have been introduced to solve symmetric saddle-point systems. An algebraic splitting method based on the Algebraic Chorin Temam (ACT) splitting has also been recently developed in [START_REF] Rebholz | Analysis of Algebraic Chorin Temam splitting for incompressible NSE and comparison to Yosida methods[END_REF].

Regarding monolithic techniques, excepted for a direct method applied to the full system, other techniques differs on the way to define an efficient preconditioner to a Krylov subspace method. ILU type preconditioning or null space methods [START_REF] Benzi | Numerical solution of saddle point problems[END_REF] are possible choices. An approximated block LU factorization has also been introduced in [START_REF] Elman | Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics[END_REF]. More generally, block preconditioning are among the most explored techniques of this category. In this case, the approximation of the Schur complement [START_REF] Ur Rehman | On iterative methods for the incompressible Stokes problem[END_REF] (in our case, equal to ¡BA ¡1 B T) is often required. In this situation, the quality of this approximation is a key ingredient to get an efficient solver. More specifically in the context of the incompressible Navier-Stokes problems Semi-Impicit Pressure Linked Equation (SIMPLE) type preconditioning [START_REF] Segal | Preconditioners for incompressible Navier-Stokes solvers[END_REF] have been investigated. Other approaches, such as augmented Lagrangian preconditioning, which is applicable for high Reynolds number [START_REF] Benzi | Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations[END_REF][START_REF] Farrell | An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier-Stokes Equations at High Reynolds Number[END_REF] cases, and a vector penalty projection method [START_REF] Angot | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] are other techniques of interest. Additionally, an algebraic transformation of the saddle-point system relying on a change of variables has been devised in [START_REF] Notay | Algebraic multigrid for Stokes equations[END_REF] in the context of the Stokes problem. This transformation allows one to use multigrid methods on the (monolithic) transformed system.

Our main contribution is to present a first comparative study of algorithms used to solve saddle-point systems that arise from the CDO discretization of the Stokes and Navier-Stokes equations. We focus on three algorithms: two segregated techniques, the Augmented-Lagrangian Uzawa (ALU) algorithm [START_REF] Fortin | Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value problems[END_REF] and the Golub-Kahan Bidiagonalization (GKB) algorithm [START_REF] Arioli | Generalized Golub-Kahan Bidiagonalization and Stopping Criteria[END_REF] and, one monolithic technique, the Notay's algebraic transformation [START_REF] Notay | Algebraic multigrid for Stokes equations[END_REF]. To our knowledge, this is the first time that the GKB algorithm is used to solve the Stokes problem and one considers the Notay's algebraic transformation not only in the context of the Stokes problem but also in the context of the Navier-Stokes problem. Additionally, several Krylov solvers preconditioned with an AMG are compared either on the resolution of the (1,1)-block or on the resolution of the transformed saddle-point problem. These comparative studies are performed on the key ingredients that underpin the definition of an AMG, such as the type of cycle, the type of smoothers, and the coarsening strategy. Specifically, we consider an in-house K-cycle algorithm based on Notay's work [START_REF] Notay | Recursive Krylov-based multigrid cycles[END_REF][START_REF] Notay | An aggregation-based algebraic multigrid method[END_REF], BoomerAMG from the HYPRE library [START_REF]hypre: High performance preconditioners[END_REF][START_REF] Falgout | hypre: A library of high performance preconditioners[END_REF], and GAMG/HMG from the PETSc library [START_REF] Balay | PETSc Web page[END_REF].

The remainder of the paper is structured as follows. Following the introduction, we describe the main features and ingredients of the CDO face-based discretization in Section 2, along with the resulting saddlepoint problem. In Sections 3 and 4, we provide detailed explanations of the different algorithms used in our comparative studies, as well as the various strategies and configurations of the multilevel algorithms used as a preconditioner for a Krylov solver. Numerical experiments to compare their numerical performance are reported in Section 5. At the end, conclusion and prospect for future improvements are presented in Section 6. We note that all the algorithms and discretizations described in this paper are freely available in the latest version of code saturne1 .

The Compatible Discrete Operator (CDO) framework

The discretization of the Stokes and Navier-Stokes equations under consideration rely on the CDO framework, as developed during Bonelle's PhD [START_REF] Bonelle | Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations[END_REF][START_REF] Bonelle | Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes[END_REF]. It encompasses several discretizations according to the location of the degrees of freedom (DoF): vertex-based, edge-based, face-based and cell-based schemes.

In this work, we focus on the CDO face-based schemes for the discretization of the steady Stokes and Navier-Stokes equations. The velocity DoFs are hybrid in the sense that they are located in the cells and at the faces (see Figure 1; Left part). They are defined as the mean-value of the velocity vector-field in a cell and on a face for each component. The main ingredients underpinning the discretization (the velocity gradient reconstruction operator and the velocity divergence operator) are recalled and we refer to [START_REF] Bonelle | Compatible discrete operator schemes for the steady incompressible Stokes and Navier-Stokes equations[END_REF][START_REF] Milani | Compatible Discrete Operator schemes for the unsteady, incompressible Navier-Stokes equations[END_REF] for more details. The resulting CDO face-based scheme is analysed in [START_REF] Milani | Compatible Discrete Operator schemes for the unsteady, incompressible Navier-Stokes equations[END_REF] and references therein (stability, consistency, a priori error estimates. . .). In particular, the stability results imply that A, defined in (1.5), is invertible. Namely, the solvability conditions [START_REF] Benzi | Numerical solution of saddle point problems[END_REF]Theorem 3.4] kerpHq kerpBq t0u and kerpB T q t0u,

(2.1)
where H is the symmetric part of A are fulfilled since A is non-singular and B is a full rank operator (LBB inf-sup condition).

Notation. Let C (resp. F) be the set of the mesh cells (resp. mesh faces). The number of elements in a set X is denoted by #X (e.g. #C is the number of mesh cells). The set of faces associated to a cell c C is denoted by F c . The set of faces is split into two subsets: the set of boundary faces F f : tf F |f fΩu and the set of the interior faces F ¥ : F zF f . For a face f , |f| corresponds to its surface and x f to its barycenter. One chooses an arbitrary orientation n f to each face and one denotes n f,c its outward normal such that n f ι f,c n f with ι f,c ¨1 according to the arbitrary choice. For a cell c, |c| and x c denote its volume and barycenter, respectively. For c C, an element u c U pcq is such that u c : pp u f q f Fc , u c q R dp#Fc 1q and p c Ppcq is simply a constant value inside the cell c. U pΩq denotes the global space of velocity DoFs and PpΩq the global space of pressure DoFs. These spaces are defined by

U pΩq : £ ¡ f F P d 0 pfq ¢ £ ¡ cC P d 0 pcq
and PpΩq :

¡ cC P 0 pcq. An element u U pΩq is such that u : pp u f q f F , p u c q cC q R dp#F #Cq . An element p PpΩq is such that p : pp c q cC R #C
. The space of pressure DoFs is denoted by P ¦ pΩq when a zero mean-value is prescribed on the pressure DoFs. The space of velocity DoFs is denoted by U ¥ pΩq when homogeneous Dirichlet boundary conditions are enforced on fΩ. For the sake of clarity, we only focus on this kind of boundary conditions. These two spaces are defined as follows: Main operators. The two main operators used to discretize the Stokes problem (1.1)-(1.2) are the velocity gradient reconstruction operator and the velocity divergence operator. The pressure gradient is simply obtained as the adjoint operator of the velocity divergence. For a cell c C, the local reconstruction operator for the velocity gradient is denoted by G c and is defined by a piecewise constant tensor in each pyramid p f,c associated to a face f F c (see Figure 1). Let P Fc : tp f,c u f Fc be the set of all pyramids in the cell c.

P ¦ pΩq : tp PpΩq | çC p c |c| 0u and U ¥ pΩq tu U pΩq | u f 0 df F f u. • e × • p e,c × f • • • e × × • 5 p f,c • • • e × • • v × × × • × f • • • e × × •
G c : U pcq Þ Ñ P d¢d 0 pP Fc q s.t. G c pu c q| p f,c G 0,c pu c q η |f| |p f,c | pp u f ¡ u c q ¡ G 0,c pu c qp x f ¡ x c qq n f,c
where η ¡ 0 is a scaling coefficient related to the stability of the reconstruction. Depending on the value of this coefficient, one can recover the Generalization of the Crouzeix-Raviart framework [START_REF] Di Pietro | An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and stokes flow[END_REF] with η 1, the Discrete Geometric Approach [START_REF] Codecasa | A new set of basis functions for the discrete geometric approach[END_REF] with η 1{d or the Hybrid Finite Volume method [START_REF] Droniou | A unified approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume methods[END_REF] with η 1{ c d.

G 0,c pu c q is a piecewise constant tensor in the cell c corresponding to the P 0 -consistent gradient reconstruction defined as

G 0,c : U pcq Þ Ñ P d¢d 0 pcq s.t. G 0,c pu c q : 1 |c| çC |f|p u f ¡ u c q n f,c . (2.2)
The global velocity gradient reconstruction operator is simply defined by collecting the local velocity gradient reconstruction operators. The definition of the velocity divergence relies on the identity ∇ ¤p uq tracep∇ uq.

For each cell c C, the local velocity divergence operator D c is defined as

D c : U pcq Þ Ñ Ppcq s.t. D c pu c q : 1 |c| çC |f| u f ¤ n f,c . (2.3)
In the case of the Navier-Stokes equations, one also introduces a convection operator, see [START_REF] Milani | Compatible Discrete Operator schemes for the unsteady, incompressible Navier-Stokes equations[END_REF] for more details.

Weak formulation of the discrete Stokes problem. The discrete weak formulation for the Stokes problem stated in (1.1)-(1.2) with χ 0 relies on the two previous operators. With homogeneous Dirichlet boundary conditions on the velocity field, this yields: find pu, pq U ¥ pΩq ¢ P ¦ pΩq such that dw U ¥ pΩq and dq P ¦ pΩq, where Âpcq is a square matrix of size dp#F c 1q associated to ³ c νG c pu c q : G c pw c q and Bpcq is a rectangular matrix of size d ¢ dp#F c 1q associated to ³ c D c pu c q q c . Looking at (2.6) by splitting the contribution stemming from the face and cell DoFs, we end up with:

çC » c νG c pu c q : G c pw c q¡ çC » c D c pw c q p c çC » c f ¤ w c (2.4) ¡ çC » c D c pu c q q c 0. (2
Âc : ! ÂF F pcq A F C pcq A CF pcq A CC pcq B T F pcq 0 B F pcq 0 0 () and bc : ! f F pcq f C pcq gpcq () (2.7)
where the block A CC pcq is a diagonal square matrix of size d. Using a static condensation technique [START_REF] Brezzi | Mixed and Hybrid Finite Element Methods[END_REF] allows one to reduce the size of the local system as follows:

A c : A c B T F pcq B F pcq 0 & and b c : f pcq gpcq & (2.8)
where the cell-wise velocity block

A c : ÂF F pcq ¡ A F C pcq ¤ A ¡1 CC pcq ¤ A CF pcq is a square matrix of size d#F c and f pcq : f F pcq ¡ A F C pcq ¤ A ¡1
CC pcqf C pcq. The resulting system (1.5) with n d#F and m #C stems from the cell-wise assembly process of the local systems detailed in (2.8).

Some strategies to solve saddle-point problems

Here we introduce three algorithms for solving saddle-point problems obtained in stable discretizations of the Stokes or Navier-Stokes equations. In general, a direct solver is a robust and precise option to solve the system (1.5), especially when the (1,1)-block is non-symmetric and ill-conditioned. However, when the systems become too large or less sparse as in typical 3D problems, then a direct solver is no longer applicable. For the special case of the Stokes problem, i.e. χ 0 in (1.1)-(1.2), the system (1.5) is symmetric.

We therefore first introduce the Craig's variant of the Golub-Kahan bidiagonalization (GKB) for symmetric saddle-point systems. It shows a good performance in terms of iteration count and solution time, however, it is only applicable for symmetric matrices and thus its usage in code saturne is limited. As explained earlier, we solve the Navier-Stokes problem with Picard (fixed-point) iterations, where each iteration corresponds to an Oseen problem (1.3)- (1.4). The saddle-point matrix is non-symmetric due to the presence of the advective field defined as u pk¡1q . The second algorithm that we introduce is the Augmented Lagrangian Uzawa (ALU) method suited for symmetric or non-symmetric indefinite matrices. In the practical cases of this paper and with some well-chosen parameter, it solves the problem in an acceptably small number of iterations. As a third alternative, we use an algorithm that we call Notay's algebraic transformation. It can be applied to symmetric or non-symmetric problems and the obtained transformed matrices can be solved with an efficient AMG solver or with a Krylov subspace method preconditioned with an AMG.

Golub-Kahan bidiagonalization

We briefly summarize the generalized GKB method that has been introduced in [START_REF] Arioli | Generalized Golub-Kahan Bidiagonalization and Stopping Criteria[END_REF]. The algorithm solves symmetric saddle-point systems, which implies that the GKB method can only be applied to the Stokes equations in our context. As a first step, we need to transform the saddle-point system to obtain a zero vector in the upper part of the right-hand side vector. We furthermore use a common regularization technique [START_REF] Golub | On solving block-structured indefinite linear systems[END_REF], known as the augmented Lagrangian approach. Let therefore γ ¥ 0 be a scaling factor and W R m¢m be an SPD matrix. By recalling the solvability condition (2.1), we can replace (1.5) by the

equivalent augmented system A γ x ¦ γ b ¦ γ with A γ A γ B T B O & , x ¦ γ u ¦ γ p & , b ¦ γ 0 g ¦ γ & , (3.1)
where

A γ A γB T W ¡1 B, u ¦ γ u ¡ A ¡1 γ f and g ¦ γ g ¡ BA ¡1
γ f . Then the GKB method follows as:

Find V R n¢n , Q R m¢m and D R n¢m such that 6 9 9 8 9 9 7 B T Q A γ V D O & , V T A γ V I n , BV W Q D T O $, Q T W Q I m , (3.2)
with D being an upper bidiagonal matrix

D " " " " " " " " " ! α 1 β 1 0 ¤ ¤ ¤ 0 0 α 2 β 2 ¤ ¤ ¤ 0 0 ¤ ¤ ¤ 0 α n¡1 β n¡1 0 ¤ ¤ ¤ 0 0 α n (0 0 0 0 0 0 0 0 0)
, with entries α i and β i computed successively as given in Algorithm 1. By multiplying the augmented system

A γ x ¦ γ b ¦
γ with the block-diagonal matrix with diagonal elements V T and Q T from the left, and using the change of variables u ¦ γ V y and p Qz, we obtain with (3.2)

I n D D T O & y z & 0 Q T g ¦ γ & . (3.3)
Hence, once we derive V and Q, we can also get the solution of the augmented system by solving (3.3). Craig's variant algorithm [37, Algorithm 3.1] used to solve the augmented system is presented in Algorithm 1.

In each iteration of the algorithm, we compute column by column the matrices V and Q and obtain the next update of the solution u ¦ γ (and thus u) and p from the system (3.3). This algorithm is a three-term recurrence, hence it is not necessary to store all the basis vectors of V and Q, but only the previous ones are needed. Please note that in each Golub-Kahan iteration, we have to solve a linear system defined by the matrix A γ . We call this solution step the inner iteration. Depending on the size of the system, a direct solver or another iterative solver may be applied.

In Algorithm 1, the stopping criterion check() is yet undefined. In the following we will use a lower bound estimate of the energy error as in [START_REF] Arioli | Generalized Golub-Kahan Bidiagonalization and Stopping Criteria[END_REF][START_REF] Kruse | Application of an iterative Golub-Kahan algorithm to structural mechanics problems with multi-point constraints[END_REF]. The A γ orthogonality of V implies

e pkq 2 Aγ n jk 1 ζ 2 j ¡ ξ 2 k,d : k d 1 jk 1 ζ 2 j ,
with e pkq u ¦ γ ¡ u pkq Algorithm 1: Craig's variant algorithm

Data: A γ , B, W , b ¦ γ , maxit Result: u ¦ γ , p β 1 b ¦ γ W ¡1; q 1 W ¡1 b ¦ γ {β 1 ; r A ¡1 γ B T q 1 ; α 1 r Aγ ; v 1 r{α 1 ; ζ 1 β 1 {α 1 ; d 1 q 1 {α 1 ; u p1q γ ζ 1 v 1 ; p p1q ¡ζ 1 d 1 ; k 0; convergence f alse; while convergence f alse & k maxit do k k 1; s W ¡1 pBv k ¡ α k W q k q; β k 1 s W ; q k 1 s{β k 1 ; r A ¡1 γ pB T q k 1 ¡ β k 1 A γ v k q; α k 1 r Aγ ; v k 1 r{α k 1 ; ζ k 1 ¡ β k 1 α k 1 ζ k ; d k 1 pq k 1 ¡ β k 1 d k q{α k 1 ; u pk 1q γ u pkq γ ζ k 1 v k 1 ; p pk 1q p pkq ¡ ζ k 1 d k 1 ; convergence Ð check() end u ¦ γ Ð u pk 1q γ ; p Ð p pk 1q ;
return We set d 5 as default in our experiments. For more details on bounds of e pkq 2 Aγ , we refer to [START_REF] Arioli | Generalized Golub-Kahan Bidiagonalization and Stopping Criteria[END_REF][START_REF] Kruse | Application of an iterative Golub-Kahan algorithm to structural mechanics problems with multi-point constraints[END_REF]. We will conclude with a remark about the choice of the matrix W . The matrix W can generally be any SPD matrix, and it can play two important roles. In the first case, we can relax the condition on the definiteness of A, such that it may only be symmetric positive semi-definite. With (2.1), the (1,1)-block A γ is then SPD and the GKB algorithm can be applied. If A is however already SPD, this manipulation is not the purpose of the augmentation. The goal is then to obtain a linear system that is easier to solve, which translates into an improvement in convergence. For many matrices, the simple choice of W being the identity is enough [START_REF] Golub | On solving block-structured indefinite linear systems[END_REF]. In [START_REF] Kruse | Application of an iterative Golub-Kahan algorithm to structural mechanics problems with multi-point constraints[END_REF], the authors show that for the augmentation parameter γ being big enough, the algorithm converges in only a few iterations and mesh-independent convergence can be achieved. We emphasize, however, that while the iteration count for the outer Golub-Kahan method decreases, the matrix A γ becomes more and more ill-conditioned. When an inner iterative solver is used, the number of inner iterations thus increases. It is important to find a good balance, and when the (1,1)-block exhibits favorable properties for certain solvers, it might be more efficient in terms of computation time to discard the augmentation. For the Stokes equation, the symmetric (1,1)-block corresponds to the discretization of the Laplace operator, for which efficient multigrid solvers exist. After experimentation, (see, e.g., [START_REF] Kruse | Parallel Performance of an Iterative Solver Based on the Golub-Kahan Bidiagonalization[END_REF][START_REF] Kruse | Parallel solution of saddle point systems with nested iterative solvers based on the Golub-Kahan bidiagonalization[END_REF]) we decided not to use the augmentation of the (1,1)-block in Section 5 and set the parameter γ 0. The transformation to obtain a zero vector in the upper right-hand side is still to be kept by using the matrix A in the transformation.

Augmented Lagrangian Uzawa method

The Augmented Lagrangian-Uzawa (ALU) method is an efficient variant of the classical Uzawa method [START_REF] Arrow | Studies in Linear and Nonlinear Programming[END_REF]. As explained in [START_REF] Benzi | Numerical solution of saddle point problems[END_REF]Section 8.2], it has the same solution as the saddle-point system (1.5). As before, let γ ¥ 0 be a scaling factor for the augmentation term B T W ¡1 B. The ALU method corresponds to the Uzawa method applied to the system A γ x b γ where A γ is defined in (3.1) and b γ rf γ , gs T with f γ f γB T W ¡1 g. In code saturne, an incremental formulation of the ALU method as detailed in Algorithm 2 is considered. The previous discussion about the choice of the matrix W remains also true for ALU. We choose a diagonal matrix with entries equal to the volume of each mesh cell for W . An initial guess on the pressure (resp. velocity) field p 0 (resp. u 0) is needed in this method. It is either a null array in the steady case or the latest known pressure (resp. velocity) field in an unsteady case. The efficiency and convergence of the ALU method relies on the value of the parameter γ. As mentioned in [START_REF] Benzi | Numerical solution of saddle point problems[END_REF], convergence holds for γ p0, 2{ρq where ρ is the largest eigenvalue of the Schur complement ¡BA ¡1 γ B T . A too large value for the parameter γ induces an ill-conditioned system which slows down the convergence of the inner linear system defined by A γ . Once again, a trade-off between the iteration count and the cost of the inner resolution has to be found. In the experiments in Section 5, we choose γ 100.

Algorithm 2: Augmented Lagrangian-Uzawa algorithm (incremental form)

Data: A, B, W , f , g, u 0 , p 0 , γ, , k max Result: u, p

Initialise A γ : A γB T W ¡1 B; f γ : f γB T W ¡1 g and k = 1;
Velocity solve: A γ u p1q f γ ¡ B T p 0 ; δu p1q u p1q ¡ u 0 ; Pressure update: δp p1q : γW ¡1 pBu p1q ¡ gq, p p1q p 0 δp p1q ; while }δu pkq } }δu p1q } & k k max do Solve the velocity increment: A γ δu pk 1q ¡B T δp pkq ; Velocity update: u pk 1q δu pk 1q u pkq ; Pressure update: δp pk 1q : γW ¡1 pBu pk 1q ¡ gq; p pk 1q p pkq δp pk 1q ; k k 1; end u Ð u pkq and p Ð p pkq ; return

Notay's algebraic transformation

The following approach of algebraically transforming the linear system in (1.5) by a change of variables was initially introduced by Y. Notay in [START_REF] Notay | Algebraic multigrid for Stokes equations[END_REF]. To keep our presentation self-contained, we briefly present the main idea. Notay's right-hand side transformation introduces the change of variables

¢ u p ¢ I ¡αD ¡1 A B T O I ¢ ũ p . (3.4)
which, when combined with a change of sign of the divergence constraint, yields the system Ãx b where à : Other transformations, e.g. the two-sided variant introduced in [START_REF] Notay | A new multigrid approach for Stokes problems[END_REF], are not considered in this work since they appear less efficient [START_REF] Notay | Algebraic multigrid for Stokes equations[END_REF].

¢ A pI ¡ αAD ¡1 A qB T ¡B αBD ¡1 A B T
When we consider the vector v of the null space of Ã, we can decompose it with respect to the velocity and the pressure. It follows

Ãv 0 ðñ 4 Av u pI ¡ αAD ¡1 A qB T v p 0 ¡Bv u αBD ¡1 A B T v p 0
,

and since A is invertible, we have v u ¡A ¡1 pI ¡ αAD ¡1 A qB T v p . By substitution of v u into ¡Bv u αBD ¡1 A B T v p 0, we can derive BA ¡1 B T v p 0 so that v T p BA ¡1 B T v p 0 ðñ v p kerpBA ¡1 B T q kerpB T q.
By recalling the fact that the CDO discretization satisfies the solvability conditions (2.1) (e.g. kerpB T q 0), it implies that the kernel of à is trivial, therefore the transformed matrix is invertible.

The (2,2)-block BD ¡1

A B T of (3.5) is the product of a discrete divergence with a discrete gradient which is similar to a discrete Laplacian [START_REF] Notay | A new multigrid approach for Stokes problems[END_REF]. If we replace D ¡1

A with A ¡1 , so that the (2,2)-block is the exact Schur complement of A, Ã becomes a lower triangular block system which can be easily solved, i.e. we have

à ¢ A O ¡B BA ¡1 B T .
However, the computation of A ¡1 in a large problem is often too expensive so that we may want to use an approximation of the Schur complement, instead. Furthermore, we can consider alternative ways of approximating the Schur complement. For instance, we can apply a partial incomplete LU (ILU) factorization to A .

A

Algebraic multigrid preconditioning for Krylov solvers

Multigrid methods have shown to be efficient preconditioners in different settings, in particular for scalar diffusion and convection-diffusion problems [START_REF] Brandt | Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics[END_REF][START_REF] Briggs | A multigrid tutorial[END_REF][START_REF] Trottenberg | Multigrid[END_REF][START_REF] Notay | An aggregation-based algebraic multigrid method[END_REF][START_REF] Stüben | A review of algebraic multigrid[END_REF]. In our computations, they will be applied either to the coupled velocity-pressure system in the case of monolithic solvers or to some sub-systems in the ALU and GKB methods. As code saturne works with unstructured meshes of arbitrary polyhedra, we concentrate on algebraic multigrid methods. Furthermore, we limit ourselves to freely available software in line with the open source distribution of code saturne. In our comparison, we have representatives of different AMG approaches: BoomerAMG of the hypre library [START_REF] Falgout | hypre: A library of high performance preconditioners[END_REF][START_REF] Falgout | The design and implementation of hypre, a library of parallel high performance preconditioners[END_REF][START_REF]hypre: High performance preconditioners[END_REF] relies on C/F or Ruge-Stüben coarsening [START_REF] Ruge | Algebraic multigrid[END_REF], GAMG of PETSc [START_REF] Balay | PETSc Web page[END_REF] provides plain and smoothed aggregation schemes the (in-house) K-cycle of code saturne is inspired by the algorithm described in [START_REF] Notay | An aggregation-based algebraic multigrid method[END_REF] and combines therefore multiple passes pairwise aggregation coarsening with Krylov-acceleration on the intermediate levels.

Let us recall that the suboptimal performance of plain aggregation AMG schemes for diffusion operators is well known and documented in the literature [START_REF] Stüben | A review of algebraic multigrid[END_REF]. The K-cycle and the smoothed aggregation approaches were developed to overcome the shortcomings of the plain aggregation scheme, with the K-cycle having the advantage to be applicable to non-symmetric problems.

The methods considered in this article, BoomerAMG, GAMG and HMG, expose a considerable number of options to the user. So, these AMG methods can be extensively tuned. Nevertheless, an exhaustive search of the combinatorial parameter space is beyond the scope of our current work. Their performance on a given system depends on a certain number of parameters, such as the choice of the smoother, the number of smoother iterations, the coarsening strategy (pairwise or N-times pairwise for the aggregration schemes or different aggressive coarsening techniques for the C/F schemes) and the number of levels. While it is easy to handle unstructured meshes, finding an appropriate or even optimal set of coarsening parameters is nontrivial. For example, one has to strike a balance between coarsening factors and computational costs. A too large coarsening factor (which translates into a small number of levels and in the case of plain aggregation AMG in general also implies low operator complexities) tends to increase the number of iterations to solve linear systems while its memory requirement is reduced. On the other hand, a too small coarsening factor requires a larger number of levels to reduce the size of the coarsest system below a given threshold. Most common choices of coarsening factors and complexities of operators are given by 2 ¤ τ ¤ 4 and 1.3 ¤ C ¤ 2, where τ is the coarsening factor and C denotes the operator complexity, defined by on a hierarchy of matrices A , 0 ¤ ¤ L, A 0 being the matrix on the coarsest and A L the matrix on the finest level with n and nnzpA q denoting the number of unknowns and the number of nonzero elements of A on each level, respectively. Table 1 sums up the main characteristics of the AMG methods used in the computations. Following the recent work of Lin, Shadid and Tsuji [START_REF] Lin | Krylov smoothing for fully-coupled AMG preconditioners for VMS resistive MHD[END_REF], we have included Krylov smoothers in our comparison.

τ 1 L L ¸ 1 n n ¡1 and C 1 nnzpA L q L ¸ 0 nnzpA q, K-cycle GAMG BoomerAMG Applied through code saturne PETSc PETSc Type of cycle K-cycle V-cycle V-

Numerical experiments

In this section, we present numerical results for the solution of the saddle-point linear system (1.5) arising from a CDO face-based discretization with the algorithms described previously. We will use the GKB method for the solution of the Stokes equations and ALU for the Navier-Stokes equations and will then compare both of them to Notay's algebraic transformation method.

The test problems were run with the open source CFD software package code saturne, which in addition to in-house implementations of several Krylov solvers and preconditioners, provides interfaces to external solvers, such as MUMPS [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF], Hypre [START_REF] Falgout | hypre: A library of high performance preconditioners[END_REF] and PETSc [START_REF] Balay | PETSc users manual[END_REF] (e.g., please see Appendix A for the usage). In the following experiments, we will, however, call Hypre always through the PETSc interface. As described earlier, multigrid methods are among the most promising methods to solve large-scale systems and they can be used as a solver or preconditioner. In what follows, multigrid methods are always used as preconditioners. Via the interfaces to PETSc and Hypre, we also have the possibility to use the highly efficient Hypre BoomerAMG library, as well as the multigrid frameworks GAMG and HMG as preconditioners. Hypre BoomerAMG follows classical AMG coarsening [START_REF] Ruge | Algebraic multigrid[END_REF][START_REF] Stüben | A review of algebraic multigrid[END_REF] with/without aggressive coarsening, while in GAMG, we use the smoothed aggregation option [START_REF] Vaněk | Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems[END_REF]. HMG is a hybrid version of preconditioning and one of the latest developments in the PETSc preconditioner package. It is able to employ hybrid preconditioning such as Hypre BoomerAMG, GAMG, or other multilevel methods for the construction of coarser level matrices and interpolation. More precisely, it allows us to choose any available PETSc preconditioner as smoother and the coarse solver. For example, in our test cases, we combine the context of Hypre BoomerAMG for coarsening and the context of GAMG for smoothing. We refer to [START_REF] Balay | PETSc users manual[END_REF][START_REF] Kong | A highly parallel multilevel Newton-Krylov-Schwarz method with subspace-based coarsening and partition-based balancing for the multigroup neutron transport equation on three-dimensional unstructured meshes[END_REF] for more details of the usage of HMG. Furthermore, we provide Appendix B for the example of PETSc options to use AMG preconditioning in our numerical experiments. code saturne is not able to perform matrix-matrix multiplications and computations with non-square matrices up to now. When using Notay's algebraic transformation, these operations have to be done in an external environment. For practical reasons, we will then employ the linear solvers given in the PETSc library without the use of the in-house K-cycle multigrid implementation in code saturne.

For the non-symmetric system matrix à of Notay's algebraic transformation, we combine adequate Krylov methods with GAMG or Hypre (BoomerAMG) preconditioners. While we apply coarsening schemes only to A γ in GKB and ALU, the construction of coarser level operators for the whole transformed A will be required for the algebraic transformation. General setting for outer solvers. We compare and discuss combinations of solvers and preconditioners for the three methods GKB, ALU and Notay's algebraic transformation. The choice of settings for the GKB and ALU method with respect to the inner and outer solvers and a symmetric or non-symmetric inner system can be found in Table 2. For the non-symmetric matrix in the algebraic transformation, we use FGMRES. We choose 10 ¡8 as the stopping tolerance and set the maximum number of iterations to 10 000.

As preconditioners for this system, as well as for the inner systems in the ALU and GKB methods, we use algebraic multigrid methods. The setups and different combinations are given in Table 1. We want to emphasize that the choice of parameters, i.e. to define a threshold, for the construction of aggregation or prolongation is a significantly important matter. In particular, in case of GAMG for Stokes systems, this parameter must not be low and to provide relevant coarser levels, we found that C 1.3. Further particular configurations are discussed during the description of the numerical experiments.

Computational setup for the test cases. We finish this section with giving the configurations for the test cases:

- where px, y, zq r0, 1s 3 and f is given to fulfil (1.1). The solution is presented graphically in Figure 2.

For the discretization, we will use two types of meshes. The first one is Cartesian and the second one is tetrahedral. In the abbreviations used in the following, we denote the Cartesian meshes by H and the tetrahedral ones by T . These letters are followed by the number of elements. The resulting numbers of degrees of freedom for the velocity and pressure components are given in Table 3. Since this 3D TGV problem leads to a symmetric matrix, we may use the GKB algorithm. We will compare its performance to Notay's algebraic transformation approach.

Solution by GKB

The GKB algorithm is a segregated method for matrices of type (1.5) with a symmetric (1,1)-block and we need, as explained earlier, an inner iterative solver for the (1,1)-block. Here, we choose a preconditioned flexible conjugate gradient method. In general, we can employ the GKB algorithm via PETSc or directly in code saturne, but in the following experiments we choose the in-house implementation. Since the system of inner iterations is symmetric, we are able to use GAMG with smoothed aggregation. Table 4 illustrates the elapsed times and the numbers of iterations, where each column corresponds to the respective preconditioner of FCG. The numbers of iterations are sufficiently good for those three preconditioners. However, in terms of setup time, the in-house K-cycle aggregation step shows a much better performance than PETSc. To summarise the result of Table 4, we have Setup time: K-cycle Hypre BoomerAMG GAMG Solution time: GAMG K-cycle Hypre BoomerAMG Total time for H32: K-cycle GAMG Hypre BoomerAMG Total time for H64: GAMG K-cycle Hypre BoomerAMG The number of iterations: Hypre BoomerAMG GAMG K-cycle These results show that a higher setup time might be recovered by a faster solution process, and also that a low number of iterations might not necessarily mean that the method performs best in practice. We furthermore see that the performance of the solvers is mesh-independent. The winner in the total time to solution is GAMG for H64, whereas for H32, it is the in-house K-cycle (although, of course, not by far). Remark. In our numerical experiments, the GKB algorithm is used without augmentation, i.e., we set γ 0. On the other hand, the ALU algorithm requires a rather large augmentation parameter to show a good performance even in the symmetric case. The downside is the resulting, more ill-conditioned matrix A γ in the inner solution step. As pointed out in [START_REF] Milani | Compatible Discrete Operator schemes for the unsteady, incompressible Navier-Stokes equations[END_REF], due to its favorable performance caused mainly by an efficient inner solution, the GKB algorithm is preferred to the ALU algorithm in Stokes problems. Therefore, we do not provide any further discussion for the ALU method in the symmetric case.

Solution by algebraic transformation

As second approach, we apply Notay's algebraic transformation and solve the resulting system with FGMRES preconditioned by multigrid. For BoomerAMG, we keep the settings of Table 1, whereas we follow the official PETSc manual (please see [START_REF] Balay | PETSc users manual[END_REF]Section 4.4.5]) to choose settings of GAMG that render the solver more adapted to non-symmetric problems (e.g., see Appendix B.2). Results are presented in Table 5. Although Hypre requires a higher time for setup, its overall solution time is smaller than the one of GAMG. This effect is especially visible for the mesh H64. One explanation is that although GAMG does work in solving non-symmetric problems, it is not a good choice, since it is basically designed for the use of smoothed aggregation which assumes symmetry. This has also been stated in the PETSc manual and user meeting. Hypre performs better for non-symmetric problems, as this algorithm does not require symmetry as much as smoothed aggregation. For comparing these results to the GKB method, the measure of numbers of iterations can not be used, since the transformed matrix is of another size than A γ and thus the cost of one iteration is different. We thus compare the solution times directly. Although it takes more time on setup, the algebraic transformation with Hypre leads to a smaller total solution time than GKB. However, the use of GAMG shows a poor performance and GKB is better in this case. We have carried out further test cases to study the influence of different cycle-types for the multigrid method. As seen in Table 6, using multigrid cycles other than V(1,1) in BoomerAMG does not show any improvement in terms of iteration numbers and solution times, since the interpolation operator of BoomerAMG is good enough. We observe that increasing the number of relaxation steps in GAMG reduces iteration counts, see Table 6. For the non-symmetric system under consideration, BoomerAMG outperforms GAMG. We have empirically tried to figure out optimal settings for the usage of GAMG, but no choice worked satisfactorily. Thus, hereafter, only Hypre BoomerAMG is used in combination with symmetric Gauss-Seidel smoothing for the preconditioning step in the algebraic transformation strategy.

Strategy

In a second trial, we solved the system arising in the change of variable approach on the tetrahedral meshes T5 and T6 with Hyper BoomerAMG. Table 7 indicates that the algebraic transformation of the Iterative solver matrix works also well for tetrahedral meshes. While increasing the number of smoothing steps does not improve iteration numbers on the Cartesian grid (Table 6), more pre-and post-smoothing steps do reduce the number of iterations for tetrahedral meshes, see Table 7, since the tetrahedral meshes are more complex. In terms of the elapsed time, V(3,3) is however slower than V(1,1). For the sake of simplicity, choosing stationary, non-Krylov smoothers such as Gauss-Seidel methods for relaxing up and down is most reasonable. In fact, Krylov methods do not have good smoothing properties, since they target the whole spectrum to minimise residuals or some norms of errors. Also, Krylov smoothers have a more expensive computational cost from more dot products. Nevertheless, Krylov smoothers are sometimes beneficial, in particular for some difficult problems, see e.g. [START_REF] Lin | Krylov smoothing for fully-coupled AMG preconditioners for VMS resistive MHD[END_REF]. Inspired by it, we investigate Krylov smoothers for improving performance.

FGMRES Preconditioner Hypre BoomerAMG GAMG Multigrid cycle V(1,1) V(2,2) V(3,3) V(1,1) V(2,2) V(3,
Iterative solver FGMRES Mesh T5 T6 Multigrid cycle V(1,1) V(3,3) V(1,1) V(3,
In the following, we mainly employ FGMRES preconditioned by AMG (here, GAMG) as a linear solver as well as a smoother for the non-symmetric problems. However, when being used as a smoother, a V(1,1)cycle is insufficient, since it executes only one smoothing step, i.e., one GMRES iteration. Hence, we allow up to 10 smoothing iterations. At the same time, we impose a stopping tolerance of τ 10 ¡3 on GMRES.

We then set GMRES [START_REF] Beirão Da Veiga | Basic principles of Virtual Element Methods[END_REF] as our smoother with an inner tolerance 10 ¡3 , which stops when either one or the other criterion is reached. We may now think in a nested way and precondition the smoother itself, e.g., the Gauss-Seidel method as preconditioner for the smoother GMRES [START_REF] Beirão Da Veiga | Basic principles of Virtual Element Methods[END_REF]. At the coarsest level, we solve the system with a direct solver. Table 8 shows that Krylov smoothing reduces in general the number of iterations. However, comparing these results to Table 5, the elapsed time is greater than for Gauss-Seidel smoothing. Furthermore, we see a dependence of the solver performances on the meshes, i.e., the iteration numbers are unstable. Although Krylov smoothing cannot decrease the elapsed time in GAMG, it may lead to smaller iteration numbers for combinations of meshes and solvers. Encouraged by this result, we also tried a Krylov smoother in Hypre BoomerAMG by using the HMG context in PETSc. Originally, Hypre only provides simple smoothers such as Jacobi or Gauss-Seidel, but the HMG framework allows to relax up and down with Krylov methods as in GAMG. Hence, following the previous experiments, we employ GMRES and HMG preconditioning with the classical AMG coarsening strategy considering different choices of smoothers. In Table 9, it is shown that HMG with symmetric Gauss-Seidel smoothing shows similar numerical results as Hypre BoomerAMG. On the other hand, using Krylov smoothers sometimes reduces the number of iterations, whereas more time is spent in the solver. Similarly, as for Krylov smoothing in GAMG, the performances depend on the mesh and the experiments failed for fine meshes. Thus, we do not observe any advantage from using HMG with Krylov smoothing in Stokes systems for our particular test cases.

Mesh

Mesh

Conclusions for this test case

Our study compared the GKB and algebraic transformation methods in the Stokes test case. We found that AMG preconditioned GMRES solvers were robust in solving the inner system of the GKB method. The three distinct coarsening strategies yielded comparable results and are independent of mesh sizes. In the algebraic transformation , only the classical AMG via Hypre BoomerAMG showed robustness. We attempted to improve the numerical performance of GAMG by employing Krylov smoothers, but this approach required much more computational cost and the results depended on the meshes. Furthermore, with the proper use of AMG preconditioning, the algebraic transformation approach was slightly faster than the GKB method. Therefore, we recommend using the algebraic transformation with BoomerAMG employing the symmetric Gauss-Seidel smoother in practice, as it is a monolithic method that yields better numerical performance.

Navier-Stokes problem (2D Burggraf problem)

As second test case, we consider the steady incompressible Navier-Stokes problem given by equations (1.1) and (1.2) with χ 1 and ν 1{Re. To resolve the non-linearity, we apply Picard's iteration and solve the Oseen's problem (1.3)- (1.4). As for the Stokes problem, we are interested in solving the saddle-point systems arising from a CDO discretization scheme. Due to the convection terms of the velocity fields, the (1,1)-block becomes non-symmetric. The test problem in the following is a 2D Burggraf flow [START_REF] Burggraf | Analytical and numerical studies of the structure of steady separated flows[END_REF], which is a 2D analytic polynomial solution to the Navier-Stokes equation. The exact solution is given by

u ¢ 16x 2 px 2 ¡ 2x 1qyp2y 2 ¡ 1q ¡16xp2x 2 ¡ 3x 1qy 2 py 2 ¡ 1q , p 8
Re ¢ 24x 3 p0.2x 2 ¡ 0.5x 1{3q 4xp2x 2 ¡ 3x 1qp12y 2 ¡ 2q p24x ¡ 12q y 2 py 2 ¡ 1q ¨ 64 ¢ 0.5 x 2 px 2 ¡ 2x 1q ¨2 24y 3 py 2 ¡ 1q ¡ 2yp12y 2 ¡ 2qp2y 2 ¡ 1q ¡ 2y 3 py 2 ¡ 1qp2y 2 ¡ 1q x 2 px 2 ¡ 2x 1qp12x 2 ¡ 12x 2q ¡ 4x 2 p2x 2 ¡ 3x 1q 2 q ¨.
For more details about the exact solution, we refer to [START_REF] Burggraf | Analytical and numerical studies of the structure of steady separated flows[END_REF][START_REF] Milani | Compatible Discrete Operator schemes for the unsteady, incompressible Navier-Stokes equations[END_REF]. As a default parameter, we assume the Reynolds number to be Re 100. The solution is graphically presented in Figure 3. For the 2D Burggraf model, we only consider the Cartesian meshes H128 and H256. The numbers of degrees of freedom for u and p on these two meshes are given in Table 10. Furthermore we use the stopping criterion

u k ¡ u k¡1 ¤ 10 ¡7 or max k 50.
for the Picard's iteration scheme. Due to the non-symmetry of the (1,1)-block, the GKB method is no longer applicable, but Notay's change of variable approach stays also applicable here. Additionally, we use the ALU method as described in Section 3.2 for comparison.

ALU method

As first test, we use the ALU method with an augmentation parameter γ 100. For the inner solver, we compare the LU factorization of MUMPS with GMRES preconditioned by Hypre BoomerAMG. The results in Table 11 show that with both inner solvers, BoomerAMG or MUMPS, ALU converges in only three iterations and the Picard's iterations need three to five steps. In terms of computation time, the usage of an inner iterative solver is not competitive. Here we see the influence of the paramemer γ. With γ 100, the outer ALU method converges in only 3 iterations, and this for a direct or an iterative inexact solver inside. However the inner matrix A γ becomes ill-conditioned and thus GMRES needs a high number of iterations to converge, also to the required, rather relaxed, tolerance of 10 ¡8 .

Algebraic transformation

As next experiment, we first transform the matrix along Notay's change of variable approach and then solve the resulting matrix either with MUMPS or GMRES preconditioned by BoomerAMG with symmetric Gauss-Seidel smoothing. The results are given in Table 12. Also here, we see that for these medium size 2D Navier-Stokes test cases, the direct solver MUMPS leads to a smaller computation time than GMRES. Compared to ALU, the latter converges faster. This is explained by the size of the matrices to be solved. While in the algebraic transformation approach, the whole system is solved by Mumps, the linear system in the ALU method is only of the size of the velocity block. However, when we use a Krylov iterative solvers in both approaches, then the algebraic transformation wins in terms of computation time. As earlier for the Stokes system, we have carried out numerical simulations using AMG combined with Krylov smoothing. In particular, the smoother consists of GMRES [START_REF] Beirão Da Veiga | Basic principles of Virtual Element Methods[END_REF] with the ILU(0) preconditioner. The results in Table 13 show that comparing the different solver combinations by the number of required iterations might be misleading. While GAMG with Krylov smoothers on the H128 mesh divides the iteration count of BoomerAMG with the simple symmetric Gauss-Seidel smoother by a factor of 5, the total computation time is however about three-times more than the HMG case with symmetric Gauss-Seidel smoothing. On the finer mesh H256, HMG with the Krylov smoother even fail to converge. As for BoomerAMG, HMG on H128 with symmetric Gauss-Seidel smoothing is faster than its counterpart with Krylov smoothing. For both of them, it is interesting to note that the iteration count increases only slightly from H128 to H256. Among these two solvers, HMG with a symmetric Gauss-Seidel smoother has shown the fastest convergence, is however still beaten by the ALU method with MUMPS as inner solver.

Strategy algebraic transformation

Mesh

Reynolds numbers

Lastly, we investigate how the variation of the Reynolds number influences the performance in the algebraic transformation. As the Reynolds number increases, the nonlinear term in the Navier-Stokes equation becomes increasingly important, which makes the system of equations more difficult to solve. This is because the nonlinear term causes the solution to depend on itself, which leads to an iteration cycle that can be difficult to resolve. In particular, the (1,1)-block A is ill-conditioned and dominated by the convective term. Although the Picard iteration can be an effective approach for solving nonlinear systems of equations, linearizing the equation can lead to convergence issues, especially for highly nonlinear problems. Careful attention must be paid to the initial guess and other aspects of the method to ensure convergence to a solution.

Previously, we observed that the ALU method was not well-suited to iterative solvers due to the augmentation parameter yielding the ill-conditioned A γ , while the algebraic transformation worked well with Krylov solvers. To investigate the robustness of AMG preconditioned Krlov solvers, we should consider the algebraic transformation approach in this experiment. We focus on the numerical performance of the algebraic transformation varying with Reynolds numbers. We therefore first transform the system algebraically and apply the best solver combination up to date, i.e. GMRES preconditioned by HMG with symmetric Gauss-Seidel smoothing.

Table 14 indicates that the HMG framework works well for low Reynolds numbers, but the performance deteriorates for higher ones. For Re 10 000, the solution even diverged. Indeed, low Reynolds numbers imply that the velocity block is dominated by the diffusion terms, this means that it has relatively good spectral properties. In contrast, high Reynolds numbers make the transformed matrix difficult to solve with iterative methods. Therefore, it is necessary to find another numerical remedy. This might already begin with exchanging the standard way of Picard iterations with another method, as they might not be sufficiently suitable for numerical simulations of flows with high Reynolds numbers. Hence, another numerical treatment might be needed such as introducing artificial terms, e.g. the augmented Lagrangian formula [START_REF] Farrell | An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier-Stokes Equations at High Reynolds Number[END_REF][START_REF] Benzi | Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations[END_REF]. Moreover, we refer to [START_REF] Benzi | A generalization of the Hermitian and skew-Hermitian splitting iteration[END_REF] and [START_REF] Angot | A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems[END_REF][START_REF] Angot | A new fast method to compute saddle-points in constrained optimization and applications[END_REF] for a rotation form and a vector projection method, respectively.

Mesh

Conclusions

As for the Stokes problem, we could solve the linearized Navier-Stokes operator by AMG preconditioned FGMRES with the algebraic transformation strategy. For the fixed Reynolds number of 100 and the moderatly sized matrices used, the ALU method with an inner direct solver could not been beaten. These results are unlikely to still be valid, once a critical size of the system has been reached, i.e., when it is no longer feasible to apply a direct solver. We then have to use iterative solvers. Encouraged by the found best choice, we also compared its numerical performance for varying Reynolds numbers. It is observed that the numerical performance is similar to the case of Stokes when the Reynolds number is low. However, if a high Reynolds number is imposed, our method shows poor results or fails. Therefore, our recommendation is valid with low Reynolds numbers and further investigation is required for the case of higher ones.

Conclusion and discussion

This paper addressed the steady-state incompressible Stokes and Navier-Stokes problems using CDO face-based discretization schemes. We compared three different numerical approaches to solve saddle-point problems. In the Stokes case, the GKB strategy was found to be robust when using any AMG preconditioned GMRES solver, whereas the algebraic transformation required Hypre BoomerAMG for robustness. For the Navier-Stokes problem, the ALU method showed reasonable performance only with a direct solver due to the ill-conditioned inner systems imposed by the augmented terms. However, the algebraic transformation remained well-suited to AMG preconditioned Krylov solvers for low Reynolds number problems. When good coarsening operators were not available, Krylov smoothers improved convergence, but at the cost of increased computational expenses and varying numerical performance depending on the problem.

For high Reynolds number problems, the AL formula has been commonly used, see [START_REF] Farrell | An Augmented Lagrangian Preconditioner for the 3D Stationary Incompressible Navier-Stokes Equations at High Reynolds Number[END_REF][START_REF] Benzi | Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations[END_REF]. Whereas AL form was implemented with Uzawa method in ALU algorithm, we can consider the change of variable to solve AL formulation. Recall the saddle-point problem in the AL formulation (3.1). After the right-hand transformation (3.5), we can solve the augmented system in a monolithic way. Thus, we want to solve Note that too large γ induces an ill-conditioned system; hence it is essential to find appropriate values, e.g. see [START_REF] Benzi | Numerical solution of saddle point problems[END_REF].

When γ Ñ V or Re Ñ V, the augmented block A γ becomes nearly singular hence simple relaxation schemes such as Gauss-Seidel do not work properly on account of the difficulty in computing the solution components belonging to kerpB T Bq. To resolve this issue, the subspace correction method was proposed [START_REF] Schöberl | Multigrid methods for a parameter dependent problem in primal variables[END_REF][START_REF] Lee | Robust subspace correction methods for nearly singular systems[END_REF]. Moreover, the additive restricted Schwarz (RAS) method [START_REF] Efstathiou | Why restricted additive Schwarz converges faster than additive Schwarz[END_REF] could be concerned as preconditioning.

Also RAS 2-level preconditioning involved Nicolaides subspace corrections [START_REF] Nicolaides | Deflation of conjugate gradients with applications to boundary value problems[END_REF] might be of interest to solve the nearly singular system. Turning back to a choice of linear solvers for the AL (transformed) systems, Krylov smoother could solve high Reynold number problems with γ robustness. For instance, we can introduce GMRES + AMG with RAS preconditioned GMRES smoothing steps. Furthermore, we could employ GMRES as a preconditioner. Then, the iterative solver consists of outer FGMRES, inner FGMRES, AMG preconditioning for inner iterations and symmetric Gauss-Seidel/Krylov smoothers. These combinations of linear solvers will be investigated for future work.

0

 The vector-valued piecewise constant polynomial space in a cell c C (resp. on a face f F) is denoted by P d 0 pcq (resp. P d 0 pfq) with d the dimension of Ω (here d 3). The scalar-valued piecewise constant polynomial space in a cell c C is denoted by P 0 pcq. The local space of velocity DoFs (i.e. associated to a cell c C) is denoted by U pcq and the local space of pressure DoFs by Ppcq such that U pcq : pcq and Ppcq : P 0 pcq.

5 p e,c p f,c 1 Figure 1 :

 511 Figure 1: Left: Example of locations of the velocity and pressure DoFs in a hexahedral cell. Right: Example of a pyramid of basis the face f . The velocity gradient is constant inside this volume.

. 5)

 5 Algebraic viewpoint. Switching to the algebraic viewpoint, the different summands in equations (2.4)-(2.5) correspond to the different blocks of the local saddle-point systems Âc x c bc associated to each cell c C with x c and bc , two arrays restricted to the DoFs associated to a cell. More specifically,

γ 1 ζ 2 j

 12 being the error, ζ j defined in Algorithm 1 and d ¡ 1 an integer. The quantity ξ k,d is a lower bound for the error at step k ¡ d. To obtain a lower bound estimate for e pkq , the algorithm thus needs to run d more iterations. With a stopping tolerance 1, the stopping criterion is then defined as if ξ{ ξ ¤ , then convergencetrue, where ξ k jk¡d and ξ2 k j1 ζ 2 j .

 constant α and D A being the diagonal matrix built from A. Hereafter, we assume α 1.

 to approximate the inverse of A, i.e. using A LU where L and U are lower and upper incomplete factors of A. Hence we can define the (1,2)-and (2,2)-blocks by pI ¡ AU ¡1 L ¡1 qB T and BU ¡1 L ¡1 B T , respectively. For more details of sparse approximations of the Schur complement, we refer to[START_REF] Giraud | Sparse approximations of the Schur complement for parallel algebraic hybrid linear solvers in 3d[END_REF]. Also, we can consider the diagonal matrix of the inverse of A by solving A d 1 for d. Then we have the diagonal matrix D consisting of d and the approximate Schur complement can be defined with the component D rather than D ¡1

 Hardware: Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz, 32GB -The version of code saturne: code saturne 7.1-alpha -The version of PETSc: 3.15.0 -No parallel computing (neither MPI nor openMP), i.e. running sequentially 5.1. Stokes problem (3D TGV problem)The first test case is an adaptation of the Taylor-Green Vortices (TGV) problem with an analytic solution consisting of the product of sine and cosine functions. Its strong solution satisfies the steady Stokes equations, i.e. the equations (1.1) and (1.2) with χ 0 and ν 1. The strong solution is given by u

Figure 2 :

 2 Figure 2: 3D TGV problem: pressure field (left) and velocity field (right)

Figure 3 :

 3 Figure 3: 2D Burggraf flow with Re 100: pressure field (left) and velocity field (right)

Table 1 :

 1 Settings for the algebraic multigrid preconditioners

	cycle

Table 2 :

 2 Settings for the GKB and ALU algorithms

Table 3 :

 3 3D TGV problem: the degrees of freedom with respect to meshes

Table 4 :

 4 3D Stokes: performance of numerical methods for Stokes system with GKB and AMG preconditioned FCG as inner solver.

Table 5 :

 5 3D Stokes: performance of numerical methods for Stokes system with algebraic transformation and AMG preconditioned FGMRES for the transformed block system.

			Algebraic transformation
	Mesh		H32	H64
	Preconditioner	Hypre GAMG	Hypre	GAMG
	Setup time (s)	6.344	4.029	54.707	32.965
	Solution time (s)	12.243 16.589 105.760 315.444
	Total time to solution 18.587 20.618 160.467 348.409
	# iterations	36	64	36	168

Table 6 :

 6 3D Stokes: algebraic transformation with respect to multigrid cycles on H32

Table 7 :

 7 3D Stokes: V(1,1) and V(3,3) on tetrahedral meshes with Hypre BoomerAMG

Table 9 :

 9 3D Stokes: HMG preconditioning FGMRES[START_REF] Vaněk | Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems[END_REF](HMG), Boomer classical coarsening with max it=200 (if # it¥ 200, the test fails)

		Smoother	# it Time (s)
	H32	SGS GMRES+SGS 135 28	13.483 338.316
	H64	SGS GMRES+SGS	29	119.388 Failed
	T6	SGS GMRES+SGS	32	52.344 Failed

Table 10 :

 10 2D Burggraf problem: the degrees of freedom with respect to meshes

Table 11 :

 11 2D Navier-Stokes: ALU (γ 100) at Re 100.

Table 12 :

 12 2D Navier-Stokes: algebraic transformation at Re 100.

	Mesh	H128	H256
	Solver	MUMPS GMRES MUMPS GMRES
	Precond.	-	Hypre	-	Hypre
	Time(s)	13.798	58.235	46.540	304.380
	# Picard It	4	4	3	3
	# It	1	139	1	190

Table 13 :

 13 2D Navier-Stokes: Hypre BoomerAMG, GAMG and HMG in the algebraic transformation with max it =200

Table 14 :

 14 2D Navier-Stokes: GMRES[START_REF] Vaněk | Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems[END_REF](HMG(SGS)) in the algebraic transformation with respect to Re on H128

		Re	# iterations Picard inner total setup Time (s) solve
		1	2	23	46	3.009	5.751
		10	2	25	51	3.021	6.190
	H128	100	4	111	447	6.749	36.720
		1 000	9	403	5 492 23.400 534.129

https://www.code-saturne.org

https://www.code-saturne.org/documentation/7.1/doxygen/src/index.html

https://hypre.readthedocs.io/en/latest/index.html

https://mooseframework.inl.gov/releases/moose/v1.0.0/application_development/hypre.html

Acknowledgement

The authors would like to acknowledge the support from EDF R&D.

Data availability

The data that support the findings of this study are available from the corresponding author, Y. Jang, upon reasonable request. The CFD tool code saturne is freely available and we refer to Appendix and an official document in https://www.code-saturne.org.

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix A. code saturne options

Here, we provide parameter options to use a saddle-point problems solvers and K-cycle AMG in the context of code saturne. Note that GAMG is basically built with the smoothed aggregation scheme so that it is more applicable for symmetric systems. In practice, it is required to symmetrize the graph for non-symmetric systems by turning on -pc gamg sym graph. Moreover, to consider unsmoothed aggregation coarsening, we should set -pc gamg agg nsmooths=0.

With GAMG, it is able to use Krylov smoothers. For example, we can employ the preconditioned GMRES for each smoothing step as following.

Option

Value Result -mg levels ksp type "richardson" Krylov smoothing by GMRES -mg levels pc type "bjacobi" -mg coarse pc type "tfs" -mg levels pc bjacobi blocks "1" -mg levels sub ksp type "gmres" -mg levels sub ksp max it "10" Maximum 10 GMRES smoothing steps -mg levels sub ksp rtol "1e-3"

Set a tolerance of the GMRES smoother to 10 ¡3

-mg levels sub pc type "sor" SGS preconditioning for the GMRES smoother -mg levels sub pc type "ilu" ILU(0) preconditioning for the GMRES smoother -mg levels sub pc factor levels "0"

Appendix B.3. HMG

With using HMG, we can combine the coarsening schemes from Hypre BoomerAMG and the smoothing operators from GAMG in PETSc as following.

Option

Value Result -pc type "hmg" HMG preconditioner with the classical coarsening -hmg inner pc type "hypre"

To set up smoothing process, it follows the same way of GAMG.