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Abstract. Deep learning-based methods have spearheaded the auto-
matic analysis of echocardiographic images, taking advantage of the pub-
lication of multiple open access datasets annotated by experts (CAMUS
being one of the largest public databases). However, these models are
still considered unreliable by clinicians due to unresolved issues con-
cerning i) the temporal consistency of their predictions, and ii) their
ability to generalize across datasets. In this context, we propose a com-
prehensive comparison between the current best performing methods in
medical/echocardiographic image segmentation, with a particular focus
on temporal consistency and cross-dataset aspects. We introduce a new
private dataset, named CARDINAL, of apical two-chamber and apical
four-chamber sequences, with reference segmentation over the full cardiac
cycle. We show that the proposed 3D nnU-Net outperforms alternative
2D and recurrent segmentation methods. We also report that the best
models trained on CARDINAL, when tested on CAMUS without any
fine-tuning, still manage to perform competitively with respect to prior
methods. Overall, the experimental results suggest that with sufficient
training data, 3D nnU-Net could become the first automated tool to
finally meet the standards of an everyday clinical device.

Keywords: Ultrasound · cardiac segmentation · temporal segmentation
· deep learning · CNN.

1 Introduction

Echocardiographic imaging has undergone major advances in recent years thanks
to artificial intelligence, especially the deep learning (DL) paradigm. In par-
ticular, the automated extraction of clinical indices from the segmentation of
cardiac structures has been the subject of intense research leading to major
breakthroughs. A key component of these advances has been the publication
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of open access annotated datasets, including CETUS (45 patients, 3D images
annotated at End-Diastole - ED and End-Systole - ES) [1], CAMUS (500 pa-
tients, 2D images annotated at ED and ES in apical two-chamber - A2C - and
apical four-chamber - A4C - views) [5], EchoNet-Dynamic (10,036 patients, 2D
sub-sampled images annotated at ED and ES in A4C view) [7], HMC-QU (109
patients, 2D sequences annotated in A4C view) [2] and TED (98 patients from
the CAMUS dataset, 2D sequences annotated in A4C view) [8].

These datasets allowed effective and fair comparisons of methods, whether
they are generic image segmentation models [5,6] or were specifically designed
to process echocardiographic images [11,9]. Thus, the performance of current
state-of-the-art (SOTA) methods on the CAMUS dataset confirmed the domi-
nance of the DL-based methods, which finally achieved inter- and intra-observer
variability for most of the geometric (Dice score, Hausdorff distance, mean ab-
solute distance - MAD) and clinical metrics (ejection fraction - EF, volumes at
ED/ES).

Although these results are extremely promising and represent a crucial step
towards the automation of echocardiographic image analysis, they are not suf-
ficient to justify confidence in fully automated methods in a clinical context.
Indeed, two crucial challenges on the path to the practical application of these
algorithms remain understudied in the field: i) the frame-by-frame temporal
consistency of the predictions, and ii) the generalization of the methods across
datasets. Based on this observation, we propose the following contributions:

1. We study the performance of two generic architectures based on common
temporal data processing techniques on 2D echocardiography sequences, and
compare them to current SOTAs in the same field;

2. We present a new private dataset called CARDINAL (240 patients, 2D se-
quences annotated in A4C and A2C views), and report the performance
impact of training our methods exclusively on CARDINAL and testing on
CAMUS.

2 Benchmarked Methods

CAMUS is currently the only dataset where an evaluation platform has been
established to effectively compare the performance of segmentation methods5.
We therefore relied on this dataset to select the methods we retained in this
study.

2.1 2D DL Methods

The currently best performing method on the CAMUS dataset exploits the
nnU-Net formalism [6]. This model is based on the U-Net architecture and imple-
ments several successful DL tricks, such as a patch-wise approach to preserve im-
age resolution, data augmentation during both training and inference to enforce

5 https://www.creatis.insa-lyon.fr/Challenge/camus/results.html
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generalization and automatic hyperparameter search of the U-Net architecture
to increase accuracy. Note that the 2D version uses only one U-Net model [4].

Recently, Sfakianakis et al. [9] developed a DL solution called GUDU based
on three key aspects. First, they proposed to use data augmentations tailored
to ultrasound acquisition, i.e. variation of the contrast between the myocardial
tissue and the left ventricular (LV) cavity, random rotation from the origin of the
sectorial shape to mimic different probe positioning, and perspective transforma-
tions to simulate probe twisting. Inspired by ensemble models, the authors also
trained 5 U-Nets with different architectures and averaged their outputs during
inference in order to compute the final prediction. Finally, a new loss function
was proposed that takes into account the relative position of the cardiac struc-
tures with respect to each other. The authors demonstrated the usefulness and
complementarity of each contribution in an ablation study.

2.2 2D+t DL Methods

Despite the success of 2D methods in producing accurate segmentations for in-
dividual echocardiographic frames, they often fail to maintain temporal consis-
tency between frames [8]. Prior to the publication of HMC-QU and TED, there
were no publicly available datasets to train and compare methods that incorpo-
rate the temporal dimension in 2D+time echocardiography. This explains why
so few papers have focused on this topic.

Due to the lack of 2D+time annotated datasets, Wei et al. [11] proposed a
method to leverage the limited ED/ES annotated frames and propagate them
to unannotated frames. This was achieved by training a 3D U-Net designed to
predict both the deformation fields between each pair of consecutive frames and
the segmentation masks at each frame of the sequence. The deformation fields
are used to propagate the ED/ES reference annotations forward and backward
in time through the sequence. The corresponding propagated masks are then
used as targets for self-supervised segmentation of the entire sequence. This en-
courages the model to learn consistent temporal dynamics to find the best match
between the predicted segmentation masks and the propagated annotations.

More recently, Smistad et al. [10] and Hu et al. [3] added convolutional long-
term memory blocks to each layer of the encoder of a 2D U-Net (this type of
model is hereafter referred to as U-Net LSTM). Thus, instead of processing
a single frame, these methods take a series of frames as input and store the
extracted features over time to produce the final segmentation of the entire
sequence. Results show that such a strategy tends to reduce segmentation shifts
from one frame to another.

By their very nature, echocardiographic sequences exhibit regular properties
along the time axis. Therefore, it seems logical to consider 2D ultrasound se-
quences as complete volumes containing coherent 3D shapes and to extract 3D
features using 3D convolutional layers to promote temporal consistency. Thus,
in this paper, we propose to train a 3D nnU-Net to segment the complete cardiac
sequences in a single run. We hypothesize that this model will inherently learn
temporal consistency while maintaining a high level of segmentation accuracy.



4 H. J. Ling et al.

3 Experimental Setup

3.1 CARDINAL Dataset

Acquisition Protocol: The proposed dataset consists of clinical examinations
of 240 patients, acquired at the University Hospital of Lyon (Croix-Rousse Lyon
Sud, France) under the regulation of the local ethics committee of the hospi-
tal. The complete dataset was acquired with GE ultrasound scanners. For each
patient, 2D A4C and A2C view sequences were exported from the EchoPAC anal-
ysis software. Each exported sequence corresponds to a set of B-mode images
expressed in polar coordinates. The same interpolation procedure as used for the
CAMUS dataset was applied to express all sequences in Cartesian coordinates
with a single grid resolution of 0.31 mm2. Each sequence in the CARDINAL
dataset corresponds to a complete cardiac cycle defined as the interval between
peaks of maximal LV cavity surface area.

Reference Annotations: To tackle the total number of frames to be anno-
tated, an experienced observer first delineated the different contours using semi-
automatic tools to ensure temporal consistency of the segmented shapes. Each
corresponding output was then checked/corrected by two other experienced ob-
servers. To identify the ED/ES frames in the sequence, the ED frames corre-
spond (by definition) to the beginning and end of each sequence, and the ES
frame corresponds to the frame where the LV cavity surface is smallest.

3.2 Implemented DL Methods

For a fair comparison, we implemented the 2D nnU-Net, U-Net LSTM, and 3D
nnU-Net described in section 2 using the same Python library called ASCENT
6. These models shared the following training hyperparameters: batch size of 2,
SGD optimizer with a learning rate of 0.01 coupled with a polynomial decay
scheduler, and 1000 training epochs. The 2D and 3D nnU-Net used a patch-wise
approach to avoid resizing the images, thus preserving the native image resolu-
tion. To train the U-Net LSTM, the input images were resized to 256× 256 and
24 consecutive frames were randomly selected and fed to the model to produce
the corresponding segmentations. For inference, the sliding window approach
with a Gaussian importance map was used. The prediction was given by the
average of the softmax probabilities of all windows. To improve segmentation
accuracy, the final prediction was obtained by averaging the predictions of the
original and mirrored images along different axes. More implementation details
for each model can be found in table 1.

4 Results

We evaluate the methods described in section 2 using three types of measures to
get a complete picture of their performance in terms of segmentation accuracy

6 https://github.com/creatis-myriad/ASCENT
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Table 1: Details of the implementation of the three methods evaluated in this
study. Lowest resolution: Size of the lowest resolution of feature maps in pixels.
Optimization scheme: Optimizer + initial learning rate + learning rate scheduler
used. Training duration (hours): number of hours required to train each model
for 1000 epochs. The configurations shared between models are only shown once
in their respective rows.

Configurations 3D nnU-Net 2D nnU-Net U-Net LSTM

Patch size (pixels) 320× 256× 24 640× 512 256× 256× 24
Batch size 2

Nb. feature maps 32 ↓ 480 ↑ 32
Lowest resolution 10× 8× 6 5× 4 8× 8× 24

Downsampling scheme Stride pooling
Upsampling scheme Deconvolution
Normalization scheme Instance normalization

Optimization scheme SGD + 0.01 + polynomial decay
Loss function Cross entropy + Dice

Number of parameters 41.3 M 30.4 M 49 M
Training duration (hours) 22.8 8 69.5

(table 2), extraction of clinical indices (table 3) and temporal consistency (ta-
ble 4). In each of these tables, we group the methods according to the datasets
on which they were trained and tested (CARDINAL is abbreviated as CL and
CAMUS is abbreviated as CS ) to make it easier to observe the change in per-
formance when generalizing to a new dataset.

4.1 Geometric and Clinical Accuracy

Table 2 shows the segmentation accuracy computed from the CARDINAL and
CAMUS datasets for the 5 algorithms described in section 2. The values in bold
correspond to the best scores for each metric for a given training/test dataset
setup. From the results on the CARDINAL dataset (CL/CL case), we can see
that the 3D nnU-Net has the best segmentation scores for all metrics, for both
ED and ES. It is also interesting to note that the two temporal consistency
methods (3D nnU-Net and U-Net LSTM) produce better results than the 2D
nnU-Net method. This can be explained by the fact that the reference segmen-
tation has regular properties along the temporal axis due to the annotation
process. Methods that integrate the temporal dimension into their architecture
are therefore more likely to produce segmentation results that are closer to the
manual references.

It is worth mentioning that methods trained and tested on the same dataset
(sections CL/CL and CS/CS in Table 2) get overall better results up to 1.7x
for the Hausdorff and MAD metrics. One reason for such an improvement is
the larger amount of annotated training images for CARDINAL (18,793 im-
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ages from 190 training/validation patients, reference frames for the full cardiac
cycle in A2C and A4C views) than for CAMUS (1,800 images from 450 train-
ing/validation patients, reference frames at ED and ES in A2C and A4C views).

Table 3 reports the clinical metrics for the 5 methods. As in Table 2, the meth-
ods enforcing temporal consistency gets the best results on CARDINAL, espe-
cially for the ejection fraction for which temporal consistency is essential (mean
correlation score of 0.917). Furthermore, the best models trained on CARDINAL
or CAMUS produce similar results for volume estimation (average correlation
of 0.978), revealing a limit reached by these approaches, certainly due to the
resolution of the imaging systems.

Table 2: LV segmentation accuracy of the benchmarked methods, on different
subsets of frames. The columns All, ED and ES indicate results averaged over all
frames, only ED frames, and only ES frames, respectively. Since CAMUS only
provides annotation for ED/ES frames, results over all frames are not available
when testing on it.
(CL:CARDINAL, CS:CAMUS)

Methods Train/test
Dice Hausdorff (mm) MAD (mm)

All ED ES All ED ES All ED ES

3D nnU-Net .969 .968 .960 2.3 2.7 2.5 0.7 0.8 0.7
2D nnU-Net CL/CL .957 .961 .942 2.9 3.1 3.1 0.9 1.0 1.1
U-Net LSTM .964 .964 .956 2.5 2.8 2.6 0.8 0.9 0.8

3D nnU-Net - .939 .926 - 5.2 4.6 - 1.6 1.5
2D nnU-Net CL/CS - .934 .921 - 4.9 4.6 - 1.8 1.6
U-Net LSTM - .925 .903 - 6.0 5.8 - 2.1 2.1

2D nnU-Net - .952 .935 - 4.3 4.2 - 1.3 1.3
CLAS CS/CS - .947 .929 - 4.6 4.6 - 1.4 1.4
GUDU - .946 .929 - 4.7 4.7 - 1.4 1.4

4.2 Integration of Temporal Consistency

Table 4 allows a better investigation of the temporal performance of the meth-
ods by providing additional information on the number/percentage of frames
considered temporally inconsistent w.r.t. their neighboring frames. As expected,
the methods incorporating temporal persistence produced fewer temporal errors.
Looking at the number of sequences with at least one temporally inconsistent
frame, the 3D nnU-Net clearly outperforms U-Net LSTM, with only 4 incon-
sistent sequences over 100 compared to 98 sequences for U-Net LSTM. This
result illustrates the greater ability of features computed from 3D convolutional
layers to extract relevant spatio-temporal information. The few remaining tem-
poral errors for the 3D nnU-Net are more an indication that the metrics we
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Table 3: Clinical metrics of the benchmarked methods. The ED/ES volumes were
computed from both the predicted and reference masks using Simpson’s biplane
method. Corr.: Correlation between the ejection fraction (EF) derived from the
predicted/reference segmentation. MAE : Mean Absolute Error between the EF
derived from predicted/reference segmentation.

Methods Train/test
EF Volume ED Volume ES

Corr. MAE (%) Corr. MAE (ml) Corr. MAE (ml)

3D nnU-Net .913 2.9 .978 3.3 .974 2.7
2D nnU-Net CL/CL .850 3.8 .967 4.4 .957 3.2
U-Net LSTM .922 2.7 .973 3.4 .969 2.8

3D nnU-Net .869 5.3 .974 9.6 .976 4.9
2D nnU-Net CL/CS .810 7.0 .970 12.8 .959 6.2
U-Net LSTM .822 11.1 .879 15.9 .903 8.2

2D nnU-Net .857 4.7 .977 5.9 .987 4.0
CLAS CS/CS .926 4.0 .958 7.7 .979 4.4
GUDU .897 4.0 .977 6.7 .981 4.6

used are (overly) strict on the temporal smoothness. Indeed, the 3D nnU-Net
temporal ”inconsistencies” appear invisible to the expert eye. As a qualitative
evaluation, fig. 1 illustrates in detail the temporal consistency of each of our own
method on one patient from the CARDINAL test set. To complement this, we
also provide in the supplementary material examples of temporally consistent
and inconsistent segmentation results obtained by the 3D nnU-Net method for
the CARDINAL and CAMUS datasets.

4.3 Generalization Across Datasets

The ability to generalize across datasets is crucially important to gauge the ca-
pacity of a method to properly analyze data affected by a distributional shift.
To this end, the models trained on CARDINAL were also evaluated on the CA-
MUS test set without any fine-tuning. The results are reported in the “CL/CS”
sections of tables 2 to 4. Among the methods evaluated, 3D nnU-Net is the undis-
puted best. It even produces competitive geometric and clinical scores compared
with SOTA methods trained directly on CAMUS. Thanks to the integration of
temporal consistency, the 3D nnU-Net trained on CARDINAL also produces one
of the best correlation scores for the EF calculated on the CAMUS dataset, even
when compared to SOTA methods trained directly on CAMUS. In view of these
results, and considering that the annotation process between the two databases
was not identical and was carried out by different experts (which inevitably in-
troduces a bias during the learning phase), the generalization capacity of the 3D
nnU-Net model seems remarkable.
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Table 4: Temporal consistency of the benchmarked methods, as defined in [8].
Nb of seq. w/ err.: number of sequences (out of the 100 testing sequences) where
at least one frame is temporally inconsistent. % of frames w/ err.: percentage of
frames that are inconsistent in the sequences with at least one temporally incon-
sistent frame. Err. to thresh. ratio: average ratio between the measure used to
identify temporal inconsistencies and the threshold for temporal inconsistencies.
A lower value indicates “smoother” temporal segmentations.

Methods Train/test
Nb of seq.
w/ err.

% of frames
w/ err.

Err. to thresh.
ratio

3D nnU-Net 4 4 .045
2D nnU-Net CL/CL 100 30 .210
U-Net LSTM 98 13 .110

3D nnU-Net 28 12 .095
2D nnU-Net CL/CS 85 21 .162
U-Net LSTM 83 16 .114

5 Conclusion

We evaluated the ability of different methods to accurately segment echocardio-
graphic images, with a focus on temporal consistency and cross-dataset general-
ization. To this end, we introduced a new private database called CARDINAL,
with annotations from an expert on the full cardiac cycle for each sequence. The
results show that 3D nnU-Net and U-Net LSTM produce the best geometric
and clinical scores on the CARDINAL dataset due to the integration of temporal
persistence. Regarding the temporal consistency metrics, 3D nnU-Net performed
significantly better than U-Net LSTM with only four sequences (instead of 98)
out of 100 having at least one image that was temporally inconsistent. As far as
cross-dataset generalization is concerned, 3D nnU-Net is also the best perform-
ing method. When trained on CARDINAL and tested on CAMUS, it achieved
comparable geometric and clinical scores to the best methods both trained and
tested on CAMUS. All these results clearly show that 3D nnU-Net is a serious
candidate to become the first automated tool to meet the requirements of routine
clinical examinations.
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Fig. 1: Visualization of the temporal consistency of the segmentations on one
patient from the CARDINAL test set. (left) Frames sampled between ED and
ES, with segmentation masks from our own methods + reference. (right) Curves
of the LV and myocardium surfaces w.r.t. frame in the sequence.
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