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A sensitivity analysis of two worst-case delay computation methods for SpaceWire networks

SpaceWire is a standard of on-board networks for satellites promoted by the ESA. As the ESA plans to use SpaceWire as the sole network for both critical and non-critical traffics, network designers need tools to check that all the critical messages meet their deadlines. We previously proposed two such tools to compute an upper-bound on the worst-case end-to-end delay of a packet traversing a SpaceWire network.

The main contribution of this paper is the comparison of those two methods on a network configuration provided by Thales Alenia Space that is representative of next generation large satellites. The goal is to identify the key parameters that affect the bounds computed by the methods. We then conduct a sensitivity analysis on simpler network configurations to study the impact of those parameters on the methods and determine which method works better in different situations.

I. INTRODUCTION

Observation satellites are used in situations of ever growing complexity. This reflects on their data handling architecture which needs to handle an increasing amount of traffic. A routed architecture would be more scalable than legacy solutions based on buses like the MIL-STD-1553B. It would be able to carry both critical and non-critical traffics on the same links which would greatly simplify the architecture.

The SpaceWire standard ( [START_REF] Parkes | Spacewire: A spacecraft onboard network for real-time communications[END_REF], [START_REF] Ecss | Spacewire -links, nodes, routers and networks[END_REF]), promoted by the European Space Agency, is an example of such an architecture. SpaceWire is a standard for an on-board network for satellites designed with spatial constraints in mind such as radiation resistance. It uses serial, full-duplex, point-to-point links and simple routers to interconnect satellite terminals using arbitrary topologies. Its main characteristic is the use of wormhole routing to transfer packets between routers.

In a wormhole router, packets are not stored completely but can be forwarded as soon as they arrive if the output port is free. This allows the router to use only a minimal amount of memory. If the output port is not free, the packet will be blocked until it is freed. In that case, the blocked packet is spread along the upstream routers and blocks the output port it uses in these routers. Therefore, wormhole routing creates the risk of a recursive blocking of the network and large variations of the end-to-end (ETE) delays of packets.

As a consequence, network designers need tools to ensure that temporal constraints are verified during the design phase of the satellite. A first solution would be to use simulations to compute the delivery delay of each message. However, simulations do not provide enough guarantees because trying every possible packet schedule would be too long and costly.

It is thus preferable to use an analytical tool to check that critical messages are delivered before their deadlines. The metric we chose for such a tool is an upper-bound on the worst-case end-to-end (ETE) delay of a message. This metric is simpler to compute than the exact worst-case delay of the message but can still guarantee that all the deadlines are respected.

We proposed several methods to compute such an upperbound on a SpaceWire network. There was no former work on the calculation of such latency bounds on a SpaceWire network, so we introduced a first method [START_REF] Ferrandiz | Worst-case end-to-end delays evaluation for spacewire networks[END_REF] which was a simple recursive computation of the delays created at each router crossed by a packet. However, it required restrictive hypothesis on the size of the packets and their inter-arrival times. Thus we designed a second recursive method of computation [START_REF]An enhanced worst-case end-to-end evaluation method for spacewire networks[END_REF] that removed all the restrictions of the previous method. This second method reused the idea proposed in a different type of wormhole networks (i.e. Network-on-Chips), which states that an upper-bound will be obtained when assuming that all the buffers in the network are already full at the beginning of the computation and that all the terminals try to emit at the maximum capacity. This creates the worst possible packet schedule, independently of the real traffic pattern.

The third method we proposed ( [START_REF]Using network calculus to compute end-to-end delays in spacewire networks[END_REF], [START_REF]A network calculus model for spacewire networks[END_REF]) introduces a new Network Calculus element we named "Wormhole Section". As in standard Network Calculus theory [START_REF] Boudec | Network calculus: A theory of deterministic queuing systems for the internet[END_REF], we use arrival curves to model the worst-case input traffic and service curves to model the network elements, but we had to design new models in order to cope with the specifics of the SpaceWire mechanisms. We give a synthetic overview of the last two methods in Section II.

In Section III we apply these two methods on a realistic industrial configuration provided by Thales Alenia Space. We compare the results provided by those methods and use them to highlight the main parameters that affect their behavior.

Then, we conduct a sensitivity analysis using three simpler network configurations in Section IV. This analysis allows us to determine the impact of the different parameters on the bounds computed by the two methods. We also show that each method can give a better bound in different contexts.

Finally, we synthesize the influent parameters and their effects in Section V.

II. SYNTHETIC PRESENTATION OF THE TWO METHODS

In this Section, we give a synthetic presentation of the two latest methods we designed for the computation of an upper-bound on the worst-case end-to-end delay of a packet traversing a SpaceWire network.

The first method is recursive and thus named RC (for Recursive Calculus), it shares some ideas with the RTB-LL method (Real-Time Boud for Low Latency traffic) that was introduced simultaneously by Rahmati and al. for a different type of wormhole networks [START_REF] Rahmati | A method for calculating hard qos guarantees for networks-on-chip[END_REF], despite the fact the Networkon-Chips wormhole networks have simpler assumptions for the relative size of packets and buffers, and thus not the same Flow Control issue.

The second method introduces a new Network Calculus element called "Wormhole Section" and an original model to capture the behavior of the Flow Control mechanism, which gives better bounds than the classic feedback model given in [START_REF] Boudec | Network calculus: A theory of deterministic queuing systems for the internet[END_REF]. It then uses the interference patterns defined in [START_REF] Qian | Analysis of worst-case delay bounds for best-effort communication in wormhole networks on chip[END_REF], as a way to reduce the network interferences.

A. Common assumptions

We model a SpaceWire network as a connected directed graph. The nodes of the graph represent both the terminals and the SpaceWire switches. The edges represent the set of SpaceWire links. We use two edges in opposite directions to represent a bi-directional SpaceWire link.

A communication between a source and a destination is modeled as a flow f . Each flow f has a maximum packet size, noted T f . This includes the protocol headers.

For both methods, we also make the following assumptions:

• the routing is static (current SpaceWire switches use static routing anyway); • all the links in the network have the same capacity C;

• we neglect the switching delay of the routers since it is very small (a few nanoseconds at most); • we neglect the delays caused by Time-Codes and Flow Control Tokens (Time-Codes are special characters used by SpaceWire to synchronize a global clock on the network); • the destination may postpone the processing of an incoming packet during a constant delay D dest , identical for each packet addressed to this node; • in addition, the destination may read the packet at a slower bit rate than the capacity of the links. We note the service rate of terminal dest as r dest .

B. The RC method 1) Assumptions: With this method, our goal was to be as general as possible. Thus, we do not make assumptions on the traffic injected in the network except for the size of the packets. Instead, we assume that all the terminals try to emit as much as possible. We also assume that at the beginning of the computation, all the buffers in the network are entirely full of packets. In this way, we can be sure to take into account the worst possible scenario whatever the real traffic pattern is.

We will see later that this method allows us to determine the minimal interval required between two consecutive packets.

2) Model of a SpaceWire router: With this method, we use the router model of Figure 1 to represent the routers. We assume that the 64-byte FIFO input buffer of a SpaceWire router is equivalent to 64 1-byte wormhole routers connected by infinite capacity links. We call such a router an "elementary router" and note ER k,l the l th router associated with input port k. As can be seen on Figure 1, the routers in the 63 th columns are connected to all the elementary routers of the 64 th column. This interconnection models the routing matrix of the router. In addition, the routers of the 64 th column which have several input ports model the access conflicts to the output ports of the SpaceWire router.

With this model, the header of a packet can move forward only when the elementary router ahead of it is free. In that case, all the characters move forward together at the same time.

3) Generation of an equivalent elementary network: We create an elementary network equivalent to the SpaceWire network by replacing each SpaceWire router with the equivalent set of elementary routers. We note h i the number of elementary routers in the path of flow f i and R j i , j ∈ {1, . . . , h i } the j th crossed by f i .

We model each terminal as two independent parts, one that sends packets and one that receives them. We model the emitting half of a terminal with one elementary source for each flow and a virtual router that connects them to the network. This router is named R 0 i The receiving part of a terminal is modeled in a symmetric way. We use an elementary destination for each flow arriving in a terminal. This elementary destination models the service rate and the constant delay applied to each packet. The elementary destinations associated with a SpaceWire terminal are connected to the network by an elementary router that routes the packets to the appropriate elementary destinations. In addition, we insert T i -1 elementary routers between this elementary router and the elementary destination of f i to model the time needed by the terminal to read the complete packet, not just receive the header of the packet.

In the end, a packet has to go through h i + T i elementary routers before being delivered.

4) Computing an upper-bound: Let us denote u j i the maximum delay needed for the header of p i to move from R j i to R j+1 i . The upper-bound on the worst-case end-to-end delay of p i can now be written as

U B i = j∈{0,...,hi+Li-2} u j i . (1) 
Similarly, we can compute a Minimum Interval between two packets of the same flow with

M I i = j∈{0,...,Li-1} u j i . (2) 
M I i represents the minimum delay needed to completely move a packet out of the source buffer. This metric can be used to derive a maximum available bandwidth for each flow and determine if a network is able to transmit all the required traffic.

Two different delays are part of u j i . Firstly, p i has to wait for the packet directly in front of it to move forward before it can move itself. This packet can be of the same flow f i as p i or from any other flow sharing its path. This delay is itself of the form u j+L i i if i is the number of the flow. u j+L i i is the delay necessary for p i to move one-hop forward along its path.

Secondly, if the R j i has other input ports, we must take into account that, for each of these input ports, one conflicting packet may pass before p i . The entire packet has to move forward so each of these delay is of the form

L i k=1 u j+k i .
Finally, we sum the delays associated with each input port and the delay caused by the packet in front of p i to get u j i . The computation is described in more details in [START_REF]An enhanced worst-case end-to-end evaluation method for spacewire networks[END_REF].

This recursive computation ends when a packet reaches its destination. The end condition is

∀j > h i , u j i = 10 min(C, r Di ) (3) 
since SpaceWire characters are 10-bit long (r Di is the service rate of the destination of f i ).

We implemented this model as a Java program and used it to carry the studies in Section III and Section IV.

C. The NC method

1) The Wormhole Section element: In [START_REF]Using network calculus to compute end-to-end delays in spacewire networks[END_REF] and [START_REF]A network calculus model for spacewire networks[END_REF], we proposed another method to compute an upper-bound on the end-to-end delay of a flow based on the Network Calculus theory. This theory allows us to model the worst-case input traffic through an arrival curve and a network component through a service curve. We can then determine an upperbound on the worst-case traversal time of an element by computing the horizontal distance between the arrival curve of the input flow and the service curve of the element. For more details on Network Calculus, see [START_REF] Boudec | Network calculus: A theory of deterministic queuing systems for the internet[END_REF].

Network Calculus was designed to study Internet components and has successfully been used to study some embedded networks like the AFDX. However, it has not been designed to study wormhole networks. As such, the usual network elements used to study a network are not well-suited to study a SpaceWire network. The main problem is that in a wormhole network, routers are not independent of each other because of the link-level flow control. Thus, it is not possible to directly model a router with a service curve.

To remedy this, we proposed in [START_REF]Using network calculus to compute end-to-end delays in spacewire networks[END_REF] a new network element that we call the Wormhole Section. This element aggregates the output ports of consecutive routers which are shared by the same set of flows. In other words, inside a Wormhole section, no flow can enter or depart. Then, by dividing the path of the studied flow into a sequence of Wormhole Sections, we can simplify the analysis and optimize the computed upper-bound by counting the impact of conflicting flows only once. The basic analysis is we first divide the path of the studied flow into Sections, then determine the service curve of each Section. Finally, we compute the end-to-end service curve offered to the flow using the concatenation theorem [START_REF] Boudec | Network calculus: A theory of deterministic queuing systems for the internet[END_REF].

The service curve offered by a section can be computed as follows. Let us consider a Section S of M routers shared by two flows f 1 and f 2 of arrival curve α in 1 and α in 2 (see Figure 2). If the j th router of the section offers a basic service curve β j , the service curve offered by the section to f 1 is

β S 1 = ( M j=1 β j -α in 2 ) ↑ ⊗ δ h(α out 2 ,β dest 2 ) (4) 
where α out 2 is the arrival curve of f 2 at the end of S, β dest 2 is the service curve offered to f 2 between the end of S and its destination, h(f, g) is the horizontal distance between two non-decreasing function f and g and δ is the impulse function defined as

δ T (t) = 0 si t < T +∞ si t ≥ T for all T ≥ 0.
The first part of β S 1 represents the share of the overall service offered to f 1 by the section. The second part represents the delays caused to f 2 after the two flows split. They are carried over to f 1 by the link-level flow control of SpaceWire. For a more detailed explanation, see [START_REF]Using network calculus to compute end-to-end delays in spacewire networks[END_REF].

2) Computing the end-to-end service curve: When interferences are more complex that just a sequence of sections shared by two flows, we use the interference patterns as defined by [START_REF] Qian | Analysis of worst-case delay bounds for best-effort communication in wormhole networks on chip[END_REF] to automate the computation of the ETE service curve. In this paper, the authors defined three interference patterns that describe how three flows interfere with each other. They show that if these three interference patterns can be solved, any conflicts between any number of flows can be solved.

Since we need the arrival curve of each interfering flow both when it joins the studied flow and when they split, we can end up with a circular dependency problem if we simply apply the interference patterns. We thus use a fixed-point method to compute iteratively the arrival curves of each flow at every router of its path. This is described in more details in [START_REF]A network calculus model for spacewire networks[END_REF]. An example of such a network is studied in Section IV-C.

In the end, when we have the ETE service curve of every flows, we can compute the horizontal distance between their arrival curve in the network and this ETE service curve to obtain an upper-bound on the worst-case ETE delay.

We implemented the model using MATLAB and the RTC Toolbox [START_REF] Wandeler | Real-Time Calculus (RTC) Toolbox[END_REF]. This toolbox implements all the common operations of Network Calculus like the min-plus convolution and deconvolution.

Our software takes a description of the network and of the network traffic as input and gives an upper-bound on the end-to-end delay of each flow as output. It implements the fixed-point method and all the computations based on the interference patterns.

III. SENSITIVITY ANALYSIS ON AN INDUSTRIAL CASE

STUDY

We will now present and analyze the results given by the models for a realistic industrial configuration. This study was based on a network architecture provided by Thales Alenia Space (see Figure 3) and designed for use in an observation satellite. We study various scenarios on this network and try to determine which parameters affect the methods. As can be seen in Figure 3, the network is composed of two parts. The platform equipment on the right which includes a mass memory unit (SSMM-MM and SSMM-CTRL), a processor module (PM) and two Transmission Modules (TM Ka and TM X). The processor module monitors the other nodes and sends back commands.

A. Description of the network

The mass memory is split in two parts. Data is stored in the MM module but must go through the controller unit first. Thus, other nodes send packets to the CTRL unit. This unit then processes the data during a constant delay and sends the packet to the MM unit. The CTRL unit only stores one packet at any given time.

On the left, the application terminals (A 0 to A 8 ) represent the payload instruments. These include cameras and any kind of sensors. They send data packets to the CTRL unit and monitoring traffic to the PM unit. All the links have the same capacity C = 50 M bps.

We can split the network traffic into four categories. Table I gives the network path and packet size for each type of traffic. The monitoring traffic is called HouseKeeping (HK). The periods of the scientific and housekeeping packets are given in Table II. The periods of the other flows are given in Table III.

Among all the nodes, only the CTRL and PM units introduce a delay for every packet they receive. The delay is the same for both:

D P M = D CT RL = 10µs.
Furthermore, the PM reads data packets at 10 kbps and the two TM units at 700 kbps. Some traffic is further divided into several stages according to the definition we used in Section II-A. In that case, we simply take the summation of the delays for each stage.SSMM-CTRL For example, a packet from SC 1 is first sent from A 1 to SSMM-CTRL and then from SSMM-CTRL to SSMM-MM. Each part is actually a flow according to our definition so we treat them as two different flows to get the delay for SC 1 .

Finally, we do not consider each individual flow but only the categories of traffic. Thus, we consider only four bounds, one for each category. For example, the bound for SC is the maximum of the nine upper-bounds for the SC flows.

B. Description of the different scenarios

We will consider four different scenarios on this network. In Scenarios 1 and 2, all the destination terminals receive packets as fast as the network can deliver them, that is at 50 Mbps.

On the contrary, in Scenarios 3 and 4, some terminals read packets at slower rates and can introduce a fixed delay. The detailed rates are given in Table IV. The most remarkable value here is the service rate of the P M terminal -10 kbps. This was requested by the industrial partner to test the impact of a bottleneck in the network on the methods of computation. We also test the impact of another parameter. In Scenarios 1 and 3, the nine SC flows send 4000-byte long packets whereas in Scenarios 2 and 4 they send 100-byte long packets. We can thus study the impact of the large, non-critical SC packets on the small, critical HK packets. Let us first look at the results of RC. In Scenario 1, the bounds look relatively high given that the traffic load is not very important. However, reducing the size of the SC packets provides some improvement. For the flows SC and HK the bounds are roughly divided by two between the two scenarios. For the flows CM D, the improvement is better as the bound is divided by more than 20.

C. Results for Scenarios 1 and 2

The improvement still appear small because the size of the SC packets has been divided by 40 between the two scenarios. This suggest that other parameters increase the bounds computed with RC. One possible source of pessimism for the HK packets is that the RC method assumes that all the buffers are full of packets. Since HK packets are 20-byte long, a lot of them may be stored in the 64-byte input buffers of the routers. When computing the delay for a HK packet, all those packets have to be counted. In addition, when one of this packet reaches the link between R 2 and R 3 , it is blocked by a 4000-byte long packet from the T M X flow. Since this method assumes that the T M X flow tries to emit as much as possible, it ends up counting a lot more packets that possible in reality. This explains that the bound for the HK flow is not reduced more between Scenarios 1 and 2. Moreover, since the SC and HK packets are in conflict with each other, the delays caused artificially by the T M X packets is carried over to these flows.

On the contrary, for the CM D flows, the impact is important because they interfere only with the SC packets. Finally, for the T M packets the impact is inexistent because they do not interfere at all with the SC packets. Let us look now at the results for the NC method (Table VI). We can first observe that the bounds given by NC are much lower than those given by RC. For SC packets in Scenario 2, the bound can be as much as 30 times lower with NC than with RC. At the minimum, it is twice better for T M flows in both scenarios.

The main reason for this large difference is that most flows have a large period. As a consequence, the RC method which takes the periods into account counts much less packets than the NC method. The effect is even stronger because, as we have seen, RC counts an artificially high number of packets.

We can also remark than with NC, the bounds are more reduced between Scenario 1 and 2 than with RC. An interesting point is that with NC, there is a strong impact on the SC flows themselves but not with RC. As we have explained, the main source of pessimism of RC is that it counts too much T M X packets in conflicts with HK packets. These delays affect the SC flows because they share links with the HK flows.

Here it shows that NC removes this source of pessimism. The SC packets are thus delivered rapidly in the second scenario because they are small. As a conclusion, on a network with low traffic like this one, we observed that the method taking the periods into account yields better bound than the more general RC method. When the network carries a lot of large packets as in Scenario 1, the improvement is noticeable but not dramatic. When most packets are very small as in Scenario 2, the improvement is much more important because RC counts a lot of small packets and additional conflicts than can happen in reality.

D. Results for Scenarios 3 and 4

The purpose of Scenarios 3 and 4 was to study the impact of a bottleneck on the two methods of computation. Thus the P M terminal has a very low service rate. 1) Results and analysis for RC: As can be seen this method gives very high bounds for Scenario 3 and 4. For instance, the bounds for the SC and HK flows is higher than 10 seconds.

We can explain those bounds as follows. We have already seen that the RC method assumes that the input buffers of the routers are full of 20-byte HK packets and that it counts too much T M X packets. Here, since the P M terminal has a very low service rate of 10 kbps, the problem is worse because the worst-case scenario is that the buffers are full of 20-byte HK packets that are delivered to this terminal. In itself, this is not pessimistic because the situation where all the A i terminals emit an HK packet at the same time is possible. The computation becomes pessimistic because it works recursively character per character and, as such, has no memory. Let us consider a packet from HK 1 as an example. When it reaches the output port connecting R 2 to R 3 , in the worstcase scenario a packet from each other input port will block it. In this case, there will be a packet from flow T M X coming from the link SSM M -M M -→ R 2 and a packet from one of the HK flow from the link R 1 -→ R 2 . Then, the input buffer of R 3 and the P M terminal will contain three 20-byte long HK packets each. Thus, the packet from HK 1 will have to wait for 7 HK packets to be delivered at 10 kbps and one T M X packet to be delivered at 700 kbps before reaching its destination. This is what can happen in reality.

Since the method has no memory, it will count that the T M X packet has three HK packets ahead of it in the input buffer of R 3 . Those three packets have to wait for another group of three HK packets stored in the input buffer of P M to be delivered. Then, the T M X can be delivered. At this point, RC considers that when the packet of HK 1 reaches the input buffer of R 3 , this buffer and the input buffer of the P M terminal are again full with three HK packets. Indeed, this would be the real worst-case scenario if the packet from HK 1 started from this point.

The fact that the two worst-case scenarios cannot happen successively is not modeled with this method of computation. On this small part of the network, it leads to a worst-case delay that is roughly twice the real delay. However, when it occurs on the complete network, the effect is multiplied by the number of flows sharing the same links and buffers. Here, the RC method ends up counting several hundreds of additional HK packets which explains the very high bounds for HK and SC. For instance, the time needed to deliver 500 20-byte packets at 10 kbps is d 500 = 20 * 10 * 500 10000 = 10 s which is in the same order of magnitude as the bounds computed by RC.

As a confirmation, we can observe that in Scenario 2, the bounds are in the same order of magnitude except for the CM D flows. This shows that the size of the SC packets has a minimal impact on the upper-bounds computed for SC and HK. On the contrary, it has a strong impact on the CM D flow because the SC flows interfere directly with the CM D flow sent to the SSMM-CTRL node. In addition, the CM D flows do not interfere with the HK packets sent from the A i nodes to the P M node so that the only thing that impact their bound is the interference with SC flows.

As a conclusion, when a very slow terminal is present in the network, RC gives completely unusable bounds. The fact is that it counts many additional packets. However, we should note that the pessimism of the method is really linked to the presence of a very slow terminal in the network.

The results given by this method suggest that two parameters have a high impact on the upper-bounds that the method computes. Firstly, the size of the packets, especially very small ones and as a consequence the number of small packets that can coexist in the network at a given moment. Secondly, the presence in the network of terminals with a very low service rate compared to the capacity of the links. We will study those parameters further in Section IV. 2) Results and analysis for NC: The bounds provided by this method are tighter than those computed using RC, particularly for the HK and SC flows. With this method, changing the size of the SC packets does not seem to have a large impact either.

As with RC, we have to conclude that the bottleneck of the network is created by the P M node and its very low service rate. Because of this, each HK packet has a high ETE delay. Since our worst-case analysis assumes that all HK flows emit at the same time, the ETE delays of the HK flows add up. In addition, those delays are carried over to the SC flows when the HK flows exit their shared Wormhole Section in R 2 . Thus, they increase the upper-bound of the SC flows.

This explanation can easily be checked experimentally. Indeed, during the computation we observed that the demultiplexing delay d HK0,3 imposed by the flows HK 0 to HK 3 on each flow SC 0 to SC 3 is 59.6 ms. In the same way, the delay caused by the flow HK 4 to HK 8 to each flow SC 4 to SC 8 is 114 ms. This confirms that the high bounds for SC flows is mostly caused by the interferences from HK flows. It is a remarkable result because, on this network, the 20-byte long critical packets are delaying the 4000-byte non-critical packets when we would have expected the opposite situation to occur.

Finally, with the NC method, the bound for the CM D flows is not reduced as much between the two scenarios as with RC. This illustrates the main weakness of this model. This weakness lies in the use of a preemptive model of Wormhole Section sharing between two flows. When using the residual service as we do (see Section II-C), we assume that the conflicting flow takes as much bandwidth as it wants and that the studied flow use only the remaining bandwidth. In this model, the conflicting flow even interrupts the studied flow instantaneously to send its own packet. In reality, the rotating priority scheme use by SpaceWire routers to share an output port between two flows ensures that each flow can send a complete packet alternatively. Thus, the model can be pessimistic when a flow shares a link with other highbandwidth flows.

For CM D flows, the high bounds can be explained so. One of the CM D flows goes to the terminal SSMM-CTRL. It shares link R 2 -→ SSM M -CT RL with all the SC flows. Firstly, the use of a preemptive sharing model means that the model considers that each of the nine SC flows blocks a packet from the CM D flow. As we have seen, this would be impossible in reality because of the rotating priority mechanism. Secondly, since the SC flows have interfered with the HK before reaching this point of the network, their arrival curves are very high. This means that the computation considers that several packets of each of the SC flows pass before the CM D flow. In this way, the high impact of the HK flows on the SC flows is carried over to the CM D flows.

This suggests that the increase in burstiness due to upstream conflicts is an important parameter to study along with the accuracy of the router model. This is especially true when the flows follow crossed interference patterns as SC and HK flows do. In addition, this method is clearly dependent on the periods of the flows and the size of the packets.

IV. KEY PARAMETERS STUDY

In this Section, we will compare the methods RC and NC on several simple networks. Our goal is to study the impact of the various parameters that seemed important in the industrial case study of Section III. We also show that each method can give a better bound in different situations.

Unless stated otherwise, all the links have a capacity C = 50 Mbps.

A. Impact of the size and period of the packets

We study the network on Figure 5. It includes one router and five terminals. Four flows named f 1 to f 4 start from terminals S 1 to S 4 respectively and all have the same destination D.

We consider three scenarios which are described in Table IX. The first scenario has a light traffic and the second one is a saturated network where all flows send packets of the same size but with different periods. The third scenario is also a saturated traffic but with packets of different sizes. In the first two scenarios, the RC method gives the same upper-bound for the four flows. It counts one packet of each flow for each studied packet so that the bound is

d = L 1 + L 2 + L 3 + L 4 C .
It is easy to check that this is the optimal bound. On the other hand, the NC method gives different results when the periods change. When the periods of the flows are high enough (Scenario 1), the residual service model that we use means that, for each packet of the studied flow, we count one packet of each of the interfering flow just like with RC. Thus the upper-bound is the same for the two methods in this scenario. However, NC gives different results when the periods are shorter and the traffic is saturated (Scenario 2). The residual service model used with NC is preemptive. This implies that when the periods of the interfering flows are small, it counts more packets from the interfering flows. Thus, the upperbounds computed with NC are more pessimistic than with RC in this situation. In addition, in this scenario, the upper-bound computed by NC is three times higher for the flows with the larger periods (f 2 and f 4 ) than for the flows with the smaller periods (f 1 and f 3 ).

The situation is different if we consider packets with small sizes like in Scenario 3. In that case, RC gives higher bounds for f 2 and f 4 than for f 1 and f 3 . The cause of this is that RC considers that several small packets from f 2 and f 4 are present in the network at the same time. Since each of these packets can be blocked by a packet from f 1 and a packet from f 3 , the upper-bound for these flows increases a lot. On the contrary, the NC method takes into account the real period of the flows. It only counts the number of packets from f 2 and f 4 that can really be present at any time. Thus, the bound does not increase like with RC.

As a conclusion, RC gives better bound when the traffic is saturated with large packets. When the traffic is saturated with small and large packets, NC becomes better because RC counts too many small packets.

B. Impact of the periodicity and of the router model

The second network includes four terminals and one router (see Figure 6). Seven flows share this network. f 1 goes from f 1 to D, f 2 , f 3 and f 4 from S 2,3,4 to D and f 5 , f 6 and f 7 from S 5,6,7 to D.

As we have seen, the RC method uses an accurate model of the non-preemptive behavior of the router whereas NC uses a preemptive, more pessimistic model. On the other hand, NC uses informations about the periods of the flows while NC RC give the same results in both scenarios because it does not take the periods of the flow into account.

For the NC method, the results are different in the two scenarios. In the first scenario, NC is worse for f 1 because the residual service model considers that one packet of each flow f 2 to f 7 blocks the packet from f 1 . RC gives better bounds because it correctly considers that only one flow coming from S 2,3,4 and one flow coming from S 5,6,7 can pass a packet before a packet of f 1 .

However, for flows f 2 to f 7 , NC gives tighter bounds. The explanation is as follows. Let us study the flow f 2 . The RC method considers that, in the worst case, a packet from f 2 gets blocked by a packet from f 3 and a packet from f 4 in S 2,3,4 . Then each of these three packets gets blocked in the router by a packet from f 1 and the packet among those from f 5 , f 6 and f 7 that causes the highest delay. Here it is a packet from f 5 which has the largest size. The problem is that, depending in the period of f 5 , there may not be a packet of f 5 to block each of the packets from f 2 , f 3 and f 4 . In that case, a smaller packet from f 6 or f 7 will pass and cause a lower delay. This is correctly modeled by the NC method which takes the period into account but not by the RC method. As a consequence, the bound given by NC is better.

On the contrary, in the second scenario, the periods of the flows are smaller which forces the NC method to count more packets of the conflicting flows for each packet of the studied flow. Thus, with small periods, modeling the router accurately becomes more important than using the periods. On this network, the bound computed using RC is the same for the four flows. In the first scenario, it is easy to check that, for each packet of the studied flow, RC counts one packet of each conflicting flow. Thus RC gives the optimal bound in this case.

On the other hand, NC's bound is a bit higher. This can be easily explained. Consider flow f 1 for example. It interferes with flow f 2 on link l 1 and with flow f 3 on link l 3 . On l 1 , the NC method counts the interference from one packet of f 1 just like RC. However, on l 3 , it counts more than one packet from f 3 because, in Network Calculus theory, the burstiness of a increases along the path of a flow. Thus the arrival curve of f 3 when it interferes with f 1 is higher than at its source. This makes the computation with NC slightly more pessimistic. Note that this happens because the preemptive fluid model used by NC is pessimistic. Here we see again that the router model of RC is more accurate than the model of NC.

In the second scenario, we lower the service rate of D 2,4 to 6.25 Mbps. The main observation is that the situation does not change. Of course, the bounds are higher but the relationship between them is the same. The bound given by RC is still a bit better than the bound given by N C.

In Scenario 3 and 4, r 2,4 is set to 0.2 Mbps and f 2 and f 4 send small 20-byte packets. In addition, in Scenario 3 the periods of the flows are relatively large so that the traffic is low. In that case, NC gives a better bound than RC because RC assumes that several small packets from f 2 and f 4 are present in the buffers. On the contrary, N C only counts the number of packets that are really present. The situation is reversed in Scenario 4 where the traffic is higher. In that case, N C becomes very pessimistic. For instance, the bound computed for f 2 becomes 50.8 ms where RC only gives 16.2 ms.

As a conclusion, in a network with crossed flows, RC usually gives better bounds than NC. In this situation, it is more important to model accurately the non-preemptive behavior of the routers than to take the periods into account. The only exception is when the network carries very small packets addressed to a slow terminal. In that case, NC is better.

V. CONCLUSION

In this paper, we have studied the pros and cons of two methods we have proposed to our industrial partners for the worst-case delay analysis of SpaceWire networks. The RC method uses a recursive computation to determine an end-toend delay. The NC method introduces some original models on top of Network Calculus theory and notably our Wormhole Section element [START_REF]Using network calculus to compute end-to-end delays in spacewire networks[END_REF].

We have presented the results of those methods on an industrial case study provided by Thales Alenia Space. This industrial case study is interesting in several aspects. First it is representative of the biggest satellites that will be launched in the next twenty years, so it gives the size of the problem that has to be solved by alternative methods. Second, it is complex enough to exhibit huge upper-bounds when the methods are too pessimistic. We have used this network configuration to highlight the key parameters that affect the behavior of each of our two methods. These parameters include the saturation of the traffic, the size of the packets and the presence of a slow terminal in the network.

Then, we used several simpler network configurations to conduct a sensitivity analysis of both methods. Overall, the Network Calculus-based NC method provides tighter bounds than the RC method. The NC method gives usable upperbounds in every configurations except some edge cases. For example, on a network with saturated traffic, NC becomes more pessimistic than RC. This is particularly visible when the network includes crossed flows. Furthermore, the RC method requires no assumptions on the periodicity of the input traffic and thus can be used earlier in the design process when the specifications of the flows are not known yet.

In the future, we want to design a "best of both worlds" method that would model the behavior of the router accurately while using the information about the periods of the flows. A first option would be to start from the RC method and try to couple it with scheduling analysis like the trajectory approach which has been used to study the AFDX network [START_REF] Bauer | Improving the worstcase delay analysis of an afdx network using an optimized trajectory approach[END_REF]. The second option would be to start from the NC method and use a packet-based model instead of a fluid model to better handle the non-preemptive behavior of the routers.

Figure 1 .

 1 Figure 1. Model of a SpaceWire router used by the RC method

Figure 2 .

 2 Figure 2. A Wormhole section shared by two flows

Figure 3 .

 3 Figure 3. Network of the industrial application
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Table III PERIODS

 III FOR THE CMD, HK AND TM FLOWS (MS)

	Table I	
	NETWORK TRAFFIC
	Flow	Period
	CMD	0.08
	HK (from PM)	0.08
	TM	0.04

Table X RESULTS

 X FOR THE FIRST NETWORK (MS)

		Scenario 1	Scenario 2	Scenario 3
	RC	3.2	3.2	f 1 , f 3 : 1.6
				f 2 , f 4 : 6.4
	NC	3.2	f 1 , f 3 : 5.47	1.6
			f 2 , f 4 : 10.6	

  Table XI and results in TableXII. The size of the packets does not change between the two scenarios. In addition, in each scenario, all the flows have the same period.

	Flow Packet size (bytes)	
	f 1	4000	
	f 2 f 3 f 4 f 5	4000 300 1000 5000	Period of the flows Scenario 1 32 ms Scenario 2 5 ms
	f 6	500	
	f 7	2000	
		Table XI	
		PARAMETERS FOR THE SECOND NETWORK
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