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This paper aims to present a study on knowledge management. We develop decision-support mechanisms hybridizing statistical and cognitive experience feedback to perform risk assessments on critical areas of a system. We propose an approach for combining expert opinion and statistics by using belief functions and by processing the combined knowledge in a directed evidential network to provide a risk measure.

I. INTRODUCTION

Deconstruction of end-of-life aircraft shows nowadays a rapid growth for several reasons. Firstly, the aircraft fleet aging raises substantially the number of aircraft arriving at their endof-life. In addition, recent changes in regulations significantly increase the manufacturer liability regarding the management of the end of life of their aircraft.

This paper aims to present a study on knowledge management for the deconstruction of end-of-life aircrafts. Our work is part of a project called "DIAGNOSTAT" supported by the Aerospace Valley cluster. This project focuses on two specific aspects of aircraft deconstruction which are, first, the recovery and the certification of parts for reuse as spares, and, secondly, the knowledge capitalization on airplane critical areas to improve aircraft design, maintenance and deconstruction. In this context we have developed decision-support mechanisms hybridizing statistical and cognitive experience feedback to perform risk assessments on critical areas of an aircraft. We focus specifically on the capitalization of the knowledge generated during aircraft deconstruction. We target the definition of an information system to ease knowledge management during the inspection phase of the plane. We built an inspection procedure to collect and formalize knowledge in a systematic way. Then, a module has been developed to capitalize the knowledge generated during the inspection. This tool should provide the opportunity to match the living and using conditions of the aircraft with the different defects on an airplane critical areas through statistical and expert analysis. This tool will use a database and a statistical analysis module that will be deployed in the DIAGNOSTAT project. Its database should contain: references of each aircraft, living and using conditions and the various defects encountered during deconstruction and/or maintenance. The statistical analysis module puts into perspective information to generate statistics exploitable by the user. The capabilities of this tool are enhanced by associating a risk assessment module which, in addition to the raw statistics from the statistical analysis module, integrates some expert knowledge to provide a risk assessment on critical areas of the aircraft.

A review encompassing the science fields relevant to our work (knowledge management, experience feedback and lesson learned, risk assessment, . . . ) and the deconstruction process of an airplane have been presented to get a better understanding of issues and constraints associated with this activity. Subsequently, a risk assessment model was proposed, on the basis of literature review, to represent the risk. Bayesian networks and their extension, the influence diagrams, were used for their ability to simply model a risk situation and we expanded it to reach a generic risk assessment model [START_REF] Villeneuve | Hybridization of bayesian networks and belief functions to assess risk: application to aircraft disassembly[END_REF]. However, uncertainty modeling is complex because of the limitations set by the Bayesian formalism and more particularly by the underlying probabilistic mechanisms. Indeed, we intended to model information reflecting expertness. If the probability theory, used by the Bayesian network formalism, can be used to quantify the randomness of the information (variability), it does not allow an easy integration of epistemic information (incompleteness, imprecision). Indeed, the symmetry or indifference principle (equiprobability) does not allow to make a difference between the representation of a random situation and a partially described context [START_REF] Dubois | Formal representation of uncertainty[END_REF]. Within this framework, belief functions can be of a great help. We decided consequently to consider their integration into a graphical model similar to Bayesian network models and, consequently, to use directed evidential networks to perform risk assessment by taking into account epistemic uncertainty.

II. KEY CONCEPTS

A. Risk assessment

The various definitions found in the literature often present risk as a combination of hazard and vulnerability. It is seen as the product between a negative event occurrence probability (the hazard) and its estimated severity (vulnerability). However, this definition does not take into account the notions of causes and consequences as risk attributes presented in [START_REF] Shaughnessy | La faisabilité de projet : une démarche vers l'efficience et l'efficacité[END_REF]. Therefore, we adopt the definition proposed in [START_REF] Gouriveau | Analyse des risques : formalisation des connaissances et structuration des données pour l'intégration des outils d'étude et de décision[END_REF] which defines the risk that an event occurs as an association between "cause events" characterized by their occurrence (P), and "consequence events" (effects) characterized by their severity or impact (I). The risk can be so determined by R = f (occurrence, impact) = f (P, I). Very often, risk is simply defined by the relation R = P × I, but the literature offers many other formulations.

B. Experience Feedback

According to [START_REF] Rakoto | Integration of experience based decision support in industrial processes[END_REF], "Experience Feedback is a structured process of capitalization and exploitation of knowledge resulting from the analysis of events whether they have positive or negative consequences". Also, it's important to distinguish two kind of experience feedback: statistical and cognitive Experience Feedback.

Statistical EF means that the amount of experience is large and therefore sufficient so statistical processing can be used on capitalized knowledge to extract interesting trends. However, we don't always have very large sets of experience making difficult to rely only on statistical EF. Conversely, cognitive EF means that expert opinions and analysis will couterbalance an eventual lack of statistical data. The industrial cognitive EF is used to perform corrective and/or preventive industrial applications whereas crisis EF is in relation to large and long analysis carried out by government after disasters.

Our research objective is to infer knowledge from statistical data and expertness so we are proposing mechanisms to combine both statistical and cognitive EF.

C. Transferable Belief Model

The Transferable Belief Model (TBM) is an adaptation by Smets [START_REF] Smets | The transferable belief model[END_REF] of the belief functions theory developed by Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF] to provide a general framework for uncertainty representation. This generic knowledge representation and combination formalism allows modeling of imperfect knowledge resulting from multiple sources.

The TBM interprets a belief function as the representation of a rational agent opinion based on belief or knowledge state of an agent and even if it is inaccurate or incomplete. The TBM is based on the assumption that reasoning under uncertainty (credal level) and decision making (pignistic level) are two cognitive tasks of different nature.

To model a problem using belief functions, the objective is to determine the value of a variable ω representing the system states. The frame of discernment is composed with all n values (or hypothesis) possible for the variable ω and is denoted by

Ω = {ω 1 , ω 2 , . . . , ω n }.
The definition of belief mass function, denoted m Ω , allows the translation of an observation (or advice) provided by an agent on the "power set" (noted 2 Ω ). The power set corresponds to all the subsets of Ω. The basic belief assignment (bba) is defined by:

m Ω ∶ 2 Ω → [0, 1] A ↦ m Ω (A) with 2 Ω ={∅, {ω1}, {ω2}, {ω1, ω2}, ..., {ω1, ..., ωn}} (1) 
A bba can be transformed to highlight informations and to ease the dynamic aspects of TBM, including the fusion rules. We present here the four most commonly used transformations:

• The credibility or belief (denoted bel) symbolizes the minimal belief in hypothesis A. It is determined by:

bel

Ω (A) = ∅≠B⊆A m Ω (B) ,∀A⊆Ω (2) 
• The plausibility (denoted pl) represents the maximal belief in the hypothesis A. It is determined by:

P l Ω (A) = B∩A≠∅ m Ω (B),∀A⊆Ω (3) 
The transition from the credal level to the pignistic level is done through a process called pignistic transformation to make information at disposal compatible with decision theory [START_REF] Smets | The transferable belief model[END_REF].

BetP , can be obtained by:

BetP m Ω (ω i ) = ∑ A⊆Ω, ωi∈A m Ω (A) A (1 -m Ω (∅)) ,∀ωi⊆Ω (4) 
There are several rules to combine several bba. Two of the most used are the conjunctive rule of combination (CRC) [START_REF] Shafer | A mathematical theory of evidence[END_REF], denoted ∩ , which allows the fusion of bba from distinct and reliable sources and the disjunctive rule of combination (DRC) [START_REF] Smets | Belief functions: the disjunctive rule of combination and the generalized bayesian theorem[END_REF], denoted ∪ , which allows the fusion of bba from distinct sources where at least one of the sources is reliable.

III. RISK ASSESSMENT PROCESS

To carry out directed evidential networks, we start with the assumption that the network structure is known and has been defined by domain experts. We also consider that all nodes represent discrete variables.

The following approach is our proposition to edit and process expert and statistical knowledge to assess risk and to communicate results through indicators. This approach is divided into four successive phases:

• "Knowledge formalization" consists in expert opinions elicitation and statistical knowledge extraction, both resulting in belief functions (prior and conditional bba).

• "Information fusion" consists in getting one single belief function for a given information (out of potentially several) where we may have several experts opinions and data records. This resulting belief function is introduced afterwards in the corresponding node of the evidential network.

• "Information processing" consists in the introduction of any new piece of information and its propagation (evidential inference algorithms) throughout the network nodes. This activity led the system in a particular resulting state.

Figure 1. Synoptic of the approach to assess risk by using directed evidential networks.

• "Result restitution" consists in the interpretation of the final network state to provide the final user with some understandable indicators. Instead of using Bayesian networks, the chosen approach is interesting as the use of belief function enable the representation of different information sources. Moreover, the processing of belief functions take correctly into account the epistemic uncertainty that is inherently present in expert opinions and in sparse statistical data.

To describe more deeply the required sequence of actions that performs this transformation, we introduce the following synoptic (Fig. 1) which is a two head process where expert opinion processing is on one branch and statistical extraction on the other.

IV. KNOWLEDGE FORMALIZATION

As we saw earlier, there are two kinds of knowledge in the model: expertness and statistics. To be able to merge them, we use belief functions and their related fusion functions.

A. Expert opinion

Initially, the expert expres his opinion by using subjective probabilities wich are a simple way to model a person belief in a hypothesis [START_REF] Savage | The foundations of statistics[END_REF]. The expert gives his opinion according to the frame of discernment Ω that is exhaustive and contains discrete and independent values.

Transformation of these probability distributions is done using the inverse pignistic transformation [START_REF] Smets | Quantified epistemic possibility theory seen as an hyper cautious transferable belief model[END_REF]. This transformation consists in determining, from a pignistic probability distribution BetP Ω , the least committed bba, using the least commitment principle [START_REF] Hsia | Characterizing belief with minimum commitment[END_REF].

By using the pignistic transformation, we obtain a bayesian distribution BetP Ω on singletons of Ω, ordered such that:

BetP Ω (ω 1 ) ≥ BetP Ω (ω 2 ) ≥ ⋯ ≥ BetP Ω (ω n ) with n = Ω
The inverse pignistic transformation allows to find the least committed bba , composed of nested focal elements such that:

mΩ (A) = A × BetP Ω (ω i ) -BetP Ω (ω i+1 ) with BetP Ω (ω n+1 ) = 0 (5) 
From the opinion of the expert formalized as a bba, we can add the concept of information source reliability. Indeed, it is possible to use a mechanism called "discounting" introduced by Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF]. The goal of discounting is to weight all the bba elements by a factor (1β) which is called reliability. The discounting rate, denoted β, is defined on the interval [0, 1]. Then, to respect the least commitment principle, the remaining mass after weighting is assigned to Ω which represent total uncertainty. This mechanism adds some ignorance in the bba related to the reliability of the source.

B. Statistical opinion

Statistical knowledge results from a database containing all the information capitalized during past operations. We consider that all hypotheses, for which it is necessary to extract statistical knowledge, have been defined previously. Therefore the extracted knowledge corresponds to an "opinion" expressed on the frame of discernment Ω = {ω 1 , ω 2 , . . . , ω n }.

The statistical database can be summarized as a table containing all the company past cases. Each case is stored as a table row and each variable in the risk assessment model is represented by a column. Therefore the database structure is related to the risk assessment model structure that has been defined previously.

Statistical knowledge extraction consists in counting the number of cases satisfying the conditions of each variable and store this number in a table. Then the tables containing the results of the statistical extraction have to be transformed into bba to be incorporated into the model.

To take into account the knowledge induced by statistical laws, Denoeux proposed the predictive belief function formalism. It allows, from a number n of observations of a random variable X, to build a bba representing the future occurrences of X [START_REF] Denoeux | Construction of predictive belief functions using a frequentist approach[END_REF].

V. FUSION OF OPINIONS

Belief function formalism provides several rules allowing the fusion of several opinions resulting from heterogeneous sources. In our study, we can not use the CRC or the DRC because our sources are not independent (non-distinct) due to the fact that different experts share the same information ground to elaborate their opinions.

Therefore, we chose to use the cautious conjunctive rule of combination (CCRC) for the fusion of expert opinions with the database because it allows the knowledge combination from reliable but non-distinct sources. The CCRC, proposed by Denoeux [START_REF] Denoeux | Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence[END_REF], uses the canonical decomposition, introduced by Shafer [START_REF] Shafer | A mathematical theory of evidence[END_REF]. The canonical decomposition consists in expressing a non-dogmatic bba m Ω ({Ω}) > 0 using a conjunctive combination of simple bba, denoted A w(A) . Since A w(A) is a simple bba, it have only two focal elements: m Ω (A) = 1w (A) and m Ω (Ω) = w (A).

The CCRC uses the notion of GSBBA and the t-norm operator "minimum", noted ∧, to combine distributions. The CCRC, denoted ∧ , can be written:

m Ω 1 ∧ m Ω 2 = ∩ A⊂Ω A w Ω 1 (A)∧w Ω 2 (A) (6) 
Note that the CCRC generates a mass assigned to the empty set m Ω (∅) ≠ 0 . Information on the empty set can be very useful because it represents conflict between the information sources [START_REF] Lefevre | Belief function combination and conflict management[END_REF]. However, when the number of experts increases, the number of uses of the combination rule and therefore the mass attributed to the conflict increases. It is therefore necessary to normalize [START_REF] Lefevre | Belief function combination and conflict management[END_REF] the bba resulting from the fusion before the directed evidential network processing to prevent the conflict from becoming predominant information. This phenomena would reduce the influence of other informations in the directed evidential network and this is why it is relevant to use the normalized CCRC:

(m 1 ∧ * m 2 ) (A) = (m1 ∧ m2)(A) 1-(m1 ∧ m2)(∅) ∀A⊆Ω si A≠∅ 0 if A=∅ (7) 

VI. PROCESSING WITH DIRECTED EVIDENTIAL NETWORKS

After the presentation of the knowledge formalization and of the methods to combine it, the processing of this knowledge to achieve risk assessment will be discussed. The process is performed by using directed evidential networks. Directed evidential networks [START_REF] Yaghlane | Directed evidential networks with conditional belief functions[END_REF] can implement reasoning mechanisms using knowledge formalized by belief functions. This technique is based on the Generalized Bayes Theorem (GBT) and the DRC to perform inference and propagate the knowledge in the network. The Bayes theorem is a probabilistic inference mechanism. It allows to link a series of hypothesis, characterized by occurrence probabilities with a series of observations representing the actual state of the system. The GBT [START_REF] Smets | Belief functions: the disjunctive rule of combination and the generalized bayesian theorem[END_REF] is the generalization of this mechanism to the TBM.

From a mathematical point of view, we call Θ = {θ 1 , θ 2 , . . . , θ i } the hypothesis space and Ω = {ω 1 , ω 2 , . . . , ω k } the observation space. To represent links between observations and hypothesis, we use the notation related to conditional belief functions (for plausibility: pl Ω [θ] -where hooks [] symbolize the conditioning by θ). Fig. 2 shows a simple directed evidential network with only two nodes, Θ and Ω, and an edge. The edge represents the causal relationship between the two nodes. From the perspective of the variables, represented by nodes, the edge means that Ω is conditioned by Θ, therefore the plausibility distribution on Ω is pl Ω [θ]. In the example of Fig. 2, in addition to the network structure, there are two bba. The node Θ is characterized by an a priori bba m Θ 0 and the node Ω is characterized by a conditional bba m Ω [θ]. The knowledge is then propagated according to the edge direction if the node Θ receives a new distribution of masses m Θ 0 . Therefore the node Ω is updated in the light of these new informations. This propagation called "forward", allows the calculation of the plausibility distribution pl Ω using the GBT and the DRC by taking into account the inclusion of an a priori knowledge:

P l Ω (ω) = ∑ θ⊆Θ m Θ 0 × P l Ω [θ] (ω) P l Ω [θ] (ω) = 1 -∏ θi∈Θ 1 -P l Ω [θ i ] (ω) (8) 
Knowledge can also be propagated in the opposite direction of the edge if the node Ω receives a new bba m Ω . The node Θ is then updated to reflect this new information. This step, called "backward propagation", allows the calculation of the plausibility distribution pl Θ using the following equation, which is based on the GBT, to determine the plausibility P l Θ [ω i ]:

P l Θ (θ) = ∑ ω⊆Ω m Ω (ω) × 1 -∏ ω i ∈ω 1 -P l Θ [ωi] (θ) P l Θ [ω] (θ) = 1 -∏ θ i ∈θ 1 -P l Ω [θi] (ω) (9) 
If both nodes have to be updated because new knowledge has been assigned to the two nodes, knowledge must be propagated first by using forward propagation and then by using backward propagation. Finally, the results of the two propagation cycles are merged using the CRC.

VII. RESULTING INDICATORS

The main difficulty with belief functions is that it is not easy to interpret them for someone that has not the required background knowledge. That is why it is really important to introduce some indicators for decision makers. Within this context and to be the most accurate, two kinds of indicator were introduced.

On one hand, a risk indicator is proposed. Firstly, any resultant belief function must be transformed into a pignistic probability distribution and secondly, the resulting pignistic distribution must be combined with utility tables that are an estimation of the different possible impacts. Finally, we categorize these risk measures expressed on a numeric scale according to four risk families that are: negligible risks, moderate risk, important risk, unacceptable risk.

On the other hand, meta-data indicators have been developed to balance the information conveyed by the risk indicator according to the overall data quality depending on conflict and uncertainty levels. We proposed to use two indicators, one representing the global level of uncertainty and one dealing with the global level of conflict that has been absorbed by the network. The uncertainty indicator uses the non-specificity measure, resulting from the work of Dubois and Prade [START_REF] Dubois | The principle of minimum specificity as a basis for evidential reasoning[END_REF] about the least commitment principle, to provide three measures representing global uncertainty, partial uncertainty and complete ignorance.

Unlike risk and uncertainty indicators, the conflict measure is calculated by using the bba before normalization and before the processing in the directed evidential network. Each variable in the model has a conflict measure. This measure is calculated by using masses assigned to the empty set of each variable.

VIII. APPLICATION TO AIRCRAFT DECONSTRUCTION

The DIAGNOSTAT project provides us a framework for the use of the risk assessment model that we developed during this research work. A study case has been developed, intended to implement the risk assessment model, in partnership with an expert in the field of composite aircraft spare. This model exhibits three defects and their respective causes and consequences for a system composed of two composite panels. In Fig. 3 summarizes the modeling of this study case using the risk assessment model. We also developed two scenarios to illustrate how this model behaves. The first scenario is applied to aircraft deconstruction and allows the user to assess the risk that the system will not be reusable. The second scenario is applied to aircraft maintenance and allows the user to diagnose the most likely causes of the defect.

Prototype is currently under development to integrate the mechanisms presented above. This prototype will validate our work applied to the study case that was just mentioned and will demonstrate its capabilities for use in maintenance or deconstruction thanks to the scenarios.

IX. CONCLUSION

In this paper, an approach designed to perform a risk assessment during the deconstruction of end-of-life aircraft was presented. This approach allows to formalize, combine and process uncertain knowledge resulting from heterogeneous information sources. The heterogeneity of information sources that we use is related to the nature of the feedback mechanisms used in industry, that is to say the cognitive and the statistical experience feedbacks. The approach presented here allows the hybridization of these different types of experience feedback. Moreover we have developed some indicators which allow the decision maker to be informed about the risk level but also about the data quality concerning the uncertainty and the conflict between information sources. The prospects of our work consist mainly in the construction of a prototype to validate the mechanisms presented in this paper on industrial case studies.
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 2 Figure 2. Directed evidential network representing the causal relationship between two variables.
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 3 Figure 3. Graphical view of the study case.