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Abstract— Deep learning-based multi-task approaches usu-
ally rely on factorizing representation layers up to a certain
point, where the network splits into several heads, each one
addressing a specific task. Depending on the inter-task corre-
lation, such naive model may or may not allow the tasks to
benefit from each others. In this paper, we propose a novel
Semantic Orthogonality Spaces (SOS) method for multi-task
problems, where each task is predicted using the information
from a common subspace that factorizes information among
all tasks, as well as a task-specific subspace. We enforce
orthogonality between these tasks by applying soft orthogonality
constraints, as well as adversarially-learned semantic orthogo-
nality objectives that ensures that predicting one task requires
the specific information related to that task. We demonstrate the
effectiveness of SOS on synthetic data, as well as for large-scale
facial attributes prediction. In particular, we use SOS to craft
a lightweight architecture that provides high-end accuracies on
CelebA database.

I. INTRODUCTION

Deep Multi-task learning refers to the process of predicting
multiple non-exclusive values, corresponding to as many
tasks, using a single network. It is an ubiquitous paradigm
in machine learning and computer vision, as it allows to
compensate for a lack of training data, to a certain extent.
As such, it finds a wide number of applications that range
from image classification [10] or semantic segmentation [2]
to facial attributes [13] or action unit detection [4]. The
usual way to integrate several tasks inside a deep neural
network consists in sharing representations between tasks
up to a certain point. From this common representation
space, multiple heads corresponding to the various tasks are
appended. However, as reported in [10], there is no guarantee
that learning shared representations benefits either task. Even
worse, there is no way to reliably know beforehand whether
such a multi-task model will perform better than single-task
ones. We argue that this problem might stem from the fact
that such representation does not promote factorization of a
common information as well as specificity of the different
tasks.

To address this problem, we propose a new multi-task
formulation, which is based on Semantically Orthogonal
Spaces (SOS), as illustrated on Figure 1. In SOS, each task
is predicted by combining a common and task-specific space.
To sum it up, the contributions of this paper are three-folds:
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(FacIL, project ANR-17-CE33-0002).
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Fig. 1. Overview of the proposed SOS multi-task method and application
to facial attributess prediction. A common and several task-specific spaces
are derived from the representations layer to predict each attribute. Soft
and semantic orthogonality constraints are applied to efficiently factor and
disentangle information.

• We introduce a novel Semantically Orthogonal Spaces
(SOS) multi-tasks formulation, which is based on com-
bining common and task-specific spaces, and consists in
incorporating soft and semantic orthogonality constraints
involving adversarial objectives.

• We show that SOS performs better that traditional multi-
task approaches on toy experiments on several datasets,
as well as for large-scale facial attributes prediction.

• We integrate SOS multi-task prediction into a squeeze-
and-excitation-like deep architecture, which achieves
state-of-the-art results for facial attributes prediction
with a lightweight architecture.

II. RELATED WORK

In this section, we review existing deep multi-task learning
approaches, as well as their applications in a facial attributes
prediction context.

a) Multi-task learning: Surveys on deep multi-task
learning methods can be found in [23], [19]. Generally
speaking [4], [3], multi-task learning aims at compensating
for the lack of training data, by sharing the weights of a
deep network between different task, so that these tasks
can benefit from each other. To do that, a naïve approach
[10] consists in simply using a different prediction head for
each task, sharing the representation layers up to a certain
point. However, such approach intrinsically presents a number
of problems. First, as pointed out in [16] there is no way
to know beforehand which representation layers should or
should not be shared across tasks. To adress this problem,
authors in [16] propose to use cross-stitch units that merge



together the representation power of multiple architectures.
Second, this parallel prediction order may not be optimal [15],
and learning more complicated prediction dependencies may
improve the overall performance. For instance, Meyerson
et al. [15] design a soft ordering pipeline, in which the
network can dynamically select the best sequence of tasks
to be predicted, through multiple stages. Tallec et al. [20]
propose to learn an optimal task chaining order along with
the task prediction itself, in a joint manner. Zamir et al.
[22] propose to define a taxonomic structure based on inter-
task correlation. This structure represents an order in which
visual tasks shall be combined to enhance the prediction
accuracy with limited amounts of data. Finally, the final shared
representation needs to factor inter-task common information
while preserving task-specific information in order to find
an underlying structure between the tasks at stake. However,
a naïve multi-task approach [10] may not promote this: as
a result, loosely related tasks can “contaminate” each other,
which is bound to cause performance drops. In the work of
Nicolle et al. [17] in the frame of facial action unit detection,
the authors use a concatenation of a common and specific
space to predict each task. However, this method does not
explicitely promote orthogonalization between the spaces,
hence the possibility that specific spaces contaminate each
other still exists. By contrast, we propose to integrate soft
orthogonality constraints to limit the coupling of these spaces,
as well as a novel semantic orthogonality term involving
adversarial objectives.

b) Attribute prediction: Facial attributes prediction is
an interesting case of multi-task problem. As introduced in
[13], it consists in classifying 40 attributes from registered
face images. These attributes are heterogeneous and some of
them are highly correlated (e.g. male and beard or wearing
hearrings or blond hair and bald) while some others hardly are
(e.g. young and smiling). Furthemore, facial attributes datasets
are generally highly imbalanced [6], thus successful multi-task
methods shall capture these inter-tasks correlations despite
high dataset biases. In [13], the authors propose to use a
combination of two deep networks that first precisely localize
the face region of interest, then performs attribute prediction
from it. By contrast, Gunther et al. [5] propose an alignment-
free procedure, along with a dedicated data augmentation
scheme to enhance prediction. Walk & learn [21] explore the
use of contextual information for attribute prediction. MOON
[18] proposes a mixed objective optimization network with
a domain adaptive loss weighting to address the imbalance
problem. Hand et al. [7] add an auxiliary network on top of
a multi-task deep network attribute prediction to better model
the inter-task relationships. Later on, the same authors [6] also
proposed a batch balancing method for improving attribute
prediction, allowing them to achieve high-end accuracies with
few parameters. Kalayeh et al. [9] propose to use semantic
segmentation of the face image to enhance attribute prediction.
Lu et al. [14] propose an adaptive task grouping process that
allows to generate a dependency tree among related attribute
prediction task. This leads to networks structures where a
particular attribute can benefit from other ones predicted

downstream in the network, in a similar vein as [15], [22].

III. METHODOLOGY

Figure 2 illustrates the flowchart of our method, in the
case of a multi-task problem with only 2 tasks. A traditional,
naïve multi-task approach (Section III-A) is showcased on the
left, while our soft orthogonal spaces method (Section III-B)
is depicted on the right. This method uses soft orthogonality
constraints (Section III-C) as well as semantic orthogonality
constraints (Section III-D) to learn task-specific embeddings
as well as common inter-task representation. Finally, Section
III-E introduces the attribute prediction problem, which is a
classical multi-task learning application.

A. A naïve multi-task formulation

In what follows, we consider a dataset
(xj , y

∗
i )j=1...m,i=1...n with m examples and n non

mutually-exclusive, possibly correlated tasks. Generally
speaking, a traditional, naïve multi-task approach consists in
using a shared embedding hj = gl ◦ ... ◦ g1(xj) to predict
the n tasks from an example xj . g1, ..., gl denote a number
of transformations of the input xj , e.g. a number of CNN or
fully-connected layers, max pooling, batch normalization,
ReLU activation function. Estimates for the n tasks are thus
computed from the shared embedding hj by applying:

ŷji = ti(hj) (1)

Where the ti are parametric functions such as CNN or
fully-connected layers. Such basic multi-task model is usually
learned by optimizing the following loss:

Lsup(Θ) =

m∑
j=1

n∑
i=1

L(ŷji, y
∗
ji) (2)

With Θ the set of parameters of the network, and L being
any usual loss function, e.g. sigmoid cross-entropy, L1 or
L2 loss, depending on the application. Such basic multi-
task approach usually offers advantages over a single-task
approach, where each task is predicted using an independant
network and set of representations, as the networks may learn
better representations, allowing each task to benefit from
the others while limiting overfitting. This, however, is not
guaranteed at all, and, in certain cases, the performance of a
multi-task model can be lower than that of a single-task one
[10].

B. Common and task-specific spaces

To address this problem, we propose to split the represen-
tation h into n+ 1 representation spaces, the first of which
being a common representation hc, that models the inter-task
relationships. The subsequent ones are task-specific spaces
hsi that contain information that can not be factorized into
the common representation. Formally, for an example j the
representation can be written as h = hc||hsj1||...||hsjn, with
|| the concatenation operator. A task i can then be predicted
using a concatenation of the common and specific vectors
relatively to this task.
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Fig. 2. Illustration of the proposed method in case of a two-tasks problem. Left: traditional MT prediction is usually performed by sharing parameters
between two tasks until the end of the network, where each task correspond to one dimension of an output vector. Right: by contrast, the proposed SOS-MT
uses a common space that is shared between the two tasks and two specific spaces, one for each task. Orthogonality between common and specific spaces
and the two specific spaces is promoted by soft ortogonality losses between these embeddings (blue/violet arrows), as well as inter-task adversarially-learned
semantic orthogonality loss.

ŷji = ti(h
c||hsji) (3)

A special case of this formulation is when dim(hsji) = 0 ∀i:
this corresponds to the naïve formulation seen in Section III-A.
Compared to this naïve formulation, using a combination of a
common subspace and multiple task-specific subspaces allows
in theory to factor the inter-task information and to predict
each task using specialized features, hence capturing task
complementarity. At this point, however, nothing prevents the
task-specific subspaces to be correlated (problem 1). Even
worse, there is a possibility that the common subspace encode
all the information while leaving the specific subspaces nearly
useless (problem 2).

C. Soft orthogonality constraints

We address problem 1 by using soft orthogonality con-
straints to limit the correlation between, one the one hand,
the common and specific subspaces and, one the other hand,
the different specific subspaces. Towards this purpose, as it
was done [1] for domain adaptation, we add a regularization
coefficient on the Frobenius norm of the inner product of
these representations. This can be written:

Lsoft
c↔s(Θ) =

1

n

m∑
j=1

n∑
i=1

||hc.hsji||2F (4)

for limiting common-specific coupling, and:

Lsoft
s↔s(Θ) =

1

n(n− 1)

m∑
j=1

n∑
i=1

n∑
k=1,k 6=i

||hsji.hsjk||2F (5)

To limit specific-specific coupling between the tasks. In the
special case where the hsji are centered with unit variance
(which can be forced e.g. via using batch normalization),
this amounts to explicitly penalizing correlation between
the variables. However, we still need to make sure that
the common subspace does not encore all the information,
by forcing poor predictions for a task when not using the
corresponding specific subspace.

D. Semantic orthogonality via adversarial learning

To adress problem 2 we need to ensure that without the
specific subspace hsji, the model fails to predict task i. This
can be done in two ways: first, we can push every subspace
hc||hsjk, k 6= i away from correctly predicting task i. To do
that, we minimize the following loss:

Lsem(Θ) =
−1

n(n− 1)

m∑
j=1

n∑
i=1

n∑
k=1,k 6=i

L(ỹkji, y
∗
ji) (6)

Where ykji = tki (hc||hsjk) is a “fake” prediction of task
i label using only information from the common subspace
and the task-k-specific subspace. For instance tki can be a
very simple prediction head, e.g. a single fully-connected
layer with parameters Θ̃. While this formulation may allow
to ensure that the i-th specific subspace is needed to predict
task i, in this formulation nothings prevents tki to degenerate,
in which case no gradient is backpropagated anymore. To
avoid this pitfall, we add an adversarial objective on the
optimization of these “fake” predictions:

Ladv(Θ̃) =
1

n(n− 1)

m∑
j=1

n∑
i=1

n∑
k=1,k 6=i

L(ỹkji, y
∗
ji) (7)

In this formulation, the n(n − 1) fake prediction heads
can be seen as as many discriminators that try to predict the
correct attributes without using the related specific subspaces,
while the multi-task network is optimized to ensure that such
prediction is not possible. The total loss is:

L(Θ, Θ̃) = Lsup(Θ) + λc↔sL
soft
c↔s(Θ) + λs↔sL

soft
s↔s(Θ)

+ λadvL
sem(Θ) + λdiscadv L

adv(Θ̃)
(8)

In what follows, we define our Semantic Orthogonal Spaces
(SOS) module as the multi-task prediction head introduced
in Section III-B, optimized with the loss function defined
in Equation (8). More specifically, we denote SOS(C,S) an
SOS module with a C-dimensional common subspace, and
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Fig. 3. SOS-SE architecture. It is composed of several stacked blocks (4 on the illustration), each containing conv, SOS MT SE, conv and BN layers.
The SOS MT SE layer is a squeeze-and-excitation (SE) layer which uses attribute prediction with SOS-MT as its bottleneck (squeeze) layer. Stacking SOS
MT SE blocks allows the tasks to benefit from each other, in the vein of [15].

S-dimensional task-specific subspaces. This brick is generic
and replace the multi-task prediction head to address any
multi-task problem, as it will be seen in Section IV.

E. Application to attribute prediction

Facial attributes prediction is a natural choice of application
for multi-task methods, as it consists in estimating a number
of attributes from a face image, some of which are strongly
correlated while some are not. A naive way to apply SOS
for facial attributes prediction would be to replace the final
layer of any backbone CNN by a SOS layer with roughly the
same amount of parameters. While this works to a certain
extent, as it will be shown in the experiments, we can design
a lighter, and overall more efficient architecture that we call
SOS-SE, which is illustrated on Figure 3.

SOS-SE network is composed of four blocks, each one of
the form conv→ SOS-MT-SE→ conv→ Batch norm/ReLU.
The SOS-MT-SE block is composed of a global average
pooling (squeeze) layer, a SOS-MT attribute prediction
block (with a 512-dimensional common space and 40 32-
dimensional task-specific spaces), and an excitation layer that
takes as input the 40 dimensional attribute vector to generate
C excitation values with a sigmoid activation, C being the
number of input channels. We also add a residual connection
between the input and output of each SOS-MT-SE block. The
idea of such a block is to (a) use recent advances in squeeze-
and-excitation [8] networks, i.e. use global statistics on the
image to select relevant channels, and (b) to use attribute
prediction to drive the learning of such high-level squeeze
layers and (c) define a potent architecture with few parameters
(less than 3M ) that can be learned from scratch for attribute
prediction.

It should also be observed that, in its first blocks, SOS-SE
learns to predict attributes from high level image statistics (by
constraining the squeeze layer with intermediate supervision

of attribute prediction), and to leverage these predictions to
select relevant feature maps for predicting attributes using
downstream feature maps (using the excitation layers). By
doing so, it intrinsically learns a suitable order in which
the attributes can help predict each other, similarly to [15].
However, in our approach, the deep representation learning
and task ordering schemes are closely entwined by the SE
channel selection procedure.

IV. EXPERIMENTS

First, in Section IV-A we demonstrate the effectiveness of
our method in the frame of toy experiments using small deep
networks. Then, in Section IV-B we apply it in a large-scale,
real-world facial attribute prediction context.

A. Toy experiments

In Section IV-A.1 we provide implementation details to
ensure reproducibility. Then in Section IV-A.2 we apply our
method on synthetic data. Finally, in Section IV-A.3 we
benchmark our method on MNIST and CIFAR databases.

1) Experimental setup: We compare three different ar-
chitectures for addressing these 2 tasks: ST a single-task
architecture composed of two independant networks, with
2 → 20 → 10 → 1 units, with ReLU activations unless
for the last layer, which has sigmoïd activation. MT a
single multi-task architecture with 2 → 20 → 20 → 2
units and the same activations. and SOS whose architecture
is 2 → 20 → SOS(15, 5). All the models are trained
with the same hyperparameters: we apply 50000 updates of
ADAM optimizer with learning rate 5e−4 (with polynomial
annealing), β1 = 0.9 and batch size 128. For SOS model
we apply λc↔s = λs↔s = λadv = λdiscadv = 0.01. For the
experiments on MNIST, CIFAR-10 and CIFAR-100 we use
a LeNet-5 backbone with 3 convolutional layers and 2 FC
layers for each model. we train the models with batch size
100 and 200 epochs using ADAM and a constant learning rate



of 2e−4. For SOS model we use λc↔s = 0.01 λs↔s = 0.01
and λadv = λdiscadv = 0.05.

2) Experiments on synthetic data: we generate a number
of random datasets {(Xj , Yi)}j=1...m,i=1,...,n with Xj ∈
[−1, 1]2 ∀j and Yji ∈ {0, 1}2 ∀j, i. We set m = 5000
(number of examples) and n = 2 (number of tasks). The
sets sets are composed of 500 examples drawn from the same
distribution as the train sets. To generate the data, we assign
each point a class according to the region of the [−1, 1]2

interval where this point belongs, and we alternate sampling
between the positive and negative classes for each task for
both the train and test sets. Based on this process we generate
datasets based on combinations of the following two task
templates:
• donut(r, x0, x1, ε): r − ε/2 <√

(X0
j − x0)2 + (X1

j − x1)2 < r + ε/2

• cos(a, b, c, ε): |X1
j − c.cos(a.X0

j + b)| < ε/2

Thus, depending on the parameters r, x0, x1, ε for the first
template, and a, b, c, ε for the second one, we can generate
two-tasks toy datasets with varying overlap between the tasks.
Figure 4 shows the 10 generated datasets that we use in our
experiments.

Table I showcases the results obtained for the three models
on the 10 toy datasets illustrated on Figure 4. Generally
speaking, the basic multi-task model MT performs better than
the two single-task models ST on the datasets with strong
overlap between the tasks (1,2,6,10), while ST performs better
elsewhere (3,4,5,6,9). Note however that this is not always
the case, e.g. on dataset 7 where the tasks do not present
any overlap, and MT still performs better in this scenario.
Overall, in terms of overall accuracy on the 10 datasets, ST
performs better than MT, indicating that sharing the weights
between the different tasks may not be beneficial in all cases,
as also echoed in [10]. The proposed SOS multi-task model
performs significantly better than MT in all tested scenarios,
and significantly better than ST on all datasets except 4. The
overall accuracy accross the 10 datasets is 95.0 for SOS
vs 90.5 for ST and 89.7 for MT. Thus, overall, our SOS
multi-task method appears as a more efficient way to share
weights and disentangle the different tasks as compared to
the naïve MT approach, as it allows to factor representations
between the two tasks within its common subspace, and to
complement this representation via its task-specific subsets.
As such, it enables overlapping tasks to benefit from each
other, as well as to limit the inter-task interference in case
of loosely overlapping tasks.

3) Experiments on MNIST and CIFAR databases: We
study the behavior of multi-task (MT and SOS) models,
and performance compared to a single-task (ST) model in
case of (a) unrelated tasks, and (b) highly correlated tasks.
To do so, we regard handwritten character recognition from
MNIST images as one task, and object recognition on CIFAR
datasets as the other task. When training on MNIST and
CIFAR-10 (a), we observe a peformance drop of 1.56%
for MT model on CIFAR-10 and 0.81% on MNIST, and
and 0.31% and 0.68% for SOS, respectively. A contrario,

when training on CIFAR-10 and CIFAR-100 (b), parameter
sharing improves the performance by 1.55% on CIFAR-10
and 1.42% on CIFAR-100 for MT, and 1.41% on CIFAR-
10 and 1.80% on CIFAR-100 for SOS. This indicates that
thanks to its soft and semantic orthogonalisation properties,
the proposed SOS formulation allows to (a) help mitigate the
performance drop in case of unrelated task, and (b) allows the
tasks to better compliment each other in case of highly related
tasks. In the general case, e.g. on large scale experiments
involving a variety of tasks, it is generally not possible to
know beforehand which task benefits from each other or
not, thus SOS appears as an overall more efficient multi-task
formulation, as it will be shown in what follows.

B. Large-scale experiments: application to facial attributes
prediction

We validate our approach on a large-scale, real world
scenario of facial attributes prediction. The CelebA database
[13] is a large-scale facial attributes database which contains
202599 218 × 178 celebrity images coming from 10177
identities, each annotated with 40 binary attributes (such
as gender, eyeglasses, smile), and the localization of 5
landmarks (nose, left and right pupils, mouth corners). In our
experiments, we use the train partition that contains 162770
images from 8k identities to train our models. The test and
val partitions each contains 19962 instances from roughly 1k
identities that are different from the training set identities. In
Section IV-B.1 we perform ablation study to show the interest
of the different components of SOS. Finally, in Section IV-
B.2 we compare SOS-SE with state-of-the-art approaches
and show that it better captures inter-task correlations.

1) Ablation study: In this first experiment, we perform abla-
tion study by comparing SOS with a baseline MT formulation.
We also consider various architectural and hyperparameter
settings. To do that, we only consider 128× 128 grayscale
images extracted from the train partition of CelebA and
measure the average unweighted and weighted accuracies
(trace of the 2×2 confusion matrix averaged over all attributes)
for each model. Results are reported in Table II.

a) Backbone architecture: we append our SOS MT
prediction head at the end of a very simple 8-layers backbone
CNN with strided convolutions, Batch normalization, ReLU
activation and 32 → 64 → 64 → 128 → 128 → 256 →
256→ 512 channels. The outputs are then flattened, fed into
a 1024-dimensional fully-connected layer and passed into a
SOS layer, with various hyperparameters.

b) Loss hyperparameters: first, we compare SOS with
a common space of size 512 and 40 specific subspaces (one
for each attribute) to a baseline network with a single fully-
connected layer with the same total number of parameters
(corresponding to SOS with a common space of size 1792
and no specific subspaces). As such, simply using different
subspaces for each attribute steadily improves the accuracy,
as it already allows to decorrelate predictions and factor
relevant information into the common subspace. Moreover,
using soft orthogonality constraints between the subspaces
also improve the accuracy, as it encourages the inter-task



Fig. 4. Randomly generated toy datasets. For each of the 10 datasets, points in violet indicate negative examples for the two tasks (−task1,−task2). Green
points: +task1,−task2. Blue points: −task1,+task2. Yellow: +task1,+task2. For certain datasets (e.g. 1,2 and 7) there is a strong overlap between the two
tasks, as indicated by the large yellow area.

TABLE I
AVERAGE ACCURACY ON 10 SYNTHETIC TOY TWO-TASKS DATASETS WITH THREE ARCHITECTURES: SINGLE-TASK (ST), NAÏVE MULTI-TASK (MT) AND

OUR SEMANTIC ORTHOGONAL SPACES (SOS) MULTI-TASK MODEL. FOR EACH TASK, THE BEST ACCURACY IS REPORTED IN RED, AND THE SECOND

BEST IN BLUE.

data Task 1 Task 2 Accuracy (task 1, %) Accuracy (task 2, %) Accuracy (avg, %)
ST MT SOS ST MT SOS ST MT SOS

1 Cos(4,0,1,0.2) Cos(4,0,1,0.1) 98.6 98.8 99.2 96.0 96.0 97.6 97.3 97.4 98.4
2 Cos(8,0,1,0.1) Cos(8,0,1,0.2) 71.1 76.6 80.6 83.6 83.6 91.2 77.4 80.1 85.9
3 Cos(4,2,1,0.2) Cos(4,0,1,0.2) 90.0 89.2 93.8 98.0 78.4 98.6 94.0 83.8 96.2
4 Cos(4,0,0.5,0.1) Cos(4,0,1,0.1) 96.8 95.4 97.4 89.2 75.0 78.8 93.0 85.2 88.1
5 Donut(0.5,0,0.1) Cos(4,0,1,0.1) 97.4 97.4 98.8 79.2 79.2 86.6 88.3 88.3 92.7
6 Donut(0.5,-0.25,0.1) Cos(4,0,0.5,0.1) 90.4 84.2 97.0 92.0 88.6 92.2 91.2 86.4 94.6
7 Donut(0.5,0,0.1) Donut(0.5,0,0.2) 94.8 97.4 98.8 95.6 94.6 95.0 95.2 96.0 96.9
8 Donut(0.25,0,0.1) Donut(0.55,0,0.1) 98.8 98.8 98.8 72.4 98.8 99.4 85.6 98.8 99.1
9 Donut(0.25,-0.25,0.1) Donut(0.25,0.25,0.1) 96.0 97.4 99.4 93.6 70.6 97.4 94.8 84 98.4
10 Donut(0.15,-0.25,0.1) Donut(0.65,0.25,0.1) 99.6 99.4 99.6 77.8 95.4 99.2 88.7 97.4 99.4
Average(all tasks) 90.5 89.7 95.0

TABLE II
ABLATION STUDY ON CELEBA TEST SET FOR VARIOUS COMBINATIONS OF ARCHITECTURAL AND HYPERPARAMETER SETTINGS.

architecture common specific λc↔s λs↔s λadv λdiscadv accuracy (%)
CNN8→FC2 1792 0 0 0 0 0 88.30
CNN8→SOS 512 32 0 0 0 0 88.85
CNN8→SOS 512 32 0.01 0 0 0 89.03
CNN8→SOS 512 32 0.01 0.01 0 0 89.10
CNN8→SOS 512 32 0.01 0.01 0.05 0 89.56
CNN8→SOS 512 32 0.01 0.01 0.05 0.05 89.97
CNN8→SOS 32 44 0.01 0.01 0.05 0.05 89.12
CNN8→SOS 256 40 0.01 0.01 0.05 0.05 89.04
CNN8→SOS 512 32 0.01 0.01 0.05 0.05 89.97
CNN8→SOS 1024 20 0.01 0.01 0.05 0.05 89.56
CNN8→SOS 1472 8 0.01 0.01 0.05 0.05 89.51

decorrelation (by setting λs↔s > 0) as well as common
information factorization (λc↔s > 0). Lastly, using semantic
orthogonalization with an adversarial objective provides
a significant boost in accuracy, as it ensures that each
specific subspace is needed to correctly predict each attribute.
However, as it is often the case with adversarial learning,
setting high values for λdiscadv leads to instability: in our
experiments, values from 0.01 to 0.05 provided the best
results.

c) Balancing common and specific subspaces: as
pointed out above, setting dimension to 0 for specific (simple
fully-connected layer case) leads to bad results as compared
to a SOS layer. The inverse is also true: if the common space
is too small (size 32 or 256), the model cannot factor inter-
task relevant information, which leads to lower accuracies. In
our experiments, we witnessed better results with a common
space of size 512 and specific subspaces of size 32, which
seems to be a good trade-of between task factorization and
task-specific information encoding.
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Fig. 5. Left: accuracy (%) vs number of parameters plot on CelebA test set, and comparison with state-of-the-art approaches, as reported in the respective
papers. Red: models reported in the literature based on pre-trained networks. Blue: Models reported in the literature trained from scratch on CelebA. Green:
baseline and SOS-SE models pre-trained from scratch on CelebA. Right: per-attribute accuracy (%) of our SOS-SE model (blue) and comparison with a
baseline approach (red).

2) Comparison with state-of-the-art techniques: Figure 5
(left) shows a comparison of the results obtained using our
SOS-SE model, against results reported in recent papers
for facial attributes prediction [13], [21], [18], [14], [5],
[7], [15], [9], [6]. It should be empathized that SOS-SE
achieves a high-end accuracy of 91.32%, while using only
≈ 1.5M parameters. Compare for instance with state-of-
the-art methods AttCNN [6] (90.97%, ≈ 6M parameters),
MOON [18] (90.94%, ≈ 158M parameters) or soft order
[15] (91.36%, ≈ 25.6 parameters). In addition, since SOS-
SE architecture is very light, it can be trained from scratch
on CelebA, contrarily to many approaches that either use
AlexNet/VGG/ResNet backbones pre-trained on ImageNet
[13], [5], [15] or pre-train on related face verification
databases [21], [18]. Moreover, SOS-SE is competitive with
recent approaches (e.g. FairGRAPE [11] achieving 90.90%)
involving heavy transformer architectures (such as [12]
91.93%). It is also better than baselines CNN8-MT and
CNN18-MT (whose architecture mimics VGG19) models
trained from scratch on CelebA. Thus, our SOS multi-task
formulation using soft and semantic orthogonality constraints
via adversarial learning, along with recent architectural design
such as squeeze-and-excitation [8], allows to find a good
tradeof between model complexity and performance in a
large scale facial attributes prediction scenario. Figure 5 (right)
shows the per-attribute accuracy obtained with SOS-SE, as
well as a comparison with a baseline CNN-8 model trained
from scratch on CelebA, in a naïve multi-task fashion. It
should be noted that SOS-SE is better than this baseline
model for every attribute, while having a lot less parameters.

Figure 6 shows correlations between attributes computed
for the ground truth labels and the prediction of both a naive
(CNN8-MT) approach and SOS-SE model. A high Pearson
correlation Coefficient (PCC) does not necessarily indicate
that that two vectors vary in a similar way, e.g. in the case
where data is extremely imbalanced, as in CelebA test set. A
way to address this issue is to weight each positive examples
by 1/s, where s is the ratio of negative examples for that
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Fig. 6. Inter-task (attribute) correlation matrices for ground truth, naive
multi-task and SOS model.

attribute in the test set. This, in turn, allows (minority) positive
examples to have more weight in the resulting balanced PCC
score. Naturally, the ground truth correlation matrix is the
same in both configurations. For the naive approach, the
inter-attributes correlation is very close to the ground truth
configuration in the unbalanced PCC metric. However, this
is not true when we use the balanced PCC score, and vice-
versa for SOS-SE. This indicates that the naive model is very
sensitive to dataset bias, whereas the SOS model intrinsically
captures more correct correct attribute correlations, thanks to
the use of task-specific spaces, as well as soft and semantic
orthogonality constraints.

V. DISCUSSION AND CONCLUSION

In this paper, we introduced a novel semantic orthogonal
spaces (SOS) way to tackle multi-task problems that consists
in predicting each task with a combination of a common
and specific space dedicated to this task. Furthermore, we
enforce specificity of the task-specific spaces by using a
combination of soft orthogonality constraints, as well as a
novel semantic orthogonality term, that involves adversarial



training. Throughout extensive experiments involving several
architectures on synthetic data, small-scale datasets as well as
large scale scenarios, we showed that SOS enhances the
predictive capacities of deep multi-task learning models,
as compared to traditional approaches. In particular, SOS
allows to mitigate the performance drop caused by sharing
parameters between loosely correlated tasks, as well as to
better capture the inter-task correlations between related ones.
Last but not least, we showed the interest of SOS for facial
attributes recognition in the wild, and used it to design
a state-of-the-art, lightweight SOS-SE architecture. Future
work involve using SOS inside more complicated network
architectures, e.g. those similar to [16], to investigate the
effect of applying semantic orthogonalization to structures
deeper than a single neuron layers. Furthermore, we plan to
apply it to other computer vision domains, ranging from facial
action unit prediction to body pose estimation or semantic
segmentation.
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