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Abstract— Face alignment refers to the process of estimating
the position of a number of salient landmarks on face images
or videos, such as mouth and eye corners, nose tip, etc. With
the availability of large annotated databases and the rise of
deep learning-based methods, face alignment as a domain
has matured to a point where it can be applied in more
or less unconstrained conditions, e.g. non-frontal head poses,
presence of heavy make-up or partial occlusions. However, when
considering real-case alignment on videos with possibly low
frame rates, we need to make sure that the algorithms are
robust to jittering of the face bounding box localization, low-
resolution of the face crops, possible bad environmental lighting,
brightness, and presence of noise.

To tackle these issues, we propose RULe, a three-staged
Relocalization-Uniformization-Landmark Estimation network.
In the first stage, an initial loosely localized bounding box gets
refined to output a well centered face crop, thus reducing the
variability of the images prior to passing them to the subsequent
stage. Then, in the second stage, the face style is uniformized
(using adversarial learning as well as perceptual losses) to
correct low resolution or variations of brightness/contrast.
Finally, the third stage outputs a precise landmark estimation
given such enhanced face crop using a cascaded compact
model trained using hint-based knowledge distillation. We show
through a variety of experiments that RULe achieves real-
time face alignment with state-of-the-art precision in heavily
degraded conditions.

I. INTRODUCTION

Face alignment denotes the process of localizing a number
of landmarks on a face image, such as lips or eye corners,
pupils or nose tips. It is an essential preprocessing for
many computer vision applications, such as facial expression
recognition [6], face synthesis [15], or facial performance
reenactment [25]. However, most state-of-the-art approaches
have focused on estimating face landmarks in nominal
conditions, i.e. starting from a perfect bounding box and
with moderate to high quality images. This does not always
translate well to real-world scenarios, e.g. when tracking faces
on videos and the bounding box has to be re-estimated from
one frame to another and in the case where a number of
frames may be skipped. Such temporal video downsampling
can cause imprecision in bounding box localization prior
to landmark estimation. Similarly, spatial downsampling as
well as poor lighting conditions can lead to severe out-of-
distribution problems, leading to major inconsistencies in
landmark estimation.

This work has been supported by Datakalab as well as the French National
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(FacIL, project ANR-17-CE33-0002).
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Fig. 1. Overview of our RULe method and summary of its main features.
First, given a roughly estimated crop of a face image, a first pass through a
Relocalization network refines the bounding box, providing aligned crops for
the subsequent stage. Second, the face crop pass to a style Uniformization
network that fixes low-resolution, bad environmental lighting as well as noise
problems. Third, a Landmark estimation network localizes face landmarks
on this enhanced face crop.

In this paper, we propose a three-staged RULe network for
face alignment in degraded conditions. The generic flowchart
of RULe is illustrated on Figure 1. First, the bounding box
is corrected using a Relocalization (R) network: this first
step produces well registered face crops, a sine qua non
condition for reducing variability for the subsequent step.
Second, a style Uniformization (U) network (trained using
adversarial learning as well as perceptual losses) is applied
to the corrected crop to enhance its quality, and address
low resolution as well as poor lighting conditions. Third,
a Landmark Estimation (Le) network is applied. The latter
consists of a cascaded compact model trained using hint-
based knowledge distillation, that allows precise landmark
analysis in degraded conditions with reasonable speed and
can be integrated into the proposed three-staged approach. To
sum it up, the contributions of this paper are the following:

e« We propose a  three-staged Relocalization-
Uniformization-Landmark estimation (RULe) method
to address poor bounding box initialization as well as
degraded image quality (low-resolution, as well as poor
environmental lighting conditions and noise) for face
landmark estimation.

o We provide practical solutions using hint-based knowl-
edge distillation to design compact cascaded models for



real-time, yet precise face landmark estimation methods
to be integrated into the proposed three-staged approach.
o We demonstrate the effectiveness of our three-staged
RULe framework for face alignment in nominal and
degraded conditions for still images and video settings.

II. RELATED WORK

Landmark estimation can BE formulated as either 2D or
3D alignment. The former consists in predicting 2D landmark
localization, usually for face images with low to medium
yaw angles. On the one hand, popular methods for 2D
face alignment either belong to cascaded regression or deep
learning-based, end-to-end approaches. Popular exemples of
cascaded regression approaches include SDM [29], LBF [20],
CSP-GNdF [5] and more recently DAN [17] and tree-gated
MoE [2]. A natural pitfall of such approaches is that the
regressors are not learned jointly in a end-to-end fashion, thus
there is no guarantee that the whole cascade might be optimal.
Tackling this issue, MDM [26] improves the feature extraction
process by sharing CNN layers among cascade stages, which
are formulated as a recurrent neural network. This results in
a more optimized landmark trajectory throughout the cascade.
On the other hand, exemples of the deep end-end-end trainable
methods include TCDCN [33], which involves pretraining on
a wide facial attributes database [19]. More recently, SAN
[10] uses generative adversarial networks to convert images
from different styles to an aggregated style before performing
landmark localization. Authors of [28] propose to use edge
map estimation as an intermediate representation to drive the
landmark prediction task. Authors in [11] use a surrogate loss
to enhance training of deep networks. AAN [30] proposes to
use intermediate feature maps as attentional masks to select
relevant spatial regions. In previous work, [7], [8] we proposed
a deep convolutional cascade that lies in-between the deep
and cascaded approaches, allowing to iteratively learning a
coarse-to-fine landmark estimation, while benefitting from
end-to-end training. Huang et al. [14] propose to model the
per-landmark error statistics to better handle the annotation
variability. Lastly, authors in [18] propose to measure and
address the quantization error caused by the downsampling
process inherent to deep neural network processing.

Addressing degraded conditions: most of the above-
mentionned approaches focus on designing efficient face
landmark estimation in nominal conditions, that is to say
assuming that a perfect bounding box and face crop are
provided as the input of the proposed system. However, when
applying face landmark estimation in a real-case scenario,
this bounding box is usually provided by either an off-the-
shelf face detector or, when performing landmark estimation
on video, as the result of the processing of previous frames
in the sequence. As a consequence, in such scenario, the
accuracy of landmark estimation might be impacted heavily
by degradation of these initial conditions. Most approaches
[29], [20], [3] addresses this problem by augmenting the
training with perturbation of the original bounding box
within the previously estimated standard deviation of a
face detector. Furthermore, fully-convolutional alignment

Fig. 2. Flowchart of the relocalization network for the first (R) stage. At
train time, a crop Ip of an image X is produced, by applying bounding box
augmentation as well as downsampling, random Hue/Saturation/Brightness
as well as additive noise. The relocalization network fgl1 aims at retrieving
the translation-scale bounding box transformation.

methods [30] have a built-in invariance to small translation
of the input, hence to small aspect-equivariant variations
of the original bounding box. This may not, however, be
sufficient to ensure precise landmark estimation when the
bounding box is too far from the target face. In addition,
traditional face alignment methods are not robust to heavy
downsampling of the images: for instance, the performance
of FAN [3] starts to drop down significantly when images are
downsampled by 2. More recently, authors of [4] addresses
the low-resolution problem by learning a face super-resolution
model using generative adversarial network (GAN) prior to
performing landmark estimation on top of the generated
image. In contrast, in this paper, we address the imprecision
in the bounding box localization (translation and changes in
aspect ratio), in addition to tackling the issue of low-quality
images as a whole: this includes low-resolution images, poor
environmental lighting, brightness or contrast conditions, as
well as the presence of noise.

III. RULE: A THREE-STAGES LANDMARK LOCALIZATION
MODEL

Our RULe model is summarized on Figure 1, and is
composed of three stages: in the first stage, starting from
an initial guess, the face bounding box is corrected (Section
III-A) using a Relocalization (R) network. Then, the face crop
pass through a Uniformization (U - Section III-B) network
that standardizes its quality. Finally, Landmark Estimation
(LE) is performed via a compact cascaded model trained
using hint-based knowledge distillation (see Section III-C).

A. Bounding box relocalization

Figure 2 Illustrates the relocalization (R) stage. In this
first stage, we consider a face image X and assume that we
have an initial bounding box guess (zo, Yo, wo, ho), Where
xo and yo denote the (x,y) coordinates of the bounding
box center, and wy and hg its width and height, respectively.
Typically, when performing landmark estimation on video, we
periodically apply an off-the-shelf face detection algorithm
[27] to locate the face region of interest before trying to locate
the face landmarks. In other cases, the aligned landmarks
for the previous frames provide a raw initial guess for
aligning landmarks on the current frame. In either case,



directly performing landmark alignment by cropping the face
image & using such initial guess generally leads to imprecise
alignment. To address this problem, we propose a bounding
box correction scheme using a first relocalization stage.

1) Bounding box correction with relocalization network:
Let’s consider fo an (imprecise) n x n face crop obtained
from the initial bounding box, i.e. I, is obtained by reshaping
Xlyo—ho/2 : yo+ho/2,20—wo/2 : x9+wy/2] to nXn, and
fo, : Iy — {0, dy, 0w, 0n } denote a function with parameters
0, that takes as input this initial face crop guess and provides
a transformation vector that “corrects” the corresponding
bounding box in terms of translation and scaling. Formally,
if we have:

T, = 2o + 0y

Y1 =1yo + 0y 0
w1 = Wo Xéw
hl :h() X(Sh

then the face crop X[y1 — h1/2:y1 4+ h1/2,21 — w1 /2:
x1 + w1 /2] obtained from this new region of interest is a
more suitable face crop I, for the subsequent stages. In other
words, the function f(,l1 maps an imprecise face crop to the
parameters of a rigid transformation (in translation J,-d, and
scale §,,-05,) that refines it. We use a deep neural network to
model fall- Also, in what follows, we explain how we can
optimize its parameters ¢, using existing datasets.

2) Learning to correct bounding boxes from still images:
The function f; can be trained on any landmark-annotated
still image dataset. For a face image X we derive a ground
truth bounding box (z*,y*,w*, h*) from the ground truth
landmark annotation by considering the min-max localization
of the landmarks and adding margins in both width and
height (e.g. 25% of the min-max bounding box dimensions).
From this ground truth bounding box we generate random
augmentations in translation and scale §* = (93, 65, 0y, 05 )
which leads to a new initial guess Io. This, in turn, gives rise
to the following bounding box relocalization loss function:

L1(61) = | fg, (Io) — 0% (2)

The first stage relocalization network is trained to optimize
the objective function £,. Note at this point that, in order
to mimic real-world conditions where the face crops can
be arbitrarily small, or may present large variations of
illumination, we augment the images with random resolution
as well as brightness/contrast for training the relocalization
network for it to be able to correct the face bounding box in
degraded conditions. In what follows, we show how we can
explicitly uniformize the face crop style in a second stage,
prior to landmark estimation.

B. Style uniformization

The Uniformization (U) stage takes as input a correctly
localized face crop and corrects style variations such as low
resolution as well as brightness/contrast. Figure 3 provides
an overview of the training of the uniformization network

LperT L 1

| pre-trained vgg-face

style uniformiza%ion DiscriminatorDHd

network f, +

Fig. 3. Flowchart of the style uniformization network for the second (U)
stage. At train time, a corrupted version I of an image I* is enhanced.
Adversarial training as well as perceptual and identity-preserving losses help
produce quality reconstructions.

T

designed to tackle this problem. At train time, it uses
adversarial learning and perceptual/identity-preserving loss.

1) Adversarial training: In this section, we denote Ia
corrupted version of this face crop I*, obtained by applying
random downsampling and variations in brightness and
contrast. We denote f(,z2 : I — I the style uniformization
network that aims at restoring I* knowing I only. As it is
classical in the image edition litterature [4], we use generative
adversarial networks (GAN) for that purpose. We thus define
a discriminator network Dy, with parameters 64, aiming at
distinguishing the real images /* from the generated ones I,
by minimizing the following loss:

Lpisc(8a) = —1og Do, (I") —log[L — Dy, (f3,(1)]- (3)

While the generator minimizes the following:

Lgen(02) = —log Dy, (f3,(I)) 4)

The generator and discriminator networks thus play a min-
max game where the later tries to correctly distinguish the real
images from the fake, generated ones, whereas the generator
has to fool the discriminator, thus generating perceptually real
images. By doing so, the generator captures the underlying
distribution of the real, high quality images. Note at this
point that while GANs encountered great successes in image
distribution when the target distribution is relatively easy to
model (e.g. on CelebA database [19]), they may struggle in
more difficult cases, e.g. on unaligned images or datasets
with broader semantic content such as ImageNet or Pascal
VOC 2012 datasets, as also reported in many papers on
image generation [1], [12], [9]. Thus, the relocalization and
uniformization stages complement each other well to a certain
extent, as the relocalization network ensures that the face
crops that pass through the second (uniformization) stage are
correctly centered. Last but not least, in our case, we seek
to not only produce realistic images but to reconstruct the
original image as accurately as possible, hence we need to
add a reconstruction loss such as perceptual loss [16].



Fig. 4. Illustration of teacher (left)-student (right) learning. In particular,
the GTN output at each stage is used to provide hints for the student model
at each upsampling step, via a specific GTN.

2) Perceptual and Identity-preserving loss: Perceptual
loss [16] is an upgrade to the standard (e.g. L1 or Ls)
reconstruction losses. It consists in matching the generated
and target images in the embedding space of the L layers
{t1}1=1,....1 of a pre-trained (e.g. VGG-16) network. This
loss thus can be written as:

Lper(62) ZAWIW o D) = 4

=1

Where A" weights the importance of the [-th layer in the
loss term. Traditionally, the consensus is to put more weights
on the first layers (e.g. using A\J“" = 1, \b*" = 0.5, and
so on) to match the low-level features (analog as gradients)
of the generated and target image. In this work, we use
a different setting: First, instead of a traditional VGG-16
network, we use VGG-face, i.e. the same architecture trained
for face recognition as in [23]. The rationale behind this
is that the basis of learned features are more adapted to
detect subtle discriminative face patterns. Furthermore, we
introduce a identity-preserving term by considering the last
layer © — v, (x) of VGG-face network:

Lia(02) = Yo (f5,(1)) — o (I7)|] (6)

The total loss optimized to train the second (U) stage is:

L(02,04) =

@)

With AP" and A" controlling the effect of perceptual and

identity preserving loss, respectively. The values of these
hyperparameters are specified in Section I'V-B.

C. Landmark localization with a distilled cascaded network

Similarly to [21] we apply knowledge distillation [13]
with a lighter student architecture to enhance the runtime
capabilities of an existing architecture [8]. This architecture
[8] is composed of 4 cascade stages that use geometry
transfer networks (GTN) composed of 1 x 1 convolutions
that convert landmark geometry format to integrate together
heterogeneous landmark and head pose annotation markups.
Let’s now suppose that we have such a model ouputting
landmark estimates {SiLk}izl,...,élﬁzl,...,K and head pose
estimates {€;};,=1 .4 for all cascade stages indexed by i.
If we also consider a fully-convolutional encoder-decoder
student model f5™ (with parameters 65'), we can write
it as f5'(I) = dyodsodyody oe(l), where e, dy,...,dy
indicate the successive encoding and decoding (upsampling)
layers. As illustrated on Figure 4, we plug a GTN after
each decoding layers d;, that outputs landmark estimates
{éfk}izly___A,k:L__’K and head pose estimates {Qi}i:17.._,4
at this upsampling layer. We can thus match the outputs of the
teacher and student models, both in terms of landmark-wise
attention maps, and head pose estimates. Formally, the loss
of the student model can be written as:

(1= Aka) |37 =™+ Awal37* — 5]

®)

Mx

L (05 = i

-

1

b
I

i 1

for the landmark estimation objective, and

4 K
Lo (B35t :ZAZ (1= Aka) |2 = [+ Xa| Qs — ] (9)
= k=1

for the head pose estimation term. Again, the total loss is:

L£57(03) = Lo(05) + La(65™) (10)

Where the first term is a supervised term and the second
corresponds to the distillation term, weighted by hyperpa-
rameter Ay and \; for each stage. Note that, in such a
case, 05, the collection of parameters for the student model,
encompasses both the parameters of the encoder-decoder
architecture e, dy, ...,d4 as well as the GTN. Also, because
each GTN has to deal with different input sizes, we apply
different networks with no parameter sharing for the student
model. However, as the GTN are composed of only 1 x 1
convolutions and soft-argmax blocks, they encompasses very
few parameters. Hence, most of the gradient flow through the
parameters of the student network, which facilitates training.
With this in mind, we can train high-precision models for
entwined Landmark estimation (Le) and use them to train
lighter student models to enable real-time processing on
lighter devices such as CPU. This, in turn, allows real-time

LGen(02)+Lpise(0a)+AP erﬁper(92)+)‘ Ezd(GQ) processing when integrated within the three-staged model.

IV. EXPERIMENTS

First, we provide a brief summary of the datasets involved
as well as a summary for the whole three-staged R-U-Le



architecture and hyperparameters. Then, we evaluate the
distilled models on clean data. Finally, we validate R-U-Le
in degraded conditions both for still images and videos.

A. Databases

The 300W database, introduced in [22], contains moderate
variations in pose and expressions. It also embraces a few
occluded images. It consists in four databases: LFPW (811
images for train / 224 images for test), HELEN (2000 images
for train / 330 images for test), AFW (337 images for train)
and IBUG (135 images for test), for a total of 3148 images
annotated with 68 landmarks for training the models. As state-
of-the-art approaches already outputs very high accuracy
on this dataset, authors of [34] introduced the 300W-LP
database, which is a large-pose dataset synthethized from
300W. It contains 100842 train images and 21608 images
following the same partitions as in 300W, but with yaw angles
covering the [—90, 90] degrees range. Authors of [34] also
proposed AFLW?2000-3D database, which contains example
synthethized from the 2000 first images of AFLW database
using the same protocol as in 300W-LP.

The CelebA database [19] is a large-scale face attribute
database which contains 202599 218 x 178 celebrity images
coming from 10177 identities, each annotated with 40
binary attributes (such as gender, eyeglasses, smile), and
the localization of 5 landmarks (nose, left and right pupils,
mouth corners). In our experiments, we use the train partition
that contains 162770 images from 8k identities to train our
models. The test partition contains 19962 instances from 1k
identities that are different from the training set identities.

The Wider Facial Landmarks in the Wild or WFLW
database [28] contains 10000 faces (7500 for training and
2500 for testing) with 98 annotated landmarks. This database
also features rich attribute annotations in terms of occlusion,
head pose, make-up, illumination, blur and expressions.

The 300VW database [24] is a video alignment database
that contains 114 videos making a total of 218,595 frames,
which are divided into three subsets of various difficulty
(categories A, B and C, C being the most challenging).

B. Implementation details

The relocalisation network, style uniformization network,
and landmark estimation network are trained separately using
Tensorflow, by using ADAM optimizer with a 5e~* learning
rate with 51 = 0.9 and learning rate annealing with power 0.9
for the three stages. We apply 200k updates with batch size
32 for the first two stages. For the third stage, we apply 400k
updates with batch size 8 for each database, with alternating
updates between the databases.

The relocalization network (R-1°" stage) is trained
by optimizing Equation (2) on WFLW database. It takes
128 x 128 grayscale face crops and consists in subsequents
applications of 3 x 3 conv with stride 2, batch norm,
ReLU with 64 — 64 — 128 — 256 — 512 — 1024
channels followed by 2 dense layers with 1024 and 4 outputs,
respectively.

The style uniformization network (U-2"¢ stage) is
trained by optimizing Equation (7) on WFLW and takes
128 x 128 RGB face crops. The generator is composed of an
encoder and decoder part. Its encoder part performs blocks
of 3 x 3 conv, batch norm, ReLLU, followed 3 x 3 conv
with stride 2, batch norm, ReLU. The number of channels is
64 — 64 — 128 — 128 — 256 — 256. We then flatten the
4 x 4 feature maps and add a large 4096-units dense layer.
Then, the feature maps are reshaped to 4 x 4 and are passed
to the decoder, that mirrors the encoder with upsampling
operators. The discriminator mirrors the encoder part, except
it does not have dense layers and has leaky ReLLU activation
everywhere. We set the hyperparameters to \P¢" = \'¢ = 1
which allows to generate high quality images in practice.

The landmark estimation network (LE-3"? stage): is
trained by optimizing Equation (10) on the train partitions
of WFLW, 300W-LP, 300W and CelebA databases. We
benchmarked several architectures, the first of which (AC-
DC-s) is a 13-layers U-net like architecture with 64 — 64 —
128 — 128 — 256 — 256 — 512 encoder part. The decoder
mirrors the encoder part with a hint-based distillation using
a particular GTN after each upsampling. Following [13],
we set the distillation hyperparameter Axq = 0.75. We use
AC-DC network [8] as our teacher architecture, taking as
inputs 128 x 128 grayscale images. Also, as in [8], we set
A1 =0.125, 22 =0.25,\3 = 0.5, Ay = 1.

We evaluate on the test partitions of WFLW as well as
AFLW2000-3D. We also report results on degraded versions
of WFLW and 300VW databases, that we refer to as WFLW-
degraded and 300VW, respectively. We report three evalua-
tion metrics, the normalized mean error (NME), the failure
rate or FR@0.1 and the AUC@0.1. For 2d alignment, the
NME denotes the average landmark-wise distance normalized
by the inter-ocular distance (distance between the outer eye
corners). For 3d face alignment, as it is traditionnally done
in the literature, we normalize the distances using the square
root of the bounding box height x width, as proposed in
[35]. The FR@0.1 corresponds to the proportion of examples
for which the NME is larger than 0.1, and AUC@0.1 is the
integral or the cumulative error distribution (CED) curve for
examples for which the NME is below 0.1. For head pose
estimation, we report the average mean absolute difference
(MAE) across the 3 Euler angles.

C. Evaluation of distilled models

Table I summarizes results obtained with distillation of
AC-DC models. The teacher AC-DC model is very accurate,
however, like LAB [28] it is very slow (500ms on an I7 CPU).
As such, applying knowledge distillation to learn a lighter
student network allows to dramatically speed-up the landmark
estimation pipeline. AC-DC-s is the base student network
described in Section IV-B. AC-DC-s-small denotes the same
network as AC-DC-s that takes as input downsampled 64 x 64
face crops. Ac-DC-s-thin and AC-DC-s-sep are similar to
AC-DC-s-small but with 2 times less channels per layer,
or separable convolution everywhere, respectively. AC-DC-s-
small appears as a suitable compromise, allowing for real-time



TABLE I
COMPARISON OF DISTILLED MODELS WITH BASELINES ON WFLW
(LANDMARKS NME) AND AFLW (LANDMARKS NME AND HEAD POSE
MAE) AS WELL AS INFERENCE TIME FOR A SINGLE IMAGE ON CPU.

architecture WFLW | AFLW2000-3D | Pose | CPU Time(ms)
LAB [28] 5.27 - - 800
3DDFA [35] - 3.79 7.39 63
AC-DC 4.49 3.40 5.29 500
AC-DC-s 4.79 3.72 5.55 105
AC-DC-s-small 4.94 3.80 5.59 60
AC-DC-s-thin 5.37 4.07 5.69 48
AC-DC-s-sep 5.51 4.13 5.7 50

alignment on CPU at ~ 16 fps with reasonable accuracy (e.g.
compared with state-of-the-art methods such as LAB [28]
and 3DDFA [35]). Furthermore, using smaller models result
in downgraded accuracy and do not significantly decrease
the computational burden. For the model involving separable
convolution, however, this may be due to known issues in
tensorflow implementation. As such, these distilled models
for the LE-3"¢ stage) are compact enough to be integrated
into the whole three staged network.

D. Face alignment on degraded still images

Figure 5 shows comparisons between several models. We
investigate multiple scenarios on WFLW database, including
image downsampling (up to a factor 8), the addition of random
hue/saturation/brightness/noise, as well as random scaling
(Sc € [2/3;4/3]) and translation (tr € [—0.4;0.4] x iod).
Figure 5 shows that while adding a first relocalization step
allows a steady increase in accuracy, the most important gap
is due to the addition of the uniformization stage in most
configurations. Furthermore, relocalization and uniformization
benefit from each other, thus the accuracy of the three-
staged R-U-Le model is the best overall by a significant
margin: for instance, with all the degradations at once
the LE model has a NME of 32.98 whereas R-U-Le has
10.85, which makes an ~ 67% error decrease. Qualitative
comparison between the models on Figure 6 illustrates that
using both the relocalization (R) and uniformization (U)
steps before estimating the landmark localization results in
substantial improvement in the degraded case. Figure 6 shows
a qualitative comparison between Le, R-Le, U-Le and R-U-Le
models on WFLW-degraded. While on certain images (e.g.
on top row), simply adding the relocalization step (second
column) already provides a decent landmark estimation, in
a number of cases (e.g. third row), the combination of both
relocalization and uniformization stages is required to output
a precise landmark estimation.

Figure 7 shows examples of successful landmark estimation
with RULe on WFLW-degraded. First, we see that, generally
speaking, given an approximate original crop, the relocaliza-
tion network successfully outputs a transformation to retrieve
a consistent, well-positionned face crop. From this face
crop, the uniformization network can generate an upsampled,
enhanced image, upon which a precise landmark estimation
can be performed. We draw attention on the fact that, to be

learned correctly, the uniformization networks requires (at
train time) well-aligned images, as it is classical with GANs.
Consequently, at test time, the capacity of the uniformization
network to generate visually appealing images is closely
related to the quality of the output of the relocalization
network. Thus, the R, U, and Le networks complement each
other to a certain extent. Notice, as a result, the quality of
the uniformized images and subsequent landmark estimation,
even with bad initial bounding box and x8 downsampling.

E. Face alignment on degraded video

Next, we measure the landmark estimation accuracy of
R-U-Le on 300VW-degraded with both spatial (x8) and
temporal downsampling (x10, which means we only keep
one frame out of 10, causing localization errors as we initialize
the bounding box with the last aligned frame). Results are
displayed on Figure 8. In terms of NME (left graph), RULe
is better in all cases: most notably, it allows to reduce the
error from 15.81 to 6.6 in case of spatial downsampling, and
from 19.84 to 11.08 % NME when we apply both spatial
and temporal video downsampling. Moreover, it allows to
substantially improve the AUC as well as to reduce the failure
rate (FR, visible on the right graph) in case of temporal,
spatial, and spatial+temporal downsampling. Thus, the 3-
staged RULe architecture allows to mitigate the accuracy
loss that results from skipped frames or fast head movement
during tracking thanks to its relocalization stage. Furthermore,
to a certain extent, it allows to precisely align face on low-
resolution or badly illuminated/noisy images, as well as to
precisely track small faces that are far from the camera.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed a three-staged Relocalization-
Uniformization-Landmark estimation (RULe) method for
face alignment in degraded conditions. In the first stage,
the relocalization network corrects imprecision in the face
bounding box localization. In the second stage, from a
refined face crop, the uniformization network enhances
this crop quality, correcting illumination and low-resolution
issues. On this enhanced image, face landmarks can be
precisely localized. For that matter, we propose a compact
cascaded design that is trained using hint-based knowledge
distillation, allowing real-time processing on a single CPU.
To further decrease the inference runtime, recent pruning [31]
or quantization [32] can also be used in addition.

We showed experimentally that we can obtain state-of-the-
art accuracy on both landmark estimation and head pose
estimation by applying knowledge distillation on lighter
models, while enabling real-time alignment on CPU. More-
over, when trying to estimate facial landmarks in degraded
conditions (e.g. with low-resolutions images with noise, poor
environmental lighting and brightness/contrast or, in the
case of landmark estimation on video, poor bounding box
initialization), the proposed three-staged RULe architecture
dramatically increases the landmark estimation accuracy
as compared to a single-staged one. This is due to the
complementarity between its two first stages (relocalization
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Fig. 6.

Qualitative comparison on WFLW-degraded. From left to right:
original images, and alignment (red: ground truth, blue: estimated landmarks)
overlayed on clean image with Le, R-Le, U-Le and R-U-Le. The tree-staged
R-U-Le architecture significantly improves the landmark estimation accuracy.

and uniformization), that allows to first accurately estimate a
suitable face bounding box. Seeing such pre-registered crops
that follows a similar distribution than that of the training
phase, the uniformization stage can enhance the image quality
in order to successfully estimate the landmark localization.

The proposed three-staged alignment framework is quite
general and could be applied in a variety of cases. For exam-
ple, the uniformization stage could theoretically encompass
domain adaptation objectives, to e.g. perform face alignment
on infra-red images. Similarly, it could be applied to closely
related domains such as body pose estimation.
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