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Chapter 1
The mathematical theory of Hughes’ model: a survey of results

Abstract We provide an overview of the results on Hughes’ model for pedestrian movements available in the literature. The
model consists of a nonlinear conservation law coupled with an eikonal equation. The main difficulty in developing a proper
mathematical theory lies in the lack of regularity of the flux in the conservation law, which yields the possibility of non-classical
shocks that are generated non-locally by the whole distribution of pedestrians. This is a possible reason behind the availability
of existence results only on one-dimensional spatial domains, despite the model having a more natural setting in two spatial
dimensions.
After the first successful approaches to solving a regularised version of the model, researchers focused on the structure of the
Riemann problem, which led to local-in-time existence results for Riemann-type data and paved the way for a WFT (Wave-
Front Tracking) approach to the solution semigroup. In parallel, a DPA (Deterministic Particles Approximation) approach was
developed in the spirit of follow-the-leader approximation results for scalar conservation laws. Beyond having proved to be
powerful analytical tools, the WFT and the DPA approaches also led to interesting numerical results.
However, only existence theorems on very specific classes of initial data (essentially ruling out non-classical shocks) have been
available until very recently. A proper existence result using a DPA approach was proven not long ago in the case of a linear
coupling with the density in the eikonal equation. Shortly after, a similar result was proven via a fixed point approach.
We provide a detailed statement of the aforementioned results and sketch the main proofs. We also provide a brief overview
of results that are related to Hughes’ model, such as the derivation of a dynamic version of the model via a mean-field game
strategy, an alternative optimal control approach, and a localized version of the model. We also present the main numerical
results within the WFT and DPA frameworks.

1 Introduction

In recent years, the flow of pedestrians has attracted remarkable scientific interest due to its potential in multidisciplinary
applications, for instance in the design of safety systems in case of evacuation of a building (such as a stadium) or in crowd
management during events of mass gathering.

Three main different types of modelling approaches are present in the literature, corresponding to three different levels of
resolution:

• a description of the state of the individuals and of the interactions among them, referred to as the individual, or microscopic,
level;

• a statistical description of a sample of the system, known as the mesoscopic, or kinetic, level;
• a continuum description at the level of the interaction of sub-populations of the system, known as the macroscopic level.

Each level has an associated class of mathematical equations which provide an appropriate model. Usually their structures at
various levels are completely different, see e.g. [9]. We defer the reader to [32, 33, 34] for an overview of the various research
directions in the field of crowd dynamics.

One of the most original and mathematically challenging models is the one proposed by Roger L. Hughes [41], which is
part of the third approach above. Hughes’ model describes evacuation scenarios, in which a crowd wants to exit a given domain
D ⊂ R2, with one or several exits, as fast as possible. The crowd population is described through a density 𝜌. The driving force
towards the exits is the gradient of a potential 𝜙, which satisfies an eikonal equation coupled with the density 𝜌. The potential
𝜙 represents the expected travel time towards an exit and accounts for the best strategy to minimise the exit time. The resulting
model is a nonlinear conservation law for 𝜌 coupled with the gradient of the potential 𝜙; the latter depends on 𝜌 non-locally
in space.
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Even in the simplest case of space dimension one, no more than Lipschitz continuity can be expected for 𝜙. Moreover, 𝜙𝑥 can
change its sign just once from positive to negative. In this case, a turning curve 𝑥 = b (𝑡) may be defined in the one-dimensional
domain, at which 𝜙 reaches its maximum. As a result, the flux of the conservation law for 𝜌 is possibly discontinuous along
𝑥 = b (𝑡) and, on the other hand, b depends non-locally on 𝜌. Furthermore, 𝜌 is not expected to satisfy in general the Lax
entropy inequalities (see [43]). Therefore, the possible appearance of non-classical shocks along the turning curve has to be
taken into account. Non-classical shocks correspond to pedestrians changing direction during the evacuation. Because of these
various difficulties, the existence and uniqueness analysis for the Hughes’ model appears to be challenging. This motivates the
first approach to the problem developed in [27], in which a smoothened version of the eikonal equation is considered, with an
extra Laplacian term. Despite it covers only the one-dimensional case and despite it deals only with an approximated version
of the model rather than the actual model, the result in [27] remains until now the only result in a large data setting which
holds for a fairly general class of density-potential coupling. As we will detail later on, the first existence results for the actual
Hughes model appeared only very recently, and only for specific couplings. Let us also mention the existence and uniqueness
result proved in [19, Theorem 2.6] for a two dimensional regularized version of the Hughes model, which holds for large data
but with a potential 𝜙 depending only on the given domain D, see also [36].

Parallel to [27] or shortly after it, some researchers started to study the Riemann problem for the model in the spirit
of scalar conservation laws and to develop proper numerical schemes, see [2, 3, 30, 7] for the Riemann data part and
[11, 12, 16, 17, 35, 40, 51] for the numerics. Both in [2] and [30], the authors study the Riemann problems for the Hughes’
model in detail. This study is strictly related to the effectiveness of the Wave-Front Tracking (WFT) strategy [21] for the
Hughes’ model. The WFT algorithm was then first exploited in [35], but only for numerical purposes, and then in [3] to prove
the first existence result for the Hughes’ model, but under very restrictive assumptions that rule out non-classical shocks. A
simpler proof of an analogous existence result was then obtained in [25] by means of a Deterministic Particle Approximation
(DPA) and the results proved in [28], see also [23, 24, 26, 29].

The first existence result accounting for the possible presence of non-classical shocks was recently obtained in [7]. The
authors obtain this result by exploiting the properties of the linear cost introduced in [30] (the key fact here is that linear costs
yield a uniform Lipschitz bound on b), combined with the DPA adapted to the Hughes’ model in [25]. Despite being only valid
for linear costs and in one space dimension, this result has the merit of being the first existence result on the Hughes model for
large data and in presence of non-classical shocks. This result is re-proved in [6] via a non-constructive Schauder fixed-point
approach allowing for a wide variety of generalizations of the one-dimensional Hughes’ model (different ways to compute the
turning curve b from the density 𝜌, different exit conditions).

Concerning uniqueness, only very partial results are available for the one-dimensional Hughes’ model; they require BV
regularity of the density 𝜌 and the highly restrictive assumption of zero density traces 𝜌(𝑡, b (𝑡)±) at the turning curve (see [7,
Theorem 4], see also [3, 25] for particular cases).

Apart from the regularised version proposed in [27], other variants of the Hughes model have been proposed: a first one in
[14, 37] obtained a similar model with a time derivative in the eikonal equation, justified through an optimal control problem,
and a second one in [18] trying to remove the global awareness of the pedestrians in the model, which seems unrealistic in
some situations. Further variants with more flexible boundary conditions for the density, with memory or relaxation effects in
the dynamics of b, are proposed and studied in [6].

The chapter is structured as follows. In Section 2 we derive Hughes’ model in the way it was done in the original paper [41]
by Roger L. Hughes, plus some additional considerations by the authors of this survey. We also provide a rephrasement of the
model in the special case of one space dimension. In Section 3 we detail the local-in-time solution of the Riemann problem. In
Section 4 we collect the existence result provided for the model, from the ones holding only for small data or symmetric data
provided in [3, 26], to the main one provided in [7] for the case of linear cost. In Section 5 we describe the construction of the
Wave-Front Tracking (WFT) algorithm used to prove the existence results in [3]. In Section 6 we introduce the Deterministic
Particle Approximation (DPA) of the model leading to the results in [26] and [7]. In Section 7 we describe in detail the main
existence result of [7]. In Section 8 we briefly describe the fixed-point approach of [6], with a second proof of this main
existence result and several extensions. Section 9 is devoted to numerical simulations, both using the WFT algorithm and the
DPA scheme. Finally, in Section 10 we summarise the modified versions of the model considered in this survey, namely the
smoothed version proposed in [27], the dynamic one of [14], optimal control problems in [37], and the localised one of [18].

This survey paper covers a very high percentage of the available work on Hughes’ model. The model is, however, becoming
quite well-known in the applied mathematics community, and it is therefore quite likely that we may have missed some papers.
The main focus of the present paper is the well-posedness theory, for which we believe we covered the main results available
in the literature. Our choice of the numerical results is intentional: we cover the WFT and the DPA approaches because they
are strictly related to the techniques used in some of the existence results described here. Our choice of the extended models is
also not accidental: apart from the result on the regularized model, we addressed results which are relevant in that they feature
slight modifications of the model which are significant from the point of view of the applications.
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2 Construction of the model

2.1 The two-dimensional case

Back in 2002, Roger L. Hughes proposed a model for a two-dimensional flow of pedestrians [41]. The model accounts for
the possible presence of obstacles (walls, columns, etc.) and for multiple pedestrian types. For simplicity, in this review we
consider the case in which only one population of pedestrians is involved. Since the movement of pedestrians takes place in a
two dimensional space, the model is typically set on a bounded domain D ∈ R2. The pedestrian flow is described in terms of
two quantities:

• density, 𝜌 = 𝜌(𝑡, 𝑋), which is the number of individuals per unit area at a given time 𝑡 and location 𝑋 = (𝑥1, 𝑥2) ∈ D of the
walking space, and

• velocity, 𝑉 = 𝑉 (𝑡, 𝑋) = (𝑉1 (𝑡, 𝑋), 𝑉2 (𝑡, 𝑋)) ∈ R2, which is the average velocity of individuals located within a unit area of
the walking space, at a given time 𝑡 and location 𝑋 = (𝑥1, 𝑥2) ∈ D.

The conservation of the number of pedestrians is expressed by the continuity equation

𝜌𝑡 + (𝜌𝑉1)𝑥1 + (𝜌𝑉2)𝑥2 = 0. (1)

Recall that the above equation is obtained by equating the net flow of pedestrians into a small region to the rate of accumulation
of pedestrians in the region, and then letting the area of the region shrink to zero, see for instance [22].

To complete the model, we assume what follows:

Hypothesis 1. The speed of pedestrians is determined as a function of the density 𝑣 = 𝑣(𝜌), with 𝑣 : [0, 𝜌max] → [0, 𝑣max]
being a decreasing function such that 𝑣(0) = 𝑣max > 0 and 𝑣(𝜌max) = 0.

Hypothesis 2. Each pedestrian has a common sense of the task (called potential) they face to reach their common
destination. In particular, two individuals at different locations having the same potential don’t see any advantage in
exchanging their positions. Furthermore, pedestrians move orthogonally to level set curves of the potential.

Hypothesis 3. Pedestrians seek the path that minimizes their given travel cost.

The first hypothesis is standard in traffic modeling, as lower speeds correspond to higher densities, see for instance [31, 50].
The parameter 𝜌max stands for the maximum admissible density and 𝑣max for the maximum speed. The second hypothesis
implies that each pedestrian knows the overall density distribution of the crowd, that occurs if, for instance, shorter pedestrians
take their direction from the tallest pedestrians, who have an overall view of the situation. The third hypothesis is about travel
cost as discussed later in this section.

By the first hypothesis, the velocity components are given by

𝑉1 = 𝑣(𝜌)𝜙1, 𝑉2 = 𝑣(𝜌)𝜙2, (2)

where 𝜙1 and 𝜙2 are the direction cosines of the motion and 𝑣(𝜌) is the speed.
A consequence of the second hypothesis is that there is no advantage of moving along a line of constant potential, but that

actually pedestrians move down the gradient of the potential 𝜙, that is, their trajectories are parallel to the gradient of 𝜙:(
𝜙1
𝜙2

)
= − 1

∥∇𝜙∥ ∇𝜙. (3)

Assume 𝑋1, 𝑋2 ∈ D are very close and with their connecting line perpendicular to the level sets 𝜙(𝑋) = 𝜙(𝑋1) and
𝜙(𝑋) = 𝜙(𝑋2). If 𝜙(𝑋1) > 𝜙(𝑋2), then

𝜙(𝑋1) − 𝜙(𝑋2) ≃ ∥∇𝜙∥ ∥𝑋1 − 𝑋2∥.

Assuming a pedestrian moves from 𝑋1 to 𝑋2 with constant speed ∥𝑉 ∥ during the time interval [𝑡1, 𝑡2] gives
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𝜙(𝑋1) − 𝜙(𝑋2) ≃ (𝑡2 − 𝑡1) ∥∇𝜙∥ ∥𝑉 ∥ = (𝑡2 − 𝑡1) ∥∇𝜙∥ 𝑣(𝜌). (4)

Recall that, due to third hypothesis, the potential itself measures the ‘estimated’ time, in a tempered way that takes into
account the density. In order to encode such hypothesis in the model, we locally assume that ‘small’ differences in the potential
are proportional to the product of the speed and the density, that is

𝜙(𝑋1) − 𝜙(𝑋2) ≃
𝑡2 − 𝑡1
𝑔(𝜌) , (5)

where the factor 𝑔(𝜌) allows for discomfort at very high densities. The function 𝑔 : [0, +∞) → [1, +∞) is assumed to satisfy
𝑔(0) = 1 (that is, no discomfort when there are no pedestrians around) and to be increasing in 𝜌. Equating (4) and (5) gives

1
∥∇𝜙∥ = 𝑔(𝜌)𝑣(𝜌). (6)

The governing equations are obtained by combining (1), (2), (3), (6) and write
𝜌𝑡 − ∇ ·

(
𝜌𝑣(𝜌) ∇𝜙

∥∇𝜙∥

)
= 0,

∥∇𝜙∥ = 1
𝑔(𝜌)𝑣(𝜌) .

(7)

The resulting model is therefore a scalar conservation law coupled with an eikonal equation. This is the original model
formulated by Hughes in [41]. Later versions of this model [30] regarded the right-hand side of the eikonal equation in (7) as a
running cost 𝑐(𝜌), which satisfies 𝑐(𝜌) = 1/

(
𝑔(𝜌)𝑣(𝜌)

)
in the original formulation by Hughes. Typical assumptions on 𝑐 and

𝑣 are the following:

(H1) The cost map 𝑐 : [0, 𝜌max] → [1, +∞) is C222, increasing, with 𝑐(0) = 1 and 𝑐′′ (𝜌) ⩾ 0 for all 𝜌 ∈ [0, 𝜌max].
(H2) The speed map 𝑣 : [0, 𝜌max] → [0, 𝑣max] is C111, strictly decreasing, with 𝑣(0) = 𝑣max > 0 and 𝑣(𝜌max) = 0. Moreover,

there exists a �̂� ∈ (0, 𝜌max) such that (𝑣(𝜌) + 𝜌𝑣′ (𝜌)) ( �̂� − 𝜌) > 0 for all 𝜌 ∈ (0, 𝜌max) \ { �̂�}.

Note that �̂� is the maximum point of 𝑓 (𝜌) � 𝜌𝑣(𝜌). Below we shall enforce these assumptions.
Model (7) requires the specification of an initial condition

𝜌(0, 𝑋) = �̄�(𝑋), 𝑋 ∈ D. (8)

Typical boundary conditions on 𝜕D are characterized by the presence of walls, Γ𝑤, corners, Γ𝑐, and exits, Γ𝑒, so that
𝜕D = Γ𝑤 ∪ Γ𝑐 ∪ Γ𝑒. We assume pedestrians cannot pass through walls but can move along them. Hence we impose free-slip
boundary conditions, namely 𝑉 · a = 0 along Γ𝑤, where a = a(𝑋) is the outward unit normal to 𝜕D at 𝑋 ∈ 𝜕D. Hence,
model (7) needs the specification of the boundary conditions


∇𝜙(𝑡, 𝑋) · a(𝑋) = 0, 𝑋 ∈ Γ𝑤,

𝜙(𝑡, 𝑋) = 0, 𝑋 ∈ Γ𝑒,

𝜌(𝑡, 𝑋) = 0, 𝑋 ∈ Γ𝑒 .

(9a)
(9b)
(9c)

The boundary condition (9c) has to be understood in the sense of Bardos, Le Roux and Nedelec [10], so it states that for
almost every (𝑡, 𝑋) ∈ (0, +∞) × Γ𝑒 we have(

𝜌(𝑡, 𝑋) 𝑣
(
𝜌(𝑡, 𝑋)

)
− 𝑘 𝑣(𝑘)

) ∇𝜙(𝑡, 𝑋)
∥∇𝜙(𝑡, 𝑋)∥ · a(𝑋) ⩾ 0

for all 𝑘 ∈ [0, 𝜌(𝑡, 𝑋)]. Intuitively, such a boundary condition is set valued. Indeed, if for instance ∇𝜙(𝑡, 𝑋) · a(𝑋) ⩾ 0, then
the above inequality is satisfied if and only if 𝜌(𝑡, 𝑋) belongs to [0, �̂�], where �̂� is introduced in (H2). As we will see, this
is the case in the one dimensional setting, see (15). As a consequence, a positive outflow from D is allowed through the exits
thanks to the boundary conditions (9b) and (9c), but not through the walls by (9a) and (3).
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2.2 The one-dimensional case

As a model for pedestrian movements, Hughes’ model natural setting is a two-dimensional space domain. However, the
mathematical difficulties hidden in the coupling of the conservation law with the eikonal equation in (7) led part of the
mathematical community (including all the authors of the present manuscript) to focus on its one-dimensional version.

It turns out that, on a one-dimensional domain, the model can be formulated in an alternative way. For simplicity, we pose
the model on the one-dimensional interval C � (−1, 1) and assume that two exits are located at 𝑥 = ±1, so that C represents,
for instance, a corridor or a bridge. We therefore obtain

𝜌𝑡 −
(
𝑓 (𝜌) 𝜙𝑥|𝜙𝑥 |

)
𝑥

= 0,

|𝜙𝑥 | = 𝑐(𝜌),

(10a)

(10b)

with the boundary conditions {
𝜌(𝑡,−1) = 𝜌(𝑡, 1) = 0, 𝑡 ⩾ 0,
𝜙(𝑡,−1) = 𝜙(𝑡, 1) = 0, 𝑡 ⩾ 0.

(11a)
(11b)

Assuming 𝜌 is known in the eikonal equation in (10b), and assuming as well that 𝑐(𝜌) is bounded, the eikonal equation
can be solved in a viscosity solution sense, that is by imposing that 𝜙 is semi-concave, i.e. with a second derivative that is
bounded from above in the sense of distributions. We can therefore assume that 𝜙 is increasing near the boundary point 𝑥 = −1,
decreasing near 𝑥 = 1, and has a global maximum in C. This and the boundary conditions (11b) for 𝜙 imply

𝜙(𝑡, 𝑥) =
∫ 𝑥

−1
𝑐
(
𝜌(𝑡, 𝑦)

)
d𝑦 for 𝑥 near −1,

𝜙(𝑡, 𝑥) =
∫ 1

𝑥

𝑐
(
𝜌(𝑡, 𝑦)

)
d𝑦 for 𝑥 near 1.

Fix 𝑡 > 0. Since 𝜙𝑥 (𝑡, · ) is always non zero, 𝜙𝑥 (𝑡, · ) can only have one discontinuity in order to have 𝜙(𝑡, · ) in the class of
semi-concave functions. We call b (𝑡) ∈ C the discontinuity point. Moreover, to preserve the continuity of 𝜙, we must have

𝜙
(
𝑡, b (𝑡)−

)
=

∫ b (𝑡 )

−1
𝑐
(
𝜌(𝑡, 𝑦)

)
d𝑦 =

∫ 1

b (𝑡 )
𝑐
(
𝜌(𝑡, 𝑦)

)
d𝑦 = 𝜙

(
𝑡, b (𝑡)+

)
. (12)

The above calculations give an explicit formula for 𝜙, given the ‘moving discontinuity curve’ 𝑡 ↦→ b (𝑡). On the other hand, b (𝑡)
depends on 𝜌(𝑡, · ) via (12). Moreover, for 𝑥 ∈ (−1, b (𝑡)) we have 𝜙𝑥/|𝜙𝑥 | = 1 and for 𝑥 ∈ (b (𝑡), 1) we have 𝜙𝑥/|𝜙𝑥 | = −1.

Therefore, the whole model can be reformulated as follows:
𝜌𝑡 + 𝐹 (𝑡, 𝑥, 𝜌, b)𝑥 = 0, 𝑡 > 0, 𝑥 ∈ C,∫ b (𝑡 )

−1
𝑐
(
𝜌(𝑡, 𝑦)

)
d𝑦 =

∫ 1

b (𝑡 )
𝑐
(
𝜌(𝑡, 𝑦)

)
d𝑦, 𝑡 > 0,

𝜌(0, 𝑥) = �̄�(𝑥), 𝑥 ∈ C,

(13a)

(13b)

(13c)

where �̄� is the initial datum and in (13a) we set

𝐹 (𝑡, 𝑥, 𝜌, b) � sign
(
𝑥 − b (𝑡)

)
𝑓 (𝜌), (14)

coupled with the boundary conditions (11). Note that the strong traces of the solution at the boundary points exist due to the
genuine nonlinearity of the flux [52, 46] and must satisfy

𝜌(𝑡,−1+) ⩽ �̂�, 𝜌(𝑡, 1−) ⩽ �̂�, (15)

where �̂� is introduced in (H2) and is the maximum point of 𝑓 .
In principle, the one-dimensional reformulation of the Hughes model (7), (8), (9) is represented by (13) coupled with the

Dirichlet boundary conditions (11a). However, in [25, page 220] it is argued that in the one-dimensional case no boundary
conditions have to be prescribed. More rigorously, in [7, Section 3] it is proved that the boundary conditions at the exits (11a)
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are mere open-end conditions. As a consequence, the Hughes model (11), (13) is equivalent to (13) alone enforced in the whole
space R, but taking initial data �̄� with compact support in C and restricting the resulting solution to C, see [7, Proposition 8].
This result allows to omit the boundary conditions (11) and to consider (13) in the whole space R, see [7, Definition 7]. This
leads to the following definition of entropy solution, which simplifies those introduced in [25, 30]. We first need to introduce
the following notation:

F (𝑡, 𝑥, 𝜌, 𝑘, b) � sign(𝜌 − 𝑘)
(
𝐹 (𝑡, 𝑥, 𝜌, b) − 𝐹 (𝑡, 𝑥, 𝑘, b)

)
,

where 𝐹 is defined as in (14).

Definition 1 Consider a measurable initial datum �̄� : C → [0, 𝜌max]. A couple (𝜌, b) ∈ L1
loc ( [0, +∞) × R; [0, 𝜌max]) ×

Lip( [0, +∞); C) is an entropy solution of the initial-value problem (13) if it satisfies (13b) for a.e. 𝑡 > 0 as well as the entropy
inequality ∬

R+×R

(
|𝜌 − 𝑘 |𝜑𝑡 + F (𝑡, 𝑥, 𝜌, 𝑘)𝜑𝑥

)
d𝑥 d𝑡 (16a)

+2
∫
R+
𝑓 (𝑘)𝜑

(
𝑡, b (𝑡)

)
d𝑡 ⩾ 0 (16b)

for all 𝑘 ∈ [0, 𝜌max] and test functions 𝜑 ∈ C∞
c ((0, +∞) × R; [0, +∞)). Furthermore, upon choosing a suitable representative

of 𝜌, we have that 𝜌 belongs to C000 (
[0, +∞); L111 (R; [0, 𝜌max])

)
with the initial condition taken in the sense 𝜌(0, · ) ≡ �̄�.

Finally, if in addition there holds 𝜌 ∈ L∞∞∞ (
[0, 𝑇]; BV(C; [0, 𝜌max])

)
, for all 𝑇 > 0, then we say that (𝜌, b) is a BV-regular

entropy solution.

Condition (16) is a Kruzhkov-type condition. The first line (16a) originates from the Kruzhkov entropy condition [42]. The
last line (16b) accounts for the discontinuity of the flux along the turning curve [43].

Remark 1 An equivalent way to provide a definition of entropy solution is to ask:

(a) that the weak formulation of (13a) hold true (this is the standard conservativity condition, implicitly contained in (16));
(b) that the entropy admissibility condition (16) holds true solely for test functions vanishing at the turning curve 𝑥 = b (𝑡),

thus suppressing the line (16b).

Therefore, the mere Rankine-Hugoniot condition is required at 𝑥 = b (𝑡); no specific admissibility restriction is needed for the
non-classical shocks at the turning curve. This is the point of view adopted for instance in [2] and in [6].

3 A Riemann-like initial datum

In this section, we construct the solution to (13) with piecewise constant initial datum

�̄�(𝑥) =
{
𝜌𝐿 if −1 < 𝑥 < 0,
𝜌𝑅 if 0 ≤ 𝑥 < 1, (17)

together with the boundary conditions (15). This problem was addressed in [2, Section 4.2] and in [30, Section 3.1] under
slightly different assumptions.

As mentioned in Subsection 2.2, we adopt the equivalent point of view of the Cauchy problem for (13) with initial datum �̄�

extended to zero outside C. The points of discontinuity of the extended initial datum are located at 𝑥 = ±1, 𝑥 = 0 and 𝑥 = b (0),
with the last two possibly coinciding. A crucial point is a local analysis around 𝑥 = b (0) at time 𝑡 = 0, due to the change of
flux along 𝑥 = b (𝑡) and the fact that the slope ¤b is an unknown of the problem.

For simplicity, let 𝑓 (𝜌) � 𝜌𝑣(𝜌) ∈ C222 ( [0, 1]) be strictly concave. We start by determining the initial position of the turning
curve, from (13b), (17):

b (0) = −𝑐(𝜌𝐿) − 𝑐(𝜌𝑅)
2𝑐(𝜌𝐿)

.

If 𝜌𝐿 = 𝜌𝑅, then the solution 𝜌(𝑡, 𝑥) is even in 𝑥 and b (𝑡) = 0 for all 𝑡 (see [3, Theorem 2]). In this case, 𝜌(𝑡, 0±) = 0 for all
𝑡 > 0 and two shocks are issued at (0, 0), on the left between 𝜌𝐿 and 𝜌 = 0 and symmetrically between 𝜌 = 0 and 𝜌𝑅 = 𝜌𝐿 on
the right.

Next, assume 𝜌𝐿 > 𝜌𝑅 and note that b (0) ∈ (−1/2, 0].
The solution is then obtained by glueing together the solutions to the Riemann problems at 𝑥0 ∈ {0, b (0)} and the local

solutions at the boundaries 𝑥0 ∈ {−1, 1}. Let’s distinguish two cases.
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• 𝑥0 ∈ {−1, 0, 1}: The sign in the flux (14) is respectively (−1) for 𝑥0 = −1 and (+1) for 𝑥0 = 0, 𝑥0 = 1. Therefore, the
Riemann problems at 𝑥 = −1, 𝑥 = 0 and 𝑥 = 1 are standard and in each case the solution consists of a rarefaction.

• 𝑥0 = b (0): Here the problem rewrites as

𝜌(0, 𝑥) = 𝜌𝐿 , 𝜌𝑡 − 𝑓 (𝜌)𝑥 = 0, 𝑥 < b (0), 𝜌𝑡 + 𝑓 (𝜌)𝑥 = 0, 𝑥 > b (0).

Its solution may involve a non-classical shock, that is, a discontinuity that does not satisfy the Lax entropy inequalities, see
[43].

Assuming that the solution 𝜌 is locally self-similar in a neighbourhood of (𝑡, 𝑥) = (0, b (0)), then the unknowns of the
problem are the constant speed ¤b and the two values 𝜌±

b
¤=𝜌(𝑡, b (𝑡)±). By [30, Proposition 2.4] the characteristic speeds enter

the turning curve 𝑥 = b (𝑡) on the side of higher density, namely

𝜌−b < 𝜌
+
b =⇒ 𝑓 ′ (𝜌+b ) ⩽ ¤b, 𝜌−b > 𝜌

+
b =⇒ − 𝑓 ′ (𝜌−b ) ⩾ ¤b.

The Rankine-Hugoniot condition along the turning curve 𝑥 = b (𝑡) reads as

𝑓 (𝜌+b ) + 𝑓 (𝜌−b ) = ¤b (𝜌+b − 𝜌−b ). (18)

If one of the following conditions holds:

1. 𝜌𝑅 > �̂�,
2. 𝜌𝐿 ⩽ �̂� and

𝜌𝑅 − 𝜌max <

∫ �̂�

𝜌𝑅

(
𝑐(𝜌) − 𝑐(𝜌𝑅)

)
d𝜌 −

∫ �̂�

𝜌𝐿

(
𝑐(𝜌) − 𝑐(𝜌𝐿)

)
d𝜌 < 𝜌max − 𝜌𝐿 ,

3. 𝜌𝑅 ⩽ �̂� < 𝜌𝐿 and
∫ �̂�

𝜌𝑅

(
𝑐(𝜌) − 𝑐(𝜌𝑅)

)
d𝜌 < 𝜌max − 𝜌𝐿 ,

then 𝜌+
b
= 𝜌−

b
. Notice that, by (18), this implies 𝑓 (𝜌±

b
) = 0 and hence 𝜌−

b
= 𝜌+

b
∈ {0, 𝜌max}. Moreover one has that 𝜌±

b
= 𝜌max

if and only if 𝜌𝐿 = 𝜌max, while in the remaining cases vacuum appears, with 𝜌±
b
= 0 and two shocks are issued from 𝑥 = b (0).

In all the cases not included above, the solution 𝜌 is discontinuous along 𝑥 = b (𝑡). Then the bigger of the two trace values
𝜌±
b

has to be 𝜌 = 𝜌𝐿 . Let 𝜌 = 𝜌𝑀 < 𝜌𝐿 be the other one. Then, two lines of discontinuity start from 𝑥 = b (0) between the
states 𝜌𝐿 , 𝜌𝑀 and 𝜌𝐿 , one being a shock and the other one a non-classical shock along the turning curve. Finally, to determine
the unique value 𝜌𝑀 and b (𝑡) it is sufficient to solve the system given by (13b) and

b (𝑡) = −𝑐(𝜌𝐿) − 𝑐(𝜌𝑅)
2𝑐(𝜌𝐿)

+
𝑓 (𝜌+

b
) + 𝑓 (𝜌−

b
)

𝜌+
b
− 𝜌−

b

𝑡.

The case of 𝜌𝐿 < 𝜌𝑅 is analogous to the one of 𝜌𝐿 > 𝜌𝑅 because of the spatial symmetry of the problem.

Remark 2 Within the initial data (17), the discontinuity point 𝑥 = 0 does not coincide with the b (0), unless the initial data is
even. The problem of the discontinuity located at 𝑥 = b (0) is considered in [2, Theorem 1] for 𝑣(𝜌) ¤=1 − 𝜌 and 𝑐(𝜌) ¤=1/𝑣(𝜌).
Under some structural conditions on the initial data, the quantity

Ψ∗ � lim
𝑡→0+

1
𝑡

{∫ 1

b (0)+𝛿
−

∫ b (0)−𝛿

−1

[
𝑐
(
𝜌(𝑡, 𝑥)

)
− 𝑐

(
𝜌(0, 𝑥)

) ]
d𝑥

}
is well defined and it is exploited in the construction of 𝜌(𝑡, · ). Here above, 𝛿 > 0 is such that 𝜌(𝑡, · ) is well defined in
[−1, b (0) − 𝛿) ∪ (b (0) + 𝛿, 1] for small 𝑡 > 0. In particular, for (17) with 0 ⩽ 𝜌𝑅 < 𝜌𝐿 < 𝜌max � 1 we have that:

1. If Ψ∗ ⩽ −2𝑣(𝜌𝐿), then there exists a unique intermediate state 𝜌𝑀 ∈ [0, 𝜌𝐿) such that 𝜌b is given by a non-classical shock
along the turning curve b between 𝜌−

b
= 𝜌𝐿 and 𝜌+

b
= 𝜌𝑀 , followed by a shock between 𝜌𝑀 and 𝜌𝐿 .

2. If |Ψ∗ | < 2𝑣(𝜌𝐿), then 𝜌b is given by a shock between 𝜌𝐿 and 𝜌𝑀 = 0, followed by the turning curve b with 𝜌±
b
= 0 and

then by a shock between 𝜌𝑀 = 0 and 𝜌𝐿 .
3. If Ψ∗ ⩾ 2𝑣(𝜌𝐿), then there exists a unique intermediate state 𝜌𝑀 ∈ [0, 𝜌𝐿) such that 𝜌b is given by a shock between 𝜌𝐿

and 𝜌𝑀 , followed by a non-classical shock along the turning curve b between 𝜌−
b
= 𝜌𝑀 and 𝜌+

b
= 𝜌𝐿 .

See [2, Section 4.2] for an illustrative example of the conditions on Ψ∗.
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4 Existence results

The first existence results for Hughes’ model (13) were obtained in 2014 by Amadori, Goatin and Rosini in [3] for the case
𝑣(𝜌) = 1 − 𝜌, 𝑐(𝜌) = 1/𝑣(𝜌) and 𝜌max = 1, see [3, Theorems 2 and 3].

More in detail, [3, Theorem 2] deals with the ‘symmetric case’, namely with initial data in the space S of functions
𝜌 ∈ L∞∞∞ (C; [0, 𝜌max]) that are even, that is 𝜌(−𝑥) = 𝜌(𝑥) for a.e. 𝑥 ∈ C. For such initial data it is proved the following existence
(and uniqueness) result.

Theorem 1 ([3, Theorem 2]) Let 𝑣(𝜌) = 1 − 𝜌 and 𝑐(𝜌) = 1/𝑣(𝜌). For any initial datum �̄� in S such that ∥ �̄�∥L∞∞∞ < 𝜌max = 1,
there exists a unique BV-regular entropy solution (𝜌, b) of Hughes’ model (13) such that 𝜌(𝑡, · ) ∈ S for all 𝑡 > 0.

The first step in the proof consists in showing that b ≡ 0. This, together with the Rankine-Hugoniot condition (18), implies
that 𝑓 (𝜌(𝑡, 0+)) + 𝑓 (𝜌(𝑡, 0−)) = 0. Hence, by the assumption ∥ �̄�∥L∞∞∞ < 𝜌max = 1 and the maximum principle proved in [30,
Proposition 2.5], we have 𝜌(𝑡, 0±) = 0. As a final step, it is sufficient to show that the unique solution of (13) in S coincides
on (0, 1) with the classical solution of the Cauchy problem for a conservation law{

𝜌𝑡 + 𝑓 (𝜌)𝑥 = 0, 𝑡 > 0, 𝑥 ∈ R,
𝜌(0, 𝑥) = �̄�(𝑥), 𝑥 ∈ R,

where, with a slight abuse of notation, we denoted by �̄� the extension of �̄� | (0,1) to the whole R by the value zero on R \ (0, 1).
We recall now the existence result proposed in [3, Theorem 3], which applies to more general initial data. Let [𝑥]+ =

max{𝑥, 0}, 𝑥 ∈ R.

Theorem 2 ([3, Theorem 3]) Let 𝑣(𝜌) = 1 − 𝜌 and 𝑐(𝜌) = 1/𝑣(𝜌). If the initial datum �̄� is in BV(C; [0, 𝜌max]), is such that
∥ �̄�∥L∞∞∞ < 𝜌max = 1 and satisfies

3∥ �̄�∥L∞∞∞ + TV(𝑐( �̄�)) + [𝑐( �̄�(−1+)) − 𝑐(1/2)]+ + [𝑐( �̄�(1−)) − 𝑐(1/2)]+ < 2, (19)

then there exists a BV-regular entropy solution of (13) defined globally in time.

The proof is based on the Wave-Front Tracking (WFT) algorithm [21], the maximum principle proved in [30, Proposition 2.5],
a convenient choice of the wave speeds of approximate rarefaction fans and the condition proposed in [2, Theorem 1] to construct
the solution locally at the turning point position 𝑥 = b (𝑡). We recall that the WFT algorithm for (13) was first analysed in [35],
but only for numerical purposes. The main difficulty in this approach is that new fronts may arise at the turning curve not only
if a wave-front interacts with the turning curve, but also if two wave-fronts interact away from the turning curve. As a result,
the total variation of the solution may generically increase. Condition (19) plays a key role as it ensures that these situations
do not occur. Details for the construction of the approximate solution via the WFT algorithm are deferred to Section 5.

Note in passing that uniqueness results are scarce and very partial for Hughes’ model. In a setting slightly more general
than the one of Theorem 2 (more precisely, it is assumed that the solution is BV-regular and its one-sided traces 𝜌(𝑡, b (𝑡)±) at
the turning curve location are zero), uniqueness is justified in [7, Theorem 4] via a cumbersome Gronwall-kind argument.

Three years later, in 2017, a new approach to provide existence results was proposed by Di Francesco, Fagioli, Rosini and
Russo in [25]. There, the authors pointed out that Hughes’ model can been seen as two first order Lighthill-Whitham-Richards
(LWR) models [44, 49] for vehicular traffic, suitably coupled at the coupling point 𝑥 = b (𝑡), which is an inner interface splitting
the whole interval (−1, 1) into two subintervals. This is obvious in the case 𝑐 ≡ 1, which corresponds to pedestrians moving
toward the closest exit regardless of the overall distribution (a typical behaviour in case of panic) and to the LWR model with
negative velocity on (−1, 0) and positive velocity on (0, 1), see [25, Example 1.1]. The idea was then to apply to Hughes’ model
the many particle approach, which was proved in 2015 to approximate the LWR model first in [28], see also [20, 23, 26, 38, 39].

As a first application, the authors give a lighter proof of Theorem 1 for the symmetric case, see [25, Theorem 1.2]. Then,
the authors propose in [25, Theorem 1.3] an existence result analogous to that in Theorem 2 with a condition analogous to
(19), but without involving the traces at the exits of the initial datum. Furthermore, their results apply for more general cost
functions 𝑐 and speed map 𝑣, which are assumed to satisfy (H1) and (H2), respectively. More specifically, the authors proved
the following existence results.

Theorem 3 ([25, Theorem 1.2]) Assume that 𝑐 and 𝑣 satisfy (H1) and (H2), respectively. For any initial datum �̄� in S, there
exists a unique BV-regular entropy solution (𝜌, b) of Hughes’ model (13) such that 𝜌(𝑡, · ) ∈ S for all 𝑡 > 0.

Theorem 4 ([25, Theorem 1.3]) Assume that 𝑐 and 𝑣 satisfy (H1) and (H2), respectively, and that 𝑐′′ (𝜌) > 0 for all
𝜌 ∈ [0, 𝜌max]. If the initial datum �̄� is in BV(C; [0, 𝜌max]), is such that ∥ �̄�∥L∞∞∞ < 𝜌max and
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𝑣max
2

(𝐿 TV( �̄�) + 3𝐶) < 𝑣(∥ �̄�∥L∞∞∞ ), (20)

with

𝐶 � max
{
𝑐′ (𝜌) 𝜌 : 𝜌 ∈ [0, ∥ �̄�∥L∞∞∞ ]

}
, 𝐿 � max

{
𝑐′′ (𝜌) 𝜌 : 𝜌 ∈ [0, ∥ �̄�∥L∞∞∞ ]

}
, (21)

then there exists a unique BV-regular entropy solution (𝜌, b) of Hughes’ model (13) defined globally in time.

The details for the construction of the approximate solution via the many particle approach is deferred to Section 6. Here
we underline the different role of the assumption ∥ �̄�∥L∞∞∞ < 𝜌max in Theorem 2 and Theorem 4: in the former case it is required
because the cost function under consideration is 𝑐(𝜌) = 1/𝑣(𝜌) which is not well defined at 𝜌 = 𝜌max, whereas in the latter
case it is essential to have the right-hand-side in the inequality (20) strictly positive.

More recently, in 2021 new existence results were proposed by Andreianov, Rosini and Stivaletta in [7] for the case of a
linear cost function

𝑐(𝜌) = 1 + 𝛼 𝜌, (22)

where 𝛼 ⩾ 0 is a parameter of the model. The motivation for (22) stems from the physical meaning of 𝛼. Indeed it corresponds
to different crowd behaviours and encodes the importance given to avoid regions with high number of pedestrians. For instance,
𝛼 = 0 corresponds to panic behaviour, when people simply move towards the closest exits without avoiding crowded regions.
On the other hand, as 𝛼 grows, so does the importance of avoiding exits chosen by a high number of pedestrians.

The approximate solution is constructed by applying a many particle approach similar to that in [25], but with two main
differences, see Section 7. First, they changed the very definition of the approximating turning curve by substituting (32) with
(37) given below. This choice allows to link directions switching of the particles to the instants when exactly one of the particles
leaves the domain C. This is crucial to prove rigorously the global in time existence of a discrete solution and the boundness
of the evacuation time, see [7, Theorem 20], whereas in [3, 25] these are implicitly assumed. Second, unlike [25], in [7]
the authors exploited the regularizing effect of the discrete version of the Oleinik’s condition rather than the BV-contraction
property, both proved in [28], see also [23]. However, to do so they need conditions on the velocity that are slightly more
restrictive than (H2) and read as follows:

(H2’) The speed map 𝑣 : [0, 𝜌max] → [0, 𝑣max] is C222, strictly decreasing, with 𝑣(0) = 𝑣max > 0 and 𝑣(𝜌max) = 0; moreover
𝑣′ (𝜌) + 𝜌𝑣′′ (𝜌) ⩽ 0 for all 𝜌 ∈ [0, 𝜌max].

Note that the above condition is slightly more restrictive than requiring 𝑓 (𝜌) � 𝜌𝑣(𝜌) to be strictly concave.
Their two main existence results are given in [7, Theorems 5 and 6]. The main novelty of these theorems is that they take

into account the possible arising of non-classical shocks along the turning curve, namely discontinuities that do not satisfy the
Lax entropy inequalities, see [43]. Let us stress that none of the existence results obtained in [3, 25] considers non-classical
shocks. In fact, the assumptions on the initial data considered in Theorems 1, 2, 3 and 4 are meant to exclude the appearance
of non-classical shocks. However, one of the main analytical features of Hughes’ model is the possible development of non-
classical shocks in the solution. Indeed, these have a physical counterpart, modelling pedestrians that switch direction during
the evacuation. In fact, pedestrians choose their direction of motion taking into account the distance from the two exits as well
as avoiding crowded regions. As a result, due to this latter aspect, if during the evacuation pedestrians observe an increase of
the crowd in front of their chosen exit as well as a decrease of the crowd at the opposite exit, then they may decide to change
direction.

Both in [3] and [25] the presence of non-classical shocks is prevented by requiring sufficient conditions, which result in
considering initial data with sufficiently small total variation and imposing ∥ �̄�∥L∞∞∞ (R) < 𝜌max. On the contrary, in [7] the initial
datum has arbitrarily (possibly even infinite) total variation and it can attain the maximal density 𝜌max.

We start by recalling the conditional existence result (an ‘IF-theorem’) under the assumption of global variation control.
We stress that in practice, this delicate assumption seems to hold for all ‘typical’ choices of initial data, see the numerical tests
provided in this chapter and the tests presented in [11, 12, 16, 17, 35, 40, 45, 51].

Theorem 5 ([7, Theorem 5]) Consider the cost function (22). Assume that 𝑣 satisfying (H2) is C222 and such that 𝑓 (𝜌) = 𝜌𝑣(𝜌)
is strictly concave in [0, 𝜌max]. Let �̄� be a measurable initial datum in BV(C; [0, 𝜌max]) and let {(𝜌𝑛, Z𝑛)}𝑛 be the sequence
of approximate solutions constructed in Section 7. Assume that for all 𝑇 > 0 there exists a constant TV = TV(𝑇) > 0 such
that, for any 𝑡 ∈ [0, 𝑇] and 𝑛 ∈ N, we have

TV (𝜌𝑛 (𝑡, · )) ⩽ TV.

Then for all 𝑇 > 0, the sequence {(𝜌𝑛, Z𝑛)}𝑛 converges, up to a subsequence, in L111 ((0, 𝑇) × C) × C000 ( [0, 𝑇]) to a BV-regular
entropy solution (𝜌, b) of Hughes’ model (13) defined globally in time.

We observe that the functional defined in [25, (9)] becomes trivial in the case of a linear cost (22) and, consequently, it
becomes useless. As a result, the proof of the above theorem is quite technical, see [7, Section 6].
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The second existence result is based on the same construction of the approximate solution described in Section 7, but
it exploits a BVloc compactness argument via a local reduction to microscopic approximation of the LWR model, see [7,
Section 7].

Theorem 6 ([7, Theorem 6]) Consider the cost function (22). Assume that 𝑣 satisfies (H2’). Let �̄� be a measurable initial
datum and let {(𝜌𝑛, Z𝑛)}𝑛 be the sequence of approximate solutions constructed in Section 7. Then for all 𝑇 > 0 the sequence
{(𝜌𝑛, Z𝑛)}𝑛 converges, up to a subsequence, in L111 ((0, 𝑇) × C) × C000 ( [0, 𝑇]) to an entropy solution (𝜌, b) of Hughes’ model
(13) defined globally in time.

We also recall that, as byproduct of the sharply formulated many-particle approximation scheme described in Section 7, the
authors furnish two further unconditional existence results in [7, Corollaries 33 and 34] , both excluding non-classical shocks.
The latter deals with the symmetric case and is analogous to Theorem 3, so it can be seen as an alternative proof of it. The
former appears to be new as it deals with initial data well separated from the origin. More precisely, let V be the space of
measurable functions 𝜌 in L∞∞∞ (C; [0, 𝜌max]) such that ∥𝜌∥L111 < 2/𝛼 and with support in [−1, 1] \ [− 𝛼

2 ∥𝜌∥L111 , 𝛼2 ∥𝜌∥L111 ]. We
have then the following existence result.

Theorem 7 ([7, Corollary 33]) Consider the cost function (22). Assume that 𝑣 satisfying (H2) is C222 and such that 𝑓 (𝜌) = 𝜌𝑣(𝜌)
is strictly concave in [0, 𝜌max]. Let �̄� be an initial datum in V and let {(𝜌𝑛, Z𝑛)}𝑛 be the sequence of approximate solutions
constructed in Section 7. Then for all 𝑇 > 0 the sequence {(𝜌𝑛, Z𝑛)}𝑛 converges in L111 ((0, 𝑇) × C) × C000 ( [0, 𝑇]) to the unique
BV-regular entropy solution (𝜌, b) of Hughes’ model (13) defined globally in time and 𝜌(𝑡, · ) ∈ V for all 𝑡 > 0.

5 The wave-front tracking approach

In this section we recall the construction of the approximate solution via the Wave-Front Tracking (WFT) algorithm used
in [30] to prove Theorem 2. Let 𝜌max � 1, 𝑣(𝜌) � 1 − 𝜌, 𝑐(𝜌) � 1/𝑣(𝜌) and �̂� � 1/2. Fix 𝑛 ∈ N and let Y � 2−𝑛 > 0.
Introduce the grid G𝑛 �

{
𝑖 Y : 𝑖 ∈ {0, . . . , Y−1}

}
and consider the piecewise linear function 𝑓 𝑛 that interpolates linearly the

points (𝜌𝑖 , 𝑓 (𝜌𝑖)), 𝜌𝑖 ∈ G𝑛. Let �̄�𝑛 ∈ BV(C; G𝑛) be a piecewise constant function such that

| �̄�𝑛 (±1∓) − �̄�(±1∓) | ≤ Y, TV (𝑐( �̄�𝑛)) ≤ TV (𝑐( �̄�)) + 𝐶1Y,

∥ �̄�𝑛∥L∞∞∞ (C;R) ≤ ∥ �̄�∥L∞∞∞ (C;R) < 1, lim
𝑛→+∞

∥ �̄� − �̄�𝑛∥L111 (C;R) = 0,

with 𝐶1 = 𝑐′ (∥ �̄�∥L∞∞∞ (C;R) ). Define b̄𝑛 as the unique solution of the equation∫ b̄𝑛

−1
𝑐 ( �̄�𝑛 (𝑥)) d𝑥 =

∫ 1

b̄𝑛

𝑐 ( �̄�𝑛 (𝑥)) d𝑥. (23)

Clearly, the above formula defines b̄𝑛 ∈ (−1, 1) uniquely.
Let R𝑐 be the classical Riemann solver, see [13]. Introduce the simplified Riemann solver R𝑠 , that replaces any rarefaction

wave given byR𝑐 with a rarefaction front as described below, see (26). Apply thenR𝑠 to solve each Riemann problem associated
to the boundary {−1, 1} and to the jumps of discontinuity of �̄�𝑛 away from 𝑥 = b̄𝑛. Denote by 𝜌𝑛

𝐿
and 𝜌𝑛

𝑅
the juxtapositions

of the piecewise constant functions obtained by solving with R𝑠 the Riemann problems on the left of 𝑥 = b̄𝑛 and on the right
of 𝑥 = b̄𝑛, respectively. One then applies [3, Theorem 6]1, which upgrades [2, Theorem 1], to construct a piecewise constant
function 𝜌𝑛

b
such that if 𝜌𝑛 is the juxtaposition of 𝜌𝑛

𝐿
, 𝜌𝑛

b
and 𝜌𝑛

𝑅
, see Fig. 1, then the corresponding turning curve 𝑥 = b𝑛 (𝑡)

defined by ∫ b𝑛 (𝑡 )

−1
𝑐
(
𝜌𝑛 (𝑡, 𝑥)

)
d𝑥 =

∫ 1

b𝑛 (𝑡 )
𝑐
(
𝜌𝑛 (𝑡, 𝑥)

)
d𝑥 (24)

satisfies the Rankine-Hugoniot condition (18). As a result, the approximate solution takes the form

𝜌𝑛 (𝑡, 𝑥) =
𝑘∑︁

𝑖=−ℎ−1
𝜌𝑛
𝑖+1/2 1[𝑥𝑛

𝑖
(𝑡 ) ,𝑥𝑛

𝑖+1 (𝑡 ) )
(𝑥), (25)

1 We omit the 3 pages long [3, Th. 6] to avoid overloading the Chapter with technicalities.
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𝑥

𝑡

−1
𝑥
𝑛 −ℎ

−1

1

𝑥
𝑛 𝑘
+1

0 b̄𝑛

𝑥
𝑛−1

b
𝑛
≡
𝑥
𝑛0

𝑥
𝑛 1

Fig. 1 Typical representation of 𝜌𝑛 in the case of a Riemann initial datum and obtained by juxtaposing 𝜌𝑛
𝐿

, 𝜌𝑛
b

and 𝜌𝑛
𝑅

. Above, 𝜌𝑛
𝐿

consists of the
waves starting from 𝑥 = 0, 𝜌𝑛

b
consists of the waves starting from 𝑥 = b̄𝑛, 𝜌𝑛

𝑅
consists of the waves starting from 𝑥 = 1. The dotted line represents

the turning curve 𝑥 = b𝑛 (𝑡 ) . The shock and rarefaction fronts are represented by dashed and solid thick lines, respectively. See also Fig. 2.

where 1𝐴 is the indicator function of 𝐴 ⊂ R, 𝑥𝑛0 (𝑡) � b
𝑛 (𝑡) is the turning curve, 𝑥𝑛

𝑖
(𝑡), 𝑖 ∈ {−ℎ− 1, . . . ,−1, 1, . . . , 𝑘 + 1}, with

indices ℎ and 𝑘 defined by imposing −1 = 𝑥𝑛−ℎ−1 < 𝑥
𝑛
𝑖
(𝑡) < 𝑥𝑛

𝑖+1 (𝑡) < 𝑥
𝑛
𝑘+1 = 1, are the discontinuity lines of 𝜌𝑛 away from

𝑥𝑛0 ≡ b𝑛, which we call fronts, such that

𝜌𝑛
𝑖−1/2 ≠ 𝜌𝑛

𝑖+1/2 if 𝑖 ≠ 0, 𝜌𝑛−1/2 = 𝜌𝑛1/2 if and only if 𝜌𝑛±1/2 = 0,

𝜌𝑛−ℎ−1/2 ⩽ �̂�, 𝜌𝑛
𝑘+1/2 ⩽ �̂�.

When two fronts 𝑥𝑛
𝑖
(𝑡), 𝑥𝑛

𝑖+1 (𝑡) interact (i.e. 𝑥𝑛
𝑖
(𝑡) = 𝑥𝑛

𝑖+1 (𝑡) for some 𝑡 > 0 or when a front reaches the boundary), the
approximate solution 𝜌𝑛 is prolonged by applying R𝑠 at interactions away from 𝑥 = b𝑛 and by applying then [3, Theorem 6].
Observe that, as a result of any interaction, new fronts may originate from the turning curve, even if the interaction occurs
elsewhere. However, the resulting approximate solution 𝜌𝑛 keeps the structure described above. Therefore, after each interaction
time, we can use the same notation introduced before by rearranging the indices and by considering ℎ and 𝑘 as piecewise
constant functions of time. Finally, the turning curve is prolonged by applying (24) as long as 𝜌𝑛 is well defined.

To complete the construction we need to assign a travelling speed to each front. Below, upward jumps on the left of 𝑥 = b𝑛 (𝑡)
and downward jumps on the right of 𝑥 = b𝑛 (𝑡) are referred to as rarefaction fronts, while the remaining jumps away from
𝑥 = b𝑛 (𝑡) are called shock fronts, see Fig. 2. The size of the jumps is denoted by

𝜌

𝑓

𝑥

𝜌𝑛 (𝑡 , · )

−1 1b𝑛 (𝑡 )

Fig. 2 Representation of 𝜌𝑛 as in Fig. 1 in the (𝜌, 𝑓 )-plane, left, and its profile 𝑥 ↦→ 𝜌𝑛 (𝑡 , · ) at time 𝑡 > 0 sufficiently small, right. The shock and
rarefaction fronts are represented by dashed and solid thick lines, respectively.

𝜎𝑖 (𝑡) = sign(𝑖) (𝜌𝑖−1/2 − 𝜌𝑖+1/2).

The speeds of propagation of the turning curve and the shock fronts are obtained by imposing the Rankine-Hugoniot jump
condition (18), that is

(𝜌1/2 − 𝜌−1/2) ¤b𝑛 = 𝑓 (𝜌1/2) + 𝑓 (𝜌−1/2),

¤𝑥𝑛𝑖 = sign(𝑖)
𝑓 (𝜌𝑖+1/2) − 𝑓 (𝜌𝑖−1/2)
𝜌𝑖+1/2 − 𝜌𝑖−1/2

if 𝑖 ≠ 0 and 𝜎𝑖 < 0.

Instead, any rarefaction front 𝑥𝑛
𝑖

travels with speed
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¤𝑥𝑛𝑖 = sign(𝑖)
𝑞(𝜌𝑖+1/2) − 𝑞(𝜌𝑖−1/2)
𝑐(𝜌𝑖+1/2) − 𝑐(𝜌𝑖−1/2)

if 𝑖 ≠ 0 and 𝜎𝑖 > 0, (26)

where 𝑞 is defined by
𝑞(𝜌) � −𝑐(𝜌) + 2 ln

(
𝑐(𝜌)

)
,

and is the entropy flux associated to 𝑐. This choice for the speed of propagation of the rarefaction fronts allows to simplify the
terms appearing in (24) by exploiting the fact that entropy conditions hold with an equality along any classical rarefaction.

Note that 𝜌𝑛 does not necessarily take values in G𝑛. Indeed the states along the turning curve may not belong to G𝑛.
However, condition (20) ensures that this case does not occur.

Remark 3 The WFT scheme described below in Section 9 follows a slightly different construction. Indeed, there the rarefaction
fronts move with the speeds prescribed by the corresponding Rankine-Hugoniot conditions. Also, the states along the turning
curve are approximated by the closest points of the mesh G𝑛. This choice allows to consider also non-classical shocks, see
Fig. 6.

6 A deterministic particles approach

In this section we recall the construction of the approximate solution via the Deterministic Particle Approximation (DPA) used
in [25] to prove Theorem 4, see also [24].

Let �̄� be in L∞∞∞ (C; [0, 𝜌max]). For a fixed 𝑛 ∈ N, set 𝑁 � 2𝑛 and 𝑚 � 2−𝑛 𝑀 , where 𝑀 � ∥ �̄�∥L111 . Denote

𝑥0 � min
{
spt( �̄�)

}
,

where spt stands for the support. We recursively define

𝑥𝑖 � inf
{
𝑥 > 𝑥𝑖−1 :

∫ 𝑥

�̄�𝑖−1

�̄�(𝑦) d𝑦 ⩾ 𝑚
}
, 𝑖 ∈ {1, . . . , 𝑁}. (27)

The above equation defines the set of 𝑁 +1 particles’ initial positions −1 ≤ 𝑥0 < 𝑥1 < . . . < 𝑥𝑁−1 < 𝑥𝑁 ≤ 1, with the property
that the mass of the density �̄� in each interval (𝑥𝑖 , 𝑥𝑖+1) is exactly 𝑚. Introduce the local discrete initial densities

�̄�𝑖+1/2 �
𝑚

𝑥𝑖+1 − 𝑥𝑖
, 𝑖 ∈ {0, . . . , 𝑁 − 1},

and the corresponding piecewise constant discrete initial density �̄�𝑛 : R→ [0, 𝜌max] defined by

�̄�𝑛 (𝑥) �
𝑁−1∑︁
𝑖=0

�̄�𝑖+1/2 1[ �̄�𝑖 , �̄�𝑖+1 ) (𝑥).

The initial approximated turning point b̄𝑛 can be defined via the formula∫ b̄𝑛

−1
𝑐
(
�̄�𝑛 (𝑦)

)
d𝑦 =

∫ 1

b̄𝑛

𝑐
(
�̄�𝑛 (𝑦)

)
d𝑦. (28)

Clearly, the above formula defines b̄𝑛 ∈ (−1, 1) uniquely.
By a slight modification of the initial condition, we can always assume that b̄𝑛 does not coincide with any of the particle’s

initial positions. Then, there exists 𝐼0 ∈
{
0, . . . , 𝑁

}
such that b̄𝑛 ∈ (𝑥𝐼0 , 𝑥𝐼0+1). The particles on the left of b̄𝑛 move according

to a backward follow-the-leader scheme, those on the right of b̄𝑛 move according to a forward one. More precisely, we set

¤𝑥0 (𝑡) = −𝑣max,

¤𝑥𝑖 (𝑡) = −𝑣
(

𝑚
𝑥𝑖 (𝑡 )−𝑥𝑖−1 (𝑡 )

)
, 𝑖 ∈ {1, . . . , 𝐼0},

¤𝑥𝑖 (𝑡) = 𝑣
(

𝑚
𝑥𝑖+1 (𝑡 )−𝑥𝑖 (𝑡 )

)
, 𝑖 ∈ {𝐼0 + 1, . . . , 𝑁 − 1},

¤𝑥𝑁 (𝑡) = 𝑣max,

𝑥𝑖 (0) = 𝑥𝑖 , 𝑖 ∈ {0, . . . , 𝑁}.

(29)
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We consider the corresponding local discrete densities

𝑅𝑖+1/2 (𝑡) �
𝑚

𝑥𝑖+1 (𝑡) − 𝑥𝑖 (𝑡)
, 𝑖 ∈ {0, . . . , 𝑁 − 1} \ {𝐼0},

𝑅𝑖+1/2 (𝑡) � 0, 𝑖 ∈ {−1, 𝐼0, 𝑁},

and the corresponding piecewise constant discrete density 𝜌𝑛 : [0, +∞) × R→ [0, 𝜌max] defined by

𝜌𝑛 (𝑡, 𝑥) �
𝑁−1∑︁
𝑖=0

𝑅𝑖+1/2 (𝑡) 1[𝑥𝑖 (𝑡 ) ,𝑥𝑖+1 (𝑡 ) ) (𝑥). (30)

Notice that the above density has been set to equal zero outside the particle region [𝑥0 (𝑡), 𝑥𝑁 (𝑡)) and around the turning point,
namely in [𝑥𝐼0 (𝑡), 𝑥𝐼0+1 (𝑡)). The latter in particular is simply due to a consistency with the numerical simulations, in which the
computation of the turning point is made simpler in this way, see Section 9. This simplifying assumption introduces a small
error 𝑚 � 2−𝑛𝑀 in the total mass.

In view of the above notation, system (29) can be written in a simpler form as follows
¤𝑥𝑖 (𝑡) = −𝑣

(
𝑅𝑖−1/2 (𝑡)

)
, 𝑖 ∈ {0, . . . , 𝐼0},

¤𝑥𝑖 (𝑡) = 𝑣
(
𝑅𝑖+1/2 (𝑡)

)
, 𝑖 ∈ {𝐼0 + 1, . . . , 𝑁},

𝑥𝑖 (0) = 𝑥𝑖 , 𝑖 ∈ {0, . . . , 𝑁}.
(31)

Notice that 𝑅𝐼0+1/2 does not bias the movement of any of the particles, and this is an argument in favour of the ansatz 𝑅𝐼0+1/2 ≡ 0.
The (unique) solution to the system (29) is well defined until the turning point does not collide with a particle. We note that the
density 𝑅𝐼0+1/2 (𝑡) is equal to zero until the turning point collides with a particle. We shall not impose any boundary condition
to the particle system (29), and we shall follow the movement of each particle whether or not they are in C � (−1, 1). Hence,
the discrete densities 𝑅𝑖+1/2 (𝑡) are defined for all 𝑡 > 0 and for all 𝑖 ∈

{
0, . . . , 𝑁 − 1

}
.

The approximate turning point b𝑛 (𝑡) is implicitly uniquely defined by∫ b𝑛 (𝑡 )

−1
𝑐
(
𝜌𝑛 (𝑡, 𝑦)

)
d𝑦 =

∫ 1

b𝑛 (𝑡 )
𝑐
(
𝜌𝑛 (𝑡, 𝑦)

)
d𝑦, (32)

where 𝜌𝑛 is the discrete density defined by (30). Clearly b𝑛 (𝑡) belongs to C for any 𝑡 ≥ 0. We emphasize that b𝑛 (0) does not
necessarily coincide with b̄𝑛.

We conclude this section by just highlighting the main ideas behind the proofs of Theorems 3 and 4. Concerning Theorem 3,
the symmetry of the initial datum implies that the discrete turning point will stuck at zero for all times, that is b𝑛 ≡ 0. Therefore,
the particles split into two time-invariant sets, with the two particles nearest the turning point getting further and further away
from each other. Hence, the dynamics of each group are governed by a Follow-the-Leader (FtL) model. By the results in [28],
we then obtain convergence of 𝜌𝑛 (𝑡, 𝑥) defined in (30) via the FtL-Hughes particle system (31) to the entropy solution of the
Hughes model (13) as 𝑚 goes to zero and 𝑁 goes to infinity.

In proving Theorem 4, the first step consists in showing that by condition (20) no particle reaches the turning curve, namely,
no particle changes direction, see [25, Proposition 2.1]. This ensures that problem (29) admits a global-in-time solution. In
obtaining this result, a key role is played by the functional Υ(𝜌) � 𝑐(𝜌) − 𝑐′ (𝜌) 𝜌 and the following estimates

| ¤b𝑛 | ⩽ 𝑣max
2

(
TV

(
Υ(𝜌𝑛)

)
+ 3𝐶

)
, ¤𝑥𝐼0 ⩽ −𝑣(∥ �̄�∥L∞∞∞ ), ¤𝑥𝐼0+1 ⩾ 𝑣(∥ �̄�∥L∞∞∞ ),

where 𝐶 is defined in (21). Notice that if 𝐿 is defined as in (21), then it is the Lipschitz constant of Υ, hence TV
(
Υ(𝜌𝑛)

)
⩽

𝐿 TV(𝜌𝑛) ⩽ 𝐿 TV( �̄�) by the contraction estimate proven in [28, Proposition 5].
The second step consists in proving that b𝑛 converges, up to a subsequence, strongly in C000 ( [0, 𝑇];R) for all 𝑇 ⩾ 0 to some

b ∈ C000 ( [0, 𝑇];R) and the corresponding limit turning curve T �
{
(𝑡, 𝑥) ∈ (0, +∞) ×R : 𝑥 = b (𝑡)

}
is entirely contained in the

open cone
C �

{
(𝑡, 𝑥) ∈ (0, +∞) × R : |𝑥 − b̄ | < 𝑣max

2
(
𝐿 TV( �̄�) + 3𝐶

)
𝑡

}
.

Then, since no particle is placed in C, the discrete density 𝜌𝑛 (𝑡, 𝑥) defined in (30) converges to zero strongly in L1
loc (C).

Applying then the results in [28], one can prove that on [𝛿, +∞) × [0, +∞), with 𝛿 > 0, the discrete density 𝜌𝑛 (𝑡, 𝑥) converges
strongly in L1

loc towards a function 𝜌𝑅 ∈ L∞∞∞ ( [𝛿, +∞)×R) satisfying the Kruzhkov’s entropy condition [42] for the conservation
law 𝜌𝑡 + 𝑓 (𝜌)𝑥 = 0. Similarly, on [𝛿, +∞) × (−∞, 0], with 𝛿 > 0, we have that 𝜌𝑛 (𝑡, 𝑥) converges strongly in L1

loc towards a
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function 𝜌𝐿 ∈ L∞∞∞ ( [𝛿, +∞) ×R) satisfying the Kruzhkov’s entropy condition [42] for the conservation law 𝜌𝑡 − 𝑓 (𝜌)𝑥 = 0. As
a consequence, 𝜌𝑛 (𝑡, 𝑥) converges to

𝜌(𝑡, 𝑥) =
{
𝜌𝐿 (𝑡, 𝑥) if 𝑥 < b (𝑡),
𝜌𝑅 (𝑡, 𝑥) if 𝑥 > b (𝑡).

At last, it is easy to check that 𝜌 defined above satisfies the initial condition, hence (𝜌, b) is the entropy solution of the Hughes
model (13).

Remark 4 Clearly, equations (28), (30) and (32) introduced for the DPA scheme are similar to (23), (25) and (24) introduced for
the WFT algorithm, respectively. However, let us underline the main difference between (30) and (25): in the former equation
the extremes of the sum do not depend on time, whereas in the latter equation both the extremes are in general piecewise
constant functions of time. As a result, the DPA scheme is somehow simpler than the WFT algorithm.

7 The case of a linear cost function

In this section we recall the Follow-the-Leader (FtL) Hughes particle model proposed in [7] to construct the approximate
solution used to prove Theorems 5, 6 and 7. Recall that the authors consider in [7] a linear running cost function 𝑐(𝜌), that is

𝑐(𝜌) = 1 + 𝛼 𝜌 (33)

with 𝛼 ⩾ 0. Let us stress that the first advantage in choosing a linear cost function is the opportunity to reproduce different
crowd behaviours with the same model, by just letting vary the value of the parameter 𝛼. Furthermore, we can assign a physical
meaning to 𝛼: it measures the importance given to avoid regions with a high number of pedestrians. In fact, taking 𝛼 = 0
corresponds to a panic behaviour, when people simply move towards the closest exit. On the other hand, as 𝛼 > 0 grows so
does the importance of avoiding exits attracting a high number of pedestrians.

The strategy of existence analysis proposed in [7] is similar to that already used in previous works on the many-particle
approximation of the one-dimensional Hughes model (13), see [24, 26]. The only (crucial) difference is the definition of the
approximate turning curve. As a result, the construction of the piecewise constant discrete density 𝜌𝑛 : [0, +∞)×R→ [0, 𝜌max]
proposed in [7] is analogous to that one proposed in [26] and already described in Section 6: in simple words, it is sufficient
to replace b𝑛 defined by (32) with Z𝑛 defined by (37) given below. For this reason, below we will not recall the Deterministic-
Particle-Approximation (DPA) used in [7] to construct an approximate solution, see [7, Section 6], but we rather describe the
FtL Hughes particle model, see [7, Section 5].

Fix 𝑀 > 0, 𝑛 ∈ N and −1 ⩽ 𝑥0 < 𝑥1 < · · · < 𝑥𝑁 ⩽ 1, with 𝑁 � 2𝑛, satisfying

𝑥𝑖+1 − 𝑥𝑖 ⩾
𝑚

𝜌max
,

for all 𝑖 ∈ {0, . . . , 𝑁 − 1}, where 𝑚 � 𝑀/𝑁 .
The time evolution in the whole of R of the particle system 𝑥0 (𝑡), . . . , 𝑥𝑁 (𝑡) is described by the FtL system

¤𝑥𝑖 (𝑡) = −𝑣
(
𝑅𝑖−1/2 (𝑡)

)
if 𝑥𝑖 (𝑡) < Z𝑛 (𝑡), 𝑖 ∈ {0, . . . , 𝑁},

¤𝑥𝑖 (𝑡) = 𝑣
(
𝑅𝑖+1/2 (𝑡)

)
if 𝑥𝑖 (𝑡) ⩾ Z𝑛 (𝑡), 𝑖 ∈ {0, . . . , 𝑁},

𝑥𝑖 (0) = 𝑥𝑖 , 𝑖 ∈ {0, . . . , 𝑁},
(34)

where
𝑅𝑖+1/2 (𝑡) �

𝑚

𝑥𝑖+1 (𝑡) − 𝑥𝑖 (𝑡)
, 𝑖 ∈ {−1, . . . , 𝑁}, (35)

and

𝑥−1 (𝑡) � −∞, 𝑥𝑁+1 (𝑡) � +∞. (36)

Notice that by (35) and (36) we have 𝑅−1/2 ≡ 0 and 𝑅𝑁+1/2 ≡ 0, therefore 𝑣(𝑅−1/2) ≡ 𝑣max and 𝑣(𝑅𝑁+1/2) ≡ 𝑣max. As for the
ODE system (29) introduced in the previous section, the ODE system (34) needs to be closed by providing the dynamics of the
turning point Z𝑛 (𝑡) ∈ R. In place of b𝑛 (𝑡) implicitly defined by (32) in the previous section, here we consider Z𝑛 (𝑡) implicitly
(uniquely) determined by

𝑍− (𝑡, Z𝑛 (𝑡)) = 𝑍+ (𝑡, Z𝑛 (𝑡)) , (37)

where 𝑍± : [0, +∞) × R→ R are the piecewise linear continuous functions defined by
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𝑍− (𝑡, 𝑥) �


𝑥 + 1 + 𝛼

∫ 𝑥

𝑥𝐼− (𝑡 )
𝜌𝑛 (𝑡, 𝑦) d𝑦 if ∃ 𝐼− ∈ {0, . . . , 𝑁} such that

𝑥𝐼−−1 (𝑡) ⩽ −1 < 𝑥𝐼− (𝑡) < 𝑥,
𝑥 + 1 otherwise,

𝑍+ (𝑡, 𝑥) �


1 − 𝑥 + 𝛼

∫ 𝑥𝐼+ (𝑡 )

𝑥

𝜌𝑛 (𝑡, 𝑦) d𝑦 if ∃ 𝐼+ ∈ {0, . . . , 𝑁} such that
𝑥 < 𝑥𝐼+ (𝑡) < 1 ⩽ 𝑥𝐼++1 (𝑡),

1 − 𝑥 otherwise,

with 𝜌𝑛 : (0, +∞) × R→ [0, 𝜌max] being the discrete density

𝜌𝑛 (𝑡, 𝑥) �
𝑁−1∑︁
𝑖=0

𝑅𝑖+1/2 (𝑡) 1[𝑥𝑖 (𝑡 ) ,𝑥𝑖+1 (𝑡 ) ) (𝑥). (38)

To sum up, the many-particle approximation consists in the ODE system (34)-(36), which features discontinuities in the state
variable (𝑥0, . . . , 𝑥𝑁 ) driven by the function Z𝑛 implicitly determined by relations (37)-(38). The rigorous notion of solution
for this microscopic model is given in the following definition.

Definition 2 We say that an (𝑁 +2)-tuple ((𝑥0, . . . , 𝑥𝑁 ), Z𝑛) of functions defined on [0, 𝜏) (for some 𝜏 ∈ (0, +∞]) is a solution
to (34)-(38) if it satisfies (34)-(38) and has the following regularity:

(i) 𝑥𝑖 , 𝑖 ∈ {0, . . . , 𝑁}, and Z𝑛 are piecewise C111 on [0, 𝜏). More precisely, there exists 𝐻sw ∈ N and times {𝑡ℎ}ℎ∈{1,...,𝐻sw } ,
𝑡1 < 𝑡2 < · · · < 𝑡𝐻sw < 𝜏, such that, upon setting 𝑡0 = 0 and 𝑡𝐻sw+1 = 𝜏, the restriction of each of these functions to the time
intervals (𝑡ℎ, 𝑡ℎ+1) can be extended on [𝑡ℎ, 𝑡ℎ+1) as a C111-function.

(ii) 𝑥𝑖 , 𝑖 ∈ {0, . . . , 𝑁}, are continuous on [0, 𝜏), while their derivatives ¤𝑥𝑖 and the function Z𝑛 are normalized by the left-
continuity at the times 𝑡ℎ, 𝑖 ∈ {1, . . . , 𝐻sw}.

The new definition of the turning curve 𝑥 = Z𝑛 (𝑡), which is deeply linked to the choice of the cost function (33), allows to
better highlight the microscopic counterpart of the arise of non-classical shocks (see [43]) for the Hughes model: pedestrians
may switch direction during the evacuation of C. In fact, pedestrians choose their direction of motion according to a weighted
distance encoding the overall distribution of the crowd in C. Therefore, pedestrians choose their path towards the fastest exit,
taking into account both the distance from the two exits as well as avoiding crowded regions. Moreover, the relevance given
to the first or the second factor depends on the value of the parameter 𝛼. This leads to a many-particle dynamic for which the
instants of particles’ interactions with the turning curve are sharply captured, and this allows to get a rigorous construction of
the unique global in time solution to the many-particle system. In fact, the a priori analysis of solutions of (34)-(38) carried out
in [7, Section 5] implies that, once a particle leaves C, it cannot re-enter, that is it remains outside C; moreover, at most just one
particle can interact with the turning curve, and this can occur only if exactly at the same instant of time exactly one particle
leaves C. This is proved by showing that the turning curve 𝑥 = Z𝑛 (𝑡) has a discontinuity only in the case exactly one particle
leaves C, moreover the turning curve can cross a particle trajectory only by jumping across it and, in this case, it crosses exactly
one particle trajectory. This allows to link direction switches of particles (i.e., crossings of particles’ paths with the turning
curve) to the instants when exactly one of the particles leaves the domain C. The combination between these peculiar features
with the usual (in the context of the FtL approximation) discrete maximum principle culminates in the following result.

Theorem 8 ([7, Theorem 20]) System (34)-(36) coupled to (37)-(38) admits a unique global solution in the sense of Definition
2. Furthermore, there exists 𝑇 > 0 such that 𝜌𝑛 (𝑡, · ) ≡ 0 in C for any 𝑡 ⩾ 𝑇 .

By the above theorem, the microscopic evacuation time 𝑇mic = inf{𝑡 > 0 : 𝜌𝑛 (𝑡, · ) ≡ 0 in C} is bounded. Let us emphasize
that this property is not proved for the approximate solutions constructed in [3] or in [25].

Furthermore, in [7, Section 8] it is studied how the parameter 𝛼 impacts on 𝑇mic = 𝑇mic (𝛼), showing that it may have
infinitely many discontinuities and a global minimum, see [7, Figure 6].

8 Fixed-point existence strategy

The fixed-point approach to Hughes’ problem in one space dimension is the subject of the very recent work [6]. For the
original Hughes’ model, this approach yields existence under the same assumption of linear costs as [7], and under weaker
restrictions on the velocity profile 𝑣; however, this approach also allows to consider more general ‘capacity drop’ behaviour at
exits as introduced in [5] (instead of the standard exit conditions). For generalised Hughes’ models where the uniform Lipschitz
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continuity is guaranteed for a turning curve b computed from a given density 𝜌 (two examples of such models, involving
memory and relaxation effects, are given in [6]), existence of a solution follows from the method of [6], for general costs. Let
us briefly describe these results.

Fix a finite time horizon 𝑇 > 0. We reformulate the one-dimensional Hughes’ problem cast under the form (13) - and
suggest formulating a wide family of its abstract generalisations - by considering a solution of (13) as a fixed point of the
composition S0 ◦ I0 of two operators:

S0 maps a given b ∈ Lip( [0, 𝑇]) to 𝜌 solving (13a), (13c); (39)

I0 maps a given 𝜌 ∈ L111 ((0, 𝑇) × R) to b ∈ C000 ( [0, 𝑇]) solving (13b). (40)

Upon replacing the operators S0, respectively I0, by S (that may correspond to the solution of a variant of (13a), (13c)),
respectively by I (that may correspond to a different modelling of collective dynamics towards exits), one obtains a wide
family of generalised Hughes’ models tractable within this fixed-point formalism. The alternative choices for the solver S
may correspond to different exit conditions (see [6, Section 4], which we outline below) and/or to a more general expression
of the flux 𝐹 = 𝐹 (𝑡, 𝑥, 𝜌, b) than the one given in (14) (see [6, Remark 1.4] for the case with directional anisotropy of
agents’ movement corresponding, e.g., to a slanted corridor). The alternative choices for the solver I may reflect memory and
relaxation effects (see [6, Sections 3.2 and 3.3], which we outline below).

In order that the above introduced fixed-point problem be consistent, one needs to ensure that the above operators S0, I0 are
well defined (in particular, that they are single-valued) and that they map between adequately chosen functional spaces. The
definitions (39), (40) highlight the choice of Banach spaces L111 ((0, 𝑇) × R), C000 ( [0, 𝑇]) and Lip( [0, 𝑇]), endowed with their
standard norms, in the construction. On the one hand, one needs that the discontinuous-flux conservation law (13a) admits a
unique admissible solution (see in particular Remark 1; cf. [6, Definition 1.1 and Theorem 2.1] for details) and that the solver
S0 is continuous (with respect to the well-chosen topologies). These claims hold true under the Lipschitz continuity of b and
mild assumptions on 𝑓 . On the other hand, in order to be able to compose the two operators S0 and I0 and apply fixed-point
arguments, one needs that, for an appropriately defined convex closed bounded subset 𝐵 of L111 ((0, 𝑇) × R), the function
b = I0 [𝜌] belongs to Lip( [0, 𝑇]) ⊂ C000 ( [0, 𝑇]) whenever 𝜌 ∈ 𝐵. Note that the embedding of Lip( [0, 𝑇]) into C000 ( [0, 𝑇])
is compact, which permits to apply the Schauder fixed-point theorem. The cornerstone of the fixed-point formulation of the
Hughes model, that pre-determines the above choice of the functional framework and restricts the main result to the case of a
linear cost (22), is the following couple of observations proved in [6].

Proposition 1 The operator S0 defined from Lip( [0, 𝑇]) (endowed with the norm of the larger space C000 ( [0, 𝑇])) to
L111 ((0, 𝑇); [0, 𝜌max]) is continuous.
The operator I0 is continuous from L111 ((0, 𝑇); [0, 𝜌max]) to C000 ( [0, 𝑇]). Moreover, if the cost 𝑐 is of the form 𝑐(𝜌) � 1 + 𝛼𝜌,
𝛼 > 0, and 𝜌 verifies the property

∃𝐶 > 0 : ∀𝑎, 𝑏 ∈ R, ∀𝑠, 𝑡 ∈ [0, 𝑇],
����∫ 𝑏

𝑎

(
𝜌(𝑡, 𝑥) − 𝜌(𝑠, 𝑥)

)
d𝑥

���� ⩽ 𝐶 |𝑡 − 𝑠 |, (41)

then b = I0 [𝜌] belongs to Lip( [0, 𝑇]) and the Lipschitz constant of b does not exceed the universal bound 𝛼𝐶.

This permits us to apply the following theorem ([6, Theorem 1.9]) pertaining to the solver S0 in (39) and to an abstract
operator I serving to compute the turning curve b from the density 𝜌.

Theorem 9 Let �̄� be a datum supported in C with values in [0, 𝜌max]. Let 𝐵 be a convex closed bounded subset of L111 ((0, 𝑇)×R)
and

I : (𝐵, ∥ · ∥L111 ( (0,𝑇 )×R) ) → (C000 ( [0, 𝑇]), ∥ · ∥∞)

be a continuous operator. Assume that 𝑓 is non-degenerate in the sense of [47, 52], where 𝑓 is involved in the definition (14)
of the flux of the conservation law (13a). If there exists 𝑟 > 0 such that:

I(𝐵) ⊂ 𝐵Lip (0, 𝑟) �
{
b ∈ Lip( [0, 𝑇]) : ∥ ¤b∥∞ + ∥b∥∞ ⩽ 𝑟

}
,

∀b ∈ 𝐵Lip (0, 𝑟), the unique admissible solution to (13a), (13c) is in 𝐵,

then there exists a solution (𝜌, b) to the generalised Hughes’ problem (13a), b = I[𝜌] (generalising (13b) that corresponds to
the case I = I0), (13c).

To apply this result to the original Hughes’ model (i.e., I = I0 given by (40)), it remains to use Proposition 1 and observe that
the set 𝐵 = 𝐵1, with

𝐵1 �
{
𝜌 : ∥𝜌∥L111 ( (0,𝑇 )×R) ⩽ 𝑇 ∥ �̄�∥L111 s.t. 0 ⩽ 𝜌 ⩽ 𝜌max and 𝜌 verifies (41)

}
,
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fulfils the requirements of Theorem 9 (see [6, Section 3.1]). Thus Proposition 1 and Theorem 9 provide a second existence
proof in the context of affine costs. We stress that this proof is non-constructive (although constructive splitting arguments
can be developed instead of the fixed-point arguments). Moreover, the first proof given in [7] offers appealing microscopic
foundations to the macroscopic Hughes’ model. The main asset of the approach of Theorem 9 developed in [6] is its flexibility,
while the DPA approach of [7], as well as the WFT approach of [30], require heavy adaptations if ingredients of the model
change even slightly. Let us briefly discuss applications and generalizations of Theorem 9.

First, the open-end exit conditions for 𝜌, implicitly contained in the formulation (13) (see [25, p. 220] and [7, Section 3]),
can be replaced by exit behaviour of the capacity drop kind, following the ideas and techniques put forward in [4, 5]. Focusing
on the exit situated at 𝑥 = 1 (the case of the other exit is analogous), in addition to (13a), (13c), we consider the non-local point
constraint

𝑓
(
𝜌(𝑡, 1)

)
⩽ 𝑔

(∫ 1

𝜎

𝑤1 (𝑥)𝜌(𝑡, 𝑥) d𝑥
)

(42)

for a given 𝑔 ∈ Lip( [0, 𝜌max]; [0, 𝑓 ( �̄�)]) and a given weight 𝑤1 ∈ Lip((−∞, 1]) with support in some compact vicinity
[𝜎, 1] of the exit. Precise definition of admissible solution 𝜌 and the existence result (given b ∈ Lip( [0, 𝑇])) for this original
discontinuous-flux, non-locally constrained at both exits conservation law can be found in [6, Section 4 and Appendix].
Denoting by S𝑔 the associated solver, one easily obtains the analogous of Theorem 9 with S𝑔 replacing the basic solver S0.
Even more complex dynamics at exits, exhibiting self-organisation features [8], can be considered in the same way to replace
S0.

Second, fixing either S0 in (39) or S𝑔 with the additional exit constraint (42), we can replace the operator I0 resolving
(13b) by different (though closely related) operators that regularize the dynamics of b, making trivial the Lipschitz bound on
b = I[𝜌]. We stress that in this case, the analogous of Proposition 1 holds true without the restrictive assumption (33) of linear
costs. For the first example, we introduce a memory effect via a subjective density

R[𝜌( ·, 𝑥)] (𝑡) � 𝛿
∫ 𝑡

−∞
𝜌(𝑠, 𝑥) 𝑒−𝛿 (𝑡−𝑠) d𝑠

(where 𝜌 is extended by the initial datum �̄� for all 𝑡 < 0). Instead of (13b), we define the operator I𝛿 : 𝜌 → b by∫ b (𝑡 )

−1
𝑐
(
R[𝜌( ·, 𝑥)] (𝑡)

)
d𝑥 =

∫ 1

b (𝑡 )
𝑐
(
R[𝜌( ·, 𝑥)] (𝑡)

)
d𝑥.

The operator I𝛿 possesses the properties required in Theorem 9 for the straightforward choice 𝐵 = 𝐵2 �
{
𝜌 : ∥𝜌∥L111 ( (0,𝑇 )×R) ⩽

𝑇 ∥ �̄�∥L111 s.t. 0 ⩽ 𝜌 ⩽ 𝜌max
}
. For the second example, we define b via a relaxation mechanism. The simplest variant is the ODE

problem 
−Y ¤b (𝑡) =

∫ 1

b (𝑡 )
𝑐
(
𝜌(𝑡, 𝑥)

)
d𝑥 −

∫ b (𝑡 )

−1
𝑐
(
𝜌(𝑡, 𝑥)

)
d𝑥,∫ 1

b (0)
𝑐
(
𝜌0 (𝑥)

)
d𝑥 −

∫ b (0)

−1
𝑐
(
𝜌0 (𝑥)

)
d𝑥 = 0,

which defines ĨY : 𝜌 → b consistent with the choice 𝐵 = 𝐵2 in the context of Theorem 9 (or of its analogous involving S𝑔

instead of S0).

9 Simulations

The analytical results on Hughes’ model illustrated in the previous sections were coupled in the literature with different
numerical schemes, see [30, Section 5] and [35] for the Wave-Front Tracking (WFT) scheme, and [25, Section 3] and [7,
Section 8] for the Deterministic-Particle-Approximation (DPA) algorithm [28]. Indeed, the introduced numerical schemes can
be viewed both as analytical and numerical tools.

Several contributions can be found in the literature concerning the numerical study of Hughes’ model. In [40], the authors
introduced a WENO scheme for the scalar conservation law and a fast sweeping method for the eikonal equation. In [51], using
a mixed finite volume method, a comparison between solutions of Hughes’ model and a second-order model was presented
using extensive numerical experiments, including the case of obstacles in the interior of the domain. The study in [18] addresses
the case of Hughes’ model with limited local vision both in one and two dimensions. A semi-Lagrangian scheme was used
in [17] to solve both the stationary Hamilton-Jacobi equation and the regularised transport equation described in Section 10.1
on bounded domains.
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All the aforementioned results focus on the two-dimensional model (7), (8), (9), since it represents the most interesting
case from the application point of view. However, in this section, we limit our presentation to the one dimensional case, where
analytical results are available, showing some numerical tests performed using the WFT scheme and the DPA algorithm.
In all the reported examples, we choose the velocity and cost functions as

𝑣(𝜌) � 1 − 𝜌, 𝑐(𝜌) � 1/𝑣(𝜌).

We show the time evolution of the discrete densities constructed through the two approximations in the domain D = (−1, 1).
We briefly present the methods below.
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Discrete density via WFT at time T=1

Fig. 3 Approximate solutions of Hughes’ model with even initial condition (43) constructed by the WFT scheme (top) and DPA method (bottom). The
spatio-temporal evolution is depicted on the left, the corresponding density profile at time 𝑡 = 1 on the right. The two groups separate symmetrically
and nobody change direction. The turning point trajectories are plotted in white (WFT) and magenta (DPA). In all the simulations we fix the space
discretization step in the WFT algorithm as Y = 10−4 and the number of particles 𝑁 = 2000 for the (DPA).

Wave-Front Tracking (WFT) scheme. According to the method introduced in [35], consider the grid G𝑛 and the piecewise
linear function 𝑓 𝑛 as introduced in Section 5. We approximate the initial datum �̄� by taking a piecewise constant function

�̄�𝑛 (𝑥) =
∑︁
𝑗

�̄�𝑛𝑗1(𝑥 𝑗−1 ,𝑥 𝑗 ] (𝑥),

with density values �̄�𝑛
𝑗
∈ G and jump points 𝑥 𝑗 such that �̄�𝑛 approximates �̄� in the strong L111 topology. Define b̄𝑛 according to

(23), that reduces to ∑︁
𝑗⩽0

𝑐( �̄�𝑛𝑗 ) (𝑥 𝑗 − 𝑥 𝑗−1) =
∑︁
𝑗>0

𝑐( �̄�𝑛𝑗 ) (𝑥 𝑗 − 𝑥 𝑗−1).

Then, up to the first waves collision, the approximate solution (𝜌𝑛, b𝑛) is constructed by solving locally the Riemann problems
𝜕𝑡 𝜌 + 𝜕𝑥

(
sign

(
𝑥 − b̄𝑛

)
𝑓 𝑛 (𝜌)

)
= 0,

𝜌(0, 𝑥) =
{
�̄�𝑛0 if 𝑥 < b̄𝑛,
�̄�𝑛1 if 𝑥 > b̄𝑛,

¤b
(
𝜌+ − 𝜌−

)
= Ψ[𝜌],


𝜕𝑡 𝜌 + 𝜕𝑥

(
sign

(
𝑥 𝑗 − b̄𝑛

)
𝑓 𝑛 (𝜌)

)
= 0,

𝜌(0, 𝑥) =
{
�̄�𝑛𝑗 if 𝑥 < b̄𝑛,

�̄�𝑛𝑗+1 if 𝑥 > b̄𝑛,

𝑗 ≠ 0,
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Fig. 4 Approximate solutions of Hughes’ model with initial condition (44) constructed by the WFT scheme (top) and DPA method (bottom). The
spatio-temporal evolution is depicted on the left, the corresponding density profile at time 𝑡 = 1 on the right. Again, the two groups separate and
nobody change direction. The turning point trajectories are plotted in white (WFT) and magenta (DPA).

Fig. 5 Approximate solutions of Hughes’ model with initial condition (45) constructed by the WFT scheme (top) and DPA method (bottom). The
spatio-temporal evolution is depicted on the left, the corresponding density profile at time 𝑡 = 1 on the right. This time, the two groups separate
initially, but later some of those initially moving to the left change direction and cross the turning curve. The turning point trajectories are plotted in
white (WFT) and magenta (DPA).

where Ψ[𝜌] = ¤b (𝑐(𝜌+) + 𝑐(𝜌−)). Note that the solution to the Riemann problem on the left, should be understood by means
of the Riemann solver described previously. This procedure generates a new set of values 𝜌𝑛1, 𝑗 ∈ G𝑛 and corresponding
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Fig. 6 Approximate solutions of Hughes’ model with initial condition (46) constructed by the WFT scheme (top) and DPA method (bottom). The
spatio-temporal evolution is depicted on the left, the corresponding density profile at time 𝑡 = 1 on the right. Also here, the two groups separate
initially, but later some of those initially moving to the left change direction and cross the turning curve. The turning point trajectories are plotted in
white (WFT) and magenta (DPA).

waves between consecutive densities moving with speeds _1, 𝑗 determined by the Rankine-Hugoniot condition, that allow the
definition of the wave trajectories 𝑥 𝑗 (𝑡) = 𝑥 𝑗 + _1, 𝑗 𝑡 and the piecewise constant approximate density

𝜌𝑛 (𝑡, 𝑥) =
∑︁
𝑗

𝜌𝑛1, 𝑗1(𝑥 𝑗−1 (𝑡 ) ,𝑥 𝑗 (𝑡 ) ] (𝑥).

Accordingly, a turning curve trajectory can be defined by b𝑛 (𝑡) = b̄𝑛 + ¤b𝑛𝑡. When two waves collide, a wave hits the domain
boundary or the turning curve, new Riemann problems arise, either solved by the classical method or according to the Riemann
solver designed in Section 3.

The Matlab code used for the simulations presented in this section can be downloaded at the following URL:
http://www-sop.inria.fr/members/Paola.Goatin/wft.html

Deterministic Particle Approximation (DPA). Concerning the DPA approach, given an initial datum �̄�, we construct the
initial particle configuration according to (27), which corresponds to a piecewise uniform grid for piecewise constant initial
condition, and we solve the particle system (29) using the Runge-Kutta Matlab solver ODE23s. We then reconstruct the
density according to

𝜌𝑛 (𝑡, 𝑥) =
𝑁−1∑︁
𝑖=0

𝑅𝑖+1/2 (𝑡) 1[x𝑖 (𝑡 ) ,x𝑖+1 (𝑡 ) ) (𝑥),

with

𝑅𝑖+1/2 (𝑡) =


𝑚

x𝑖+1 (𝑡) − x𝑖 (𝑡)
, 𝑖 ∈ {0, . . . , 𝑁 − 1} \ {𝐼0} ,

0, 𝑖 ∈ {−1, 𝐼0, 𝑁} .
An important remark has to be stated about the boundary conditions. As described previously, we do not impose any

boundary condition in the particle method. The two leading particles x0 and x𝑁 move with maximal velocity towards the
opposite directions.

Particular attention is devoted to the turning point evolution in the particle simulations, obtained by discretizing (32). Since
no boundary conditions are imposed for the particle method, particles are free to exit the domain following the evolution of
the two leaders, whereas only the particles still inside the domain bias the evolution of the turning point. Note that the particles

http://www-sop.inria.fr/members/Paola.Goatin/wft.html
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trajectories x𝑖 constructed through the DPA are in general different from the wave trajectories 𝑥 𝑗 (𝑡) produced by the WFT
algorithm.

In all the simulations, we fix the space discretization step in the WFT algorithm as Y = 10−4 and the number of particles
𝑁 = 2000 for the DPA and we plot the reconstructed piecewise constant densities at time 𝑇 = 1 and characteristic and particles
path for WTF and DPA respectively. In Fig. 3, and Fig. 4 we plot the numerical solutions corresponding to the initial data

�̄�(𝑥) = 0.6 for all 𝑥 ∈ D, (43)

and

�̄�(𝑥) =
{

0.25 if 𝑥 ∈ [−1, 0) ,
0.6 if 𝑥 ∈ [0, 1] .

(44)

This examples show the classical split of the density in two subgroups moving towards the opposite exits. A more interesting
behaviour is shown in Fig. 5 and Fig. 6, were collisions between wave/particles and the turning curve occur, leading to the
formation of non-classical shocks. Initial data in Fig. 5 and Fig. 6 are given respectively by

�̄�(𝑥) =
{

0.1 if 𝑥 ∈ [−1, 0) ,
0.9 if 𝑥 ∈ [0, 1] ,

(45)

and

�̄�(𝑥) =


0.8 if 𝑥 ∈ [−0.8,−0.5) ,
0.6 if 𝑥 ∈ [−0.3, 0.3] ,
0.9 if 𝑥 ∈ [0.4, 0.75] ,
0 otherwise ,

(46)

see also the discussion in [7, Section 8].

10 Modified versions

We conclude by presenting some generalisations or slight modifications of Hughes’ model, which on the one hand try to make
it more realistic and on the other hand give insights into the mathematical modelling (especially the missing microscopic
interpretation of the original model by Hughes).
We discuss three different approaches; we first introduce a regularised version of the model proposed in [27], which renders
the mathematical theory of the model more accessible through relatively standard techniques; then we describe the variational
approach proposed by Burger et al. [14, 37] which leads to a dynamic version of Hughes’ model; finally, we describe a
generalisation of the model proposed by Carrillo et al., see [18], which is meant to make the model closer to real situations
by removing the assumption that each pedestrian has a global view of the distribution of the crowd on the whole domain.
Further generalisations, including modification of exit behaviour of agents accounting for capacity drop phenomena, were very
recently proposed in [6]: the corresponding existence results were sketched in Section 8.

10.1 The regularised Hughes model

As mentioned in the introduction, the main difficulty in developing a mathematical theory for the Hughes model resides in the
discontinuity of ∇𝜙 in the equation (10). To bypass this problem, the authors in [27] proposed a regularised version of the
model in one space dimension, in which the eikonal equation (10b) contains extra terms to avoid discontinuities:
• an additive constant in the denominator of the right-hand side of the eikonal equation in order to avoid infinite slopes for 𝜙;
• a Laplacian term in the (squared) eikonal equation to smoothen the potential 𝜙.
The resulting model considered in [27] is


𝜌𝑡 −

(
𝜌𝑣(𝜌)2𝜙𝑥

)
𝑥
= 0,

− 𝛿1𝜙𝑥𝑥 + |𝜙𝑥 |2 =
1(

𝑣(𝜌) + 𝛿2
)2 ,

(47a)

(47b)
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where 𝛿1, 𝛿2 > 0 are two parameters of the model. Therefore, the result in [27] assumes 𝑔 ≡ 1. Moreover, it is assumed
that 𝑣(𝜌) = (1 − 𝜌)+ for simplicity. The model is posed on a bounded interval 𝑥 ∈ C � (−1, 1) with homogeneous Dirichlet
boundary conditions

𝜌(±1∓, 𝑡) = 0 , 𝜙(±1∓, 𝑡) = 0 .

A suitable notion of entropy solution can be formulated for (47), where the modified eikonal equation is solved with
respect to 𝜙, 𝜙 = 𝜙[𝜌] (𝑡, 𝑥). Clearly, such a dependence is non-local in space. This notion of entropy solutions is a natural
generalisation of cases previously considered in the literature of scalar conservation laws with space-time dependent fluxes.
Roughly speaking, it is assumed:

• that 𝜌 is continuous in time with values in BV( [−1, 1]);
• that 𝜙 is continuous in time with values in W222,∞;
• that 𝜌 and 𝜙 satisfy the entropy inequality∫ ∞

0

∫ 1

−1

(
|𝜌 − 𝑘 | 𝜑𝑡 + sign(𝜌 − 𝑘)𝑚(𝑘)

(
𝜑 𝜙𝑥𝑥 −

(
𝑚(𝜌) − 𝑚(𝑘)

)
𝜙𝑥 𝜑𝑥

) )
d𝑥 d𝑡

− sign(𝑘)
∫ 𝑇

0

(
𝑚(tr(𝜌)) − 𝑚(𝑘)

)
𝜙𝑥 𝜑

���
𝑥=±1

d𝑡 +
∫ 1

−1
�̄�(𝑥) 𝜑(0, 𝑥) d𝑥 ≥ 0, (48)

where 𝑚(𝜌) � 𝜌𝑣(𝜌)2 and 𝜑 is an arbitrary C∞
c test function;

• that 𝜌 and 𝜙 satisfy the regularised eikonal equation in (47) almost everywhere.

The above entropy inequality (48) incorporates the concept of entropy solutions at the boundary according to the classical
approach in [10]. We refer to [27] for details.

The existence of entropy solutions according to the above definition is carried out in [27] by a standard vanishing viscosity
approach for the continuity equation. A major issue to achieve the needed compactness is the regularity of the potential 𝜙. To
perform this task, the authors apply a Hopf-Cole transformation

𝜓(𝑥, 𝑡) � 𝑒−
𝜙 (𝑥,𝑡 )
𝛿1 ,

which implies the following boundary value problem for 𝜓{
𝛿2

1𝜓𝑥𝑥 = 𝜓𝐹𝛿2 (𝜌) ,
𝜓(±1) = 1 ,

where
𝐹𝛿2 (𝜌) �

1
(𝑣(𝜌) + 𝛿2)2 .

Then, a simple multiplication by 𝜓 and integration by parts on [−1, 1] imply W222,∞ regularity for 𝜓 and, consequently, for 𝜙.
We refer to [27, Lemmas 2.2. and 2.3]. These results allow to obtain uniform bounds in L∞∞∞ ∩ BV for 𝜌 with respect to the
artificial viscosity parameter and to obtain convergence up to a subsequence to an entropy solution. The uniqueness is obtained
by standard doubling of the variables. We refer to [27] for further details.

10.2 A dynamic version of Hughes model via optimal control

The dynamic formulation is based on the assumption that pedestrians wish to exit a domain at fastest. This corresponds to a
classical or stochastic optimal control problem on the microscopic level, and a PDE constrained optimisation problem on the
macroscopic level. We will see that we can relate the optimality conditions of this transient optimal control problem to Hughes’
model in suitable scaling limits.

Consider a pedestrian (of unit mass) trying to leave the domain 𝐷 ⊂ R2 as fast as possible. Let X = X(𝑡) denote its position
at time 𝑡 > 0, V = V(𝑡) its velocity and X0 its starting position. Define the exit time as

𝑇exit (X) = sup{𝑡 > 0 : X(𝑡) ∈ 𝐷}.
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We assume that pedestrians are perfectly rational and wish to minimise a weighted sum of the exit time 𝑇exit and the kinetic
energy, i.e.

1
2

∫ 𝑇exit

0
|V(𝑡) |2 d𝑡 + 𝛼

2
𝑇exit (X) → min

X,V
, (49)

subject to ¤X(𝑡) = V(𝑡), X(0) = X0 and given a weighting parameter 𝛼 > 0. Next we introduce the Dirac measure ` = 𝛿X(𝑡 ) ,
and choose the final time 𝑇 sufficiently large. Then we can rewrite (49) in terms of the measure `:

𝐼𝑇 (`, 𝑣) =
1
2

∫ 𝑇

0

∫
𝐷

|𝑣(𝑡, 𝑥) |2d` d𝑡 + 𝛼
2

∫ 𝑇

0

∫
𝐷

d` d𝑡, (50)

subject to the constraint `𝑡 + ∇ · (`𝑣) = 0, with initial condition ` |𝑡=0 = 𝛿X0 . By reformulating (49) in terms of the measure `
we obtain the continuum version (50).
If we loosen the rationality assumption and allow for uncertainty in the pedestrian’s path the ODE for X is replaced by a
stochastic differential equation

dX(𝑡) = V(𝑡) d𝑡 + 𝜎 d𝑊 (𝑡), (51a)

where𝑊 is a Wiener process and 𝜎 the diffusivity. Due to the stochasticity we consider the expected value of (49), that is

EX0

[
1
2

∫ 𝑇exit

0
|V(𝑡) |2 d𝑡 + 𝛼

2
𝑇exit (X)

]
→ min

V
(51b)

with the random variable X determined by (51a) with initial value X0.
Rewriting (51) in terms of the distribution ` and assuming that ` has a density 𝜌, that is d` = 𝜌 d𝑥, gives the respective
macroscopic formulation:

𝐼𝑇 (𝜌, 𝑣) =
1
2

∫ 𝑇

0

∫
𝐷

𝜌(𝑡, 𝑥) |𝑣(𝑡, 𝑥) |2 d𝑥 d𝑡 + 1
2

∫ 𝑇

0

∫
𝐷

𝜌(𝑡, 𝑥) d𝑥 d𝑡,

subject to 𝜌𝑡 + ∇ · (𝜌𝑣) = 𝜎2

2 Δ𝜌, with 𝜌(𝑥, 0) = 𝜌0 (𝑥). The formal optimality conditions of this constrained optimisation
problem are 

𝜌𝑡 + ∇ · (𝜌∇𝜙) − 1
2
𝜎2Δ𝜌 = 0,

𝜙𝑡 +
1
2
∥∇𝜙∥2 + 1

2
𝜎2Δ𝜙 =

𝛼

2
,

(52)

where 𝜙 corresponds to the dual or adjoint variable. Note that system (52) is supplemented with an initial condition for
𝜌(𝑥, 0) = 𝜌0 (𝑥) and a terminal condition for 𝜙(𝑥, 𝑇) = 0. The adjoint variable 𝜙 satisfies a transient viscous eikonal equation,
which has to be solved backward in time. The connection to the Hughes model is quite apparent for a time interval [0, 𝑆] with
𝑆 ≪ 𝑇 and 𝜎 = 0. Noticing that the Hamilton-Jacobi equation is solved backwards in time and that the backward time is large
for 𝑡 ⩽ 𝑆, we see that the solution 𝜙 is mainly determined by the large-time asymptotics solving, for some 𝑐 ∈ R+,

∥∇𝜙∥2 = 𝑐.

Motivated by the above interpretation of the Hughes problem Burger et al. investigated the following generalisation on the
macroscopic level

𝐼𝑇 (𝜌, 𝑣) �
1
2

∫ 𝑇

0

∫
𝐷

𝐹 (𝜌) |𝑣(𝑡, 𝑥) |2 d𝑥 d𝑡 + 1
2

∫ 𝑇

0

∫
𝐷

𝐸 (𝜌) d𝑥 d𝑡, (53a)

subject to

𝜌𝑡 + ∇ ·
(
𝐺 (𝜌)𝑣

)
=
𝜎2

2
Δ𝜌, (53b)

and a given initial value 𝜌(𝑥, 0) = 𝜌0 (𝑥). Here the functions 𝐺, 𝐹 and 𝐸 account for nonlinear effects in high density regimes.
In particular

• The function 𝐺 = 𝐺 (𝜌) corresponds to a nonlinear mobility. In the setting of pedestrian dynamics it is assumed to be a
positive non-negative function of the density. For example, 𝐺 is often assumed to be non-increasing and approaching zero
when approaching the maximum capacity.

• The function 𝐹 = 𝐹 (𝜌) accounts for the modulation of transport costs by the density. For example the function 𝐹 might
tend to infinity as 𝜌 approaches 𝜌max.
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• The nonlinear function 𝐸 = 𝐸 (𝜌) in the exit time functional can for example relate to increased cost of moving in high
density regions.

Burger et al. discussed the relation of the original Hughes model to the solution of the optimality system defined by (53).
They showed that for

𝜎 = 0, 𝐻 (𝜌) = 𝐺2 (𝜌)
𝐹 (𝜌) = 𝜌 𝑓 (𝜌) and 𝐸 (𝜌) = 𝛼𝜌,

with 𝑓 (𝜌) = 𝜌max − 𝜌, the optimality system of (53) is given by

𝜌𝑡 + ∇ ·
(
𝜌 𝑓 (𝜌)2∇𝜙

)
= 0 (54a)

𝜙𝑡 +
𝑓 (𝜌)

2
(
𝑓 (𝜌) + 2𝜌 𝑓 ′ (𝜌)

)
∥∇𝜙∥2 =

𝛼

2
. (54b)

Arguing again that the Hamilton-Jacobi equation equilibrates much faster for large times 𝑇 and therefore neglecting 𝜙𝑡 in (54b)
gives a problem which is quite close to the original Hughes model for 𝑓 (𝜌) = 𝜌max − 𝜌, but still, with a different prefactor in
the eikonal equation (due to the 2𝜌 𝑓 ′ (𝜌) term).

Therefore Burger et al. provided another formal argument which links the original Hughes model to the dynamic formulation.
They proposed a modified mean field approach by extrapolating the current density into the future, i.e. 𝜌 = 𝜌(𝑥, 𝑡) is assumed
to be the density of the system for all times 𝑠 > 𝑡.
In doing so they consider 𝑁 particles with position X𝑘 = X𝑘 (𝑡) and define the empirical density

𝜌𝑁 (𝑡) = 1
𝑁

𝑁∑︁
𝑘=1

𝛿
(
𝑥 − X𝑘 (𝑡)

)
.

Furthermore they introduce a smoothed approximation 𝜌𝑁
Z

of the empirical density (which is necessary to define the cost
functional later)

𝜌𝑁Z (𝑡) = (𝜌𝑁 ∗ Z) (𝑡, 𝑥) = 1
𝑁

𝑁∑︁
𝑘=1

Z
(
𝑥 − X𝑘 (𝑡)

)
,

for a sufficiently smooth positive kernel Z .
Based on the considerations above they assume that the optimal velocity of an agent at position X = X(𝑡) is determined by
minimising

1
2

∫ 𝑡+𝑇

𝑡

|V(𝑠) |2

𝐺
(
𝜌𝑁
Z
(b (𝑠; 𝑡), 𝑡

) d𝑠 + 1
2
𝑇exit (X,V) → min

(X,V)
(55)

subject to the constraint that db
d𝑠 = V(𝑠) and b (0) = X(𝑡). Hence an individual tries to find its optimal trajectory based on

the current density 𝜌 and extrapolating it into the future. We can rewrite the above problem in terms of probability measures
(replacing the smoothed empirical density 𝜌𝑁

Z
by its mean field limit 𝜌) and obtain

1
2

∫ 𝑇+𝑡

𝑡

∫
Ω

(
𝑤2 (𝑥, 𝑠)

𝐺
(
𝜌(b (𝑠; 𝑡), 𝑡)

) + 1
)

d` d𝑠 → min
(`,𝑤)

for the velocity field 𝑤 and the probability measure ` satisfying `𝑠 + ∇ · (`𝑤) = 0. with initial condition `(𝑡 = 0) = 𝛿𝑋.
Formal calculation of the optimality conditions for 𝐺 (𝜌) = 𝑓 (𝜌) = 𝜌max − 𝜌, and the argument that the adjoint variable
equilibrates faster for sufficiently large 𝑇 then gives the original Hughes model. Hence we can interpret Hughes model as a
microscopic optimal control problem, in which agents determine the optimal trajectory using the current pedestrian density
and interpolating it into the future.

10.3 Optimal control via local attraction

Related is the optimal control problem discussed in [37] which is based on a regularised version similar to the one illustrated
in Section 10.1, yet with an additional Laplacian term added in (47a). The idea is to control the trajectories of a fixed, finite
number 𝑀 of agents that are able to influence the crowd in the vicinity of their location. A typical example, thinking about a
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tourist guide or security personal, would be an local, attractive force. This is included into the model by an additional convection
term in (47a) which is the gradient of an interaction kernel centred at the agents location (denoted by 𝑥𝑖 (𝑡), 𝑖 ∈ {1, . . . , 𝑀}).
Thus (47a) becomes

𝜌𝑡 − ∇ ·
(
𝜌𝑣(𝜌)2

(
∇𝜙 +

𝑀∑︁
𝑖=1

∇𝐾
(
𝑥 − 𝑥𝑖 (𝑡)

) ))
= 𝛿3Δ𝜌,

with an attractive interaction kernel 𝐾 , typically radially symmetric and with compact support, and 𝛿3 > 0. The motion of the
agents themselves is then governed by an ordinary differential equation of the form

¤𝑥𝑖 (𝑡) = 𝑣
(
𝜌(𝑥𝑖 (𝑡), 𝑡)

)
𝑢𝑖 (𝑡), 𝑥𝑖 (0) = 𝑥0

𝑖 , 𝑖 ∈ {1, . . . , 𝑀}. (56)

The vector fields 𝑢𝑖 are the actual controls that determine the agent’s direction while the first term on the right hand side makes
sure that the agents are slowed in high density areas as is the remaining crowd. However, as this requires a point evaluation
of 𝜌 at 𝑥𝑖 (𝑡), sufficient regularity needs to be shown which is the reason for the additional diffusive term in (56). Possible
objective functionals are the total mass at some final time (evacuation scenario) or the area of parts of the domain in which a
given critical density is exceeded (panic avoidance). Control of crowds via few agents has also been considered in [1, 15], yet
for different models and different applications. The main result of [37] is the existence of the regularised model with sufficient
regularity as well as differentiability properties of the control-to-state map, existence of a globally optimal control, and the
formulation optimality conditions. In a subsequent work, [48], the authors introduce a numerical discretisation based on a
finite volume scheme that is shown to preserve the box constraints of 𝜌 and provide a variety of numerical examples of the
optimal control problem.

10.4 A localised version of the model

In the original Hughes model the function 𝜙 is calculated assuming that the global distribution of pedestrians is known at
any time 𝑡 > 0. The assumption of global knowledge of the pedestrian density is highly questionable in practical situations,
which is why Carrillo et al. [18] proposed a local version to account for limited vision and restricted perception. Their starting
point was motivated by the microscopic interpretation of Hughes model (55). However, they assumed that individuals can only
estimate the pedestrian density within their vision cone. Since (55) is a first order model, the implementation of a vision cone
is not as straightforward than in a second order model.
Therefore Carrillo et al. introduced an auxiliary variable and a parametrised potential 𝜙(𝑥, 𝑦) : R4 → R such that 𝑦 ↦→ 𝜙(𝑥0, 𝑦)
denotes the cost potential calculated by pedestrians located at 𝑥0 ∈ Ω. For every point 𝑥 we assume that the domain 𝐷 is
decomposed into a visible part 𝐷𝑉 and an invisible one 𝐷 𝐼 = 𝐷\𝐷𝑉 . Then the limited perception can be implemented as
follows: in visible areas the optimal trajectory is calculated using the pedestrian density, while in invisible areas the density is
set to a constant value 𝜌𝐻 ∈ R+0 . We assume that 𝜌𝐻 is the same for all pedestrians. For example, if 𝜌𝐻 = 0 then pedestrians
assume that not visible areas are empty, while pedestrians will avoid these areas if 𝜌𝐻 ≈ 𝜌max. The respective eikonal equation
is then

∥∇𝑦𝜙(𝑥, 𝑦)∥ =
{

1/𝑣
(
𝜌(𝑦, 𝑡)

)
, 𝑦 ∈ 𝐷𝑉 ,

1/𝑣(𝜌𝐻 ), 𝑦 ∈ 𝐷 𝐼 ,

which gives the potential 𝜙 as function of two space variables.
Carrillo et al. calculate this potential for every single exit (since the visible and invisible areas change for each one). The
final walking direction in each point is then computed by comparing the potentials for all exits and adjusting it according to
the predominant direction in the close surrounding. This averaging is necessary to avoid strong fluctuations in the walking
direction. We omit the details of the full model as it exceeds the scope of this review. Computational experiments show that
this generalisation yields more realistic results especially in the case of obstacles and more complicated geometries.

11 Conclusions and future challenges

As was to be expected given the mathematical structure of the model, the various (successful and unsuccessful) attempts to
prove existence of solutions to Hughes’ model involve the community of researchers working on hyperbolic conservation laws.
As for the one-dimensional case, the shock structure of the model is by now quite well understood. It is somehow surprising,
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though, that the only existence results for large data do not use the WFT algorithm. Therefore, a first open question is the
convergence of the WFT scheme, at least in the case of linear cost, that is the one covered in the available existence theorems.
The next step towards a satisfactory one-dimensional theory is to prove existence of entropy solutions for more general cost
functionals. Having three approaches which lead to significant results so far, namely the WFT scheme, the DPA scheme, and
the fixed point strategy, makes us quite optimistic that this result is within reach.

Having developed significant results in the one-dimensional case was a necessary intermediate step to the solution of this
model and to better understand its mathematical features. However, the journey towards a satisfactory mathematical theory for
Hughes’ model cannot be considered as completed unless some results are obtained in two space dimensions. There are many
possible directions to take in this sense:

• Extend the available results on the regularised model to the two-dimensional case. This seems quite reasonable. The strategy
adopted so far used the very specific features of the one-dimensional case, but we believe something can be done also in 2𝑑.

• Set up a reasonable deterministic particle scheme in the two dimensional space, for example by using Voronoi tessellation
to reconstruct the density. A major issue in this case is the definition of the direction of the discretized flux.

• Try to investigate better the structure of coupling with the eikonal equation suitably involving viscosity solutions. In this
sense, the interaction with researchers from the field of viscosity solutions should be definitely improved.

Models with more general and possibly more realistic boundary conditions need to be further investigated as well, both
numerically and analytically, especially in two space dimensions. More broadly, the interplay with control theory (partly
mentioned here) is an almost unexplored direction of research, which we believe would have a relevant impact on the
applications and which would certainly benefit from a sound, well-established mathematical theory for the IBV problems.
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