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Optimisation de plan de vol de drones autonomes
pour une recharge rapide de capteurs

Igor Dias da Silva1 et Yann Busnel2 et Christelle Caillouet1

1Université Côte d’Azur, CNRS, I3S, Inria, France
2IMT Atlantique, IRISA, France

Nous proposons une solution en deux étapes pour déterminer des trajectoires quasi-optimal de véhicules aériens sans
pilote (UAV), ou drones, afin de recharger rapidement un réseau de capteurs au sol, augmentant ainsi la durée de vie
de celui-ci. Nous nous concentrons sur une solution de recharge sans fil par radiofréquence (RF), lequel permet notam-
ment de pouvoir charger plusieurs capteurs en parallèle par un même drone. Cependant, il existe une forte déperdition
d’énergie lorsque plusieurs drones chargent le même capteur simultanément. Nous optimisons donc le plan de vol de la
flotte de drones afin de minimiser le temps nécessaire pour charger tous les capteurs, tout en évitant cette déperdition.

Mots-clefs : Drones, Optimisation, Recharge énergétique, Internet des objets.

1 Introduction
The application of sensor networks has grown significantly in the fields of industry, military, home auto-

mation, ecology, precision agriculture, disaster management, etc. The majority of the aforementioned use
cases require the implementation of sensor systems over long periods of time. Optimising the lifetime of
each sensor is a key element in the deployment of these wireless systems and thus, we are interested in
recharging the sensors’ batteries to improve the lifetime of the systems and their usability.

We focus on a wireless Radio Frequency (RF) power harvesting solution. The unquestionable advantages
of these solutions are flexibility, adaptability, and automation. This allows us to use mobile vehicles, such
as Unmanned Aerial Vehicles (UAVs), to visit the sensors regularly to recharge them and collect their data.
The objective is to define automatic and autonomous flight plans for this fleet of drones to power up energy-
constrained sensor nodes.

In this work, we present a short version of the outcomes presented in [DDSBC22]. We propose a two-step
optimization framework to determine the UAVs’ trajectories to quickly replenish the sensor energy. Given
the sensors’ positions, their energy requirements, and the number of available UAVs, we first derive a Mixed
Integer Linear Program (MILP) to optimise both the placement of the UAVs and the associated hovering
times in order to minimise the overall charging time (excluding moving flight time). Then, in the second
step, we propose a greedy algorithm to schedule the flight plans while avoiding conflicts that can lead to
less efficient loads. We take advantage of the fact that one UAV can charge multiple sensors simultaneously
but we avoid the efficiency loss that happens when multiple UAVs charge the same sensor at the same
time [AKK16].The output is a set of UAV conflict-free trajectories fulfilling the positions computed by the
MILP while minimizing the overall duration for recharging the whole system.

2 Two Step Framework
Our problem consists of determining the trajectories of a set U of UAVs, such that, by following these

trajectories, all the ground sensors in a given set S will have their batteries charged. These trajectories are
defined for each drone as (i) a list of positions the drone must visit and (ii) the corresponding amount of
seconds the drone must remain in each position. The objective is to charge the sensors as fast as possible.
To solve this multi-constraints problem, the first step of our framework consists of a mixed integer linear



Igor Dias da Silva et Yann Busnel et Christelle Caillouet

program (MILP) that determines which positions the drones must visit and how long the drones should
hover in these positions. The second step is to determine the order in which the positions should be visited,
and avoid conflicts such as multiple drones visiting the same position at the same time.

2.1 Mixed integer linear program

The information of which positions the drones visit and for how long is modeled respectively by the
binary variables yu

p and the real variables tu
p. These variables are defined for all available drones u ∈U and

for all possible positions p ∈ P, where P is the discrete set of positions the drones can visit in a 3D space
and U is the set of available drones. The binary variables yu

p describe whether a drone u should be deployed
at position p or not. yu

p is 1 if the drone u is deployed at position p ∈ P, 0 otherwise. And the real variables
tu
p describe for how many seconds the drone u remains in position p.

Our main goal is to charge the ground sensors, s ∈ S, where each sensor s has an amount of energy re-
quired Es. Therefore, the main constraint of the MILP ensures that the drones’ positioning and the hovering
times described by the variables yu

p and tu
p must allow the sensors to harvest enough energy to replenish

their batteries. We use the energy model described in [ZRGD16] to compute how much energy a sensor can
harvest from a drone u in a position p during tu

p seconds. Then, we ensure that the total energy received by
each sensor s ∈ S is equal or greater than the sensor’s energy requirement Es.

Hence, a feasible solution to the MILP describes in which positions the UAVs must be deployed and for
how long, while ensuring that all sensors are charged. The MILP’s objective function is to minimize both
the time the UAVs spend in the air charging the sensors and the number of positions they visit.

2.2 Wait-Time Scheduling Algorithm

The output of the previous linear model is a set of tasks, where a task k is given by a drone uk, a position
pk, a duration tk in seconds and a set of sensors Sk that are charged during the task’s execution. Each
drone can have multiple tasks to complete, and our goal here is to determine the order in which the drones
complete their respective tasks without conflicts.

There is a conflict between two tasks k and k∗ if (i) they use the same drone (uk = uk∗), (ii) they use the
same position (pk = pk∗), or (iii) they charge some common sensors at the same time (Sk ∩ Sk∗ ̸= /0) (to
avoid the multi-charger constraints [AKK16]). A task is said to be conflict-free at a given moment if it has
no conflict with any of the tasks being currently executed. We ignore possible collisions while the drones
move.

Even if we ignored the possible conflicts between tasks, determining the fastest order of tasks for each
drone is the same as solving the Traveling Salesman Problem (TSP) that is known to be NP-hard. We
therefore present a greedy algorithm that assign the tasks in order to minimise the total time the drones have
to wait hovering to avoid conflicts. More precisely, the algorithm runs as follows :

1. We order the tasks in increasing order of the wait-time (how long the UAV must wait until it can
execute the task). If the task k is conflict-free, then the wait-time corresponds to the time of flight
(ToF), that is, the necessary time for drone uk to reach pk from its previous position. However, if the
task k is in conflict with some task k∗ being currently executed, then its wait-time is max(ToF, fk∗),
where fk∗ is equal to the remaining duration before k∗ ending. In some cases, when k∗ uses the same
drone as k, the wait-time is fk∗ +ToF , as the drone uk will only be able to move when k∗ is finished.

2. Once the tasks are ordered, if a task is conflict-free, we assign it immediately. This changes the wait-
time of the remaining tasks, and they must be reordered. If a task k is not conflict-free and uk is not
executing any task, then uk moves to pk in advance so that it can execute k as soon as it becomes
conflict-free.

An illustration of the wait-time algorithm is presented in Figure 1. The linear program has computed 12
tasks assigned to 4 drones to cover 40 sensors. The lines represent the time a drone spends flying, and the
rectangles represent the period of execution of the tasks when the drones send RF signals to recharge the
sensor batteries.

All drones start at the same location corresponding to a base station located at position (0,0) in our
experiments but our model can take into considerations multiple starting positions. The tasks are ordered
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Tasks by drone
d0 [0,1,2]
d1 [3,4,5]
d2 [6,7,8]
d3 [9,10,11]

Sensors by task
0 [35,9,18,34,26,17,12,19]
1 [5,13,23.1,25,28,39,22,37,27.29,321
2 [13,23,3,25,28,8,19,36,14]
3 [35,0,18,34,26,17,15,12]
4 [10,0,38,15,4]
5 [35,9,18,21,26,17,2]
6 [5,11,13,23,1,3,25,28,27.8,19,36,32,14]
7 [10,0,38,34,15,12]
8 [35,9,18,21,26,17,2]
9 [11,31,16,30,7,6,33,24,14]

10 [5,13,23,1,25,28,39,22,27,29,36,32]
11 [20,16,30]

FIGURE 1 – Example using the wait-time algorithm to schedule the tasks in a 5x5 grid with 40 sensors and
4 drones.

following the wait-time algorithm. Task 4 has the shortest wait-time (at the beginning the wait-time is
simply the time of flight), so it is the first one to be assigned. Now we must reorder the remaining tasks
because their wait-time may have changed if they have a conflict with Task 4. For example, the wait-time
for Task 7 is no longer its time of flight, but f4, the time remaining for Task 4 to finish. Tasks 0 and 11 once
again have the same wait-time because they are both conflict-free and have the same time of flight. Once
Task 0 is assigned, we reorder the tasks and, as the wait-time for Task 11 remains the same and the smaller
one, it is then assigned to drone 3.

The tasks are reordered once more, and, Task 8 is the one with the smallest wait-time since it only needs
to wait for Task 0 to finish. Task 2 also needs to wait for Task 0 to finish, but since they use the same
drone, it can only travel after Task 0 finishes, so its wait-time is larger than Task 8. The execution of the
algorithm continues consecutively, until all tasks have been assigned and the chronogram shown in Figure 1
is obtained.

3 Results

We consider a 2-dimensional area of size 50m× 50m where sensors are randomly placed. We divide
the area as a 5×5 grid with 5 possible altitudes, totaling 125 possible positions to deploy the drones. The
number of sensors varies between 5 and 50 while the number of drones available to charge them varies from
3 to 10. Each sensor requires 150 mJ of energy.

The first step of our framework is the MILP determining the optimal positions that should be visited by
the drones and for how long to recharge the battery of the sensors using RF-signals. As one can observe in
Figure 2a, the more sensors to charge, the more positions the drones must visit. On the other hand, the more
drones we have, the fewer positions they need to visit on average.

Figure 2b depicts the average time a drone spends in the same position. With a higher density of sensors,
each drone can charge more sensors at once, but it requires a higher altitude to provide more coverage, which
increases the distance between the UAV and the sensors, and consequently increases the time required in
each position to charge the sensors.

Given the results of the MILP, we then apply the wait-time algorithm presented in Section 2.2 to schedule
the trajectory (e.g. order of tasks) for the drones in order to minimise the total time of the energy replenish-
ment problem (including time of flight and waiting time due to conflict avoidance). We also proposed other
scheduling algorithms such as the optimal, the TSP, the Time of Flight (ToF) and the Shortest/Longest Tasks
First algorithms.

In the optimal algorithm we consider all possible permutations of tasks and, for each permutation, we
assign the tasks accordingly. From all the possible schedulings we select the optimal one with the minimum
total recharge time. As for the TSP algorithm, given the set of visited positions for each drone provided by
the MILP, we compute the optimal TSP solution by brute-force. This solution gives us a lower bound for
the global minimum time to recharge the sensors. However, this solution is not conflict-free, meaning that
the computed trajectories can allow multiple simultaneous UAV chargers for a sensor, therefore limiting
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FIGURE 2 – MILP and scheduling results

the efficiency of the harvesting system. The ToF algorithm is similar to the wait-time algorithm except that
the tasks are ordered only by their time of flight in increasing order. Finally, in the Shortest/Longest Tasks
First algorithms, we order the tasks by their duration in ascending/decreasing order. For each task, if it is
conflict-free, we assign it immediately. Otherwise, the drone moves at the last moment to start charging as
soon as possible (i.e. when it becomes conflict-free).

Figure 2c compares the performance of the different algorithms. The figure illustrates how long it takes
to charge all sensors by scheduling the tasks with each algorithm. As expected, we see that no greedy
algorithm can charge the sensors as fast as the TSP because the TSP solution allows conflicts. But then, the
wait-time algorithm outperforms all the other naive greedy approaches.

Out of the 2800 scenarios, we manage to solve the Optimal algorithm on 870 instances with less than 10
tasks because taking into consideration all possible tasks permutations consumes a lot of time. In these 870
scenarios, the optimal algorithm charges all sensors in 803.92 seconds on average. The wait-time algorithm
takes on average only 3.28 % longer to charge the sensors than the optimal scheduling. The ToF algorithm
takes 7.87 % longer on average, while the Longest Tasks First and Shortest Tasks First take 4.80% and
5.39% longer, respectively. In fact, we observed that all algorithms can reach the optimal solution in some
instances. The wait-time algorithm reaches the optimal solution in 63.9 % of the instances. The ToF algo-
rithm reaches the optimal solution in 59.54% of the instances, while the Longest Tasks First and Shortest
Tasks First reach the optimal solution in 51.14 % and 47.01 % of the cases.

4 Conclusion
We presented a two-step framework for optimal energy replenishment of a set of sensors, using UAV

as RF sources. We first solve a mixed integer linear program to determine the drones’ placement in a 3D
space such that it minimizes the time required to charge all ground sensors. Then, we proposed a wait-time
heuristic to compute the order in which the drones should visit the deployment positions while avoiding
conflicts and taking advantage of the parallelism between tasks. Avoiding these conflicts, such as multiple
drones charging the same sensors simultaneously, ensure a higher energy harvesting efficiency. In the future,
we would like to take the number of conflicts between tasks as a metric to be minimized in the MILP itself,
to push for more parallelism which would allow us to benefit even more from a higher number of drones.
The full work is presented in [DDSBC22].
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