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APPROXIMATION OF DETERMINISTIC MEAN FIELD GAMES UNDER

POLYNOMIAL GROWTH CONDITIONS ON THE DATA

JUSTINA GIANATTI1, FRANCISCO J. SILVA2, AND AHMAD ZORKOT3

Abstract. We consider a deterministic mean field games problem in which a typical agent solves an
optimal control problem where the dynamics is affine with respect to the control and the cost functional

has a growth which is polynomial with respect to the state variable. In this framework, we construct

a mean field game problem in discrete time and finite state space that approximates equilibria of the
original game. Two numerical examples, solved with the fictitious play method, are presented.
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1. Introduction

The theory of Mean Field Games (MFGs for short) problems has been introduced in [25, 26, 27] and,
independently, in [24] in order to describe the asymptotic behaviour of Nash equilibria of non-cooperative
symmetric differential games with a large number of indistinguishable players, which, individually, have
a minor influence on the game. The reader is referred to [22, 21, 15, 16, 1], and the references therein, for
an overview on MFGs theory including their numerical approximation and applications in crowd motion,
economics, and finance. Equilibria in MFGs are usually described in terms of a system of two equations,
called MFG system; a Hamilton-Jacobi-Bellman equation, describing the optimal cost of a typical player,
and a Fokker-Planck equation, describing the evolution of the players.

This work deals with the numerical approximation of deterministic mean field games problems, i.e.
when the underlying differential game is deterministic. In this setting, a relaxed, also called Lagrangian,
formulation of equilibria involving a fixed point problem on the space of probability measures over the
trajectories of the players, has been introduced in [6, 12, 10]. We assume that the controlled dynamics
of a typical player in the MFG has the form

γ̇(t) = A(t, γ(t)) +B(t, γ(t))α(t) for a.e. t ∈]0, T [. (1.1)

Here, T > 0 denotes the time horizon, γ and α, which take values in Rd and in Rr, respectively, denote the
state and the control of a typical player, and A : [0, T ]×Rd → Rd andB : [0, T ]→ Rd×r are given functions.
When the typical player controls its velocity, i.e. γ̇(t) = α(t) and MFG equilibria are characterized in
terms of the MFG system, the reference [9] proposes a semi-discrete scheme which is shown to converge
towards a solution to the MFG system. An implementable version of this approximation, including also
a discretization of the space variable, has been introduced in [13] and it is shown to converge when the
space dimension is equal to one. In the same framework, in [14] the authors propose a Lagrange-Galerkin
scheme for the continuity equation appearing in the MFG system and they show the convergence of a
fully-discrete approximation in general state dimensions. By adopting the relaxed formulation, in [23]
an approximation of the MFG problem written in terms of a discrete time and finite state MFG [20],
hereafter called finite MFG, is shown to converge in general dimensions. Moreover, under a monotonicity
assumption on the interaction cost terms (see [27, Section 2.3]), an adaptation of the fictitious play
method (see [8, 28]) is shown to converge and hence allows to rigorously approximate a solution to the
finite MFG. Finally, in the work [19] the authors approximate MFGs by finite MFGs when the dynamics
of the typical player takes the general form (1.1). The convergence is established in general dimensions,
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the key point being a careful discretization of the underlying optimal control problem. In particular,
the results in [19] cover the approximation of MFGs where the typical player controls its acceleration
(see [2, 11]).

In all the references above, the assumptions on the dependence of the cost functional with respect to
the state do not allow a polynomial growth. In particular, the cost cannot depend quadratically on the
state, which is a typical case considered in the applications. Our aim in this work, which is complementary
with [19], is to cover this case. The main difficulty coming from a polynomial growth of the cost is that
the value function of a typical player is not globally Lipschitz with respect to the state. In particular,
the optimal feedback law is only locally bounded and hence a careful analysis is needed in order to
construct a scheme for the value function with good stability properties. Under our assumptions, which
include the independence of B(t, γ(t)) on γ(t), the optimal feedback controls have a linear growth with
respect to the state. This property still allows us to construct an approximation of the MFG problem
where the time marginals of the distributions of the states of the agents are supported on a compact
set which is independent of the discretization steps. Next, the analysis in [19] applies and yields the
convergence of the scheme as the discretization parameters vanish. As in [23, 19], we adopt in this work
the relaxed formulation of the MFG equilibrium, the main point being that, in the convergence study of
our approximations, compactness properties for the solutions to the scheme are easier to establish.

The remainder of this article is organized as follows. Section 2 fixes the notations and the assumptions
in this work. It also recalls the notion of Lagrangian MFG equilibrium and provides an existence and
uniqueness result. Section 3 is central in this work as it builds the scheme used to approximate the value
function of a typical player. We explain the relation between this scheme and a standard semi-Lagrangian
scheme (see [18]) and we provide a convergence result. In Section 4, we describe the finite MFG that
approximates the continuous one and we present existence, uniqueness, and convergence results. Finally,
in Section 5 we consider two numerical examples where the cost functional depends polynomially on the
state variable and the interactions terms are monotone, which allows us to approximate the solutions to
the finite MFG problems by using the fictitious play method.

Acknowledgements. F. J. Silva and A. Zorkot where partially supported by l’Agence Nationale
de la Recherche (ANR), project ANR-22-CE40-0010, and by KAUST through the subaward agreement
ORA-2021-CRG10-4674.6. For the purpose of open access, the authors have applied a CC-BY public
copyright licence to any Author Accepted Manuscript (AAM) version arising from this submission.

2. Preliminaries

In what follows, | · | will denote the infinity norm in Rd, and, given R > 0, B∞(0, R) (respectively
B∞(0, R)) will denote the corresponding open (respectively closed) ball centered at 0 and of radius R.
We denote by P(Rd) the set of probability measures over Rd and, for µ ∈ P(Rd), we set supp(µ) for its
support. We define P1(Rd) as the subset of P(Rd) consisting on probability measures with finite first
order moment, i.e.

P1(Rd) =

{
µ ∈ P(Rd)

∣∣∣ ∫
Rd

|x|dµ(x) <∞
}
, (2.1)

which is endowed with the Wasserstein distance

d1(µ1, µ2) = inf
µ∈Π(µ0,µ1)

∫
Rd×Rd

|x− y|dµ(x, y) for all µ1, µ2 ∈ P1(Rd), (2.2)

where Π(µ0, µ1) denotes the subset of P1(Rd×Rd) of probability measures with first and second marginals
given by µ1 and µ2, respectively. Given ν ∈ P(Rd) and a Borel function Ψ : Rd → Rq (q ∈ N), the push-
forward measure Ψ]ν, defined on the σ-algebra of Borel sets B(Rq), is defined by

Ψ]ν(A) = ν(Ψ−1(A)) for all A ∈ B(Rq), (2.3)

Let T > 0. The mean field game problem that we will deal with in this article is defined in terms of
` : [0, T ] × Rr × Rd × P1(Rd) → R, g : Rd × P1(Rd) → Rd, A : [0, T ] × Rr → Rd, B : [0, T ] → Rd×r, and
m∗0 ∈ P1(Rd). We will consider the following assumptions:
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(H1) The functions ` and g are continuous. Moreover, there exist p ∈]1,∞[, C`,1, C`,2, C`,3, C`,4 ∈]0,∞[
and Cg,1, Cg,2, Cg,3 ∈]0,∞[ such that, for every (t, a, x, µ) ∈ [0, T ]× Rr × Rd × P1(Rd),

C`,1|a|p − C`,2 ≤ `(t, a, x, µ) ≤ C`,3(1 + |a|p + |x|p), (2.4)

−Cg,1 ≤ g(x, µ) ≤ Cg,2(1 + |x|p), (2.5)

|`(t, a, x, µ)− `(t, a, y, µ)| ≤ C`,4
(
1 + |x|p−1 + |y|p−1 + |a|p−1)|x− y| for all y ∈ Rd, (2.6)

|g(x, µ)− g(y, µ)| ≤ Cg,3(1 + |x|p−1 + |y|p−1)|x− y| for all y ∈ Rd. (2.7)

(H2) The following hold:
(i) The functions A and B are continuous.

(ii) There exists LA ∈]0,∞[ such that, for every (t, x) ∈ [0, T ]× Rd,

|A(t, x)−A(t, y)| ≤ LA|x− y| for all y ∈ Rd.

(iii) We have r ≤ d and there exists {i1, . . . , ir} ⊂ {1, . . . , d} such that, for all t ∈ [0, T ], the rows
i1, . . . , ir of B(t) are linearly independent.

(H3) There exists C∗ ∈]0,∞[ such that supp(m∗0) ⊂ B∞(0, C∗).
(H4) The following hold:

(i) The function ` can be written as

`(t, a, x, µ) = `0(t, a, x) + f(t, x, µ) for all t ∈ [0, T ], a ∈ Rr, x ∈ Rd, µ ∈ P1(Rd),

where `0 : [0, T ]×Rr×Rd → R satisfies (H1) and f : [0, T ]×Rd×P1(Rd)→ R is continuous,
bounded, and there exists Lf > 0 such that, for all (t, µ) ∈ [0, T ]× P1(Rd),

|f(t, x, µ)− f(t, y, µ)| ≤ Lf |x− y| for all x, y ∈ Rd.

(ii) The functions f(t, ·, ·), for all t ∈ [0, T ], and g are monotone, i.e. for Ψ = f(t, ·, ·), g it holds
that ∫

Rd

(
Φ(x, µ1)− Φ(x, µ2)

)
d(µ1 − µ2)(x) ≥ 0 for all µ1, µ2 ∈ P1(Rd). (2.8)

Assumptions (H1), (H2), and (H3) ensure that both the MFG problem defined in Problem 2.1 below,
and its approximation, introduced in Section 4, admit at least one solution. Assumption (H4) plays an
important role in the uniqueness of the equilibrium for both the MFG and its approximation and also in
the proof of the convergence of a numerical method to solve the finite MFG problem (see [19]).

Note that (H2) implies that

|A(t, x)| ≤ CA(1 + |x|) for all (t, x) ∈ [0, T ]× Rd, (2.9)

where CA = max{maxt∈[0,T ] |A(t, 0)|, LA}. In what follows, setting |B(t)| for the matrix norm of B(t)
induced by the infinity-norm in Rr, we set CB = supt∈[0,T ] |B(t)|, which is finite by (H2)(i).

Let us describe the MFG problem considered in this article. Given x ∈ Rd and m ∈ C
(
[0, T ];P1(Rd)

)
,

a typical player positioned at x at time t = 0 solves an optimal control problem of the form

inf

∫ T

0

` (s, α(s), γ(s),m(s)) ds+ g(γ(T ),m(T ))

s.t. γ̇(s) = A(s, γ(s)) +B(s)α(s) for a.e. s ∈]0, T [,

γ(0) = x,

γ ∈W 1,p([0, T ];Rd), α ∈ Lp([0, T ];Rr).

(OCx,m)

Note that assumption (H1) states that the cost functional in (OCx,m) has a polynomial growth with
respect to the state and control variables. In particular, our conditions on the cost functional are more
general than those in [19]. On the other hand, regarding the dynamics in (OCx,m), in [19] the matrix B
can also depend on the state variable.

Let us endow Γ := C
(
[0, T ];Rd

)
with the supremum norm ‖ · ‖∞ and, for all t ∈ [0, T ], define

et : Γ→ Rd by et(γ) = γ(t) for all γ ∈ Γ. Let us also set

Pm∗0 (Γ) = {ξ ∈ P1 (Γ) | e0]ξ = m∗0}.
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The notion of equilibria that we consider is the Lagrangian MFG equilibria, defined as a solution to the
following problem:

Problem 2.1. Find ξ∗ ∈ Pm∗0 (Γ) such that [0, T ] 3 t 7→ et]ξ
∗ ∈ P1(Rd) belongs to C

(
[0, T ];P1(Rd)

)
and for ξ∗-a.e. γ∗ ∈ Γ there exists α∗ ∈ Lp([0, T ];Rr) such that (γ∗, α∗) solves (OCx,m) with x = γ∗(0)
and m(t) = et]ξ

∗ for all t ∈ [0, T ].

We have the following result.

Theorem 2.1. Assume that (H1), (H2), and (H3) hold. Then Problem 2.1 admits at least one solution.
Moreover, if (H4) holds and for every m ∈ C([0, T ];P1(Rd)) and m∗0-a.e. x ∈ Rd problem (OCx,m)
admits a unique solution, then the MFG equilibrium is unique.

Proof. The existence of at least one solution follows from Theorem 4.2 below while the uniqueness result
can be shown by arguing exactly as in the proof of [19, Theorem 2.2]. �

3. The value function of a typical player and its approximation

In this section we fix p ∈]1,∞[. For every (t, x) ∈ [0, T ] × Rd and α ∈ Lp([t, T ];Rr), note that (H2)
implies that

γ̇(s) = A(s, γ(s)) +B(s)α(s) for a.e. s ∈]t, T [, γ(t) = x. (3.1)

admits a unique solution γt,x,α ∈W 1,p([0, T ];Rd). Given m ∈ C([0, T ];P1(Rd)), set

J t,x[m](α) =

∫ T

t

`(s, α(s), γt,x,α(s),m(s))ds+ g(γ(T ),m(T )) for all α ∈ Lp([t, T ];Rr).

The value function v[m] : [0, T ]× Rd → R is defined as

v[m](t, x) = inf
{
J t,x[m](α) |α ∈ Lp([t, T ];Rr)

}
for all (t, x) ∈ [0, T ]× Rd. (3.2)

Proposition 3.1. Assume that (H1) and (H2) hold, let m ∈ C([0, T ];P1(Rd)), and let (t, x) ∈ [0, T ]×
Rd. Then there exists α∗ ∈ Lp

(
[t, T ];Rd

)
such that v[m](t, x) = J t,x[m](α∗). Moreover, the following

hold:

(i) The exists CLip > 0, independent of (t, x,m), such that∣∣v[m](t, x)− v[m](t, y)
∣∣ ≤ CLip(1 + |x|p−1 + |y|p−1)|x− y| for all t ∈ [0, T ], y ∈ Rd. (3.3)

(ii) There exists Cb > 0, independent of (t, x,m), such that

|α∗(s)| ≤ Cb

(
1 + |γt,x,α

∗
(s)|
)

for a.e. s ∈ [t, T ]. (3.4)

Proof. Let (αn)n∈N ⊂ Lp([t, T ];Rr) be a minimizing sequence for the right-hand side of (3.2). Esti-
mate (2.4) and (2.5) imply that (αn)n∈N is bounded in Lp([t, T ];Rr) and hence, up to some subsequence, it
converges weakly to some α∗ ∈ Lp([t, T ];Rr). It follows from (3.1) and (H2)(i)-(ii) that γt,x,αn converges
uniformly in [t, T ] to γt,x,α

∗
and hence, by [17, Theorem 3.23], we deduce that v[m](t, x) = J t,x[m](α∗).

Denoting by α0 the null control and γ0 = γt,x,α0 , estimate (2.9) and Grönwall’s lemma imply that
sups∈[t,T ] |γ0(s)| ≤ eCAT (|x|+CAT ). In turn, it follows from (2.4), (2.5), (2.9), and Grönwall’s inequality
that

C`,1

∫ T

t

|α∗(s)|pds ≤ TC`,2 + J t,x[m](α0) + Cg,1

≤
(
C`,2 + C`,3(1 + epCAT (|x|+ CAT )p)

)
T + Cg,1 + Cg,2

(
1 + epCAT (|x|+ CAT )p

)
(3.5)

and hence there exists C̃ > 0, independent of (t, x,m), such that

‖α∗‖Lp ≤ C̃(1 + |x|). (3.6)

In particular, it holds that

v[m](t, x) = inf
{
J t,x[m](α) |α ∈ Lp([t, T ];Rr), ‖α‖Lp ≤ C̃(1 + |x|)

}
for all (t, x) ∈ [0, T ]× Rd. (3.7)

Let us now show assertions (i)-(ii).



APPROXIMATION OF DETERMINISTIC MEAN FIELD GAMES WITH CONTROL-AFFINE DYNAMICS 5

(i): Let y ∈ Rd and set γ∗ = γt,x,α
∗

and γ̃ = γt,y,α
∗
. By standard arguments, it follows from (H2)(i)-

(ii) and Grönwall’s lemma that

sup
s∈[t,T ]

|γ∗(s)| ≤ C(1+|x|), sup
s∈[t,T ]

|γ̃(s)| ≤ C(1+|x|+|y|), and sup
s∈[t,T ]

|γ̃∗(s)−γ∗(s)| ≤ C|x−y|, (3.8)

for some C > 0 independent of (t, x, y,m). In turn, by (2.5), (2.6), Hölder’s inequality, and (3.6), we have

v[m](t, y)− v[m](t, x) ≤
∫ T

t

(
`(s, α∗(s), γ̃(s),m(s))− `(s, α∗(s), γ∗(s),m(s))

)
ds

+ g(γ̃(T ),m(T ))− g(γ∗(T ),m(T ))

≤ C`,4
∫ T

t

(
1 + |γ̃(s)|p−1 + |γ∗(s)|p−1 + |α∗(s)|p−1

)
|γ̃(s)− γ∗(s)|ds

+ Cg,3
(
1 + |γ̃(T )|p−1 + |γ∗(T )|p−1

)
|γ̃(T )− γ∗(T )| (3.9)

≤ CLip(1 + |x|p−1 + |y|p−1)|x− y|, (3.10)

for some CLip > 0 independent of (t, x, y,m). The inequality for v[m](t, x) − v[m](t, y) follows by ex-
changing the roles of x and y in the previous computation.

(ii): Let s ∈ [t, T [, h ∈ [0, T − s[, and set y∗ = γ∗(s). Since v[m] satisfies the dynamic programming
inequality (see e.g. [4])

v[m](s, γ∗(s)) ≤
∫ s+h

s

`(r, γs,y
∗,α(r), α(r),m(r))dr + v[m]

(
s+ h, γs,y

∗,α(s+ h)
)
, (3.11)

for all α ∈ Lp([t, T ];Rd), with equality for α = α∗, by taking α = α0 (the null control) and α = α∗, the
equality v[m](s, y∗) = Js,y

∗
[m](α∗|[s,T ]), and estimate (2.4) yield

C`,1

∫ s+h

s

|α∗(r)|pdr ≤ C`,2h+ C`,3

∫ s+h

s

(
1 + |γs,y

∗,α0(r)|p
)
dr

+ v[m](s+ h, γs,y
∗,α0(s+ h))− v[m](s+ h, γ∗(s+ h)). (3.12)

In what follows, C > 0 will denote a constant independent of (t, x, y,m) which may change from line to
line. Since (H2)(i), (2.9), and Grönwall’s lemma imply the existence of C > 0 such that

|γ∗(s+ h)− γs,y
∗,α0(s+ h)| ≤ C

∫ s+h

s

|α∗(r)|dr, (3.13)

we deduce from (3.12), (3.8), (i), and Young’s inequality the existence of C > 0 such that∫ s+h

s

|α∗(r)|pdr ≤ Ch(1 + |y∗|p) (3.14)

and, hence, (3.4) follows from the Lebesgue differentiation theorem (see e.g. [7]). �

Remark 3.1. Proposition 3.1(ii) implies that, for any (t, x) ∈ [0, T ]×Rd, v[m](t, x) can be rewritten as

v[m](t, x) = inf
{
J t,x[m](α) |α ∈ L∞([t, T ];Rr), |α(s)| ≤ Cb(1 + |γt,x,α(s)|) for a.e. s ∈ [t, T ]

}
. (3.15)

We consider now the approximation of the value function v[m] given by (3.2). Let Nt ∈ N, Ns ∈ N,
with Ns ≥ Nt, and set ∆t = 1/Nt, ∆x = 1/Nx, I = {0, . . . , Nt}, I∗ = I \ {Nt}, and G = {i∆x | i ∈ Zd}.
Given a regular mesh T with vertices in G, let (ψx)x∈G be a Q1 basis, i.e. for every x ∈ G, ψx is
a nonnegative polynomial of partial degree less than or equal to 1 on each element of T , ψx(x) = 1,
ψx(y) = 0 for all y ∈ G with y 6= x, and

∑
x∈G ψx(z) = 1 for all z ∈ Rd. Given ϕ : G → R, define its

interpolant I[ϕ] : Rd → R by

I[ϕ](x) =
∑
y∈G

ψy(x)ϕ(y) for all x ∈ Rd.
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In view of Remark 3.1, a standard semi-Lagrangian scheme (see e.g. [18]) to approximate v[m] is given
by

Vk(x) = min
a∈B∞(0,Cb(1+|x|))

{
∆t`(tk, a, x,m(tk)) + I[Vk+1](Φ(k, x, a))

}
for all k ∈ I∗, x ∈ G,

VNt(x) = g(x,m(T )) for all x ∈ G,

(3.16)

where
Φ(k, x, a) = x+ ∆t(A(tk, x) +B(tk)a) for all k ∈ I∗, x ∈ G, a ∈ Rr. (3.17)

We now introduce a variation of the previous scheme which exploits the particular structure of the
dynamics in (3.1). First, notice that, by (H2)(iii), without loss of generality we can write

A(t, x) =

(
A1(t, x)
A2(t, x)

)
and B(t) =

(
B1(t)
B2(t)

)
for all (t, x) ∈ [0, T ]× Rd, (3.18)

where A1 : [0, T ] × Rd → Rr, A2 : [0, T ] × Rd → Rd−r, B1 : [0, T ] → Rr×r is such that B1(t) is invertible
for all t ∈ [0, T ], and B2 : [0, T ] → R(d−r)×r. We partition the coordinates of x ∈ Rd accordingly by
writing x = (x1, x2), where x1 ∈ Rr and x2 ∈ Rd−r denote the first r and the last d− r components of x,
respectively. We also write G = Gr × Gd−r, where

Gr = {i∆x | i ∈ Zr} and Gd−r =
{
i∆x | i ∈ Zd−r

}
,

and we suppose that the basis (ψx)x∈G can be decomposed as the tensorial product of two Q1 basis
(ηx1)x1∈Gr and (βx2)x2∈Gd−r

defined on regular meshes with vertices in Gr and Gd−r, respectively. More
precisely, we suppose that for every x = (x1, x2) ∈ G we have

ψx(y) = ηx1
(y1)βx2

(y2) for all y = (y1, y2) ∈ Rd. (3.19)

In what follows, we assume the existence of CI > 0, independent of ∆x, such that

supp(βx2
) ⊆ {y2 ∈ Rd−r | |y2 − x2| ≤ CI∆x} for all x2 ∈ Gd−r. (3.20)

Let k ∈ I∗ and x ∈ Rd. In the modified version of (3.16), we will only consider controls a ∈ B∞(0, Cb(1+
|x|)) such that, writing Φ(k, x, a) = (Φ1(k, x, a),Φ2(k, x, a)), we have Φ1(k, x, a) ∈ Gr. Notice that, for
every y1 ∈ Gr, it holds that

y1 = Φ1(k, x, a) ⇔ a = B1(tk)−1

[
y1 − x1

∆t
−A1(tk, x)

]
. (3.21)

Thus, setting
α(k, x, y1) := B1(tk)−1

[
y1−x1

∆t −A1(tk, x)
]
∈ Rr,

y2(k, x, y1) := x2 + ∆t [A2(tk, x) +B2(tk)α(k, x, y1)] ∈ Rd−r,
(3.22)

it is natural to define the sets

S1
k+1(x) =

{
y1 ∈ Gr

∣∣ |α(k, x, y1)| ≤ Cb(1 + |x|)
}
,

S2
k+1(x, y1) =

{
y2 ∈ Gd−r

∣∣ y2(k, x, y1) ∈ suppβy2

}
for y1 ∈ S1

k+1(x),

Sk+1(x) =
{

(y1, y2) ∈ G
∣∣ y1 ∈ S1

k+1(x), y2 ∈ S2
k+1(x, y1)

}
.

(3.23)

Arguing as in [19, Lemma 3.2], one checks that, if ∆x/∆t is small enough, then Sk+1(x) 6= ∅. Starting
from an initial grid S0 = G ∩B∞(0, C∗), we can then construct the family of time-depending grids

Sk+1 =
⋃
x∈Sk

Sk+1(x) for all k ∈ I∗ (3.24)

with the property that (y1, y2) ∈ Sk+1 if and only if there exists x ∈ Sk and a ∈ Rr such that |a| ≤
Cb(1 + |x|), y1 = Φ1(k, x, a), and Φ2(k, x, a) ∈ suppβy2

.
On the other hand, notice that, for every ϕ : G → R, y1 ∈ Gr, and y2 ∈ Rd−r, we have

I[ϕ](y1, y2) =
∑

z1∈Gr,z2∈Gd−r

ψz(y1, y2)ϕ(z1, z2)

=
∑

z1∈Gr

ηz1(y1)
∑

z2∈Gd−r

βz2(y2)ϕ(z1, z2) =
∑

z2∈Gd−r

βz2(y2)ϕ(y1, z2). (3.25)
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Altogether, (3.16)-(3.25) suggest to consider the following variation of (3.16):

Vk(x) = min
y1∈S1

k+1(x)

{
∆t`(tk, α(k, x, y1), x,m(tk)) + IS2

k+1(x,y1)[Vk+1(y1, ·)](y2(k, x, y1))

}
for all k ∈ I∗, x ∈ Sk,VNt

(x) = g(x,m(T )) for all x ∈ SNt
,

(3.26)
where, for F ⊆ Gd−r and ϕ : F → R, we have set

IF [ϕ](y2) =
∑

x2∈F
βx2

(y2)ϕ(x2) for all y2 ∈ Rd−r.

Notice that (3.26) can be rewritten as

Vk(x) = min
p∈P(S1

k+1(x))

{ ∑
y1∈S1

k+1(x)

p(y1)
[
∆t`(tk, α(k, x, y1), x,m(tk))

+IS2
k+1(x,y1)[Vk+1(y1, ·)]

(
y2(k, x, y1)

)]}
for all k ∈ I∗, x ∈ Sk,

VNt
(x) = g(x,m(T )) for all x ∈ SNt

.
(3.27)

The following result, which shows that the family of time dependent grids (Sk)k∈I remains uniformly
bounded with respect to the discretization parameters, will play a key role in what follows.

Lemma 3.1. There exists a nonempty compact set K ⊂ Rd, independent of ∆t and ∆x as long as
∆x/∆t ≤ 1, such that

Sk ⊂ K for all k ∈ I∗.

Proof. Consider the following family of compact sets: set K0 = B∞(0, C∗) and

Kk+1 := Kk +

(
∆t

[(
CA + CBCb

)(
1 + sup

x∈Kk

|x|
)]

+ CI∆x

)
B∞(0, 1) for all k ∈ I∗, (3.28)

where we recall that CA is given in (2.9), CB = supt∈[0,T ] |B(t)|, and CI satisfies (3.20). It follows

from (3.23) and (3.24) that Sk ⊂ Kk for all k ∈ I and hence it suffices to show that the family (Kk)k∈I
is uniformly bounded. Let k ∈ I and set ck = supx∈Kk

|x|. Equation (3.28) yields

ck+1 ≤ ck +
(
∆t
[(
CA + CBCb

)(
1 + ck

)
+ CI

∆x
∆t

])
≤

(
1 + ∆t(CA + CBCb)

)
ck + ∆t(CA + CBCb + CI),

which, by the discrete Grönwall’s lemma, implies that the set {ck | k ∈ I} is uniformly bounded. The
result follows. �

Proposition 3.2. Assume that (H1) and (H2) hold. Consider three sequences (Nn
t , N

n
s ) ⊂ N2 and

(mn)n∈N ⊂ C([0, T ];P1(Rd)) such that, as n→∞, Nn
t →∞, Nn

s →∞, Nn
t /N

n
s → 0, and mn → m∗ for

some m∗ ∈ C([0, T ];P1(Rd)). Set In = {0, . . . , Nn
t } and, associated with the parameters (Nn

t , N
n
s ) and

mn, define Snk as in (3.23) and denote by Vn the solution to (3.26). Then it holds that

sup
{
|Vnk (x)− v[m∗](tnk , x)|

∣∣ k ∈ In, x ∈ Snk } −→
n→∞

0, (3.29)

where v[m∗] is defined in (3.2).

Sketch of the proof. Let m ∈ C([0, T ];P1(Rd)) and consider, as an intermediate step, the following semi-
discrete scheme to approximate v[m]:

vd(k, x) = min
a∈Rr

{∆t`(tk, a, x,m(tk)) + vd[m] (k + 1, x+ ∆t[A(tk, x) +B(tk)a])}

for all k ∈ I∗, x ∈ Rd,
vd(Nt, x) = g(x,m(T )) for all x ∈ Rd.

(3.30)

Setting vnd for the solution to the previous scheme associated with mn, using the framework developed
in [5], and arguing as in [19, Proposition 3.1] one shows that for every compact set K ⊂ Rd it holds that

sup
(k,x)∈In×K

|vnd (k, x)− v[m∗](tnk , x)| −→
n→∞

0. (3.31)
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On the other hand, by adapting to the discrete case the proof of Proposition 3.1, one checks that the
minimization on the right-hand-side of (3.30) can be restricted the set {a ∈ Rd | |a| ≤ Cb(1 + |x|)}. Using
this fact, Lemma 3.1, and arguing as in the proof of [19, Lemma 5.3 (ii)] we obtain that

max {|vnd (k, x)− Vnk (x)| | k ∈ In, x ∈ Snk } → 0 as n→∞, (3.32)

and hence (3.29) follows from (3.31) and (3.32). �

4. The finite mean field game approximation

In this section, given Nt ∈ N, Ns ∈ N, with Ns ≥ Nt, we approximate Problem 2.1 by a fixed point
problem of a map br, called best response mapping defined on the space M =

∏
k∈I P(Sk) of discrete

time marginals. The resulting approximation will take the form of a discrete time and finite state MFG
(see [20]). In order to construct the map br, let us first introduce some useful definitions. For every
k ∈ I, we identify p ∈ P(Sk) with the probability measure

∑
x∈Sk p({x})δx ∈ P1(Rd) and, given a finite

set F , the (nonpositive) entropy function EF : P(F )→ R is defined by

EF (p) =
∑
x∈F

p(x) log(p(x)) for all p ∈ P(F ),

with the convention that p(x) = p({x}) and 0 log(0) = 0. Given M ∈ M and ε > 0, let us consider the
following variation of (3.27):

VMk (x) = min
p∈P(S1

k+1(x))

{ ∑
y1∈S1

k+1(x)

p(y1)

[
∆t`(tk, α(k, x, y1), x,Mk)

+IS2
k+1(x,y1)[V

M
k+1(y1, ·)](y2(k, x, y1))

]
+ εES1

k+1(x)(p)

}
for all k ∈ I∗, x ∈ Sk,

VMNt
(x) = g(x,MNt

) for all x ∈ SNt
.

(4.1)
Notice that the incorporation of the entropy term in the scheme above implies that, for every k ∈ I∗

and x ∈ Sk, the optimization problem defining VMk (x) admits a unique solution pMk (x, ·) which satisfies
pMk (x, y1) > 0 for all y1 ∈ S1

k+1(x). Given y ∈ Sk+1, we also set

PMk (x, y) :=

{
pMk (x, y1)βy2

(y2(k, x, y1)) if y ∈ Sk+1(x),

0 if y ∈ Sk+1 \ Sk+1(x).
(4.2)

Letting E(x) =
{
y ∈ Rd | |x− y| ≤ ∆x/2

}
for all x ∈ G, we define br(M) as the solution to

M̂k+1(y) =
∑
x∈Sk

PMk (x, y)M̂k(x) for all k ∈ I∗, y ∈ Sk+1,

M̂0(x) = m∗0(E(x)) for all x ∈ S0.

(4.3)

The discretization of Problem 2.1 that we consider in this work reads as follows.

Problem 4.1. Find M ∈M such that M = br(M).

We have the following result.

Theorem 4.1. Assume that (H1), (H2), and (H3) hold. Then Problem 4.1 admits at least one solution.
In addition, if (H4) holds then the solution is unique.

Proof. Since, for every M ∈ M, k ∈ I∗, and x ∈ Sk we have that pMk (x, ·) is unique, it is easy to check
that br is continuous. In turn, the existence of a fixed point of br follows from Brouwer’s fixed point
theorem. The uniqueness result follows from the arguments in the proof of [19, Proposition 4.2], the key

point being that, if M̂ = br(M), then M̂k(x) > 0 for all k ∈ I and x ∈ Sk. �

Now, let us discuss the convergence of solutions to (4.1) towards a solution to Problem 2.1 as the
discretization parameters ∆t, ∆x, and ε tend to zero. Let (Nn

t )n∈N ⊂ N, (Nn
s )n∈N ⊂ N, (εn)n∈N ⊂]0,∞[,

and, for every n ∈ N, set ∆tn = T/Nn
t , ∆xn = 1/Nn

s , In = {0, . . . , Nn
t }, In,∗ := In \ {Nn

t }, tnk =
k∆tn (k ∈ In), and Gn = {i∆xn | i ∈ Zd}. We assume that Nn

s ≥ Nn
t . For k ∈ In,∗ and x ∈ Gn, we

denote by S1,n
k+1(x), S2,n

k+1(x, y1) (y1 ∈ S1,n
k+1(x)), and Snk+1(x) the sets defined in (3.23) associated with
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∆tn and ∆xn. For k ∈ In, the set Snk is defined as in (3.24). Denote by Γn the set of continuous functions
γ : [0, T ] → Rd such that for each k ∈ In, γ(tnk ) ∈ Snk and, for every k ∈ In,∗, the restriction of γ to
the interval [tnk , t

n
k+1] is affine. Finally, let Mn ∈ M be a solution to Problem 4.1 associated with the

previous parameters and, recalling (4.2), let us define ξn ∈ P(Γ) as

ξn =
∑
γ∈Γn

Mn
0 (γ(0))Pn(γ)δγ ∈ P(Γ), where Pn(γ) :=

Nn
t −1∏
k=0

PM
n

k (γ(tnk ), γ(tnk+1)). (4.4)

We extend Mn to the element in C([0, T ];P1(Rd)) defined by

[0, T ] 3 t 7→Mn(t) := et]ξ
n ∈ P1(Rd). (4.5)

Lemma 4.1. Assume that (H1), (H2), and (H3) are in force. Then the following hold:

(i) The family ξn has at least one accumulation point in P(Γ).
(ii) The family Mn has at least one accumulation point in C([0, T ];P1(Rd)).

Proof. (i): Since supp(ξn) ⊂ Γn, it follows from Lemma 3.1 that there exists C∞ > 0 such that

‖γ‖∞ ≤ C∞ for all γ ∈ supp(ξn). (4.6)

Moreover, if γ ∈ supp(ξn), then γ is absolutely continuous with

γ̇(t) =
γ(tnk+1)− γ(tnk )

∆tn
for all k ∈ In,∗, t ∈]tnk , t

n
k+1[. (4.7)

Writing γ(tnk ) = (γ1(tnk ), γ2(tnk )) ∈ Rr × Rd−r, the definition of S1,n
k+1(γ(tnk )) and (4.6) yield

γ1(tnk+1) = γ1(tnk ) + ∆tn
[
A1(tnk , γ(tnk )) +B1(tnk )α(k, γ(tnk ), γ1(tnk+1))

]
,

with
∣∣α(k, γ(tnk ), γ1(tnk+1))

∣∣ ≤ Cb(1 + C∞). Thus, using (2.9) we deduce that∣∣∣∣γ1(tnk+1)− γ1(tnk )

∆tn

∣∣∣∣ ≤ (CA + CBCb) (1 + C∞) ,

and, by (3.22) and (3.23), we obtain∣∣∣∣γ2(tnk+1)− γ2(tnk )

∆tn

∣∣∣∣ ≤ CI ∆xn
∆tn

+ (CA + CBCb) (1 + C∞) . (4.8)

Since ∆xn ≤ ∆tn, we deduce from (4.7) that there exists D∞ > 0 such that

‖γ̇‖∞ ≤ D∞ for all γ ∈ supp(ξn)

and hence supp(ξn) ⊂ {γ ∈ W 1,∞([0, T ];Rd) | ‖γ‖∞ ≤ C∞, ‖γ̇‖∞ ≤ D∞}, which is a compact subset of
(Γ, ‖ · ‖∞). Thus, the result follows from Prokhorov’s theorem (see e.g. [3, Theorem 5.1.3]).

(ii): By (4.6), for every t ∈ [0, T ] and n ∈ N, we have

supp (Mn(t)) ⊂ B∞(0, C∞),

and, by (2.2) and (4.8),

d1 (Mn(s),Mn(t)) ≤ D∞|s− t| for all s, t ∈ [0, T ], n ∈ N.

Since {µ ∈ P1(Rd) | supp(µ) ⊂ B∞(0, C∞)} is compact in P1(Rd) (see e.g. [3, Proposition 7.1.5]), the
result follows from the Arzelà-Ascoli theorem. �

Using the previous compactness result and arguing as in the proof of [19, Theorem 5.1], one obtains
the following convergence result.

Theorem 4.2. Assume that (H1), (H2), and (H3) hold and that, as n → ∞, Nn
t → ∞, Nn

s → ∞,
Nn
t /N

n
s → 0, and εn = o (1/(Nn

t log(Nn
s ))). Then there exists a solution ξ∗ to Problem 2.1 such that, up

to some subsequence, ξn → ξ∗ narrowly in P(Γ) and Mn → m∗ := e(·)]ξ
∗ in C([0, T ];P1(Rd)).

In addition, if (H4) holds and for every m ∈ C([0, T ];P1(Rd)) and m∗0-a.e. x ∈ Rd problem (OCx,m)
admits a unique solution, then the whole sequence (ξn)n∈N converges narrowly towards the unique solution
to Problem 2.1.
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5. Numerical results

In this section we implement our numerical method in two examples. For computational simplicity, we
consider here one-dimensional problems, i.e. d = 1, and dynamics (3.1) having the form γ̇ = α. We refer
the reader to [19, Example 2] for the implementation of the scheme in a two-dimensional example, where
a typical agent controls its acceleration and the cost functional satisfies (H1). We focus our attention
on cost functionals satisfying (H1) and (H4), with `0(t, a, x) having polynomial growth on (a, x), and f
and g begin given by

f(t, x, µ) = θ1(ρσ ? µ)(x) for all (t, x, µ) ∈ [0, T ]× R× P1(R),

g(x, µ) = g0(x) + θ2(ρσ ? µ)(x) for all (x, µ) ∈ R× P1(R),
(5.1)

where θ1, θ2 ∈ [0,∞[, σ ∈]0,∞[, g0 : R→ R satisfies (H1), and

ρσ(x) :=
1√
2πσ

e−x
2/2σ2

for all x ∈ R. (5.2)

Notice that the convolution terms in f and g, which model the aversion of a typical player to crowded
areas, satisfy the monotonicity condition in (H4)(ii).

Let (∆t,∆x) ∈]0,∞[2 and ε > 0. Under the assumptions above, the finite MFG Problem 4.1 associated
with these parameters admits a unique solution M∗ ∈M. In order to approximate M∗, we consider the
fictitious play sequence

M
0 ∈M arbitrary, (∀n ≥ 1) Mn+1 = br(M

n
), M

n+1
=

n

n+ 1
M
n

+
1

n+ 1
Mn+1,

which, by [23, Theorem 3.2], satisfies (Mn,M
n
) −→
n→∞

(M∗,M∗). In the tests below, setting

|br(M
n
)−M

n|L1 :=
1

Nt + 1

Nt∑
k=0

∑
x∈Sk

|br(M
n
)k(x)−M

n

k (x)|

and given a tolerance parameter δ > 0, we implement the following fictitious play algorithm:

Data: M0 ∈M, δ > 0
e← δ + 1

n← 1

M
1 ← M0

while e > δ do

Mn+1 = br(M
n
)

e← |Mn+1 −M
n|L1

M
n+1

= n
n+1M

n
+ 1

n+1M
n+1

n← n+ 1
end

return M
n−1

In both examples below, we consider a time horizon T = 1, σ = 0.07, and

∆t = 1/30, ∆x = 1/150, and ε = 0.002.

Given an initial distribution m∗0 ∈ P1(R), we initialize the fictitious play algorithm by defining M0 ∈M
with constant time marginals given by M0

k = M0, for k = 1, . . . , 30, where M0 is obtained by discretizing
the initial distribution m∗0 according to (4.3). As it was mentioned above, the algorithm converges for
an arbitrary initial condition M0 ∈ M. However, since the term M0/n is involved in the computation of

(M
n
,Mn+1) the convergence of the algorithm could be slow. To accelerate the method we can update the

initial condition when some tolerance is achieved, i.e. we use as the initial distribution the approximated

equilibrium M
n−1

obtained for a given tolerance parameter δ > 0, and then we run the algorithm for
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a smaller tolerance parameter. In our tests, we update the initial condition twice, taking the tolerance
parameters δ1 = 0.1 and δ2 = 0.01. We stop the algorithm when the tolerance δ3 = 0.001 is reached.

5.1. Example 1. We consider an absolutely continuous initial distribution m∗0 ∈ P1(R) given by

dm∗0(x) = I[−1,1](x)
e−x

2/0.04∫ 1

−1
e−y2/0.04dy

dx for all x ∈ R,

where I[−1,1](x) = 1 if x ∈ [−1, 1] and I[−1,1](x) = 0, otherwise. Given ζ1, ζ2 ∈ R, we define

`(t, a, x, µ) =
|a|4

4
+ ζ1|x− 0.4|2|x+ 0.7|2 + θ1f(x, µ) and g(x, µ) = ζ2|x− 0.4|2|x+ 0.7|2 + θ2f(x, µ).

Notice that the functions ` and g satisfy (H1) for p = 4. We run our algorithm for different values of
(ζ1, ζ2, θ1, θ2). In Figure 1 we show the returned distributions for the smallest tolerance parameter δ3. In
Table 1, we provide the number of iterations needed for attaining the tolerances δ1, δ2, and δ3.

(ζ1, ζ2, θ1, θ2) δ1 = 0.1 δ2 = 0.01 δ3 = 0.001

(1, 1, 1, 1) 14 10 9
(1, 1, 1, 5) 10 12 9
(5, 1, 1, 1) 18 11 9
(1, 0, 1, 0) 8 7 6

Table 1. Number of iterations to obtain the desired accuracies.

(a) (ζ1, ζ2, θ1, θ2) = (1, 1, 1, 1). (b) (ζ1, ζ2, θ1, θ2) = (1, 1, 1, 5).

(c) (ζ1, ζ2, θ1, θ2) = (5, 1, 1, 1). (d) (ζ1, ζ2, θ1, θ2) = (1, 0, 1, 0).

Figure 1. Approximate equilibria for the tests in Example 1

In this example, the initial distribution is concentrated around x = 0. The cost functional penalizes
the distance to the points −0.7 and 0.4, large values of the speed, and incites a typical player to avoid
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crowded regions. Since 0.4 is closer to zero, we see that most of the agents tend to concentrate around
that point and, as the congestion term becomes more important, we see how the agents tend to separate
from each other.

5.2. Example 2. The initial distribution m∗0 ∈ P1(R) is given by

dm∗0(x) = I[−1,1](x)
e−(x−0.2)2/0.01 + e−(x+0.2)2/0.01∫ 1

−1
(e−(y−0.2)2/0.01 + e−(y+0.2)2/0.01)dy

dx for all x ∈ R.

Given ζ1, ζ2 ∈ R, we define

`(t, a, x, µ) =
|a|4

4
+ ζ1|x− 0.6|2|x+ 0.2|2 + θ1f(x, µ) and g(x, µ) = ζ2|x− 0.6|2|x+ 0.2|2 + θ2f(x, µ).

We consider the same parameters as those in Example 1 and we display in Figure 2 the distributions
obtained for the smallest tolerance δ3 = 0.001. In Table 2, we show the number of iterations required to
reach the tolerances δ1, δ2, and δ3.

(ζ1, ζ2, θ1, θ2) δ1 = 0.1 δ2 = 0.01 δ3 = 0.001

(1, 1, 1, 1) 7 6 6
(1, 1, 1, 5) 10 12 9
(5, 1, 1, 1) 12 10 9
(1, 0, 1, 0) 4 6 6

Table 2. Number of iterations to obtain the desired accuracies.

(a) (ζ1, ζ2, θ1, θ2) = (1, 1, 1, 1). (b) (ζ1, ζ2, θ1, θ2) = (1, 1, 1, 5).

(c) (ζ1, ζ2, θ1, θ2) = (5, 1, 1, 1). (d) (ζ1, ζ2, θ1, θ2) = (1, 0, 1, 0).

Figure 2. Approximate equilibria for the tests in Example 2
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In this example, we start with a distribution concentrated around the points −0.2 and 0.2. The cost
functional penalizes the distance to the points −0.2 and 0.6. Although these two points are symmetric
with respect to 0.2, we see that, in order to avoid crowded regions, more agents concentrated around 0.2
at t = 0 tend to go towards 0.6 instead of −0.2. Once again we observe the impact of the congestion
terms in the final distributions of the agents.

For a better understanding of the fictitious play method, we end this section by displaying in Figure 3
the first iterations of the algorithm when (ζ1, ζ2, θ1, θ2) = (1, 1, 1, 5). The final distribution in this case is
shown in the top right corner of Figure 2.

(a) M
1

= M0. (b) br(M
1
).

(c) M
2
. (d) br(M

2
).

(e) M
3
. (f) br(M

3
).

(g) M
4
. (h) br(M

4
).

Figure 3. First iterations of the algorithm for (ζ1, ζ2, θ1, θ2) = (1, 1, 1, 5).
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