
HAL Id: hal-04087080
https://hal.science/hal-04087080

Preprint submitted on 2 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Proof assistants for undergraduate mathematics
education: elements of an a priori analysis

Evmorfia-Iro Bartzia, Emmanuel Beffara, Antoine Meyer, Julien Narboux

To cite this version:
Evmorfia-Iro Bartzia, Emmanuel Beffara, Antoine Meyer, Julien Narboux. Proof assistants for un-
dergraduate mathematics education: elements of an a priori analysis. 2023. �hal-04087080�

https://hal.science/hal-04087080
https://hal.archives-ouvertes.fr

Proof assistants for undergraduate mathematics education:
elements of an a priori analysis

Evmorfia-Iro Bartziaa and Emmanuel Beffarab and Antoine Meyerc and Julien
Narbouxd

aIMAG, Université de Montpellier, CNRS, Montpellier, France;
bUniv. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France;
cLIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454, Marne-la-Vallée, France;
dUMR 7357 CNRS, University of Strasbourg, France

ARTICLE HISTORY
Compiled April 29, 2023

ABSTRACT
This paper presents an a priori analysis of the use of six different interactive proof
assistants for education, based on the resolution of a typical undergraduate exercise
on abstract functions. It proposes to analyze these tools according to three main
categories of aspects: language and interaction mode, automation and user assis-
tance, and proof structure and visualization. We argue that this analysis may help
formulate and clarify further research questions on the possible impact of such tools
on the development of reasoning and proving skills.

KEYWORDS
Teaching; logic; reasoning; proof; university; computer assisted theorem proving

1. Introduction

The terms proof assistant (PA), or interactive theorem prover (ITP), refer to a category
of software tools designed to let a user interactively construct and verify the correctness
of formal mathematical proofs. In general a PA does not directly enable the user to
discover a proof, but rather helps them formalize an existing proof or proof sketch,
which can then be checked automatically to ensure its correctness. In particular, one
should not confuse PAs with automated theorem provers, whose function is to attempt
to automatically discover proofs1.

Some PAs are designed to work in a specific domain such as geometry, logic or the
analysis of computer programs, while others are general-purpose. Additionally, PAs
used in the classroom can be sorted roughly in two categories: systems built by the
community of educators, and systems built by mathematicians, logicians or computer
scientists specializing in mathematics formalization and interactive theorem proving.
Systems developed by educators are sometimes referred to as ‘tutors’, because they
integrate features specifically designed to provide hints and learning-oriented feedback.

CONTACT Email: evmorfia-iro.bartzia@umontpellier.fr; emmanuel.beffara@univ-grenoble-alpes.fr; antoine

.meyer@univ-eiffel.fr; narboux@unistra.fr
1Of course, both types of tools may indeed be related. For instance, some PAs may use automated provers in

specific proof steps.

PAs have been used for years in education in a variety of contexts, for instance to
teach mathematical logic or elements of theoretical computer science. The well-know
Software Foundations electronic book series (Pierce et al., 2022, and following volumes)
presents a wide range of ‘one hundred percent formalized and machine-checked’ texts
related to software reliability, written using Coq, which are designed for ‘advanced
undergraduates to PhD students and researchers’ and are used in several computer
science departments worldwide. There are many other such examples. Increasingly, PAs
are also used by teachers who are not researchers in the field of interactive theorem
proving, to teach classical mathematical topics or even proof and proving in general. In
the context of French academia, a joint publication by university teachers (Kerjean et
al., 2022) provides assorted recent examples of PA usage in first year courses.

In this context, it is not surprising that investigating the use of technology in gen-
eral (and PAs in particular) for the teaching and learning of proof and proving has
become an active topic in mathematics education research. For instance, the 19th ICMI
Study distinguished six major themes relative to this topic (Hanna & de Villiers, 2012).
Knobelsdorf, Frede, Böhne, and Kreitz (2017) present a preliminary study, based on
socio-cultural cognition theories, investigating whether ‘an interactive theorem prover
like Coq can be used to help undergraduate computer science students learn mathemat-
ical proving within the field of theory of computation’. Symmetrically, the interactive
theorem proving community has shown interest in the use of PAs for teaching since at
least 2007 and the Workshop on Proof Assistants and Types in Education (Geuvers &
Courtieu, 2007), followed since 2011 by the ThEDU workshop series2.

Recently, another volume featuring contributions from researchers of both commu-
nities focused specifically on the use of software tools for computer-assisted proof in
education (Hanna, Reid, & de Villiers, 2019). In the introductory chapter, it is stated
that the book’s goal is ‘to begin a dialogue between mathematics educators and re-
searchers actively developing automatic theorem provers and related tools’. The chapter
ends with the following statement:

We already have some sense that proof assistants greatly diminish the need for verification
and justification, but we know almost nothing of their potential contribution to other
roles of proof, such as explanation, communication, discovery, and systematization, or
how they now may become more relevant as pedagogical motivation for the learning of
proof in the classroom. (Hanna et al., 2019, p. 9)

implying that much research is still required in order to gain further insight on the
convergence of both fields. Hanna and Yan (2022a) and Thoma and Iannone (2022)
made recent contributions in this direction in the case of the Lean PA.

In this paper, we focus on the potential use of PAs for teaching proof and proving
itself, at the transition between high school and university. The mathematical content we
address may therefore be more involved than the elementary and abstract proofs studied
in a beginners’ logic course (for instance basic set theory or propositional logic), but less
than in a general-purpose undergraduate analysis or algebra course. Also note that in
this work we choose to consider PAs as possible teaching tools and not as professional
tools. A PA’s underlying proof theory, the structure and size of its mathematical libraries
and its efficiency for professional research are therefore not directly relevant. We will
instead focus on the way each tool may or may not enable the development of skills
related to proof and proving. To summarize, the questions which motivate this work
can be phrased as follows:

2https://www.uc.pt/en/congressos/thedu, retrieved on 20/07/2022.

2

• What are the possible effects of using PAs on students’ learning of proof?
• What characteristics of PAs are likely to strengthen or hinder these effects?

In order to start addressing these questions, we designed an analysis grid to capture
characteristics of PAs likely to have an impact on teaching and learning, and used it
to analyze the resolution of a single typical exercise about functions in a selection of
six different PAs (Coq, Lean, Isabelle, Edukera, D∀∃duction and Lurch). Our aim is to
help distinguish aspects of PAs which may facilitate or hinder student’s learning of the
knowledge and skills involved in proof and proving, as a preliminary to future research.

The article is structured as follows. In Section 2 we present the theoretical back-
ground used for this study. In Sections 3 and 4 we present our case study, detailing our
methodology, the choice of an exercise and the PAs we decided to analyze. In Section 5
we present several analysis criteria (or aspects) which we apply to our data. Finally sec-
tion 6 presents several hypotheses, based on our analysis, regarding the possible impacts
of each PA in relation to its various aspects.

2. Theoretical context

This work draws on several theoretical references, some related to the integration of tools
in mathematical education, others to the specific area of proof and proving. We briefly
summarize a few selected references which helped us formulate our research questions
and clarify our observations regarding the possible impact of PAs for teaching.

2.1. Instrumental approach

We rely on concepts from the instrumental approach (Rabardel, 1995). Loosely quoting
Trouche (2005), this approach makes a distinction between artifacts, ‘bare’ technical
(material or conceptual) objects yet unrelated to a subject, tools, technical objects which
are integrated (or may become integrated) by a subject in their work, and instruments,
mixed entities consisting of a tool and its specific usage modes as constructed by a given
subject. Instrumental genesis is the process by which subjects transform artifacts into
instruments. This complex process depends both on the background and knowledge of
the subject and on the constraints and characteristics of the artifact.

Understanding instrumental genesis requires to distinguish two dual components,
instrumentalization, which refers to the way a subject appropriates and parameterizes
the artifact, and instrumentation which refers to the emergence and evolution of schemes
relevant to the realization of a task or type of tasks. Among other aspects, it also requires
to articulate social schemes, which are built into an artifact and adopted by a subject’s
sociocultural environment, and individual schemes. To summarize, the instrumental
approach investigates the conditions under which artifacts may become instruments, in
particular in the context of mathematics education, possibly with the help of teachers.

We will refer to the above concepts in this work to guide our reflection on the char-
acteristics of PAs which may or may not have an impact on the teaching and learning
of proof. In particular, since several PAs were originally designed for professional use,
they likely carry strong social schemes in their respective user communities.

3

2.2. Teaching and learning proof

In order to distinguish proof from other forms of argumentation such as heuristic or
explanation, Duval and Egret (1993) present two distinctions regarding mathematical
statements: first, that of content vs. status, and second that of truth value vs. epistemic
value. A statement’s status does not depend on its content but only on the context
in which it is introduced. It can be either theoretical (definition, theorem, conjecture,
etc.) or operational (premise, conclusion, etc.), the latter depending on the former. The
epistemic value of a statement can be either semantic, expressing an intuitive degree of
trust based on its content (from ‘absurd’ to ‘obvious’), or theoretical (‘necessary’, when
it appears as the conclusion of an inference step). Each epistemic value is also associated
with a truth value (‘true’, ‘false’ or ‘indeterminate’), depending on a discipline’s culture
and conventions. However, mathematics should only associate the value ‘true’ to the
epistemic value ‘necessary’ (and not for instance to ‘obvious’).

According to the authors, explicitly taking into account each statement’s status and
considering its theoretical rather than semantic epistemic values is one of the main
differences between proof and argumentation, and a possible source of difficulty for
learners. PAs take this distinction to an extreme by only allowing strict inference steps,
and in some cases explicitly displaying the status of each statement at every step,
without ever mentioning semantic epistemic values or truth values.

Hanna (2000) also reflects on the role of proof in mathematics education and its
relationship with other activities such as heuristics, exploration and visualization. She
argues that ‘even in the eyes of practising mathematicians rigorous proof, however it
is defined, is secondary in importance to understanding’ (p. 6). She then lists several
possible functions of proof, stating that ‘every student just entering the world of math-
ematics [must] start with the fundamental functions: verification and explanation’ (our
emphasis), adding that ‘[i]n the educational domain, then, it is only natural to view
proof first and foremost as explanation, and in consequence to value most highly those
proofs which best help to explain’ (p. 8).

It could be argued that PAs may tend to go against this point of view, sometimes
placing verification foremost at the cost of explanatory power. We will have to question
this effect of PAs when analyzing their use for teaching. Among the other functions
of proof cited by Hanna, professional PAs such as Isabelle, Coq or Lean, also heavily
promote that of systematization: ‘the organisation of various results into a deductive
system of axioms, major concepts and theorems’ and communication: ‘the transmission
of mathematical knowledge’ (Hanna, 2000, p. 8), as witnessed by the extremely large
collections of formally proved mathematical facts collaboratively developed by their
communities of users.

In J. Selden and Selden (2010), the authors distinguish several aspects of the structure
of proofs and relate them to students’ abilities (or lack thereof). First, they discuss the
hierarchical structure of a proof, which decomposes a proof into nested sub-proofs and
sub-constructions. They also propose the notion of construction path, which is a kind
of a posteriori linear reconstruction of an idealized proof. Finally, they distinguish the
formal-rhetorical parts of a proof from its problem-centered parts.

According to the authors, the formal-rhetorical parts of a proof, which imply formally
manipulating statements, analyzing (and acting on) their logical structure, ‘folding’
or ‘unfolding’ definitions, mostly involve behavioural knowledge (which they relate to
Vergnaud’s concepts-in-action and theorems-in-action): knowing what to do and when,
in particular knowing how to construct the next step in a proof. This mainly has to do
with invoking action schemes and does not always require deep understanding or insight.

4

On the contrary, problem-centered parts may require conceptual knowledge (knowing
why), mathematical intuition and the mental availability of mathematical resources
(for instance knowing which external theorem to invoke and when). These two types
of proof elements are closely connected, for instance when ‘constructing the formal-
rhetorical part of a proof can be very helpful in revealing the “real problem” to be
solved in the rest of the proof’ (J. Selden & Selden, 2010, p. 344).

Finally, we mention a survey by A. Selden (2012) on the transition from secondary
to tertiary education. Section 2 reports on students’ documented proving difficulties,
related for instance to mathematical language in reasoning: confusion with everyday
language, difficulties with the order, scope and proper use of quantifiers, or with the
formulation of negation. Other difficulties concern the nature and structure of proofs
themselves, for instance the erroneous perception that proofs are always linear and ‘top-
down’, or the distinction between inductive and deductive proofs. The section mentions
several other important proof-related skills, such as understanding and manipulating
definitions or other formal statements (in particular the one to be proved), reusing
previous definitions and theorems, knowing how to read and check proofs. We will keep
these in mind when analyzing possible impacts of PAs, especially in light of the elements
from J. Selden and Selden (2010), as some of these tasks may be facilitated or altered.

3. Methodology

As stated above, our main contribution is an analysis grid for PAs used in education.
We simultaneously developed and instantiated this grid by analyzing the resolution of
a single exercise in six different PAs. We detail our research methodology below.

Our first task was to select PAs with varied characteristics, not to determine the
overall best for teaching but to provide an a priori analysis of their potential impact.
Hence, we chose to include tools which may not be stable nor well maintained but present
interesting specificities. We retained three well-established professional PAs (Coq, Lean
and Isabelle) and three more or less experimental PAs designed for teaching (Lurch,
Edukera and D∀∃duction). Our selection is presented in Section 4.2.

Concurrently, we chose a single exercise to analyze in all PAs. Since we wished to
focus on the process of proof and not on other mathematical difficulties it had to concern
elementary objects, without being so trivial that its proof would appear obvious to
students. Finally, we preferred an ordinary exercise likely to appear in an undergraduate
introductory course. We opted for a simple exercise on the direct and inverse image of
abstract functions, which we detail in Section 4.1.

We then constructed a first draft of a solution in all six tools. Based on initial obser-
vations and on relevant literature (summarized in the previous section), we designed an
analysis grid consisting of three categories of aspects. To this end, we kept in mind gen-
eral concepts related to instrumental genesis as well as proof-specific criteria (regarding
proof structure, the status and epistemic value of statements, the possible functions of
proof and the known required skills or difficulties of students). We also attempted to
capture the main differences between each of the selected tools.

Once our grid was established, we carefully revisited each resolution of the exercise in
full detail, with one experimenter playing the role of an idealized student3 and building

3For practical reasons we did not ask actual students to perform the resolution: identifying voluntaries profi-
cient enough with each tool seemed very time-consuming, and did not appear relevant for such a preliminary
study. This may however constitute a possible next step for our research.

5

the proof interactively in each tool4, and one or several observers recording proof steps,
tool interactions, potential errors etc. We collectively analyzed the obtained resolution
traces with respect to this grid. Details of the analysis grid as well as observations
regarding the aspects of each PA are presented in Section 5.

Finally, by analyzing the data collected on this example, we summarized a few possible
impacts of PAs on the learning of proof, trying to associate relevant aspects from the
grid. We present these observations in Section 6, with the intent to help formulate useful
questions and hypotheses for future research.

4. Case study: solving an exercise in six PAs

4.1. Exercise selection

As previously mentioned, we chose to analyze a typical exercise about sets, relations
and functions, as commonly found in introductory courses about reasoning and proof.
It is available (or easy to formalize) in all studied PAs, with minor variants.

Exercise 4.1. Given three sets 𝐴, 𝐵 and 𝐶 such that 𝐶 ⊆ 𝐴 and a function 𝑓 ∶ 𝐴 → 𝐵,
show that:

(1) 𝐶 ⊆ 𝑓−1(𝑓(𝐶)).
(2) If 𝑓 is injective then 𝑓−1(𝑓(𝐶)) ⊆ 𝐶.
(3) If 𝑓 is injective then 𝑓−1(𝑓(𝐶)) = 𝐶.

We chose this exercise because it involves relatively simple mathematical concepts,
little calculation, and the required proofs are of manageable size, yet not trivial for most
undergraduate students. They rely on the concepts of set, set inclusion and set equality,
function, direct and inverse image of a set by a function, and injectivity. Understand-
ing these concepts’ definitions and using them adequately requires a certain proficiency
with universal and existential quantification, logical implication, and possibly set com-
prehension.

Note that in this exercise the same notation is used to refer to distinct notions and
its intended meaning has to be inferred from the context. For instance, 𝑓(𝐶) can only
be distinguished from 𝑓(𝑥) by knowing that 𝐶 denotes a subset of 𝐴 and 𝑥 an element
of 𝐴. Similarly, if 𝐷 is a subset of 𝐵, 𝑓−1(𝐷) is always well-defined and denotes the
inverse image of 𝐷 by 𝑓, whereas the function 𝑓−1 (the inverse of 𝑓) may not exist at all
in general. In our experience, such overloaded notation is a common source of difficulty
for first-year students in exercises such as this. In a way, this kind of mathematical
notation requires students to be aware of the type of objects denoted by each symbol.

Figure 1 provides a possible ‘hand-written’ proof of each of the exercise’s statements
for future reference. Its style is voluntarily more detailed and formal than what is
expected from students, in part to make it easier to compare to PA-produced proofs.

Given the nature of the statements, most other proofs are likely to use essentially
the same arguments, although experienced mathematicians may formulate or organize
them in different ways. For instance for question 1, instead of finishing the proof by
writing ‘By definition of set inclusion, we have 𝐶 ⊆ 𝑓−1(𝑓(𝐶))’, some writers may
prefer to start it with : ‘By definition of set inclusion it is sufficient to prove that
∀𝑥, 𝑥 ∈ 𝐶 ⟹ 𝑥 ∈ 𝑓−1(𝑓(𝐶))’, or to omit this step altogether. Additionally, it should
be noted that in this text many proof elements, such as definitions, remain implicit.

4For lack of space, details of the resolution in each PA were moved to Appendix A.

6

(1) Let 𝑥 ∈ 𝐶.
By definition of 𝑓(𝐶), we have 𝑓(𝑥) ∈ 𝑓(𝐶).
By definition of 𝑓−1(𝑓(𝐶)), we have 𝑥 ∈ 𝑓−1(𝑓(𝐶)).
Therefore by definition of set inclusion, we have 𝐶 ⊆ 𝑓−1(𝑓(𝐶)).

(2) Assume 𝑓 is injective.
Let 𝑥 ∈ 𝑓−1(𝑓(𝐶)).
By definition of 𝑓−1(𝑓(𝐶)), we have 𝑓(𝑥) ∈ 𝑓(𝐶)
By definition of 𝑓(𝐶), there exists 𝑥′ ∈ 𝐶 such that 𝑓(𝑥′) = 𝑓(𝑥).
By injectivity of 𝑓, we deduce 𝑥′ = 𝑥.
Since 𝑥′ ∈ 𝐶, we also have 𝑥 ∈ 𝐶.
Therefore by definition of set inclusion, we have 𝑓−1(𝑓(𝐶)) ⊆ 𝐶.

(3) Assume 𝑓 is injective.
From (1) we know that 𝐶 ⊆ 𝑓−1(𝑓(𝐶)).
From (2) we know that 𝑓−1(𝑓(𝐶)) ⊆ 𝐶.
Therefore by definition of set equality, 𝑓−1(𝑓(𝐶)) = 𝐶.

Figure 1.: Hand-written proof for exercise 4.1.

Each statement is assumed to hold the operational status of conclusion to a rewriting
or deduction step applied to previous statements (premises for that step). Hypotheses
are sometimes not recalled, especially when they are the very previous statement.

Similarly, the way quantifiers and logical constructs are handled follows more or less
explicit conventions. For instance, the phrase ‘Let 𝑥 ∈ 𝐶’ actually corresponds to two
different ‘actions’: the introduction of an object (𝑥), and of a hypothesis concerning it
(we assume that 𝑥 ∈ 𝐶). The phrase ‘there exists 𝑥′ ∈ 𝐶 such that 𝑓(𝑥′) = 𝑓(𝑥)’ carries
the meaning that such an 𝑥′ exists and introduces a new object also called 𝑥′ for which
this property holds. A more careful phrasing could be: ‘there exists an element in 𝐶
whose image equals 𝑓(𝑥), let us call 𝑥′ one such element’5.

4.2. Proof assistant selection

We now briefly describe the six PAs we chose to analyze in this work. Details of possible
resolutions of exercise 4.1 in each PA are available under Appendix A.

4.2.1. Coq

Coq is a free and open-source PA created in the 1980s in French academia (The Coq
Development Team, 2022). It was used to prove mathematical theorems such as the
Feit-Thompson theorem and the four-colour theorem, and to prove the correctness of
large computer programs such as the CompCert certified compiler (Leroy, 2009). Coq
has also been used for years as a teaching tool in graduate or undergraduate curricula6.

A possible way to construct a proof in Coq consists in writing a sequence of commands
or tactics operating on the current proof state, as one may write a script in a imperative
programming language. A proof state consists in a list of goals, the statements one has

5One may distinguish ‘there exists 𝑥’ as a quantifier (acting as a binder for 𝑥) and ‘[we know that] there exists
some 𝑥 [so we pick one]’ as an element of proof discourse (introducing 𝑥, as ‘let 𝑥’ does). These two statuses
are analogous to the distinction between ‘𝐴 implies 𝐵’ (which states an implication) and ‘𝐴, hence 𝐵’ (which
states a use of modus ponens with the previous implication as premise).

6See https://github.com/coq/coq/wiki/Universities-teaching-Coq.

7

to prove, each with its context. A context is an ordered list of typed variables, some
denoting more or less complex objects, others denoting statements whose status in the
proof is that of hypotheses7. Tactics operate on the state, usually by transforming the
current goal or some of the variables and hypotheses in the current goal’s context. They
range from very simple transformations to elaborate, composite and possibly automated
strategies. A proof is considered complete once all goals are ‘closed’ (usually by matching
them with known axioms or hypotheses), meaning that there is nothing left to prove.

Coq includes an interactive development environment allowing a programmer to nav-
igate through proof scripts and visualize the effect of each tactic on the proof state. In
this work, we mostly used Coq in this ‘imperative’ mode, using elementary tactics rather
than Coq’s more advanced automation features or lower-level syntactic constructs.

4.2.2. Lean

Lean is an open-source project8 initiated by Leonardo de Moura at Microsoft Research in
2013. Its shares a large part of its theoretical foundations with Coq. The language offers
similar proof-writing possibilities, in particular tactics-based imperative proof scripts.
Lean also relies on a very extensive user-maintained library of mathematical definitions,
theorems and tactics called mathlib (The mathlib community, 2020).

Lean has been gaining momentum in the mathematics and computer science edu-
cation community (see for instance Hanna & Yan, 2022a, 2022b; Thoma & Iannone,
2022). It is now used as a teaching tool in several institutions worldwide. Using Lean’s
meta-programming framework, which allows advanced users to write their own tactics,
teachers have been creating their own Lean-derived proof environments, for instance
the Lean-verbose tactics library by Massot9 which we discuss below, or the D∀∃duction
environment created by Le Roux, which we describe in more detail in Section 4.2.6.

As mentioned above, there exist several proof-writing styles in Lean. Lean (together
with mathlib) proposes an LCF-style language based on tactics. Similarly to Coq, it also
allows writing proofs directly as functional programs using a succinct and expressive
syntax. We will instead focus on the ‘declarative’ proofs promoted by Lean-verbose.

Originally, Massot created a set of Lean tactics to be used in the context of a first-year
mathematics and computer-science undergraduate course on logic and proof. The course
alternated exercises on abstract logic and first-term analysis notions and theorems.
Massot justifies using Lean in this course to his students by stating: ‘The most visible
reason for [using Lean in this course] is to check the strict application of logical rules.
But the most important reason is to provide in real-time the current local context and
current goal at each reasoning step.’10

Massot’s Lean tactics (originally in French, later published online under the name
lean-verbose) mimic the typical natural-language phrasings he expects his students to
use when writing a proof on paper. In Massot’s own words: ‘This project provides tactics
for Lean in a very controlled natural language. [...] The goal is not to make Lean code
easier to write, the goal is to make Lean code easier to transfer to a traditional paper
proof.’9 In some sense, Lean-verbose pursues a goal similar to that of the first declarative
PA languages such as Mizar and Isar (cf. Section 5.1.2).

7In fact, there is no fundamental difference in Coq’s underlying theory between objects and statements, but
it may help to think of them that way.

8https://leanprover.github.io/about/
9https://github.com/PatrickMassot/lean-verbose

10https://www.imo.universite-paris-saclay.fr/~pmassot/mdd154/, retrieved 28/06/2022, our translation.

8

4.2.3. Isabelle

Isabelle is a free and open-source PA developed at University of Cambridge and Tech-
nische Universität München (Nipkow et al., 2002). Like Coq, it was used to formalize
several mathematical topics and prove relevant theorems about them, and to show the
correctness of complex computer programs11. For instance, Isabelle was used to prove
the correctness of a general-purpose operating system kernel (Klein et al., 2009).

One of Isabelle’s original aspects is that it is in fact a general deduction framework in
which different logical systems can be implemented. Most current Isabelle developments
are performed using higher-order logic (Isabelle/HOL), but other systems may be used
(Isabelle/FO for first-order logic, Isabelle/ZF for Zermelo-Fraenkel set theory, etc.)12.

Isabelle allows proofs to be written in two different styles, a procedural style using
tactics (similar to the ones used in Coq and Lean), and a declarative style supported by
its Isar language, which consists in writing structured mathematics-like proofs by listing
and connecting statements along with their justifications. In this work, for contrast with
previously studied tools, we focus on the declarative style offered by Isabelle/Isar. Ac-
cording to its reference manual13, Isar stands for Intelligible semi-automated reasoning.
Distancing itself from the tactics-based style, the manual additionally states:

Drawing from both the traditions of informal mathematical proof texts and high-level
programming languages, Isar offers a versatile environment for structured formal proof
documents. Thus properly written Isar proofs become accessible to a broader audience
than unstructured tactic scripts (which typically only provide operational information
for the machine). Writing human-readable proof texts certainly requires some additional
efforts by the writer to achieve a good presentation, both of formal and informal parts of
the text. On the other hand, human-readable formal texts gain some value in their own
right, independently of the mechanic proof-checking process.

4.2.4. Lurch

Lurch is a free and open-source word processor built on the mathematical objects rep-
resentation standard OpenMath14, which can check the steps of a mathematical proof
(Carter & Monks, 2017). Lurch is designed for student use and was experimented for
teaching in 2008 and 2013. To our knowledge, it is no longer maintained. Its user inter-
face is inspired by that of a standard word processor, proof checking being presented
similarly to spell-checking: one can write text freely, then mark some mathematical
expressions as ‘meaningful’ and check their validity. The operational status of each
statement as well as the validity or invalidity of a deduction step are color-coded, and
variable and hypothesis scopes are visualized using scope delimiters.

Lurch’s main feature is the unconstrained mix of formal mathematical statements
with illustrative or explanatory text, complete with text styling and rich layout. This
allows users to write proofs close to ordinary hand-written mathematical text, with the
added benefit of computer-verified validity of deduction steps.

11https://isabelle.in.tum.de/community/Projects
12This also likely has a didactic impact as the system provides two different types of logical quantifiers:
quantifiers belonging to the core Isabelle deduction system or ‘meta-logic’, and quantifiers provided by the
hosted logical system, which may be confusing to students in the process of acquiring these notions.
13https://isabelle.in.tum.de/doc/isar-ref.pdf
14https://openmath.org/about/

9

4.2.5. Edukera

Edukera is a closed-source web-based graphical PA using Coq as internal mathematical
engine (Rognier & Duhamel, 2016). At the time of writing, it is no longer actively
developed. It was specifically designed to help teach proof and proving as well as high
school and undergraduate mathematical content, including algebra and basic analysis.
It is therefore unsuitable for professional or academic use.

Edukera’s originality is to combine a point-and-click interface with a presentation of
the whole proof in a style mimicking human-written text. Even though Coq is used in
the background, it is not visible to the user. The system instead focuses on familiar
mathematical notation, natural language, logic, and the application of deduction rules
and lemmas in the relevant theory. Students therefore do not need to learn an ad-hoc
syntax or to understand Coq’s internal theory in order to be able to solve exercises.
Edukera also includes several tutoring features such as hands-on tutorials, detailed
explanations of certain concepts and occasional historical notes.

Edukera offers a library of a few hundred thematically organized exercises. Teach-
ers using Edukera may compose their own exercise sheets by selecting among existing
exercises, but it cannot be considered an extensible environment. The exercise library
covers elementary topics in formalization, logic, set theory15, calculus and analysis.

4.2.6. D∀∃duction

D∀∃duction16 is a recent free and open-source graphical PA based on Lean and cre-
ated mainly by Frédéric Le Roux. It was designed for teaching, and is under active
development. Similarly to Edukera, it provides a purely point-and-click user interface.

Exercise sheets essentially consist of annotated Lean files defining the required objects
and theorems and listing exercises. Since exercise sheets are open-source (just as the rest
of the software) and follow essentially standard Lean syntax, this tool may be considered
user-extensible, at least for expert users: it is in principle possible for a teacher to design
their own exercises, including their choice of notations, lemmas, axioms or theorems.

D∀∃duction’s originality is to combine Coq and Lean’s tactics-based style (in par-
ticular regarding interaction with proof and visualization of the proof state, clearly
highlighting each object’s theoretical and operational status) with a purely point-and-
click interface similar to that of Edukera. Users may select one or several statements to
operate upon, which may be hypotheses or a goal, and perform one of several available
actions: introduction or elimination of a logical connector, application of a certain proof
strategy (reasoning by cases, reductio ad absurdum…), creation of objects or intermediate
goals, unfolding of a definition or application of a provided theorem.

D∀∃duction does not attempt to build a full proof text similar to what a human
could write, but offers various interactive proof visualization features, such as a proof
tree view and a summary of the proof outline, which can be opened to the side and are
updated dynamically as the proof progresses. Finally, the tool proposes a few settings
regarding the automation of certain deduction steps, such as the automatic introduction
of quantifiers or implications, or the implicit use of definitions.

15Our Exercise 4.1 features in the ‘Functions’ chapter of the ‘Sets’ collection, numbers 4 and 24.
16https://github.com/dEAduction/dEAduction, retrieved 15/09/2022.

10

Category Criteria

Language and interaction mode

Type of user input
Imperative vs declarative style
Object naming and referencing
Use of mathematical notations

Automation and user assistance

Mathematical libraries
Rule selection and application
Scope management
Rule chaining and automated computation
Type of feedback

Proof structure and proof state
visualization

Global vs local viewpoint on proof
Possibility to create new definitions and lemmas
Status of statements

Table 1.: Categories of analysis criteria.

5. Aspects of proof and proving in proof assistants

In this section, we describe the three main categories of aspects of PA we retained in our
analysis. Each category includes several criteria summarized in Table 1. As mentioned
before, other important practical factors are left out of this study, such as type of license,
availability, ease of installation, integration with learning management systems, etc.

5.1. Language and interaction mode

The first category we consider relates to the nature of interactions between user and PA.
We focus in particular on the tools’ linguistic, semiotic and visual characteristics. This
includes the syntax and semantics of the input language, if any, the textual, graphical
or mixed output language displayed by the PA, and more generally any kind of visual
hints which carry proof-related meaning17.

5.1.1. Type of user input

Interaction between the user and the PA generally includes both click-based and text-
based modalities, to varying degrees. In D∀∃duction and Edukera, most interactions
are point-and-click (through menus, buttons, drag-and-drop), textual input being re-
quired on few occasions (for instance when introducing an existential witness). In Coq,
Lean and Isabelle, the user types in tactics or proof text, following a strict syntax; the
user interface or development environment (IDE) may provide assistance through text
completion and tactic suggestion. In Lurch, the user experience is similar to that of
‘literate programming’ where code is mixed with text; by default, natural-language text
is ignored and carries no semantics for the PA, while ‘meaningful expressions’, whose
syntax resembles that of standard mathematics, are combined following annotations by
the user to form deduction steps, which are then formally checked by the software.

17In professional PAs, user experience may also depend on third-party development tools and interfaces.

11

5.1.2. Imperative vs declarative style

The input languages of PAs usually exhibit a mix of imperative or declarative features.
In a mostly imperative language the user describes a proof as a sequence of changes
to be performed on the proof state using a predefined set of orders or tactics. Each
tactic consists in one or several deduction rules to be applied, or other manipulations
of the proof state. Most tactics do not contain explicit mathematical statements. This
proof style is sometimes referred to as LCF-style for ‘Logic of Computable Functions’, in
reference to a pioneering system developed by Robin Milner in 1972 (see Gordon (2000)
for a history of LCF-style reasoning tools). In contrast, in a declarative or ‘mathematics-
like’ language such as pioneer Mizar (Rudnicki, 1992), later followed by the Isar language
used in Isabelle (Wenzel & Wiedijk, 2002), one provides assertions along with their
justification similarly to a natural-language proof. Statements are written explicitly,
using a syntax resembling mathematical language. Regardless of the style used, proofs
are then validated algorithmically by the underlying deduction system.

To make the distinction clearer, let us discuss in some detail the use of a definition
(here that of ‘𝑥 ∈ 𝑓(𝐶)’) in the course of a proof in each of the tools we studied.

Coq and Lean are often used in an imperative style: the user enters tactics which
perform transformations on the current proof state. For instance, in a Coq solution
to Question 1 of exercise 4.1, to prove that 𝑓(𝑥) ∈ 𝑓(𝐶) (written im f C (f x) here)
the user may run the command unfold im which instructs the prover to ‘unfold’ the
definition of im, yielding as a new goal ∃𝑥0(𝑥0 ∈ 𝐶 ∧ 𝑓(𝑥) = 𝑓(𝑥0)), as illustrated in
Figure 2. Note that the user does not state the obtained goal manually, but simply what
transformation to apply to the current proof state.

Initial state Tactic Obtained state
f : A -> B f : A -> B
C : Ens C : Ens
x : A x : A
H : C x H : C x
------------ unfold im ---------------------------------
im f C (f x) exists x0 : A, C x0 /\ f x = f x0

Figure 2.: Effect of a Coq tactic on the current proof state.

In Edukera and D∀∃duction, the user simply clicks the ‘def’ button while the state-
ment is selected and the definition of the image of a set is unfolded automatically, with
the same effect as unfold im in Coq.

In Isabelle/Isar the language is mostly declarative: at every step the user writes down
a claim, then justifies it by invoking an available definition or theorem. Assuming the
hypothesis 𝑥 ∈ 𝐶 (labelled x_in_C) is available in the current context, the user may type:
have "f x ∈ f ` C" using x_in_C by (rule imageI). This attempts to prove 𝑓(𝑥) ∈
𝑓(𝐶) using hypothesis x_in_C and the definition of the image of a set (imageI). A
significant difference with the previous approach is that users have to write successive
goals themselves. In Lurch, definitions are also managed in a declarative style: the user
has to manually type in and justify statements using definitions or theorems.

A fundamental specificity of tools used in an imperative style is that the user builds
the proof step by step by acting on the state. In most of them (except Edukera), one
may argue that the main final product is simply a script allowing to reconstruct the
whole proof, while declarative style yields a more or less complete proof text.

12

5.1.3. Object naming and referencing

In Coq, Lean and Isabelle, users can name hypotheses and objects whenever they are
introduced. For instance the Coq tactic intros x H applied when the current goal is
forall x, C x -> pre f (im f C) x attributes the name x to the generic element to be
considered in the proof of inclusion and the name H to the statement C x meaning that
x is in set C. Any other names could have been chosen instead, and one could also let
the PA pick names automatically. In Edukera, each line of the proof is automatically
numbered, and is referenced whenever it is used as a premise in a deduction step. In
both Edukera and D∀∃duction, variables and hypotheses are automatically assigned
names. In Lurch one can choose custom labels for statements.

Even though each tool differs in presentation choices and interaction styles, being
able to refer to objects by name is essential to the structuration of a proof. Note that
naming objects is mandatory for writing statements, while naming intermediate facts
and assumptions may sometimes be optional (using tactics like assumption or clicking
on hypotheses) since statements are usually assimilated to their name.

5.1.4. Use of mathematical notations

Mathematical notations are essential for readability, both in pen-and-paper proofs and
in PAs. In our case, the required notations are the logical connectives, the relation
symbols ∈ for membership and ⊆ for set inclusion and the notations for the image and
preimage of a set by a function, respectively 𝑓(𝐶) and 𝑓−1(𝐶). All studied PAs provide
notations for these objects, which are used either for output (displaying proof states to
the user), for input (composing statements or objects) or both.

In Coq, standard libraries mimic symbols using common characters, like -> for impli-
cation or /\ for conjunction. In Lean, established practice involves the use of Unicode
symbols for →, ∧, ∈ and ⊆. In Edukera and D∀∃duction, usual mathematical symbols
are displayed and the point-and-click interface handles input.

Note that the notations for image and preimage of a set, which are common in
mathematical practice, are ambiguous. The reader is expected to be able to distinguish
in a given context the application of some function 𝑓 on an element 𝑥 of its domain
(written 𝑓(𝑥)) from the image under 𝑓 of a subset 𝐶 of its domain (noted 𝑓(𝐶)), using
previous binding information on variables 𝑥 and 𝐶 in the proof text.

The way this ambiguity is handled varies between tools. Professional PAs relying on
a strict syntax tend to use distinct notations, while some teaching-oriented PAs follow
mathematical practice. In Edukera for example, since the notation is used only as an
element of display and the appropriate definition is automatically chosen internally by
the system, students are not explicitly reminded of this distinction.

Concept Math notation Lean Isabelle
Direct image 𝑓(𝐶) f ' C f ` C

Reverse image 𝑓−1(𝐶) f ⁻¹' C f -` C

From experience, ambiguity in notations is a common source of confusion for stu-
dents and the effects of one approach (using explicit but non-standard notations for
disambiguation) or the other (following the common but possibly ambiguous practice)
is hard to predict. We can expect that PAs using distinct notations help students realize
that distinct concepts are at play, but may not train them to recognize which notion is
referred to in a hand-written statement and handling the disambiguation process.

13

5.2. Automation and user assistance

This category refers to all features providing some kind of assistance in the selection of
a usable rule in a given context, in the syntactic manipulation of statements (in partic-
ular regarding type checking, substitution and pattern matching), in the more or less
automatic application of rules, etc. Other features include the organized presentation
of available rules and theorems, automatic scope management, and contextual hints or
feedback. According to testimonies from PA designers and teachers, finding a good bal-
ance in the level of automation is a challenge, especially in an educational context where
proof clarity may sometimes be considered more important than efficiency or succinct-
ness. In extreme cases, certain advanced tactics may be able to solve some non-trivial
goals automatically, without students getting any insight into the main ideas of the
proof. Conversely, some non-elementary proof steps which could be considered correct
in a pen and paper proof may require several elementary steps in a formal proof.

5.2.1. Mathematical libraries

In a PA, every notion and fact is formally built from first principles, in a spirit of
systematization. This implies that proving any mathematical statement usually involves
using many definitions and theorems, directly or indirectly. Most PAs thus provide
libraries of common notions and facts to build on. In professional PAs, definitions and
theorems are referred to by a name. Libraries may contain thousands of facts, so these
systems often provide additional assistance such as textual or pattern-based search (e.g.
Coq’s Search command), automatic completion, online help, lemma suggestion (e.g. the
suggest tactic from Lean’s mathlib library), etc.

Teaching-oriented PAs like Edukera and D∀∃duction have much smaller libraries and
simply list the predefined lemmas and definitions available in any exercise, sorted by
topic. Each exercise can therefore be seen as a ‘closed micro-world’ or ‘sandbox’. In
Lurch, users may specify which parts of the standard library they wish to use.

5.2.2. Rule selection and application

One of the main actions when building a proof in a PA consists in performing a reasoning
step by applying a theorem or a logical rule, or by substituting a symbol by its definition.
Each PA provides a different level of assistance and automation for these tasks, mainly
regarding the way a rule or statement is instantiated when it is used (i.e. its variables
substituted by terms), or the way a given rule, theorem or definition is selected.

In Isabelle and Lurch, the user writes instantiated mathematical expressions, and
explicitly invokes a rule by its name. The tool then checks that this instantiation is
correct, and if so applies the rule. In Lurch, multiple rules may share the same name,
in which case all matching rules are tried successively until one succeeds. Automation
consists in selecting the appropriate instance of the rule in the current context.

In Coq, Lean, D∀∃duction and Edukera, commands to unfold a definition or apply
a theorem are provided, either by invoking them by name or by selecting them from a
list. In these systems, pattern matching and substitution are performed automatically.
In Lean, Coq and Edukera’s math mode, generic commands are available to eliminate
or introduce logical connectors and quantifiers. Only when ambiguity occurs is the
user required to add further input. In other tools, the user generally has to determine
the outermost logical connective themselves. Besides, professional PAs provide varying
degrees of automation, as mentioned below.

14

5.2.3. Scope management

According to previous research on proof (see for instance A. Selden, 2012) keeping track
of the scopes of variables and hypotheses is a source of difficulty for students. It some-
times leads to confusion between free and bound variables, or to circular arguments.
In professional PAs and also in D∀∃duction, scope management is fully automatic and
available variables and hypotheses are gathered in corresponding areas of the interface
thanks to the notion of ‘proof state’. In Edukera, unproven statements are clearly distin-
guished from proved ones, scopes are outlined and indented and can be selected when
introducing new variables or hypotheses. Isabelle and Lurch also have syntactic or visual
hints to indicate scopes, but more work is left to the user.

5.2.4. Rule chaining and automated computation

Some PAs offer possibilities for implicit or explicit ‘chaining’ of rule applications. For
instance, when applying a universally quantified theorem, Edukera offers to perform the
introduction of the universal quantifier and introduction of implication in a single step.
In Coq, a single invocation of the apply command to deduce 𝑥 = 𝑥′ from the hypothesis
𝑓(𝑥) = 𝑓(𝑥′) using the injectivity of 𝑓 successively unfolds the definition of injectivity,
eliminates two universal quantifiers and one implication, and performs the associated
pattern matching and substitution steps. Other tactics in Coq, Lean or Isabelle may
perform further automatic transformations. Finally, in specific mathematical areas such
as basic arithmetic or linear algebra, PAs may give access to fully automatic solvers.

5.2.5. Type of feedback

Most modern systems provide users with feedback on the current proof state, on each
statement’s theoretical status or its operational status, in the terminology of Duval and
Egret (1993). Feedback varies from basic to very rich and is provided in various ways,
either textually or using visual hints, by highlighting elements of the syntax of the PA’s
language, or by separating statements between disjoint areas of the user interface. These
features may play an important role in an educational context.

In Coq, Lean and Isabelle the standard interface highlights the part of the proof script
that was successfully checked so far, displays the current active goal with its context
and indicates other open goals (see figure 3 for an example in Coq’s default interface).
A dedicated area shows error messages when a rule does not apply, when an expression
is not well-typed, or of course when a syntax error occurs.

Figure 3.: CoqIDE showing a partially checked proof script for Question 1

15

Feedback in Lurch is very rich: there is a colour code to indicate the status of each
statement (hypothesis, valid or invalid conclusion) and visual hints to highlight the
scopes of hypotheses. Moreover, very complete feedback on rule application is provided,
including a list of selected premises and an explicit substitution of variables.

5.3. Proof structure and proof state visualization

This final category concerns the aspects of a PA related to how proofs are perceived
and handled. There are two main design choices: in some PAs, the whole proof text is
visible at once, and users complete it by inserting new assertions. Work may be done
progressively and non-linearly on several parts of the proof. In others, only the current
goal and the current proof state is prominently displayed. Other aspects related to proof
structure concern the possibility to decompose a long proof by writing down definitions
and separately proving intermediate lemmas which can then be reused.

5.3.1. Global vs local viewpoint on proof

In Coq, Lean or D∀∃duction, the user may visualize the sequence of invoked tactics
and navigate through them to view the proof state at each point. The proof as a whole
is implicit and is never displayed entirely. Moreover, the origin of each statement ap-
pearing in the context (hypothesis of the theorem to be proven, previously proved fact,
hypothesis in a proof by cases, by induction or by contradiction) is not displayed. In
these tools, it is also natural to treat the goals in the order in which they are generated.
One may say the viewpoint on proof is local, with much information hidden.

On the contrary, in Edukera or Lurch (like in a pen-and-paper proof), the proof state
is implicit: it is composed of the list of open statements combined with the list of hy-
potheses which are assumed to hold at each point. Due to their declarative style and
since proof texts in these two PAs rather closely imitate usual mathematical language,
they offer a more global viewpoint on proofs without resorting to back-and-forth nav-
igation through the proof script. Isar (Isabelle’s language) and Lean-verbose combine
both aspects by presenting both a complete, more or less human-readable proof text,
and the ability to display the current proof state at each line of the proof18.

5.3.2. Possibility to create new definitions and lemmas

This criterion has to do with extensibility of the current theory by the user. D∀∃duc-
tion and Edukera do not allow the creation of new definitions or theorems by end users.
Work is confined to a ‘deductive island’ imposed by the system. In Edukera, teachers
can compose exercise sheets but only from existing exercises; the development of new
theories is not accessible to end users. In D∀∃duction expert teachers users may cre-
ate new worksheets including new definitions and theorems, within the limits of the
interface’s capabilities. In Coq, Lean, Isabelle, or Lurch, users are free to restructure
their proofs by introducing new lemmas or concepts. It is of course the main purpose
of professional tools to be able to define new objects and to verify their properties.

5.3.3. Status of statements

As already stated, one may distinguish the theoretical and operational status of state-
ments, which may vary in the course of a proof: a statement may be the conclusion of a

18This is indeed what Massot stresses to his students, Cf. Section 4.2.2.

16

deduction step and the premise of the following one. The status of statements is rather
clear in all PAs (except Edukera where admitted lemmas/axioms, and proved lemmas
are not distinguished). In D∀∃duction, hypotheses and other elements of the context are
displayed in separate frames. Moreover, hypotheses used at least once as premises are
greyed out. In Isabelle, local hypotheses introduced to prove universally quantified im-
plications are syntactically distinguished. In Lurch, the validity of each step is displayed
using a colour code. The status of statements is displayed using ‘bubbles’.

6. Possible impacts on the learning of proving skills

As their name suggests, PAs relieve the user of some of the tasks associated with prov-
ing. While this may be desirable in a professional setting in order to save time, to reduce
proof size or complexity or to leverage powerful automation techniques, it might become
a hindrance when the goal is precisely to let students practise some of these basic tasks.
Conversely, automating certain challenging tasks or assisting the user in performing
them may in some cases be beneficial for teaching. By helping students circumvent
possible difficulties (such as memorizing definitions, writing down correct formal state-
ments, applying substitutions, managing variable and hypothesis scopes, keeping track
of the status of each statement, etc.), PAs may allow them to focus on arguably ‘higher-
level’ tasks such as reasoning and problem-solving. Based on our analysis, we formulate
a few hypotheses on the possible effects of the use of PAs in teaching.

6.1. Memorization and formulation

When asking students to solve an exercise on functions on paper, a possible prerequisite
or desired learning outcome is that students intuitively understand relevant definitions
(in our case those of set and function, set inclusion, direct and inverse image, and the
notion of injectivity) and be able to state their formal definition.

When using a PA where details of definitions and properties are always at hand,
one may postulate that memorization of formal statements is not required in order to
‘solve’ the exercise, and therefore that students are not exercising this particular skill.
However, they may be required to read, understand and use definitions and theorems at
the appropriate time. Contrary to pen-and-paper proofs, feedback in case a definition or
theorem does not apply to the selected goal or hypothesis is immediate, possibly helping
students understand their applicability conditions. It might thus be the case that being
repeatedly presented with formal definitions and properties and putting them to use
may actually help students memorize them.

A less optimistic hypothesis would suggest that students becoming proficient with
the formalism of PAs may successfully use definitions and statements without suitably
understanding them.

6.2. Manipulation of formal statements

It has been remarked that performing substitution is one of the many difficulties of the
proving activity (Mckee, Savic, Selden, & Selden, 2010, p. 212). As we observed, the six
PAs we studied differ in the way they automate the manipulation of formal statements.
In four cases (D∀∃duction, Edukera, Lean and Coq), it may be possible to achieve
a complete proof without needing to write a single mathematical statement. Lean,

17

Coq and Edukera automatically identify the outermost operator in a mathematical
term. While this does not entirely exempt the user from thinking about statements and
anticipating which rules may be used next, it is not up to them to actually figure out
which substitution makes a statement match the premise of a rule, or how to apply
that substitution to the rule’s consequent in order to compute the effect of the rule’s
application.

This is not the case in Isabelle and Lurch, where the user has to explicitly write
down mathematical terms, and the system simply checks if they are correct. In all cases
however, a posteriori control and validation is possible, for example by replaying the
last step in imperative PAs in order to clearly see its effect. This may provide another
way to practise skills related to formula manipulation, by reading and controlling rather
than by writing.

A related possible effect is that PAs may forbid certain incorrect manipulations,
produce correct but unexpected outcomes or provide additional feedback (Lurch in
particular provides rich and explicit feedback regarding substitutions). These feedbacks
are of course unavailable in a pen-and-paper proof.

6.3. Perception of proof structure

As already mentioned, PAs strongly assist users in the realization of a number of proof-
related tasks, which may be attributed to the formal-rhetorical parts of proofs: auto-
matic management of scopes and contexts, availability of definitions, automatic substi-
tutions, identification of outermost operators, management of statements’ operational
status and of open goals, and general bookkeeping. This is especially true in imperative-
style PAs, but even declarative PAs assist in performing these tasks via syntactic control
and immediate feedback for instance.

We hypothesize that in proofs mostly consisting of formal-rhetorical steps, in which
the problem-centered part is therefore small, users of imperative PAs (provided they are
proficient with each tool’s syntax and interface) may feel as though they are ‘pushing
symbols around until it works’, possibly not encountering any difficulty at all or not
understanding why the proof went through. In Exercise 4.1, question 1 might be entirely
solved this way by somewhat experienced users, but it is less likely that the problem-
centered part for question 2 would disappear completely.

More generally, some imperative-style tools may act as ‘blinders’, allowing one to
entirely focus on the current proof state and current goal, keeping other parts of the
proof out of mind. This ‘tunnel’ effect may also make a trial-and-error exploration
strategy more viable than in declarative-style PAs. Edukera stands out as a special case
in that the whole text of the proof remains visible, even though user input is mostly
imperative and syntactic manipulations largely automated. One could say that Edukera
interactively builds a construction path in the sense of J. Selden and Selden (2010).

Not knowing ‘how to start’ is another frequent hurdle when learning proof (A. Selden,
2012). It would be interesting to determine whether the assistance of PAs, and the
possible instrumentation process they enable, allow students to gain autonomy in the
way they tackle proof, identifying recurring first steps and developing habits in the
formal-rhetorical parts of proofs, ‘unpacking’ the logical connectives in the current goal
until all objects and hypotheses are at hand and only the ‘core’ statement remains.

To sum up, one may hypothesize that PAs, in particular imperative ones, have a
very strong effect on the treatment of formal-rhetorical parts of proofs, and may help
in ‘revealing the real problem’, in the words of J. Selden and Selden (2010).

18

7. Conclusion

One obvious advantage of PAs for teaching is the capacity to automatically verify proofs,
either produced by teachers or by students. Apart from this, what are the reasons
for a teacher to start using a PA as part of their course? As we saw, design choices
in PAs entail different actions from the user. Certain concepts (for instance that of
substitution) are always present but under various forms. Freeing students from certain
tasks may enable them to concentrate on deeper ideas, and may contribute in helping
become better provers outside of the PA. Or, it may deprive them of an opportunity
to practise the critical skills associated with these tasks. Figuring out the effect of each
PA on learning and investigating the very partial list of hypotheses from the previous
section would of course require further research, for instance analyzing the evolution of
student’s proficiency with various tasks before and after using different PAs. Do PAs
have an effect on possible syntactic and semantic difficulties encountered when working
on proof? Do they favour the development of higher-level skills such as problem-solving,
writing a proof on paper, or summarizing a proof verbally? Do they lead to a better
understanding of the process of proof itself? How much do these effects depend on
students’ backgrounds, in particular in computer programming?

In the growing community of teachers using PAs, one may notice several distinct
tendencies (see for instance Kerjean et al., 2022, for testimonies in France). For some
educators, who tend to opt for teaching-oriented PAs, the main goal of using PAs is to
ultimately ‘let the tool disappear’, and to teach students to write pen-and-paper proofs
respecting a specific set of writing conventions. Others, who tend to adopt professional
PAs, consider that a valid tactics-based proof is sufficient. Finally, some educators (no-
tably in the Lean community), testify that ‘teaching Lean and math in the same course
is too much’. We believe our preliminary analysis may prove useful in order to further
investigate the choices and practices of teachers using PAs, and possibly to contribute
to the design of teaching resources incorporating PAs.

Finally, a question of epistemological interest which we have begun to investigate is
that of the impact of the various theoretical models underlying each PA, for instance the
theory of dependent types for Coq and Lean (including the well-known Curry-Howard
correspondence between statements and types and between proofs and programs). Is it
useful, or even required, for students or teachers to understand some of these concepts
in order to use a PA suitably? What are the possible consequences of these various
‘visions of mathematics’ on the learning of proof and of other mathematical content?

References

Carter, N. C., & Monks, K. G. (2017). A Web-Based Toolkit for Mathematical Word Pro-
cessing Applications with Semantics. In International Conference on Intelligent Computer
Mathematics (pp. 272–291).

Duval, R., & Egret, M.-A. (1993, July). Introduction à la démonstration et apprentissage du
raisonnement déductif. Repères-IREM , 12, 114–140.

Geuvers, H., & Courtieu, P. (2007). Proceedings of International Workshop on Proof Assistants
and Types in Education (PATE07). Paris, France.

Gordon, M. (2000, July). From LCF to HOL: a short history. In Proof, language, and
interaction: essays in honour of Robin Milner (pp. 169–185). Cambridge, MA, USA: MIT
Press.

Hanna, G. (2000). Proof, Explanation and Exploration: An Overview. Educational Studies in
Mathematics, 44(1/2), 5–23.

19

Hanna, G., & de Villiers, M. (Eds.). (2012). Proof and Proving in Mathematics Education
(Vol. 15). Dordrecht: Springer Netherlands.

Hanna, G., Reid, D. A., & de Villiers, M. (Eds.). (2019). Proof Technology in Mathematics
Research and Teaching (Vol. 14). Cham: Springer International Publishing.

Hanna, G., & Yan, X. (2022a, July). Opening a discussion on teaching proof with automated
theorem provers (pre-print). For the Learning of Mathematics, 41, 42–46.

Hanna, G., & Yan, X. (2022b, June). Teaching with Computer-Based Proof Assistants:
Perspectives from Instructors of Mathematics. , 54.

Kerjean, M., Le Roux, F., Massot, P., Mayero, M., Mesnil, Z., Modeste, S., … Rousselin, P.
(2022, October). Utilisation des assistants de preuves pour l’enseignement en L1: Retours
d’expériences. Gazette de la SMF , 174.

Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., … Winwood, S.
(2009, October). seL4: formal verification of an OS kernel. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles (pp. 207–220). New York, NY,
USA: Association for Computing Machinery.

Knobelsdorf, M., Frede, C., Böhne, S., & Kreitz, C. (2017, August). Theorem Provers as a
Learning Tool in Theory of Computation. In Proceedings of the 2017 ACM Conference on
International Computing Education Research (pp. 83–92). New York, NY, USA: Association
for Computing Machinery.

Leroy, X. (2009, July). Formal verification of a realistic compiler. Communications of the
ACM , 52(7), 107–115.

Mckee, K., Savic, M., Selden, J., & Selden, A. (2010). Making Actions in the Proving Process
Explicit, Visible, and ”Reflectable”.

Nipkow, T., Wenzel, M., Paulson, L. C., Goos, G., Hartmanis, J., & van Leeuwen, J. (Eds.).
(2002). Isabelle/HOL – A Proof Assistant for Higher-Order Logic (Vol. 2283). Berlin,
Heidelberg: Springer.

Pierce, B. C., de Amorim, A. A., Casinghino, C., Gaboardi, M., Greenberg, M., Hriţcu, C.,
… Yorgey, B. (2022). Logical foundations (Vol. 1; B. C. Pierce, Ed.). Electronic textbook.
Retrieved from https://softwarefoundations.cis.upenn.edu/

Rabardel, P. (1995). Les hommes et les technologies; approche cognitive des instruments
contemporains. Armand Colin.

Rognier, B., & Duhamel, G. (2016, January). Présentation de la plateforme edukera. In
J. Signoles (Ed.), Vingt-septièmes Journées Francophones des Langages Applicatifs (JFLA
2016). Saint-Malo, France.

Rudnicki, P. (1992). An Overview of the Mizar Project. In Proc. of the 1992 Workshop on
Types for Proofs and Programs. Chalmers University of Technology.

Selden, A. (2012). Transitions and Proof and Proving at Tertiary Level. In G. Hanna & M. de
Villiers (Eds.), Proof and Proving in Mathematics Education: The 19th ICMI Study (pp.
391–420). Dordrecht: Springer Netherlands.

Selden, J., & Selden, A. (2010, September). Teaching Proving by Coordinating Aspects of
Proofs with Students’ Abilities. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.),
Teaching and Learning Proof Across the Grades (Zeroth ed., pp. 339–354). Routledge.

The Coq Development Team. (2022, January). The Coq Proof Assistant. Zenodo.
The mathlib community. (2020, January). The Lean mathematical library. In Proceedings of

the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs (pp.
367–381).

Thoma, A., & Iannone, P. (2022). Learning about Proof with the Theorem Prover LEAN: the
Abundant Numbers Task. International Journal of Research in Undergraduate Mathematics
Education, 8, 64–93.

Trouche, L. (2005). Construction et conduite des instruments dans les apprentissages mathé-
matiques: Nécessité des orchestrations. Recherches en Didactique des Mathematiques, 25(1),
91–138.

Wenzel, M., & Wiedijk, F. (2002, September). A Comparison of Mizar and Isar. Journal of
Automated Reasoning, 29(3), 389–411.

20

Appendix A. Detailed exercise resolution

This appendix describes in more detail possible resolutions of exercise 4.1 in each of the
six PAs we chose to analyze.

A.1. Coq

In Coq’s syntax, a colon is used after a variable (or more generally after any expression)
to indicate its type. For instance, if variable x denotes an object of type A we write
x : A. For hypotheses, the same syntax introduces the statement corresponding to each
hypothesis. For instance (H : C x) means that the name H refers to a proof of the
statement C x (whose meaning is explained below). Note that the fact that types and
statements are introduced with same syntax is not a coincidence. As we will mention
again below, there is a strong correspondence between both concepts.

Figure A1 presents preliminary definitions used to model the mathematical objects
involved in the proof. Type Ens represents sets using Coq’s predefined functions: in this
setting a set of elements of type A is represented by its characteristic property, a map
from A to the type Prop of propositions (meaning that each value of type A is mapped
to True if it belongs to the set and False otherwise). Membership of some x of type A

in some set C is therefore written C x. From this initial modelling choice, we are able
to define set inclusion (incl), the image of a set by a function (im), its pre-image (pre)
and the injectivity property for function f, called injective.

1 Definition Ens {A : Type} := A -> Prop.

2

3 Definition incl {A: Type} (C D: Ens) :=

4 forall (x: A), C x -> D x.

5

6 Definition im {A B: Type} (f: A -> B) (C: Ens): Ens :=

7 fun y => exists x, C x /\ y = f x.

8

9 Definition pre {A B: Type} (f: A -> B) (D: Ens): Ens :=

10 fun x => D (f x).

11

12 Definition injective {A B: Type} (f: A -> B) :=

13 forall x x', f x = f x' -> x = x'.

Figure A1.: Proof script in Coq : preliminary definitions

Figure A2 shows a possible proof script for question 119. It proceeds by ‘backward
reasoning’, transforming the current goal ‘in reverse’ by successively introducing quan-
tified objects and hypotheses and unfolding definitions of symbols. In the last steps of
the proof, the only remaining goals are C x, which matches an existing hypothesis (H)
and can thus be proved directly (line 14), and f x = f x which is proved by reflexivity
of Coq’s built-in equality (line 15). Note that by Coq’s inner mechanism, all unfolding
steps are actually optional, which allows one to write a shorter proof. However, unfold-
ing definitions may allow a user to visualize intermediate states and hidden quantifiers,
and thus follow the proof’s logic more easily when interacting with the software.

19We do not wish to explain notations in full detail here. Let us simply mention that all text surrounded by
(* ... *) is considered as commentary and is not evaluated by Coq. We use it here to describe the effect of

21

1 Theorem subset_preimage_image {A B: Type} (f: A -> B):

2 forall C, incl C (pre f (im f C)).

3 Proof. (* Context: A, B, f : A -> B *)

4 (* Goal: forall C, incl C (pre f (im f C)) *)

5 intros C. (* New in context: C : Ens *)

6 (* Goal: incl C (pre f (im f C)) *)

7 unfold incl. (* Goal: forall x, C x -> pre f (im f C) x *)

8 intros x H. (* New in context: x : A, H : C x *)

9 (* Goal: pre f (im f C) x *)

10 unfold pre. (* Goal: im f C (f x). *)

11 unfold im. (* Goal: exists x0, C x0 /\ f x = f x0 *)

12 exists x. (* Goal: C x /\ f x = f x *)

13 split. (* Two goals: C x and f x = f x *)

14 - apply H. (* Goal C x is closed *)

15 - reflexivity. (* Goal f x = f x is closed *)

16 Qed.

Figure A2.: Proof script in Coq for question 1. Text between (*...*) is not part of the
script, we use it to indicate the evolution of the goals as indicated by Coq.

Figure A3 shows a possible proof script for the second question. It starts similarly to
the proof for question 1, first introducing all relevant objects and hypotheses. However,
from line 14 on, the proof proceeds by transforming hypotheses, and not the goal itself
which remains the same until the very end of the proof, where one hypothesis directly
matches the goal (line 25). This may be referred to as a ‘forward reasoning’ strategy,
which may be considered closer to the natural order in which a human would reason, or
at least write a proof20. As previously, invocations of the unfold tactic are not actually
required and can be performed automatically by Coq.

1 Theorem preimage_image_subset {A B: Type} (f: A -> B) :

2 injective f -> forall C, incl (pre f (im f C)) C.

3 Proof.

4 intros Hinj C. (* Ctx: Hinj : injective f, C : Ens *)

5 (* Goal: incl (pre f (im f C)) C *)

6 unfold incl. (* Goal: forall x, pre f (im f C) x -> C x *)

7 intros x H. (* Ctx: x : A, H : pre f (im f C) x *)

8 (* Goal: C x *)

9 unfold pre in H. (* Ctx: H : im f C (f x) *)

10 unfold im in H. (* Ctx: H : exists x0, C x0 /\ f x = f x0 *)

11 destruct H as [x' [H1 H2]]. (* Ctx: x' : A, H1 : C x', H2 : f x = f x' *)

12 apply Hinj in H2. (* Ctx: H2 : x = x' *)

13 rewrite <- H2 in H1. (* Ctx: H1 : C x *)

14 apply H1.

15 Qed.

Figure A3.: Proof script in Coq for question 2. Comments marked Ctx: indicate changes
in the context (new or changed assumptions).

each tactic on the proof state. Notation {A : Type} introduces implicit arguments, which can usually be omitted
and inferred from the context.
20Some backward reasoning steps are nevertheless common in hand-written proofs, for instance using the
phrasing ‘it suffices to show that’.

22

Note that Coq’s standard library contains several definitions which we could have
used to solve our exercise, notably basic definitions of sets, the inclusion and equality
relations, the image of a set by a function, and function injectivity. However, these
definitions employ techniques which would be too long to describe in this text.

To complete the description of this resolution using Coq, we point out another way to
express the proofs as functional-style programs. This follows from an extended version
of the well-known Curry-Howard correspondence, which establishes formal analogies
between logical statements and types. According to this correspondence, the proof of a
statement can then be expressed as a program which, given evidence for the validity of
statement’s hypotheses, returns evidence for the validity of the statement itself. This
principle also underlies the Lean PA. We leave a more detailed discussion of this topic
for future work.

A.2. Lean verbose

Figure A4 shows Lean code for Exercise 4.1 using lean-verbose tactics exclusively. Note
that lean-verbose allows to introduce a variable in the context and an assumption about
in a single step (line 8). The use of the definition of inverse image is implicit on line 9.
Lean verbose allows backward reasoning steps using the tactic ‘it suffices to prove that’.
Line 23 we can remark some imperative steps, applying a substitution to the current
context without stating what is the effect of this substitution.

1 import verbose_tactics

2 section exercise

3 variables {α β : Type}

4

5 theorem subset_preimage_image (f : α → β) (s : set α) :

6 s ⊆ f ⁻¹' (f ' s) :=

7 begin

8 Fix x ∈ s,

9 Let's prove that exists x', x' ∈ s ∧ f x' = f x,

10 Let's prove that x works -- Nothing else to do !

11 end

12

13 theorem preimage_image_subset (f : α → β) (s : set α) :

14 function.injective f → f ⁻¹' (f ' s) ⊆ s :=

15 begin

16 Assume hf : function.injective f,

17 Fix x ∈ f ⁻¹' (f ' s), -- introduces (x_mem : x ∈ f ⁻¹' (f ' s))

18 We reformulate x_mem to (exists x', x' ∈ s ∧ f x' = f x), -- optional

19 By x_mem we obtain y such that (hys : y ∈ s) (hyx : f y = f x),

20 Fact h : y = x,

21 By hf it suffices to prove that f y = f x,

22 We conclude by hyx,

23 We replace ←h,

24 We conclude by hys

25 end

26

27 end exercise

Figure A4.: Solution to Exercise 4.1 using lean-verbose.

23

A.3. Isabelle

Figure A5 shows a proof script for questions 1 and 2 of Exercise 4.1. One may notice
the use of common English connectives frequently used in mathematical proofs such
as ‘fix’, ‘assume’, ‘then’, ‘show’, etc. which are here endowed with specific semantics.
The keyword by introduces so-called proof methods, which provide a justification to
each proof step. The most common method in this example is rule, which together
with a label indicates the use of a previously proven deduction rule or lemma. Other
available methods may involve substitutions or automated simplifiers or provers. Figure
A6 shows the definitions of each predefined lemma used in this example (including the
implicitly-used subsetI lemma).

1 lemma subset_preimage_image:

2 "C ⊆ f -` (f ` C)"

3 proof

4 fix x

5 assume "x ∈ C"

6 then have "f x ∈ f ` C" by (rule imageI)

7 then show "x ∈ f -` f ` C" by (rule vimageI2)

8 qed

9

10 lemma preimage_image_subset:

11 "inj f ⟹ f -` (f ` C) ⊆ C"

12 proof

13 assume hf: "inj f"

14 fix x

15 assume "x ∈ f -` f ` C"

16 then have "f x ∈ f ` C" by (rule vimageD)

17 then obtain y

18 where hxy: "f x = f y" and hy: "y ∈ C"

19 by (rule imageE)

20 from hf and hxy have "x = y" by (rule injD)

21 with hy show "x ∈ C" by hypsubst

22 qed

Figure A5.: Isabelle/Isar proof script for Exercise 4.1. Symbol ⟹ denotes implication
in Isabelle’s meta-logic.

1 lemma subsetI [intro!]: "(⋀x. x ∈ A ⟹ x ∈ B) ⟹ A ⊆ B"

2 lemma imageI: "x ∈ A ⟹ f x ∈ f ` A"

3 lemma imageE [elim!]:

4 assumes "b ∈ (λx. f x) ` A" obtains x where "b = f x" and "x ∈ A"

5 lemma vimageI2: "f a ∈ A ⟹ a ∈ f -` A"

6 lemma vimageD: "a ∈ f -` A ⟹ f a ∈ A"

7 lemma injD: "inj f ⟹ f x = f y ⟹ x = y"

Figure A6.: A selection of Isabelle/Isar predefined lemmas. Symbol ⋀ denotes universal
quantification in Isabelle’s meta-logic.

24

A.4. Lurch

Figure A7 shows a possible proof text for questions 1 of Exercise 4.1, with validation
hints activated. Green dots correspond to the conclusions of valid deduction steps.
Yellow dots indicate so-called ‘undischarged’ hypotheses, i.e. statements which are used
as premises in deduction steps but are not themselves proven. Placing the cursor on
various parts of the last line of this proof, we can highlight the nature (in red) and
operational status or role (in blue) of various parts of the sentence, as can be seen on
Figure A8. Here, we distinguish meaningful statements, rule premises, and ‘reasons’, i.e.
the invoked rule for a deduction step. Various features of the Lurch editor allow a user
to pick a role and a scope for any text fragment.

Figure A7.: Lurch proof text for question 1 of Exercise 4.1. Nested green-framed areas
indicate variable and hypothesis scopes.

(a) Premise.

(b) Statement.

(c) Reason.

Figure A8.: Roles and nature of statements in a Lurch proof step.

When validation is activated, Lurch verifies that each statement or label cited as a
premise is indeed available in the current scope, and that the rule invoked as a ‘reason’

25

is indeed valid. This is done by checking that such a rule actually exists, then searching
for a suitable substitution of free variables in the rule’s body and matching each premise
of the rule to some premise invoked in the text. Figure A9 shows the detailed feedback
provided by Lurch when inspecting the above reasoning step. Notice that the obtained
substitution is very explicitly detailed.

Figure A9.: Validation details for a Lurch proof step.

Figure A10 shows a possible proof text for questions 2 of Exercise 4.1. Figure A11
shows a list of user-written ‘if-then rule’ definitions used to solve the exercise, in a
display mode where meaningful expressions are made visible using red brackets. Blue
brackets are used to indicate parts of the text with a specific role (labels, in this case).

A.5. Edukera

Figures A13 and A14 show the state of the Edukera ‘worksheet’ throughout one possible
resolution sequence of question 1 of Exercise 4.1. The worksheet is divided in two areas.
On the left-hand side is a dynamically-numbered list of declarations and statements,

26

Figure A10.: Lurch proof text for question 2 of Exercise 4.1. The star (*) marker is
defined as a label for an intermediate statement, and referred to in the last line of the
proof.

Figure A11.: User-defined if-then rules used in the above proofs. Blue brackets define
labels for each rule.

27

Figure A12.: User-defined lemma used in Figure A10, together with its proof.

(a) Initial state. (b) Introduced hypothesis 𝐶 ⊆ 𝐴.

(c) Unfolded ⊆ in 𝐶 ⊆ 𝑓−1(𝑓(𝐶)). (d) Unfolded 𝑓−1 in 𝑓−1(𝑓(𝐶)).

Figure A13.: Edukera resolution of question 1 in Exercise 4.1 (first part).

28

(e) Unfolded 𝑓 in 𝑓(𝐶). (f) Identified meta-variable 𝑥1.

(g) Unfolded ⊆ in 𝐶 ⊆ 𝐴. (h) Final state: identified goals.

Figure A14.: Edukera resolution of question 1 in Exercise 4.1 (continued).

29

each on a separate line. Light blue brackets delineate variable or hypothesis scopes.
The right-hand side shows the functional status of each line (in this case: declaration,
hypothesis, or conclusion).

Moreover, in the right-hand side, the theoretical status of the statement is also shown:
a statement is either justified or is a conjecture (as indicated by the text ‘to be justified’),
which in Coq terminology would be called a goal. When the statement is justified, the
reason used for its justification is displayed, including the labels (statement numbers) of
the corresponding premises and the type of justification used (definition, lemma, logic
rule, etc.). Next to open goals, a double-tailed arrow () allows the user to attempt
unification of the goal with a previous statement appearing in the worksheet.

(a) No automation.

(b) Automatic treatment of existential quan-
tifier.

(c) Automatic treatment of existential quan-
tifier and conjunction.

Figure A15.: Details of Edukera justification step: unfolding of set image.

(a) No automation.

(b) Automatic treatment of universal quanti-
fier.

(c) Automatic treatment of universal quanti-
fier and implication.

Figure A16.: Details of Edukera deduction step : unfolding of inclusion.

30

Each new state in the sequence shown is obtained from the previous state by selecting
a statement in the worksheet (highlighted in blue in the screenshots) and clicking the
appropriate buttons of the user interface. No text is input manually by the user during
this sequence. Instead, in some cases Edukera displays modal boxes offering options for
the application of a rule. For instance, Figure A15 shows three possible ways to unfold
the definition of the image of a set21 in order to justify the goal 𝑓(𝑥) ∈ 𝑓(𝐶) (Cf. Fig.
A13d). Note that this is a backward reasoning step, i.e. the modification of an open
goal. The user may select among three possible automation levels using the slider at
the bottom of the modal window, each level corresponding to the automatic treatment
of a logic operator.

In contrast, Figure A16 shows a modal window displayed when performing a (forward)
deduction step from hypothesis 𝐶 ⊆ 𝐴, unfolding the definition of set inclusion (Cf.
Fig. A14f). When performing forward deductions, the user may have to select a scope
in which to insert new statements. In this context, scopes are represented by intervals
of statement numbers (as can be seen at the top of each window in Fig. A16). In the
current case, only scope (2) … (6) is suitable in order to finish the proof, because variable
𝑥 does not exist in the outermost scope.

Note that Edukera automatically introduces meta-variables in places where some
unknown expression should be, in particular when justifying an existentially-quantified
statement (Cf. Fig. A15) or deducing from a universally-quantified one (Cf. Fig. A16).
Meta-variables can be considered as place-holders for unknown expressions meant to be
filled in later in the construction of a proof. Such variables are named automatically
when they are introduced (𝑥1 in the present case). In order to complete the proof, the
user has to instantiate these variables, either by typing them in (directly or using the
provided visual keyboard) or by identifying (indeed unifying) the statement where they
occur with another statement. This may be done either from the worksheet itself, or
directly from the modal windows A15 and A16.

We conclude this overview with a completed worksheet for question 3 of Exercise 4.1,
shown in Fig. A17, including the detailed proof for question 2. Note that line (11) in
this worksheet is justified by a direct call to a lemma established in the Edukera exercise
for question 1.

A.6. D∀∃duction

Questions 1 and 2 of our exercise 4.1 are available as two entries in the ‘sets and maps’
exercise file (in French, Cf Fig. A18). Resolution steps are provided for Question 1 (Cf.
Figs. A19 and A20). Figure A23a shows the dynamic proof tree view and Fig. A23b the
proof outline for question 1.

21There is a typo in Edukera, the justification should indeed be relative to the image of a set, and not the
inverse image.

31

Figure A17.: Completed Edukera worksheet for Exercise 4.1 question 3.

32

Figure A18.: Exercise selection dialog in D∀∃duction.

33

(a) Initial state.

(b) Introduced hypothesis 𝐴 ⊆ 𝑋.

Figure A19.: D∀∃duction resolution of question 1 in Exercise 4.1 (first part).

34

(a) Unfolded ⊆ in the goal.

(b) Introduced ∀, new object 𝑥.

Figure A20.: D∀∃duction resolution of question 1 in Exercise 4.1 (second part).

35

(a) Introduced ⇒, new hypothesis 𝑥 ∈ 𝐴.

(b) Unfolded 𝑓−1 in the goal.

Figure A21.: D∀∃duction resolution of question 1 in Exercise 4.1 (third part).

36

(a) Applied theorem 𝑥 ∈ 𝐴 ⇒ 𝑓(𝑥) ∈ 𝑓(𝐴).

(b) Unfolded ⊆ in the goal.

Figure A22.: D∀∃duction resolution of question 1 in Exercise 4.1 (end).

37

(a) Proof tree.

(b) Proof steps outline.

Figure A23.: Proof visualization for question 1 of exercise 4.1 in D∀∃duction.

38

