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Abstract: The newest video compression standard, Versatile Video Coding (VVC), was finalized in
July 2020 by the Joint Video Experts Team (JVET). Its main goal is to reduce the bitrate by 50% over
its predecessor video coding standard, the High Efficiency Video Coding (HEVC). Due to the new
advanced tools and features included in VVC, it actually provides high coding performances—for
instance, the Quad Tree with nested Multi-Type Tree (QTMTT) involved in the partitioning block.
Furthermore, VVC introduces various techniques that allow for superior performance compared
to HEVC, but with an increase in the computational complexity. To tackle this complexity, a fast
Coding Unit partition algorithm based on machine learning for the intra configuration in VVC is
proposed in this work. The proposed algorithm is formed by five binary Light Gradient Boosting
Machine (LightGBM) classifiers, which can directly predict the most probable split mode for each
coding unit without passing through the exhaustive process known as Rate Distortion Optimization
(RDO). These LightGBM classifiers were offline trained on a large dataset; then, they were embedded
on the optimized implementation of VVC known as VVenC. The results of our experiment show that
our proposed approach has good trade-offs in terms of time-saving and coding efficiency. Depending
on the preset chosen, our approach achieves an average time savings of 30.21% to 82.46% compared
to the VVenC encoder anchor, and a Bjøntegaard Delta Bitrate (BDBR) increase of 0.67% to 3.01%,
respectively.

Keywords: video coding standard; VVC; VVenC; QTMTT; intra coding; machine learning; LightGBM

1. Introduction

A recent study was conducted by Cisco shows that, by 2023, video traffic will represent
a huge amount of the global Internet traffic [1]. This increase is caused by the high
demand on the Ultra High Definition (UHD), High Dynamic Range (HDR), Virtual Reality
(VR), Augmented Reality (AR) and 360-degree videos and also the versatility of video
applications such as web TV, video on demand, streaming websites, and many other
advanced video technologies. These different emerging applications continuously require
more efficient video coding techniques than those already adopted in the current video
coding standards such as High Efficiency Video Coding (HEVC) [2]. This is why the
Versatile Video Coding (VVC) [3] standard introduces many new advanced features to
meet these requirements, allowing it to achieve higher coding efficiency, handle various
video applications, and support current and emerging video formats. VVC is the new-
generation video coding standard developed by the Joint Video Exploration Team (JVET) of
the International Telecommunications Union (ITU) and the Moving Picture Experts Group
(MPEG). It is intended to be the successor to the current standards and aims to improve
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compression efficiency by up to 50% while maintaining a high level of video quality over
the HEVC standard [3]. Similarly to HEVC, a block-based hybrid video coding scheme
was primarily designed for VVC. Additionally, to overcome some limitations of HEVC and
enhance VVC coding efficiency further, multiple sophisticated tools were also involved.
For instance, in the partitioning block, VVC supports separate trees for Luminance (Luma)
and Chrominance (Chroma) partitioning. It also supports larger Coding Tree Unit (CTU)
sizes than HEVC by allowing the coding of blocks of 128 × 128 [3]. Moreover, VVC has
introduced the new Quad Tree with a nested Multi-Type Tree (QTMTT) scheme, which
replaces the previously used Quad Tree structure of HEVC. Another major advancement
in the VVC standard is related to the intra-frame prediction. The Intra prediction takes
full advantage of the spatial redundancy within the same frame to predict a Coding
Unit (CU). This predicted sample is based on the neighboring samples in the left and
above CUs that have already been encoded. Moreover, the intra-frame prediction in VVC
utilizes significantly more modes for prediction compared to HEVC, which only supported
33 angular modes in addition to Planar and DC modes [3]. VVC has expanded the number
of angular modes to 65 angular and wide angular modes, while still maintaining the DC and
Planar modes. Furthermore, new prediction techniques for intra-frame coding were added
in VVC. Among them, the adoption of Intra Sub-Partition (ISP), which divides the CU
Luma component into two or four sub-partitions vertically or horizontally and shares the
coding mode information while separating the prediction and transform processes. Another
intra-frame technique, called Multiple Reference Line (MRL), has been added to allow the
prediction of Luma samples from non-adjacent reference lines that can be two or three
lines away from the current block. Other techniques, such as Wide-Angle Intra Prediction
(WAIP), Cross-Component Linear Model (CCLM), and Matrix-based Intra Prediction (MIP),
have also been included in VVC. The Transformation and Quantization block in VVC was
designed similarly to HEVC. In addition, VVC introduced a new Multi Transform Selection
(MTS) block by supporting more separable trigonometrical transform types in addition
to those already used in HEVC. It added to the DCT-2, two new types of sine and cosine
transform (DST-7 and DCT-8). The Low-Frequency Non-Separable Transform (LFNST) was
also introduced in this video coding standard [3]. VVC incorporates additional features
and tools to improve its coding efficiency, at the cost of a high computational complexity.
As a result, when compared to HEVC, a greater number of coding tools are supported
in VVC, though for an optimized encoder, evaluating all possible choices per each tool is
typically not practical because of the high cost of the search space.

Many previous works in the literature are highly active to overcome the VVC com-
putational complexity. Some of them focused on hardware implementations [4–7]. While
others aim to reduce this complexity by using statistical- and heuristic-based approaches,
such as [8–10], or algorithmic optimization, by introducing Machine Learning (ML) and
Deep Learning (DL) based approaches, such as [11–15].

Machine learning and deep learning have shown a significant efficiency in various
domains, since they can be used to address a wide range of complex problems. In the field of
medical diagnosis, machine learning algorithms have been used to analyze medical images
and detect anomalies, leading to improved diagnosis and better patient outcomes [16,17].
Similarly, deep learning has been used in the renewable energy sector to optimize energy
production and improve solar panel efficiency, which can lead to cost savings and a reduced
environmental impact [18]. The efficiency of ML and DL in these and other domains
depends on various factors such as data quality and quantity, model accuracy, and specific
requirements of each domain. Nonetheless, with the right data and models, ML and DL
can greatly improve efficiency and increase accuracy in a wide range of applications. In
this context, due to the increasing demand on video applications, it is crucial to find ways
to reduce the computational complexity of video coding standards while preserving a high
coding efficiency. Machine learning presents itself as a promising solution in this scenario,
as it has the potential to significantly reduce the computational effort without having a
huge impact on the coding efficiency.
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Among the various machine learning techniques, Light Gradient Boosting Machine
(LightGBM) has been proven to be a highly effective and versatile approach. This technique
has been used in a broad range of applications and has demonstrated remarkable results [19].
LightGBM is based on Decision Tree (DT) classifiers and is designed to be hardware-friendly,
making it ideal for use in battery-powered devices commonly used in video applications.
Furthermore, LightGBM provides superior customization compared to other traditional
machine learning techniques, such as Support Vector Machine (SVM), Decision Tree (DT),
and Random Forest (RF) [19]. This is due to the combination of gradient descent and
boosting techniques that LightGBM employs, which offers a large set of adjustable hyper-
parameters that can be optimized for the specific needs of the application. Thus, LightGBM
demonstrated an outstanding results in various cases which make it an ideal choice for
video coding applications [13].

In this particular case, our contributions rely on proposing a new approach to reduce
the complexity of VVC encoder targeting real-time processing by optimizing the CU
partitioning of the VVC encoder in intra configuration. In order to achieve this goal,
we combined the use of an optimized implementation of VVC by selecting the VVenC
encoder developed by The Fraunhofer Heinrich Hertz Institute (HHI) [20], and the use of
an efficient machine learning algorithm through the use of LightGBM [21], which offers
a reduced inference time. The LightGBM models were trained using a dataset generated
by the VVenC encoder by extracting features during the encoding process. In addition,
instead of the usually used multiclassification strategy, a new method based on five binary
classifiers is introduced in order to handle the classification problem. Moreover, to tackle
the problem of misclassification, we used the concept of risk intervals, which leads to
improving the classification performances. This way results in a noticeable decrease in
the computational complexity with a slight and acceptable increase in the BDBR loss. The
main target is the design of a real-time encoder with multiple trade-off points between rate
distortion performances and time-saving. We also proposed a new preset that is designed
to provide a good balance between the encoding time and the coding efficiency, making
it an attractive option for real-time video encoding applications. It should also be noted
that all the mentioned state-of-the-art works were integrated into the VVC Test Model
(VTM) reference software [22], whereas our approach has been integrated into the VVenC
encoder. This can help to validate and demonstrate the effectiveness of our approach, and
can contribute to the development of new and improved video encoding techniques.

The remainder of this paper is organized as follows: Section 2 presents the VVenC
encoder, the partitioning block in VVC and a review of the state-of-the-art works focusing
on the complexity reduction of this block. Section 3 describes the proposed method to
reduce the complexity of the CU partitioning in VVC. In Section 4, experimental results are
shown and compared to the literature results. Finally, the paper is concluded in Section 5.

2. Background and Related Works
2.1. VVenC: An Open and Optimized Implementation of VVC Encoder

Since the standardization of VVC, JVET supplies a VVC Test Model software reference
called VTM [22]. It is usually used as the reference software to evaluate the proposed
techniques dedicated to the complexity reduction. Furthermore, just after the finalization
of VVC standard, the Fraunhofer HHI presented a project to develop an encoder based on
VTM software with the purpose of providing a real-world encoder known as VVenC [20].
VVenC can be defined as an open optimized implementation of VVC including all VTM’s
performance at shorter runtimes. Moreover, it presents real-world encoder features such
as single-pass and two-pass rate control, and an efficient multi-threading for a further
speedup. Based on VTM and written in C++, the VVenC software has been optimized
with a new design to reduce performance bottlenecks, enhanced SIMD optimization,
faster encoder search algorithms, and multi-threading support to take full advantage of
parallel processing. In addition, VVenC offers practical encoding features such as frame-
level bitrate control and visually optimized encoding to support a dynamic, quick, as



Electronics 2023, 12, 1338 4 of 23

well as an easy-to-use video encoding solution for the VVC standard. Thus, VVenC is
more optimized for a Random Access (RA) use case and for high resolution videos [23].
Additionally, two standalone encoder executables are provided, known as vvencapp and
vvencFFapp. The first executable, vvencapp, is a simple application optimized for ease of use
and only provides basic options. The second one, vvencFFapp, is a full-featured encoder
application with a VTM style interface, allowing for the specification of more options and
parameters’ configuration.

VVenC allows users to select from different speed presets to find the best trade-off
between encoding efficiency and speed. The five speed presets available are Slower, Slow,
Medium, Fast and Faster [23]. The Slower preset offers a higher coding efficiency, but it
takes more time to encode a video. The Slow preset, on the other hand, takes less time for
encoding compared to the Slower, at the cost of a decreased coding efficiency. The Medium
preset offers a balance between encoding speed and output quality. The Fast preset, in
contrast, prioritizes speed over quality and thus it takes less time to encode a video but
produces a lower image quality. The Faster preset takes the shortest amount of time to
encode with the lowest coding efficiency. Thus, users can select the most appropriate preset
based on their specific requirements and the trade-off between quality and speed that is
acceptable for their applications. The VVenC analysis in [24] confirm that these presets
are selected based on whether the target is to achieve a high visual quality or a reduced
encoding time as well as they show a consistent behavior for random-access encoding.

2.2. The Partitioning Block in VVC

Like the vast majority of video encoders, VVC includes five main steps [3]: The
partitioning block that divides the frame into smaller blocks to be encoded, the prediction
block, for either intra- or inter-frame prediction, the transform and quantization, and the
entropy coding, as illustrated in Figure 1.

Picture 

partitioning

Transform + 

Quantization

Entropy 

coding

Prediction

Intra/ Inter

Figure 1. The main steps of a VVC encoder.

Concerning the partitioning block in VVC, each frame is initially divided into one or
more tile rows and one or more tile columns. A tile is a group of Coding Tree Units (CTUs)
that cover a rectangular area in a frame. This latter is made up of one or three Coding Tree
Blocks (CTBs), depending on whether the video signal is a monochrome signal or has three
color components. In addition, VVC supports separated trees for both Luma and Chroma
partitioning [3].

As a result, a picture is segmented into equal-sized blocks called CTU, with a maximum
size of 128 × 128 pixels. Then, each frame is processed from top left to bottom right in a
raster scan order. Furthermore, in a low level, each CTU is recursively subdivided into
smaller blocks, either square or rectangular shapes, called Coding Units (CUs); using
the recursive quad tree and finer mode splits binary and ternary tree in both directions,
horizontal and vertical. This leads to six possible split modes, including: No Split (NS),
Quad Tree (QT), Binary Tree Horizontal (BTH), Binary Tree Vertical (BTV), Ternary Tree
Horizontal (TTH) and Ternary Tree Vertical (TTV), as illustrated in Figure 2a.
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Figure 2. QTMTT structure for the partitioning block in VVC. (a) Available CU split modes in VVC.
(b) Example of a QTMTT scheme division for a CTU.

In the QTMTT scheme, if a CU is assigned the NS mode, it retains its original size and
the coding process begins. If a CU of size W × H (W: Width, H: Height) is defined as a
QT split, it is divided into four equal sub-CUs of size W/2 × H/2. For a CU with a BTH
split mode, it is divided into two sub-CUs of size W × H/2 or W/2 × H for a BTV split
mode. For a CU with a TT split mode, it is divided into three sub-CUs. For TTH, the first
sub-CU has a size of H/4 ×W, the middle one has a size of H/2 ×W, and the last one
has a size of H/4 ×W. However, for a TTV split, the first sub-CU has a size of H ×W/4,
the second one has a size of H ×W/2, and the third one has a size of H ×W/4. These
different split modes result in a partitioning scheme of six possible modes, as illustrated
in Figure 2a, while Figure 2b represents an example of CTU division using the QTMTT
scheme. During the encoding process, VVC uses the Rate Distortion Optimization (RDO)
process, which is involved in comparing multiple coding options for each coding unit.
These coding options include different coding and prediction modes, among others. The
goal of the RDO process is to find the optimal coding option that provides the best trade-off
between rate and distortion for each coding unit in video frames. Thus, VVC uses the RDO
process to evaluate the six options available in the QTMTT scheme in order to minimize
the distortion of the reconstructed video while keeping the bitrate low. The best CTU
partitioning structure is the one leading to the lowest Rate Distortion cost (RDcost) [25]
calculated by Equation (1):

RDcost = D + λ · B (1)

where D stands for the calculated distortion between the original and predicted blocks, B
denotes the cost in bits of a specific mode, multiplied by λ, which is the Lagrange multiplier.

VVC added some constraints to limit the larger number of possible split combinations.
Therefore, each CU split mode has to necessarily respect the constraints of the maximum
and minimum sizes of CUs as mentioned in the VTM draft [22]. In fact, in All Intra
configuration, VVC forces a CTU of 128 × 128 to be divided into four sub-CUs following
the QT split. Then, for each 64 × 64 CU, VVC checks whether it can be divided into four
sub-CUs following the QT split or to keep the original CU size. Table 1 shows all the
possible splits corresponding to each CU size in the All Intra configuration.

Table 1. Possible split modes according to the CU size.

Height
Width 64 32 16 8 4

64 QT -

32

-

All BT, TT BT
TTH

BTH
TTH16 BT, TT All

8 BT, TTV BT BTH

4 BTV, TTV BTV -
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In addition to the constraints on CU size, several other limitations must be respected.
For example, a QT split is no longer allowed after a BT or a TT split. Thus, Figure 2b shows
a possible CTUs partitioning with the QT, BT, and TT splits combination performed by the
QTMTT scheme included in VVC.

Figure 3 illustrates the first frame of BasketballPass video sequence in the Common
Test Conditions (CTC) sequences [26]. This frame was encoded using the VVenC encoder
under the All Intra configuration, with a Quantization Parameter (QP) of 37. The smooth
areas of the image tend to have fewer details, so larger blocks can be used to encode them
as shown in the green square. For areas with complex texture, smaller blocks are used to
better capture the details of the image. This allows the encoder to more efficiently compress
the data in the video. It is critical here to highlight that there are additional factors that
influence coding efficiency and encoding time—for instance, the QP value as well as the
depth of QT and MTT splits. Overall, the RDO process is a computationally intensive
process, as it requires evaluating the RD cost for a large number of possible CU partitions.
However, it is a highly effective technique for achieving high-quality video compression, as
it enables the encoder to select the optimal coding mode for each CU based on its content
and complexity.

Figure 3. Illustration of the QTMTT scheme partitioning on an encoded video sequence.

2.3. Related Works

One of the key features of VVC is the use of the RDO process, which allows for an
efficient decision-making by selecting the optimal configuration choices at each level of
the coding process such as partitioning, intra/inter prediction, transform, etc. However,
this process can increase the computational complexity of the encoder since it requires
testing all possible coding modes for each coding block before selecting the optimal one.
To address this issue, various optimization techniques were proposed, including early
termination and fast algorithms to reduce the number of candidate modes to be tested and
speed up the RDO process.

A study by Tissier et al. [27] has shown that there are several opportunities for
reducing the computational complexity of VVC in various modules. They encoded the
different CTC sequences using VTM 3.0 in All Intra configuration mode, and they save the
ground truth values for the three block (Partitioning, Transform, Intra-prediction). These
parameters were used as input for the second test, where they directly use the optimal
choices without passing by the RDO process. It was confirmed by this study that around
97% in encoding time could be saved if the optimal split mode in the partitioning block
could be directly predicted, which has a great potential for complexity reduction.

In [9], the authors proposed an early termination algorithm to skip unnecessary CU
split modes, by using a directional gradient that can directly decide either to Horizontally
or Vertically split the current block for both binary and ternary modes. This algorithm can
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save around 52% in encoding time with a BDBR degradation of 1.2% when compared to
the reference software VTM 5.0.

In [28], Fu et al. proposed a fast CU partitioning algorithm that incorporates two early
skipping methods. The first method skips vertical splits (BTV and TTV) early, and the
second one skips horizontal ternary splits (TTH) early. This approach was integrated into
VTM 1.0, and it resulted in an average time savings of 45% with an increase in BDBR of
about 1.02%.

With the emergence and the excellent performances of Machine Learning (ML), many
researchers have introduced several ML algorithms to the video compression field. For
instance, Tissier et al. proposed a two-stage learning-based technique in [11]. This method
was implemented in VTM 10.2, and it uses a Convolutional Neural Network (CNN) to
predict the spatial features of the input block by employing a vector of probabilities that
describes the partition at each 4 × 4 edge. After that, a Decision Tree (DT) model is used
to predict the most probable splits at each block using this vector of spatial features. The
RDO process then only processes the N most probable splits based on this prediction. Their
approach was able to achieve a significant reduction in encoding time of 47.4% and 70.4%,
with a BDBR loss of 0.79% and 2.49%, for the top-3 and top-2 configurations, respectively.

Li et al. in [12] proposed a deep learning approach to accelerate the encoding process
of the intra-mode in VVC by predicting the CU partition mode. This approach is based
on a Multi-Stage Exit (MSE) CNN which takes as input the CTU and then decides at each
stage, among others, the most probable split mode according to the CU size. Therefore,
they reduced the encoding time from 44.65% to 66.88% with a degradation in BDBR from
1.322% to 3.188%, respectively, over the original VTM 7.0.

Qiuwen et al. in [29] proposed a fast CU partition decision approach based on
DenseNet Network, and it was integrated into VTM 10.0. This approach takes a CTU
and divides it into four blocks of 64 × 64. These blocks are used as input for a CNN to
predict the probability that the boundaries of all the 4 × 4 blocks within each 64 × 64 CU
are divided. This method can save around 53.98% of encoding time while increasing the
BDBR by 1.80%.

In [30], Hoang et al. proposed a fast CU partition method for intra prediction using an
Early-Terminated Hierarchical CNN model to predict the coding unit map, which is also
fed into the VVC encoder to early terminate the block partitioning process. In addition,
according to experimental results, this method reduced the encoding time by 30.29% with
a BDBR increase of 1.39% over the VTM 12.1.

A fast CU partitioning approach for VVC intra coding was also proposed by
Zhang et al. [31], where they designed a Global Convolutional Network (GCN) mod-
ule with a large kernel size convolution, which is able to effectively capture the CU global
information and predict the partition mode over the QTMTT structure. With this technique
implemented in VTM 10.0, they achieved an encoding time reduction ranging between
51.06% and 61.15% with an increase of the BDBR varying from 0.84% to 1.52%. They also
used this method to accelerate VVenC at its slower preset, where they showed that the
proposed slower maintains the same average coding performance with a reduced encoding
time in comparison with the slow preset original. They also showed that the accelerated
VVenC slower decreased the BDBR by 0.25% in comparison with the medium, which
resulted in an improved performance and less complexity.

Based on a machine learning algorithm, authors in [13] designed a configurable fast
block partitioning for VVC by using LightGBM models to directly predict the CU split
without passing through the RDO process. This approach was embedded on VTM 10.0,
and it can save around 54.20% in encoding time with an increase in BDBR of 1.42%.

A fast coding unit partition decision algorithm is presented by Chen et al. in [14]. This
algorithm is based on six Support Vector Machine (SVM) classifiers to select the division
directions using some features that are derived from entropy, texture contrast, and Haar-
wavelet of the current CU. Experimental results of the comparison with the reference VTM
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4.0, show that this method can save around 51.23% of encoding time with a degradation in
BDBR by 1.62%.

A two-stage machine learning approach is designed by Quan et al. [15] based on two
Random Forest (RF) [32] classifiers integrated into VTM 7.0, where the CUs are initially
separated into three types named: simple, fuzzy, and complex CUs. The first RF classifier
is developed to directly find the best division mode for both simple and complex CUs.
Another RF classifier is used for fuzzy CUs to predict whether the partition process is
terminated or not. This method can save about 57% of encoding time with an increase of
1.21% in BDBR.

In [33], a machine learning-based algorithm is proposed to accelerate the VTM 10.0
encoder, where they use two SVM classifiers to terminate the redundant partitions early.
The classifiers were trained to predict the CU partition mode using texture information.
The first classifier is used to test if a CU should be split or not, and the second classifier is to
predict if the split should be horizontal or vertical. This approach yields a 63.16% reduction
in encoding time and a BDBR loss of 2.71%.

A summary of the machine learning based algorithms for CU partitioning block
complexity reduction is presented in Table 2 for an easier comparison. These results confirm
that CNNs provide better trade-offs, but their hardware implementations’ complexity is
still a big challenge, due to the computational requirements and the need of a large number
of parameters to achieve a better accuracy. Additionally, it can be clearly seen that other
ML models such as RF in [15] and LightGBM in [13] outperform other ML models in this
use case when applied to the VTM software.

Table 2. Comparison of the state-of-the-art works.

Approach Reference
Software Technique BDBR Loss (%) Complexity

Reduction (%)

Jing Cui [9] VTM 5.0 Heuristic 1.23 51.01
Fu [28] VTM 1.0 Heuristic 1.02 45.00
Tissier [11] VTM 10.2 ML+DL 0.79 47.4
Saldanha [13] VTM 10.0 ML (LightGBM) 1.42 54.20
Chen [14] VTM 4.0 ML (SVM) 1.62 51.23
Quan [15] VTM 7.0 ML (RF) 1.21 57.00
Guoqing [33] VTM 10.0 ML (SVM) 2.71 63.16
Li [12] VTM 7.0 DL 1.32 44.65
Qiuwen [29] VTM 10.0 DL 1.80 53.98
Hoang [30] VTM 12.1 DL 1.39 30.29
Zhang [31] VTM 10.0 DL 1.52 61.15

3. The Proposed Method

In the VVC standard, the RDO process has also been employed in the CU partition
process to improve the coding efficiency. It is involved in evaluating all possible split modes
to select the optimal one that provides the lowest RD cost, as described in the previous
Section 2.2. However, reducing the encoding time while maintaining the coding efficiency
can be achieved by skipping certain evaluations in the QTMTT structure. This approach
is desirable for optimizing the CU partitioning process and can lead to an improved
overall performance.

Since our main goal is to design a real-time encoder, we combined the use of an
optimized implementation of VVC known as VVenC [20], and the use of an efficient ML
algorithm called LightGBM [21], which is also less complex and simple to be embedded in
the encoder compared to some other ML algorithms [21]. LightGBM models were trained
to select the most probable split mode of each coding unit, using the features extracted from
the pixel domain that provide significant information about the texture complexity of the
CU. Furthermore, instead of using only one multi-classifier, the multi-classification problem
was divided into a binary classification by introducing five binary classifiers to make the
decision. The decision is made using risk intervals for each classifier rather than default
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thresholds. As a result, the classification performance of the classifiers was improved,
as described in the following sections. These LightGBM classifiers were subsequently
integrated into the VVenC encoder to directly predict the most probable split mode to pass
to the RDO process and skip the evaluation of the remaining modes.

The main stages of our approach are illustrated in Figure 4. First, a set of video
sequences was created using different image databases such as Div2k, 4K images, and
flickr2k. These video sequences were then encoded using the modified VVenC encoder
capable of calculating the CU texture information and other features to generate the dataset
of each split mode over the six possible options in the QTMTT scheme, including No
split, QT, BTH, BTV, TTH, and TTV. The dataset was preprocessed in the preprocessing
stage using dataset balancing and feature mutual information to select the most important
features for the training process. In the training stage, the hyper-parameters were optimized
using the Optuna tool [34], and then they were used to train our classifiers to be integrated
into the VVenC encoder. Finally, our proposed encoder was evaluated according to the
Common Test Conditions [26] using the 22 CTC video sequences, and the four values of QP
including 22, 27, 32, and 37. The results are presented in the experimental results Section 4.

Dataset Creation

Models Training

Preprocessing

Performance Evaluation

VVenC

Encoder

Dataset

Balancing

Features 

Selection

Hyperparameters

Optimization

LightGBM Models

Training

Our proposed 
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VVenC Encoder

CTC sequences
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32x16
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16x32
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….

32x32
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….

16x32

Training 
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Figure 4. Framework of the proposed approach for CU partitioning decision using LightGBM models
integrated into the VVenC encoder.

3.1. Fast CU Partition Decision Structure

The prediction of the partition that results in the best image quality for each CU while
minimizing its RD-cost is the objective of our solution. By ignoring certain split modes, the
number that must be checked by the RDO process is reduced. Thus, the selection of the best
split mode among the six possible splits already presented in Figure 2a is the problem that
must be addressed. As a result, the six-class classification problem has been approached by
separating it into five consecutive binary classifiers, as depicted in Figure 5a, rather than
building a single LightGBM classifier to handle it directly. This separation affords greater
flexibility in the decision structure and allows for the training of each classifier on specific
features, resulting in improved classification performance. This new suggested technique
investigates eight CU size classes in (CS ), where CS ∈ {32 × 32, 32 × 16, 16 × 32, 16 × 16
32 × 8, 8 × 32, 8 × 16, 16 × 8}. Other CU sizes are processed by the RDO process in the
encoder directly as illustrated in Figure 5b.

The five binary classifiers are used in a specific order and they are named according to
their function as follows:

• S-NS: It is used to decide whether a block should be divided into smaller sub-blocks
or encoded as it is;

• QT-MTT: It is used to decide the type of tree structure used for dividing the CU, it
could be QT or Multi Type Tree (BT, TT);

• Hor-Ver: It is used to decide the direction of the split, it could be horizontal or vertical;
• BTH-TTH: It is used to determine whether a BTH or TTH split is the optimal option

for a given CU;
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• BTV-TTV: It is used to determine whether a BTV or TTV split is the best option for a
given CU.

Indeed, after evaluating the intra-frame prediction of the concerned CU sizes, our
solution calculates and extracts the coding unit features to feed the LightGBM classifiers.
Then, the classification is made following the already presented algorithm in Figure 5a.
Subsequently, the most probable split type is selected according to the prediction process
detailed in Section 3.4 to be processed by the RDO process. Otherwise, the encoder calls
the RDO process to test all possible split types and select the one with the lowest RD-cost.
Finally, the CU partitioning process is terminated for the current CU and started for the
next one.

S-NS

QT-MTT

Hor -VerBTV-TTV BTH-TTH

S

MTT

Ver Hor

CU 
Features

No 
Spli t

NS

QT 
Spli t

BTH 
Spli t

QT

BTV 
Spli t

TTH 
Spli t

BTHTTHBTV

TTV 
Spli t

TTV

(a)

Star t 
encoding a 
Coding Unit

CU size is 
in CS

Extract CU 
features

RDO 
Process

CU spli t 
classi f ication

QT 
Spli t

BTV 
Spli t

BTH 
Spli t

TTH 
Spli t

TTV 
Spli t

No 
Spli t

Yes

No

Intr a 
Prediction

Encode 
Next CU

(b)
Figure 5. The proposed approach algorithm and its implementation flowchart. (a) The proposed
algorithm for CU partition selection. (b) Flowchart of the proposed approach.

3.2. Dataset Creation and Feature Extraction

To enhance and improve the training process of the LightGBM models, a dataset was
created for this purpose. As the study focuses on All Intra coding, no temporal relationship
between frames is required. Therefore, five public picture databases were selected for
the dataset, as described in [11], which are: 4K images, Div2k, jpeg-ai, HDR google, and
flickr2k. The images were then down-scaled to generate various resolutions, and finally
the pseudo-video sequences were created by combining the images of the same resolution,
as shown in Table 3, which presents the number of images per resolution.

Table 3. Distribution of our dataset by image resolutions.

Resolution 240p 480p 720p 1080p 4K 8K Total

Number of images 500 500 579 2557 654 418 5208

The modified VVenC encoder was used to encode the pseudo-video sequences using
the Slower preset in order to extract the CU features with the corresponding split mode
as labels. For this purpose, various pixel domain features of CUs and sub-CUs were
carefully selected, such as the quantization parameter, the horizontal and the vertical
gradients, the block pixels mean, the block variance and the sub-blocks’ texture complexity
difference. These features were calculated as described in our previous work [35], among
these features:
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• Quantization Parameter, QP: QP ∈ {22, 27, 32, 37}
• The vertical gradient, GradV :

GradV =
W−1

∑
i=0

H−1

∑
j=0
|P(i, j)− P(i, j + 1)| (2)

• The horizontal gradient, GradH:

GradH =
W−1

∑
i=0

H−1

∑
j=0
|P(i, j)− P(i + 1, j)| (3)

• The CU Pixels Mean, CUMean:

CUMean =
1

W · H
W

∑
i=1

H

∑
j=1

P(i, j) (4)

• The CU Pixels Variance, CUVar:

CUVar =
1

W · H
W

∑
i=1

H

∑
j=1

(P(i, j)− CUMean)2 (5)

• The sub-CU’s texture complexity, SCTC:

SCTCj =
1
k

k

∑
i=1

(
vari −varj

)2 (6)

where W and H represent the width and height of the CU or the sub-CU, respectively.
vari denotes the variance of the i sub-CU, obtained by Equation (5). varj is the average
value of the variance of the sub-CUs, corresponding to the split mode noted by j,
whereas k denotes the number of sub-CUs parts as indicated in Table 4:

Table 4. Split modes and their corresponding number of sub-CUs parts.

Split Mode (j) QT BTH BTV TTH TTV

Number of sub-CUs parts (k) 4 2 2 3 3

The calculation of these features is performed for the entire CU and all of its sub-CUs
parts denoted by Pi. For a square-shaped CU, the features are calculated for the sub-CUs
parts as shown in Figure 6a. In the case of a rectangular CU, the features are calculated by
evaluating its respective sub-CUs parts, as depicted in Figure 6b.

CU

P0 P1

P2 P3

P0

P1

P0 P1 P1P0 P2

P0

P2

P1

(a)

CU
P0

P1
P0 P1

P0

P2

P0 P2P1 P1

(b)
Figure 6. CU block for feature extraction. (a) Squared Sub-CUs blocks. (b) Rectangular Sub-
CUs blocks.
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3.3. LightGBM Models Training

The proposed fast CU partition decision approach uses the LightGBM algorithm
which is an open-source machine learning tool that builds a model based on the Gradient
Boosting Decision Tree (GBDT) approach [21]. This algorithm is known for its efficiency in
training on large datasets while using minimal memory. It incorporates two innovative
techniques, Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB), to enhance performance. GOSS allows LightGBM to train on each tree using only
a small portion of the entire dataset, while EFB enables it to handle high-dimensional
sparse features more efficiently. In addition, LightGBM supports distributed training,
which reduces communication costs, and GPU-accelerated training, which speeds up the
training process [21]. It is known for its efficiency and scalability, making it a popular
choice for training large models on large datasets. It is also designed to be distributed and
efficient, having the ability to handle a large-scale of data with lower memory usage. It has
many hyper-parameters that can be tuned to improve the model performance, such as the
maximum number of leaves in a tree, the learning rate, the maximum depth of a tree, and
the minimum number of samples required at a leaf node, as well as other hyper-parameters
that control the fraction of samples and features used for training a single tree [21]. Hyper-
parameter tuning is an essential step in optimizing the performance of LightGBM models,
and various techniques such as grid search or Bayesian optimization can be used to find the
optimal values for these hyper-parameters. In order to optimize our training parameters,
we applied the the Tree-structured Parzen Estimator (TPE) algorithm [36] using Optuna
tool, which is a Python library for hyper-parameter tuning that supports random search,
grid search, and other algorithms [34]. Thus, we estimated the best parameter values as
presented in Table 5.

Table 5. Training parameters for our LightGBM models.

Parameter Name Parameter Setting

Number of features 65
Number of estimators 30
Maximum Depth 15
Learning rate 0.05
Boosting type GBDT

The LightGBM models were trained on a computer with Intel Xeon(R) W-2145 CPU @
3.70 GHz, NVIDIA GeForce RTX 2080 Ti GPU and 64 GB RAM, using Ubuntu 20.04 LTS as
an operating system. We trained our LightGBM classifiers independently for each size of
CUs. Then, after obtaining the trained models for the CU sizes, with: CUSize ∈ {32 × 32,
32 × 16, 16 × 32, 16 × 16 32 × 8, 8 × 32, 8 × 16, 16 × 8}, they were integrated into the
VVenC encoder according to the proposed flowchart shown in Figure 5b to predict the split
mode for CUs during the encoding process.

To evaluate the classification efficiency of our trained classifiers, we measured their per-
formances using the base metrics commonly used for machine learning models evaluation,
such as Accuracy, Precision, Recall and F1-score.

Accuracy is defined as the number of accurately classified instance divided by a total
number of instances in the dataset. It is calculated as in Equation (7),

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

where

• TP stands for True Positive, and it represents an instance that is actually positive (i.e.,
belongs to the class 1), and it is correctly classified as positive by the model;

• TN means True Negative, and it represents an instance that is actually negative (i.e.,
belongs to the class 0), and it is correctly classified as negative by the model;
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• FP means False Positive, and it corresponds to an instance that is actually negative but
is incorrectly classified as positive by the model;

• FN means False Negative, and it corresponds to an instance that is actually positive
but is incorrectly classified as negative by the model.

Precision is a metric that measures the proportion of true positive predictions among
all positive predictions made by a machine learning model. In other words, it measures
the model’s ability to correctly identify the positive class. Precision is calculated as in
Equation (8),

Precision =
TP

TP + FP
(8)

Recall, also known as sensitivity or true positive rate, is a metric that measures the
proportion of true positive instances that are correctly identified by a machine learning
model. In other words, it measures the model’s ability to correctly identify the positive
class among all positive instances in the dataset. It is calculated as in Equation (9),

Recall =
TP

TP + FN
(9)

By taking both precision and recall into account, the F1 score provides more significant
information about the model performance, where a high F1 score indicates that the model
is able to achieve both high precision and high recall, while avoiding false positives and
false negatives. F1-score is calculated as defined in Equation (10):

F1 = 2× Precision× Recall
Precision + Recall

=
2× TP

2× TP + FP + FN
(10)

Consequently, Table 6 presents the accuracy and F1 score results achieved by each
classifier. It is clearly shown that these results are stable, which indicates that our trained
models achieved good classification performance.

Table 6. Accuracy and F1-score for each classifier.

Classifier Metric 32 × 32 32 × 16 32 × 8 8 × 32 16 × 32 16 × 16 16 × 8 8 × 16

S-NS Accuracy (%) 98.28 96.21 94.27 95.77 96.36 97.46 93.51 92.83
F1 score (%) 97.29 96.12 93.95 94.85 96.14 97.22 93.18 92.41

QT-MTT Accuracy (%) 86.65 - - - - 82.24 - -
F1 score (%) 86.73 - - - - 82.17 - -

Hor-Ver Accuracy (%) 87.60 90.21 84.17 83.23 93.16 87.35 77.51 79.83
F1 score (%) 87.52 89.95 84.27 83.38 92.88 87.21 77.35 78.16

BH-TH Accuracy (%) 84.55 87.21 - 85.64 93.16 87.76 - 74.36
F1 score (%) 84.13 87.38 - 85.14 92.96 86.94 - 74.12

BV-TV Accuracy (%) 85.18 85.67 81.62 - 72.73 82.68 79.56 -
F1 score (%) 85.34 84.03 81.11 - 70.98 81.87 77.12 -

These results confirm the effectiveness of the classifiers in the prediction of the CU split
mode, which could potentially lead to an improved video coding efficiency. Furthermore,
in comparison with the LightGBM classifiers used by Saldanha et al. in [13], our classifiers
outperform them by achieving better classification performance. Indeed, most of our
classifiers achieve an accuracy up to 72%, while some of them reach around 98%.

3.4. Prediction Process and Decision-Making

Misclassification is a common problem in classification tasks, where classifiers may
incorrectly assign an instance to a class [35]. One reason for misclassification is the use of
default thresholds for making classification decisions. These thresholds may not always
be optimal for a particular dataset or task, leading to a poor performance. To address this
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issue, we used the risk intervals as a way to increase the classification performance. Risk
interval is defined as a range of predicted probabilities or scores that are used to decide
which class a given sample should be assigned to. In our case, we trained binary classifiers
with two possible outputs; class A and B, where: (A, B) ∈ {(S, NS), (QT, MTT), (Hor, Ver),
(BTH, TTH), (BTV, TTV)}. A given binary classifier output class is: class A when its output
probability is greater than ∆Max, and class B when output probability is less than ∆min.
Otherwise, the two possible classes are tested when the output probability is in the risk
interval, i.e., between ∆min and ∆Max, as shown in Figure 7, where ∆min and ∆Max are
the minimum and maximum boundaries for decisions A and B, respectively.

0 ∆min 0.5 ∆Max 1

Class B Class A & Class B Class A

Figure 7. Risk interval in machine learning.

The risk interval concept allows for a more nuanced evaluation of the classifier’s
performance, taking into account the level of uncertainty associated with the classifica-
tion accuracy.

It was determined through further analysis that the risk interval boundaries ∆min
and ∆Max must be adjusted for each classifier. Hence, different risk intervals were defined
as follows: firstly, a video sequence was created by concatenating 10 images of the same
resolution of 832 × 480. This video was encoded using the VVenC Encoder and the Slower
preset in the All Intra configuration mode. The encoding process was then repeated six
times by testing the predefined intervals (α0, α1, α2, α3, α4, α5) and then compared to the RD
performance information of the VVenC encoder anchor at the Slower preset in AI coding:

• α0 = [0.10; 0.90]
• α1 = [0.20; 0.80]
• α2 = [0.30; 0.70]
• α3 = [0.35; 0.65]
• α4 = [0.40; 0.60]
• α5 = [0.45; 0.55]

These risk intervals were evaluated using the BDBR loss as in Equation (11) and the
encoding time reduction as in Equation (12). The trade-offs between time-saving and
coding efficiency are illustrated in Figure 8, where it is shown clearly that trimming the
risk interval and making it smaller, from α0 to α5, results in a gain in terms of time-saving
but at the cost of an increased BDBR loss. This explains the impact of the risk interval size
on the performance of the classifiers.

These results showed that the two following risk intervals (α2 and α5) with the prede-
fined boundaries ∆min and ∆Max presented the best trade-offs in encoding efficiency and
encoding time saving:

• Larger Risk Interval: α2 = [0.30; 0.70];
• Smaller Risk Interval: α5 = [0.45; 0.55].

Table 7 shows the different set of risk intervals values for each classifier. Indeed,
the classifiers with lower accuracy have higher false positive and false negative rates,
which leads to a higher uncertainty in the predictions. Therefore, a larger risk interval (α2)
is needed to account for this uncertainty. However, for classifiers with higher accuracy,
smaller risk intervals (α5) are used.
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Figure 8. Risk intervals’ trade-offs in terms of encoding time reduction and BDBR loss for a video
sequence encoded using different thresholds for classification.

Table 7. Risk intervals for each classifier.

Classifier 32 × 32 32 × 16 32 × 8 8 × 32 16 × 32 16 × 16 16 × 8 8 × 16

S-NS α5 α5 α5 α5 α5 α5 α5 α5
QT-MTT α5 - - - - α5 - -
Hor-Ver α5 α2 α2 α2 α2 α2 α2 α2
BH-TH α2 α2 - α2 α2 α5 - α2
BV-TV α2 α2 α2 - α2 α2 α2 -

4. Experimental Results
4.1. Implementation Details and Evaluation Environment

By evaluating our proposed approach on a different set of video sequences than the
video sequences used for training, it is possible to obtain a more accurate sense of how well
the model will perform on new data. This is especially crucial in the context of video coding,
where the characteristics of the video data can vary widely, so the model must be able to
adapt to different types of video content. As a result, the test set for this study consists
of the 22 CTC video sequences of JVET common test conditions [26]. These videos are
then encoded using our proposed solution included in VVenC v1.3.1 [37] through its Full
Feature encoder (vvencFFapp), in All Intra coding mode, over the five predefined presets,
and the four QP values including 22, 27, 32 and 37.

To evaluate the results and the performance of this solution, the Bjontegaard Delta
Bitrate (BDBR) [38] was adopted as a metric. It is used to measure the improvement in
bitrate efficiency achieved by using a certain video coding method or technology compared
to a reference method. It is defined as mentioned in [39], and it is calculated as a weighted
average of the BDBR with a ratio of 6:1:1, for the luma component Y, and the two chroma
components U and V of a video signal by using the following Equation (11):

BDBRYUV =
(6 · BDBRY + BDBRU + BDBRV)

8
(11)

The encoding time is also used to determine the time-saving noted by Encoding Time
Reduction (∆ETR) and calculated using Equation (12),

∆ETR =
1
4 ∑

QPi∈{22,27,32,37}

TR(QPi)− TP(QPi)

TR(QPi)
(12)

This equation indicates that the global time saving is estimated by averaging the time
differences between the needed encoding times by the original and proposed method over
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the four QP values (22, 27, 32 and 37). TR and TP are respectively the encoding time taken
by the VVenC Reference and the VVenC Proposed encoders.

All our experiments have been performed on a cluster equipped with 48 CPUs of
Intel Xeon E5-2603 v4 and a memory of 385 GB running on a Linux 5.15.0-50-generic
operating system.

4.2. VVenC Encoder in All Intra Configuration Analysis: Comparison with VTM

As already stated in the previous Section 2.1, VVenC is more optimized for a Random
Access (RA) use case. In fact, it includes all of VTM’s coding tools in addition to other
optimizations. For instance, when compared to VTM, additional speedups are implemented
for partitioning search, motion and merge search including new motion models (affine,
adaptive motion vector resolution, symmetric merge vector difference, merge with motion
vector difference and geometric partitioning mode), and new intra tools including intra
sub-partitions and matrix-based intra prediction [23]. In addition, an optimized integer
based RDOQ is included and enabled in Faster and Fast presets [23]. Consequently, VVenC
has a 1.5x speedup compared to VTM, which shows clearly that VVenC in RA is closer to
the VTM, while it is not optimized for the All Intra configuration use case. As mentioned
in [23], the runtime difference of VVenC various presets is smaller when using the AI
configuration, which is reasonable considering that the software has not been optimized
for that use case. In AI configuration, each frame in a video is encoded independently
without reference to any other frames, using only intra-frame prediction. This can lead
to a higher quality video, but it may also require a higher bitrate and take a longer time
to encode compared to coding modes that use inter-frame prediction. For these reasons,
our work aims to further optimize the VVenC encoder in order to gain more in encoding
time reduction while maintaining its encoding performances for AI coding significantly.
Table 8 presents a side-by-side comparison of the encoding performance achieved using
the two video encoders: the anchor VVenC 1.3.1 with its Slower preset, and VTM 10.0. The
evaluation was conducted under the AI configuration and according to the common test
conditions settings [26].

The comparison insights show that the VVenC Slower is slightly faster than the VTM
10.0 in the AI configuration, with a gain in the encoding time of 29.23%, at the cost of a
degradation in BDBR by 1.10% over the six CTC classes. This is an interesting behavior,
since VVenC does not include any additional coding tools optimized for this use case [23].
The slight advantage could be attributed to a different implementation of some intra-
oriented coding tools [23], such as ISP and LFNST, which are implemented in VVenC
inside the transform coding loop search rather than the coding unit loop search as in VTM.
Therefore, this preset can be considered as the closest preset to the VTM intra encoder,
which validates our choice to use it as the reference preset for evaluating our proposed
approach and comparing it with the other remaining presets.

Table 8. VVenC encoder in All Intra configuration analysis compared to the VTM 10.0 encoder.

Presets Slower

Class BDBR (%) ∆ETR (%)

A1 (3840 × 2160) 1.14 32.37
A2 (3840 × 2160) 3.85 36.28
B (1920 × 1080) 0.28 29.57
C (832 × 480) 0.72 25.25
D (416 × 240) 0.73 24.07
E (1280 × 720) −0.12 27.88

Average 1.10 29.23
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4.3. Comparison of the Slower with the Other Original Presets in AI Coding: Slow, Medium, Fast
and Faster

It is important to consider the trade-offs between the encoding time and the coding
efficiency when selecting a preset in the VVenC encoder. The Slower preset was utilized
as the reference for evaluating the performance of the other presets, which enables a
comprehensive assessment of the trade-offs between the encoding time and the encoding
efficiency of each preset. Table 9 presents the comparison results in terms of Encoding Time
Reduction (ETR) and BDBR Loss.

Table 9. Trade-offs between Encoding Time Reduction ∆ETR (%) and coding efficiency BDBR (%):
results of the VVenC original presets compared to the Slower original.

Presets Slow Medium Fast Faster

Class BDBR (%) ∆ETR (%) BDBR (%) ∆ETR (%) BDBR (%) ∆ETR (%) BDBR (%) ∆ETR (%)

A1 1.21 54.78 1.61 73.73 8.05 92.19 18.02 97.83
A2 1.48 51.34 2.46 74.87 10.83 94.07 21.38 98.58
B 1.40 54.85 2.50 78.11 9.32 94.90 20.46 98.70
C 1.49 55.31 3.00 80.55 9.60 95.95 21.24 98.99
D 1.02 57.11 2.34 81.50 8.26 96.17 17.38 99.10
E 1.39 53.14 3.00 77.56 10.52 94.76 23.99 98.17

Average 1.33 54.42 2.49 77.72 9.43 94.67 20.41 98.56

These results show that the Slow preset leads to an encoding time reduction of 54.42%
with a slight increase in BDBR loss of 1.33% on average compared to Slower. This is due to
the features and tools that were disabled in this preset compared to Slower. The second
preset Medium provides a reduction in encoding time of 77.72% with a degradation in
the video quality by around 2.49% of BDBR loss because it is optimized to achieve a good
balance between encoding speed and compression efficiency, which is achieved by using a
combination of compression techniques and tools, such as the reduced depth of the QT and
MTT division tree [20]. The Fast and Faster presets offer a greater encoding time reduction
up to 94% but at the cost of an increased BDBR loss of 9.43% and 20.41%, respectively. As
the results show, going from the Slower to the Faster, a great encoding time reduction is
achieved at the cost of a relative video quality degradation.

These presets are suitable for a variety of different use cases, depending on the specific
needs of the user. For example, users who are more concerned with achieving the highest
possible quality may choose to use one of the slower presets, while those who are more
focused on speed may opt for a faster preset. By providing a range of options, the VVenC
encoder allows users to find the optimal balance between performance and efficiency for
their specific needs.

4.4. Performance Evaluation of the Proposed VVenC Encoder Presets: Slower, Slow, Medium, Fast
and Faster

In order to evaluate our proposed approach, the 22 CTC sequences were encoded
using the five presets and compared to the results of the encoding process using the Slower
preset of the VVenC anchor as a reference. The experimental results shown in Table 10
demonstrate that the Slower preset resulted in an average of 30.21% in the encoding time
reduction with a slight increase in BDBR loss of 0.67%. This level of BDBR loss is generally
considered to be a negligible degradation in coding efficiency, indicating that this speedup
in encoding time can be achieved without a significant loss in video quality.

In the proposed Slower preset, the maximum ETR is presented by the FourPeople
sequence by over 41.84%, and the minimum is presented by the ParkRunning3 sequence
with an encoding time reduction of 10.88%. The second preset, Slow, provides a time
savings of up to 67.12% and a BDBR loss of 1.91% on average compared to the reference,
which is a good behavior since Slow is more optimized in terms of runtime compared
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to Slower. This is followed by the Medium, which resulted in about 82.46% in encoding
time reduction with a loss in BDBR of 3.01%. This preset offers a balanced trade-off in
encoding time and efficiency. The Fast and Faster presets accelerated the encoding process
by saving time, but also caused a higher BDBR loss. For instance, the Fast preset reduced
the encoding time by 96.78%, at the cost of 9.83% in BDBR loss. The Faster preset reduced
the encoding time by 98.91%, but with an increased BDBR of 20.45%.

Table 10. Trade-offs between Encoding Time Reduction ∆ETR (%) and encoding efficiency BDBR (%):
results of the proposed solution of the five presets compared to the Slower original.

Presets Slower Slow Medium Fast Faster

Class Video BDBR
(%)

∆ETR
(%)

BDBR
(%)

∆ETR
(%)

BDBR
(%)

∆ETR
(%)

BDBR
(%)

∆ETR
(%)

BDBR
(%)

∆ETR
(%)

A1
Campfire 0.49 32.56 1.71 79.94 2.56 81.15 9.88 95.68 16.06 98.37
Tango2 −0.40 30.76 0.76 77.61 1.07 68.94 8.30 96.15 21.56 97.58
FoodMarket4 0.23 32.15 1.66 69.96 1.86 69.40 6.51 94.89 16.55 97.89

Average 0.11 31.82 1.38 75.84 1.83 73.16 8.23 95.57 18.06 97.95

A2
DaylightRoad2 0.94 20.61 2.33 67.90 3.57 79.57 14.74 96.88 26.69 98.95
CatRobot1 0.50 18.21 2.28 62.54 3.31 75.36 11.36 95.51 24.05 98.45
ParkRunning3 0.61 10.88 1.72 56.81 2.17 74.53 8.10 94.75 13.49 98.48

Average 0.68 16.57 2.11 62.42 3.02 76.49 11.40 95.71 21.41 98.63

B

MarketPlace 0.45 34.31 1.63 64.70 2.08 85.77 7.35 98.97 14.90 99.52
RitualDance 0.94 38.07 2.19 65.75 3.11 87.83 8.62 98.88 17.59 99.28
BQTerrace 1.32 33.92 2.95 68.56 4.36 89.39 11.04 98.44 22.63 99.42
BasketBallDrive 0.49 33.25 1.99 67.92 3.39 87.74 12.08 99.62 27.52 99.58
Cactus 0.73 30.62 1.77 66.43 2.93 88.22 9.90 98.79 19.85 99.50

Average 0.79 34.03 2.11 66.67 3.17 87.79 9.80 98.94 20.50 99.46

C

PartyScene 0.41 33.88 1.38 68.25 2.53 89.60 8.05 97.29 15.41 99.56
BQMall 0.91 27.94 2.20 66.40 3.75 88.56 11.51 97.70 22.95 99.70
BasketBallDrill 1.36 23.20 3.65 63.24 5.63 87.39 12.00 98.28 30.61 99.61
RaceHorsesC 0.51 26.56 1.30 65.91 2.41 88.55 7.96 97.76 15.83 99.56

Average 0.80 27.90 2.13 65.95 3.58 88.53 9.88 97.76 21.20 99.61

D

BQSquare 0.37 30.30 1.45 67.37 2.69 88.98 8.80 97.88 16.02 99.59
BlowingBubbles 0.47 37.37 1.11 68.34 2.26 87.85 7.29 96.96 15.66 99.51
BasketBallPass 0.76 26.63 1.78 67.20 3.30 86.99 10.08 97.46 20.76 99.44
RaceHorsesD 0.48 32.85 1.15 67.83 2.32 87.23 7.85 97.18 17.01 99.44

Average 0.52 31.79 1.37 67.69 2.64 87.76 8.51 97.37 17.36 99.50

E
FourPeople 1.32 41.84 2.58 64.86 3.99 81.87 10.93 95.67 22.96 98.68
Johnny 1.11 39.34 2.41 66.22 4.05 81.14 11.71 95.21 25.40 98.14
KristenAndSara 0.95 36.29 2.17 61.48 3.50 80.10 10.82 95.05 24.21 98.21

Average 1.13 39.16 2.39 64.19 3.85 81.04 11.15 95.31 24.19 98.34

Classes average 0.67 30.21 1.91 67.12 3.01 82.46 9.83 96.78 20.45 98.91

Figure 9 illustrates the trade-offs between the encoding time saving and the BDBR loss
for each VVenC preset, when comparing the original and the proposed solution. It shows
that the proposed approach can significantly save more time with a slight increase in BDBR
degradation, which is confirmed by the results presented in Table 10.

These experimental results illustrated in Figure 9 show that we could achieve great
speedups for the Slower, Slow and Medium presets. Additionally, we introduced a new
preset, depicted by a green star in Figure 10, which demonstrated a significant reduction in
encoding time with a reasonable increase in BDBR. This proposed preset is primarily based
on the original Medium preset with some parameter adjustments.

This indicates that there is a relationship between the time-saving and the BDBR loss.
In other words, as the encoding time is reduced, the quality of the encoded video will also
decrease. The choice of the preset will depend on the specific needs of the user, such as the
desired balance between the encoding time and video quality.



Electronics 2023, 12, 1338 19 of 23

20 0 20 40 60 80 100
Encoding Time Reduction (%)

0

5

10

15

20

BD
BR

 L
os

s (
%

)

Slower Ref Slower Pro

Faster Pro
Faster Org

Fast Pro

Fast Org

Medium Org
Medium Pro

Slow Org Slow Pro

VVenC Original
VVenC Proposed

Figure 9. Original vs. proposed VVenC encoder presets’ speedups.
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Figure 10. Original vs. proposed VVenC encoder presets’ trade-offs in terms of ∆ETR (%) and
BDBR (%).

To further examine our proposed solution, we compared each preset individually
using the original and the proposed encoders, and the results shown in Table 11 were
achieved. Consequently, the results indicate that the proposed approach was able to
significantly reduce the encoding time by over 27% on average across these presets. At the
same time, the proposed approach was able to maintain a good level of image quality, as
indicated by the BDBR measurements. The BDBR loss is likely to decrease slightly from the
Slower preset to the Medium, which may be due to changes in the configuration files of the
values of certain parameters related to the CU partitioning process, such as the maximum
depth of the QTMTT structure and the maximum CTU size.

Table 11. Comparison of each preset individually using the original and the proposed encoders.

Preset Encoding Time Reduction (%) BDBR Loss (%)

Slower 30.21 0.67
Slow 28.12 0.58
Medium 23.67 0.52
Fast 21.98 0.38
Faster 25.63 0.05

Overall, these results demonstrate that the proposed approach was able to effectively
balance the trade-off between encoding time and image quality. This is an important
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consideration for many users, as the encoding process can be resource-intensive and time-
consuming. By using the proposed approach, users may be able to save time and resources
while still maintaining a high level of image quality.

4.5. Comparison with the State-of-the-Art Techniques

In this subsection, a comparison of the proposed solution with other state-of-the-
art approaches was conducted in terms of encoding time reduction (ETR) and BDBR
loss. Table 12 shows the average trade-offs over the different video sequences’ classes.
The state-of-the-art approaches were embedded and evaluated using the VTM reference
software, while the proposed approach was integrated into the VVenC 1.3.1 [37] using the
Slower preset as a reference. In addition, a new preset was proposed to further increase
the speed of the encoding process with a slight BDBR degradation. These two presets
show a great improvement in the encoding process by saving time while maintaining a
significant image quality. It is important to note that a direct comparison of the proposed
approach implemented in the VVenC encoder with the state-of-the-art works that utilize
the VTM reference software may not be entirely significant. Therefore, a more appropriate
comparison would be to compare the proposed approach with other state-of-the-art works
embedded on the VVenC encoder and that have been optimized for similar use cases.

Table 12. Performance comparison of the proposed solution with the state-of-the-art approaches in
AI coding.

Approach Saldanha [13] Guoqing [33] Zhang [31] Slower Proposed Proposed Preset

Class BDBR (%) ∆ETR (%) BDBR (%) ∆ETR (%) BDBR (%) ∆ETR (%) BDBR (%) ∆ETR (%) BDBR (%) ∆ETR (%)

A1 1.05 53.39 2.18 58.70 1.65 61.19 0.11 31.82 1.25 74.75
A2 1.11 52.63 2.25 63.11 1.87 63.04 0.68 16.57 2.01 74.31
B 1.40 58.26 2.87 66.93 1.52 64.43 0.79 34.03 2.04 77.89
C 1.65 51.99 2.92 62.27 1.39 58.61 0.80 27.90 2.17 72.15
D 1.24 49.92 1.98 60.01 0.95 56.35 0.52 31.79 1.47 69.87
E 2.07 58.44 4.08 66.78 1.97 62.74 1.13 39.16 2.38 69.48

Average 1.42 54.20 2.71 63.16 1.52 61.15 0.67 30.21 1.89 73.07

The results in Table 12 showed that, in terms of encoding efficiency, the best results
measured by the BDBR metric were achieved by our proposed approach using the Slower
preset followed by the approach presented by Saldanha in [13] and Zhang in [31] with
values of 1.42% and 1.52%, respectively, while Guoqing in [33] achieved reached a higher
degradation in BDBR of 2.71%. In terms of ETR, our proposed preset outperforms the
other cited works with an average of 73.07%, followed by the solutions of Guoqing [33],
Zhang [31], Saldanha [13], and finally our proposed solution with the Slower preset.

Indeed, the Slower preset offers the lowest BDBR degradation by only 0.67% with a
significant time savings of 31.21%, which is a good trade-off in comparison with the other
mentioned works. Concerning the proposed preset, it leads to a larger ability to save time
by up to 73.07% over these state-of-the-art works with a reasonable increase in BDBR loss
of 1.89%. Overall, the proposed solution demonstrated good performance in comparison to
the other works by achieving a good balance between BDBR degradation and encoding
time reduction. As also shown in Figure 10, the proposed preset represented by the green
star is under the two curves of the original and proposed VVenC presets. This confirms
clearly that it is able to save more time at the cost of a reasonable BDBR loss of 1.89%
compared to the all remaining presets. These results indicate that the proposed solution is a
promising approach, although there is potential for further improvements in the encoding
process efficiency.

5. Conclusions

In this paper, we presented a new approach based on LightGBM models to accelerate
the CU partitioning process in the VVC intra coding. This approach integrated into the
VVenC encoder extracts CU features and uses them to feed the LightGBM classifiers, which



Electronics 2023, 12, 1338 21 of 23

can directly predict the most probable split mode among all the available options in the
QTMTT structure. Additionally, predefined risk intervals were used for each classifier to
further improve their classification performance. We also proposed a new preset that offers
a good balance between quality and speed, by saving around 73.07% in the encoding time
with only 1.89% in BDBR loss compared to the other presets. The experiments showed that
our approach can significantly reduce encoding time while maintaining a good encoding
efficiency compared to other state-of-the-art techniques. Overall, the proposed approach
can save time and resources while providing a significant encoding efficiency, which makes
it a potentially attractive choice for a wide range of applications.
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