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Abstract. In spite of the importance of land ecosystems
in offsetting carbon dioxide emissions released by anthro-
pogenic activities into the atmosphere, the spatiotemporal
dynamics of terrestrial carbon fluxes remain largely uncer-
tain at regional to global scales. Over the past decade, data as-
similation (DA) techniques have grown in importance for im-
proving these fluxes simulated by terrestrial biosphere mod-
els (TBMs), by optimizing model parameter values while
also pinpointing possible parameterization deficiencies. Al-
though the joint assimilation of multiple data streams is ex-
pected to constrain a wider range of model processes, their
actual benefits in terms of reduction in model uncertainty are
still under-researched, also given the technical challenges. In
this study, we investigated with a consistent DA framework
and the ORCHIDEE-LMDz TBM–atmosphere model how
the assimilation of different combinations of data streams
may result in different regional to global carbon budgets. To
do so, we performed comprehensive DA experiments where
three datasets (in situ measurements of net carbon exchange
and latent heat fluxes, spaceborne estimates of the normal-
ized difference vegetation index, and atmospheric CO2 con-
centration data measured at stations) were assimilated alone
or simultaneously. We thus evaluated their complementarity
and usefulness to constrain net and gross C land fluxes. We
found that a major challenge in improving the spatial distri-

bution of the land C sinks and sources with atmospheric CO2
data relates to the correction of the soil carbon imbalance.

1 Introduction

The dramatic growth of atmospheric CO2 concentrations
recorded in the last half-century has increased awareness on
the impact of human activities on climate. Taking up about
one-third of the carbon dioxide from the atmosphere, the ter-
restrial biosphere plays a key role in regulating CO2 emis-
sions released by anthropogenic activities (fossil fuel emis-
sions, land use and land cover change) (Friedlingstein et al.,
2020). Quantifying variations in the distribution and intensity
of carbon (C) sources and sinks from year to year remains a
challenge given the complexity of the processes involved and
what we can learn from observations. By formalizing current
knowledge of the main processes governing the functioning
of vegetation into numerical representations, terrestrial bio-
sphere models (TBMs) have grown in importance for study-
ing the spatiotemporal dynamics of net and gross land sur-
face C fluxes from the local to the global scale. However, the
large spread in simulated regional- to global-scale C fluxes
for the last few decade (Friedlingstein et al., 2020) as well as
for future projections (Arora et al., 2020) highlights the re-
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maining uncertainties in our understanding and prediction of
the fate and role of the biosphere under climate change and
anthropogenic pressure.

Over the past decade, the parameter uncertainty in TBMs
has increasingly been reduced thanks to statistical data as-
similation (DA; also referred to as model–data fusion) frame-
works, benefiting from the experience gained in other fields
of Earth and environmental sciences (geophysics, weather
forecasting, hydrology, oceanography, etc.). DA techniques
enable optimization of the model parameters using relevant
target observations while taking into account both observa-
tional and modeling uncertainties. DA does not only enable
improvement of the model parameters, but can also help
pinpoint model deficiencies (Luo et al., 2012). The impor-
tance of DA as a key component of terrestrial biosphere car-
bon cycle modeling is reflected by the diversity of DA sys-
tems in the global TBM communities. Since the first global-
scale Carbon Cycle Data Assimilation System (CCDAS)
(Kaminski et al., 2002; Rayner et al., 2005) developed for
the Biosphere Energy Transfer Hydrology (BETHY) model,
other modeling groups have developed their own global-
scale carbon cycle DA systems, in particular for ORCHIDEE
(ORganizing Carbon and Hydrology In Dynamic Ecosys-
tEms model) (Santaren et al., 2007; Peylin et al., 2016),
JULES (Joint UK Land Environment Simulator) (Raoult
et al., 2016), JSBACH (Schürmann et al., 2016), or CLM
(Community Land Model) (Fox et al., 2018), and in paral-
lel to the development of community assimilation tools such
as DART (Anderson et al., 2009) or PECAn (Dietze et al.,
2013).

Within a variational DA framework, ground-based mea-
surements of eddy-covariance fluxes at a local scale (Wang
et al., 2001; Knorr and Kattge, 2005; Sacks et al., 2007;
Williams et al., 2009; Groenendijk et al., 2011; Kuppel et al.,
2012) have been widely used to constrain net and gross CO2
fluxes and latent heat flux. Moreover, remote sensing proxies
of vegetation activities, such as raw reflectance data (Quaife
et al., 2008), vegetation indices (Migliavacca et al., 2009;
MacBean et al., 2015), or FAPAR – fraction of absorbed pho-
tosynthetically active radiation (Stöckli et al., 2008; Zobitz et
al., 2014; Forkel et al., 2014; Bacour et al., 2015), have also
been used to constrain the model parameters at various spa-
tial scales. Finally, atmospheric CO2 mole fraction measure-
ments have been assimilated to provide valuable information
on large-scale net ecosystem exchange (NEE) (Rayner et al.,
2005; Koffi et al., 2012).

In the early days of DA studies, most focused on the as-
similation of a single data stream (e.g., targeting only NEE).
Then, assimilations with multiple C-cycle-related datasets
were soon considered (Moore et al., 2008; Richardson et al.,
2010; Ricciuto et al., 2011; Keenan et al., 2013; Thum et al.,
2017; Knorr et al., 2010; Kaminski et al., 2012; Kato et al.,
2013; Bacour et al., 2015; Peylin et al., 2016). The under-
lying motivation behind assimilating multiple data streams
is that using a greater number and diversity of observations

should provide stronger constraints on model parameters,
including a wider range of processes, hence resulting in a
greater reduction in model uncertainty. However, many pre-
vious studies that assimilated multiple datasets hardly con-
sidered potential incompatibilities between the model and the
observations (although see Bacour et al., 2015; Thum et al.,
2017), which may result in a deterioration of model agree-
ment with other observations not included in the assimila-
tion. In addition, only a few have quantified the actual benefit
of assimilating multiple datasets compared to the single data
stream assimilations, in particular in the context of global-
scale C cycle DA experiments.

The assimilation of multiple data streams can be done ei-
ther sequentially, in which one observation type is assim-
ilated at a time, or simultaneously (joint assimilation ap-
proach or “batch” strategy as defined in Raupach et al.,
2005), where the model is calibrated with all data included in
the same optimization (e.g., Richardson et al., 2010; Kamin-
ski et al., 2012; Schürmann et al., 2016). Although with
model parameters and observations described by probabil-
ity distributions, simultaneous and sequential assimilations
could theoretically lead to the same result (Tarantola et al.,
2005), this is not the case in practice for complex problems.
Incomplete or incorrect description of the error statistics may
result in large differences between simultaneous and step-
wise approaches (see Kaminski et al., 2012; MacBean et al.,
2016). In addition, model nonlinearities also tend to exac-
erbate these potential differences. Simultaneous assimilation
is considered to be more optimal in the context of optimiz-
ing TBM parameters as it maximizes the consistency of the
model with the whole of the datasets considered (Richard-
son et al., 2010; Kaminski et al., 2012) and avoids incor-
rect/incomplete propagation of the error statistics from one
step to the other (Peylin et al., 2016). The use of a gradi-
ent descent approach for the optimization, with the risk that
it gets trapped in local minima, also increases the chances
that stepwise and simultaneous approaches diverge. How-
ever, sequential approaches remain appealing for modelers:
they require less initial technical investment and enable eas-
ier assessment of the impact of each data stream assimilated
successively onto the optimized variables. Both approaches
however face similar challenges, like defining the model–
data uncertainty (see, e.g., Richardson et al., 2010; Keenan et
al., 2013; Kaminski et al., 2012; Bacour et al., 2015; Thum et
al., 2017; Peylin et al., 2016) and hence the weight that each
dataset has on the optimization outcome (although specific
weighting approaches may be envisioned, as in Wutzler and
Carvalhais et al., 2014, or Oberpriller et al., 2021). Another
major challenge, as highlighted by MacBean et al. (2016) or
Oberpriller et al. (2021), concerns inconsistencies between
observations and model outputs, which are usually not ac-
counted for in common bias-blind (Dee, 2005) Bayesian DA
systems relying on the hypothesis of Gaussian errors. Indeed,
most studies do not attempt to identify systematic errors in
the observations and/or in the model and to correct for them.
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The likely impact of model–data biases on the parameter op-
timization is then a degraded model performance as well as
an illusory decrease in the estimated model uncertainty (Wut-
zler and Carvalhais, 2014; MacBean et al., 2016; Bacour et
al., 2019a).

The present study aims to go a step forward in the as-
sessment of how assimilating multiple C-cycle-related data
streams impacts and changes the constraint on net and gross
CO2 flux simulations at the global scale. To do so, we
further advance from the sequential assimilation of Peylin
et al. (2016) (referred to as the “stepwise” approach here-
after) by implementing a simultaneous assimilation frame-
work with the same data streams: net carbon fluxes (net
ecosystem exchange – NEE) and latent heat fluxes (LE)
measured at eddy-covariance sites across different ecosys-
tems, satellite-derived normalized difference vegetation in-
dex (NDVI) at coarse resolution for a set of pixels span-
ning the main deciduous vegetation types, and monthly atmo-
spheric CO2 concentration data measured at surface stations
worldwide. The study relies on the variational DA frame-
work designed for the ORCHIDEE global vegetation model
(Krinner et al., 2005), here associated with a simplified ver-
sion of the LMDz atmospheric transport model (Atmospheric
General Circulation Model of the Laboratoire de Météorolo-
gie Dynamique; Hourdin et al., 2006) based on precalculated
transport fields for assimilating atmospheric CO2 concentra-
tion data. ORCHIDEE and LMDz are the terrestrial and at-
mospheric components of the Institut Pierre Simon Laplace
(IPSL) Earth System Model (Dufresne et al., 2013).

By conducting different assimilation experiments in which
each data stream is assimilated alone or in combination (for
all combinations of datasets), the research questions that we
address in this study are as follows:

1. What impact does the combination of different data
streams assimilated have on the reduction in model–data
misfit, and to which extent are the model predictions
improved (or degraded) with respect to the other data
streams that were not assimilated?

2. How does the combination of different data streams
impact the optimized parameter values and uncertain-
ties and the predicted spatial distribution of the net and
gross carbon fluxes at regional and global scales? How
do the derived carbon budgets compare with indepen-
dent process-based model and atmospheric inversion es-
timates from the Global Carbon Project’s 2020 Global
Carbon Budget (Friedlingstein et al., 2020)?

3. How does a model–data bias related to incorrect initial-
ization of soil carbon pools (i.e., their disequilibrium
with respect to steady state) impact the overall opti-
mization performances within a Bayesian assimilation
framework relying on the hypothesis of Gaussian er-
rors?

In addition, our analysis of the useful informational content
provided by different data streams on C fluxes is supported
by methodological aspects aiming to do the following:

1. Improve the realism of the prior error statistics on
parameters by making them consistent with the prior
model–data mismatch.

2. Quantify the observation influence of each of the three
data streams on the joint assimilation in which all three
datasets were included in the optimization.

Throughout the presentation of the results, we discuss impli-
cations of each assimilation experiment for our ability to ac-
curately constrain gross and net CO2 fluxes. In the final sec-
tion we propose some perspectives for other modeling groups
wishing to implement global-scale parameter DA systems to
constrain regional- to global-scale C budgets.

2 Materials and methods

2.1 Models

2.1.1 ORCHIDEE

Model description

ORCHIDEE is a spatially explicit process-based global TBM
(Krinner et al., 2005) that calculates the fluxes of carbon
dioxide, water and heat, between the biosphere and the at-
mosphere, as well as the soil water budget. The temporal
resolution is half an hour except for the slow components
of the terrestrial carbon cycle (including carbon allocation
in plant reservoirs, soil carbon dynamics and litter decom-
position) which are calculated on a daily basis. The version
of ORCHIDEE in this study corresponds to that used in the
IPSL Earth System Model for its contribution to the Climate
Model Intercomparison Project 5 (CMIP5) established by the
World Climate Research Program. Vegetation is represented
by 13 plant functional types (PFTs) that include bare soil.
The processes use the same governing equations for all PFTs,
except for the seasonal leaf dynamics (phenology), which
follows Botta et al. (2000) (see MacBean et al., 2015, for
a full description). The observation operator for NDVI is de-
termined (i) by assuming a linear relationship between NDVI
and FAPAR (Myneni et al., 1994) and (ii) by calculating FA-
PAR from the simulated leaf area index (LAI) based on the
classical Beer–Lambert law for the extinction of the direct il-
lumination within the canopy (Bacour et al., 2015; MacBean
et al., 2015). In addition, we consider normalized data in our
assimilation scheme. The soil organic carbon is simulated by
a CENTURY-type model (Parton et al., 1987) and is parti-
tioned in three pools (slow, passive and active) with different
residence times.
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Model setup

The setup of the simulations performed with ORCHIDEE
depends on the data assimilated. The model is run at site
scale for the assimilation of eddy-covariance measurements,
at a spatial resolution of 0.72◦ for the assimilation of the
satellite NDVI data and at the resolution of the atmospheric
transport model LMDz (3.75◦× 2.5◦) for the assimilation
of atmospheric CO2 measurements. The Olson land cover
classification at 5 km is used to derive the PFT fractions
at each spatial resolution but for the flux tower simulations
where the proportion of each PFT is set based on expert
knowledge. For satellite pixels and global simulations, OR-
CHIDEE is forced using the 3-hourly ERA-Interim gridded
meteorological forcing fields (Dee et al., 2011) (aggregated
at 3.75◦× 2.5◦ when assimilating atmospheric CO2 concen-
trations). For the flux tower simulations, the model is forced
by local measurements of the meteorological variables at a
half-hourly time step.

For each spatial resolution, a prior spin-up simulation was
performed by recycling available forcing data. The objective
was to bring the different soil carbon reservoirs to “realis-
tic” values, though the spin-up runs result in neutral net car-
bon flux by construction. Each spin-up simulation was then
followed by a transient simulation (starting from the first
year of measurement for each data stream), accounting for
the secular increase of atmospheric CO2 concentrations; for
the global simulations, only a short transient simulation from
1990 to 1999 was performed.

2.1.2 LMDz

Model description

The study relies on version 3 of LMDz (Hourdin et al., 2006)
as implemented for the IPSL contribution to CMIP4. In order
to save computational time, we used LMDz in the form of a
precomputed Jacobian matrix at a set of CO2 measurement
stations (Sect. 2.2.3) (see details in Peylin et al., 2016).

Model setup

To simulate atmospheric CO2 concentrations that can be
compared to observations, the transport model has to be
forced not only by terrestrial biospheric fluxes (calculated
by ORCHIDEE), but also by other natural (e.g., ocean) and
anthropogenic CO2 fluxes. We imposed a net emission due
to land use change (i.e., deforestation) of 1.1 GtC yr−1, al-
though we also accounted for a larger flux from biomass
burning but which was compensated for partly by forest re-
growth (see Peylin et al., 2016, for more details). The global
maps of biomass burning emissions were taken from the
Global Fire Emission Database version 3 dataset (Van der
Werf et al., 2006; Randersen et al., 2013) over the period
1997–2010 at a monthly time step and gridded at 0.5◦×0.5◦

resolution. The global fossil fuel CO2 emission products

used here were developed by the University of Stuttgart/IER
based on EDGAR v4.2 and were provided at a 0.1◦× 0.1◦

spatial resolution and at a monthly timescale. The ocean flux
component was obtained from a data-driven statistical model
based on artificial neural networks that estimated the spatial
and temporal variations of the air–sea CO2 fluxes (Peylin et
al., 2016).

2.2 Assimilated data

2.2.1 In situ flux measurements (F)

The NEE and LE measurements come from the FLUXNET
global network. We used harmonized, quality-checked and
gap-filled data (Level 4) at 68 sites from the La Thuile global
synthesis dataset (Papale, 2006). The site locations are pre-
sented in Fig. 1. These ecosystem measurements cover very
different time spans, ranging from 1 single year at some sites
up to 9 years. They constrain seven PFTs among the 12 natu-
ral vegetation types represented in ORCHIDEE: tropical ev-
ergreen broadleaf forest – TrEBF (3 sites corresponding to
6 site years), temperate evergreen needleleaf forest – TeENF
(16 sites, 45 site years), temperate evergreen broadleaf for-
est – TeEBF (2 sites, 4 site years), temperate deciduous
broadleaf forest – TeDBF (11 sites, 37 site years), boreal ev-
ergreen needleleaf forest – BoENF (12 sites, 44 site years),
boreal deciduous broadleaf forest – BoDBF (3 sites, 6 site
years), and C3 grassland – C3GRA (21 sites, 56 site years).
We assimilated daily-mean values of NEE and LE observa-
tions but only when at least 80 % of the 48 potential half-
hourly data in a day are available.

2.2.2 Satellite products (VI)

The NDVI products considered here are derived from
MODIS collection 5 surface reflectance data acquired in the
red and near-infrared channels and corrected from the direc-
tional effects (Vermote et al., 2008). Data already assimilated
into ORCHIDEE and described in MacBean et al. (2015)
are considered here: they are provided at daily/0.72◦ reso-
lutions and span the 2000–2010 period. Five among the six
deciduous, non-agricultural PFTs of ORCHIDEE were op-
timized in this study: TrDBF – tropical broadleaved rainy
green forest, TeDBF, BoDBF, BoDNF – boreal needleleaf
summergreen forest and C3GRA. C4 grasses and evergreen
PFTs were not considered. For each PFT, 15 0.72◦ pixels
were selected for assimilation depending on their thematic
homogeneity with respect to the considered PFT (fractional
coverage above 60 %) and consistency between the observed
NDVI time series and the prior ORCHIDEE. The location of
these satellite pixels is shown in Fig. 1.
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Figure 1. Location of the flux tower sites (circles), satellite pixels (triangles) and atmospheric CO2 stations (black stars) used in this study.

2.2.3 Atmospheric CO2 measurements (CO2)

The surface atmospheric CO2 concentration data
come from the NOAA Earth System Laboratory
(ESRL) GLOBALVIEW-CO2 collaborative product
(GLOBALVIEW-CO2, 2013). The data include in situ mea-
surements, made by automated quasi-continuous analyzers,
and air samples collected in flasks and later analyzed at
central facilities. In this study, we used monthly-mean values
of these measurements (Peylin et al., 2016). A period of 10
years of observations over the 2000–2009 period was used
from a total of 53 stations located around the world (Fig. 1).

2.3 Assimilation methodology

2.3.1 Data assimilation framework

The data assimilation system associated with the OR-
CHIDEE model (ORCHIDAS) has been described in previ-
ous studies regarding the assimilation of these data streams
alone (Kuppel et al., 2012; Santaren et al., 2014; MacBean
et al., 2015; Bastrikov et al., 2018) or their combinations
(Bacour et al., 2015; Peylin et al., 2016). The assimilation
system relies on a variational Bayesian framework that op-
timizes ORCHIDEE parameters gathered in a vector x, by
finding the minimum of a global misfit function J (x) iter-
atively. J (x) is a linear combination of the misfit functions
associated with each data stream. It is assumed that the errors
of observations and on the model parameters are Gaussian
and that the data stream errors are independent from each
other:

J (x)=
1
2

[(
HLMDz ◦HORCH(x)− yCO2

)T
·R−1

CO2
·

(
HLMDz ◦HORCH (x)− yCO2

)
+
(
HORCH (x)− yF)T

·R−1
F
(
HORCH (x)− yF)

+
(
HORCH

(
x− yVI))T

·R−1
VI
(
HORCH (x)− yVI)

+

(
x− xb

)T
B−1

·

(
x− xb

)]
, (1)

where yo denotes the observation vectors (with o=F (flux),
VI (satellite NDVI) or CO2 (CO2 concentration);HORCH and
HLMDz are the observational operators of the ORCHIDEE
and LMDz models, respectively. Ro is the error covariance
matrix characterizing the observation errors with respect to
the model (therefore including the uncertainty in the model
structure) associated with the data stream o. The dimension-
less control vector z quantifies the distance between the val-
ues of the optimized parameters and the corresponding prior
information xb

: z= B−1/2
· (x− xb), where B is the associ-

ated a priori error covariance matrix.
We use the gradient-based L-BFGS-B algorithm (Byrd et

al., 1995; Zhu et al., 1997) to minimize J (x) iteratively. It
accounts for bounds in the parameter variations. The algo-
rithm requires the gradient of the misfit function as an input
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in order to explore the parameter space:

∇xJ (x)=HT

ORCHCO2
·HT

LMDz

·R−1
CO2

(
HLMDz ◦HORCH(x)− yCO2

)
+HT

ORCHF ·R−1
F
(
HORCH(x)− yF)

+HT

ORCHVI ·R−1
VI
(
HORCH(x)− yVI)

+B−1(x− xb). (2)

The calculation of ∇xJ (x) uses the Jacobian matrix of OR-
CHIDEE associated with each data stream, HORCHo (assum-
ing local linearity of the model), and that of LMDz. For
most of the ORCHIDEE parameters, HORCHo (or Ho here-
after) is calculated thanks to the tangent linear model of
ORCHIDEE obtained by automatic differentiation using the
TAF (Transformation of Algorithms in Fortran) tool (Gier-
ing et al., 2005); however, for a few parameters involved in
threshold conditions of the model processes, especially re-
lated to phenology, we use a finite difference method.

After optimization, the posterior error covariance matrix
A (for “analysis”) of the optimized parameters can be calcu-
lated as a function of the Jacobian matrix associated with the
gradients of the model outputs with respect to the parameters
at the solution for each data stream:

A=
[∑

HoT
·R−1

o ·H
o
+B−1

]−1
. (3)

It is computed under the hypothesis of model linearity in
the vicinity of the solution. The square root of the diagonal
elements of B or A correspond to the standard deviation σ on
model parameters.

2.3.2 Parameters to be optimized

We chose to optimize a limited set of carbon-cycle-related
parameters of ORCHIDEE as a result of preliminary sen-
sitivity analyses and past DA studies. A short definition of
these parameters that mostly control photosynthesis, phenol-
ogy and respiration is provided in Table 1, while their associ-
ated prior values, bounds and uncertainty are documented in
Table S3. More comprehensive descriptions of their role in
the model processes are provided in Kuppel et al. (2012) and
MacBean et al. (2015). The size of soil carbon pools drives
the magnitude of the net carbon fluxes exchanged with the
atmosphere to a large extent; soil carbon is closely related
to soil texture and climatic (temperature and moisture) and
disturbance history (including land use and fires), as well
as ecosystem and edaphic properties (Schimel et al., 1994;
Todd-Brown et al., 2013). Given that we do not have access
to that information, neither at the site scale (for assimilation
of NEE measurements) nor at the global scale (for assimila-
tion of atmospheric CO2 concentrations), we use a steady-
state assumption where ORCHIDEE has been brought to
near equilibrium with a long spin-up of the soil carbon pools.

To correct for this bias, the initial state of the soil carbon
reservoirs is optimized using a multiplicative parameter of
both the slow and passive pools as in Peylin et al. (2016).
The use of these correction factors is a handy way to correct
any issues related to the use of our soil organic C model and
the soil carbon disequilibrium. Two multiplicative parame-
ters are used depending on the type of data considered (and
their associated spatial scale): for in situ flux measurements,
we considered site-specific parameters KsoilC,site; for atmo-
spheric CO2 concentration data, instead of resolving the ini-
tial conditions for all LMDz grid cells we scaled the carbon
pools for 30 large-scale regions KsoilC,reg. Note that having
correct soil carbon pools is less important when assimilating
satellite NDVI data because these are more closely related
to carbon uptake rather than net carbon flux. In total, up to
182 parameters are optimized depending on the data streams
considered.

The prior values xb of the parameters are set to the stan-
dard values of ORCHIDEE (Table S3). Not all parameters are
constrained by all three data streams. In particular, satellite
FAPAR/NDVI products inform the timing of phenology of
plant vegetation (start and end of the growing season) rather
than photosynthesis or respiration with our DA system (Ba-
cour et al., 2015; MacBean et al., 2015). The dependency of
each parameter with respect to the assimilated data streams
is indicated in Table 1.

2.3.3 Data assimilation experiments

Different data assimilation experiments were tested in order
to understand the respective constraint brought by each data
stream and evaluate their compatibility with each other and
with the model. First, each data stream was assimilated sepa-
rately, and then its combinations with the other two were con-
sidered. Second, the three data streams were assimilated all
together. The various experiments are described in Table 2,
with the number of data points assimilated and the number
of parameters optimized. Indeed, the number of optimized
parameters differs with the type of data assimilated as de-
scribed in Sect. 2.3.2 and in Table 1. The assimilations have
a high computational cost, with an average value for joint
assimilations using all three data streams of about 50 000 h
central processing unit time on AMD Rome compute nodes,
at 2.6 GHz with 256 GB memory per node.

Two assimilation experiments combining the three data
streams were tested: one experiment (F+VI+CO2) with all
parameters optimized in a single step; and an additional ex-
periment following a two-step optimization (F+VI+CO2-
2steps), as described hereafter. In the first step, the global
soil carbon reservoirs were constrained by assimilating at-
mospheric CO2 data only and optimizing the two main pa-
rameters controlling soil respiration, KsoilC,reg and Q10. In
the second step, all parameters but KsoilC,reg were optimized
from the three data streams: KsoilC,reg was retained from the
first step, and Q10 was optimized, but the prior uncertainty
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Table 1. List of the ORCHIDEE parameters to be optimized and data streams that constrain them (F for in situ flux measurements, VI for
normalized satellite NDVI data and CO2 for atmospheric CO2 concentration data).

Name Description Data stream

Photosynthesis

Vcmax maximum carboxylation rate (µmol m−2 s−1) F , CO2
Gs,slope Ball–Berry slope F , CO2
Topt optimal photosynthesis temperature (◦C) F , CO2
SLA specific leaf area (m2 g−1) F , CO2

Soil water availability

Hum,cste root profile (m−1) F , CO2

Phenology

LAIMAX maximum LAI value F , CO2
Kpheno,crit multiplicative parameter of the threshold that determines the start of the growing season F , VI, CO2
Tsenes temperature threshold for senescence (◦C) F , VI, CO2
Lage,crit average critical age of leaves (days) F , VI, CO2
KLAI,happy LAI threshold to stop using carbohydrate reserves F , VI, CO2

Respiration

Q10 temperature dependency of heterotrophic respiration F , CO2
HRH,c offset of the function for moisture control factor of heterotrophic respiration F , CO2
MRc offset of the affine relationship between temperature and maintenance respiration F , CO2
KsoilC,site multiplicative factor of initial slow and passive carbon pools F

KsoilC,reg multiplicative factor of initial slow and passive carbon pools CO2

Table 2. Characteristics of the various assimilation experiments (flux data – F, satellite NDVI vegetation index – VI and atmospheric CO2
concentration – CO2).

Experiment Flux NDVI Atmospheric Number of Number of
name data data CO2 optimized observations

concentrations parameters

F x 133 150 792
VI x 19 149 916
CO2 x 114 6360
F+VI x x 152 300 708
F+CO2 x x 182 157 152
VI+CO2 x x 114 156 276
F+VI+CO2 x x x 182 307 068
F+VI+CO2-2steps

forQ10 for the second step corresponded to the posterior un-
certainty derived from the first step. We did this to correct
for the initialization of the soil carbon imbalance following
model spin-up and illustrate how the informational content
of the three data streams relative to the surface carbon fluxes
can be enhanced once soil carbon disequilibrium is more “re-
alistically” represented; the motivations and implications of
the two assimilations experiments are further discussed in the
Results and Discussion sections.

The results of these assimilations were compared to the
companion study of Peylin et al. (2016) in which the same
data streams were assimilated in a sequential/stepwise ap-

proach: NDVI data were assimilated first, then in situ flux
measurements, and finally atmospheric CO2 concentration
measurements. While only 3 years of atmospheric CO2 data
was used in Peylin et al. (2016), the stepwise results pre-
sented here really account for the same 10 years used in the
simultaneous experiments (2000–2009) to facilitate the com-
parison of the approaches (in particular the impact of using
the atmospheric CO2 growth rate over 10 years on the opti-
mization of the mean terrestrial carbon sink). There are how-
ever a few differences in the setup compared to the present
study (see details provided in Sect. S1 in the Supplement).
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2.3.4 Error statistics on observations and parameters

Observation error statistics

Like in previous studies with ORCHIDAS, we defined Ro
as diagonal and computed the variances from the root mean
square difference (RMSD) between the data and the a priori
ORCHIDEE simulations (i.e., performed with the model de-
fault parameter values) for fluxes and satellite observations.
However, it is worth noting that this approach overestimates
the variances in order to compensate for any neglected cor-
relations. For atmospheric CO2 measurements, we followed
a different methodology given the large discrepancy in the
modeled a priori concentrations with respect to the observed
data (i.e., large bias that increases over time due to biases in
the land net carbon sink (too small)). The errors were deter-
mined at each site as the standard deviation of the observed
temporal concentrations (Peylin et al., 2005, 2016), to cap-
ture the general feature that model–data mismatch is likely
large for sites and months with large variations in daily con-
centrations. Although crude, such a hypothesis has been used
in many atmospheric CO2 inversions, and in our case it com-
bines all structural errors of the terrestrial and transport mod-
els.

Tuning of the prior error statistics

We assumed that errors in the prior parameter values are in-
dependent, and therefore we used a diagonal B matrix. We
populated the diagonal of B in an iterative way from con-
sistency diagnostics of the data assimilation system follow-
ing Desroziers et al. (2005), as described hereafter. If both B
and Ro matrices are correctly specified, and if the estimation
problem is linear, they should be related to the covariance of
the residuals (d) between observations and background sim-
ulations (i.e., innovation) following

Ho
·B ·HoT

+Ro =E
[(

yo
−H(xb)

)
·

(
yo
−H(xb)

)T ]
=E

[
do

b · d
oT
b

]
,

(4)

with

Ro =E

[(
yo
−H(xa)

)
·

(
yo
−H(xb)

)T ]
=E

[
do

a · d
o T
b

]
(5)

Ho
·B ·Ho T

= E
[(
H(xa)−H(xb)

)
·

(
yo
−H(xb)

)T ]
= E

[
da

b · d
oT
b

]
. (6)

Similarly, the diagnostic on analysis errors can be deter-
mined from the residuals between observations and posterior

simulations as

Ho
·A ·Ho T

= E
[(
H(xa)−H(xb)

)
·
(
yo
−H(xa)

)T ]
= E

[
da

b · d
oT
a

]
. (7)

In principle, the tuning of B and R needs to be performed
iteratively for successive values of xa and of the correspond-
ing residuals, until convergence, which is prohibitive in terms
of computing time. The estimation of the covariance matrices
depends on the mathematical expectation (E), which would
require several realizations of the residuals to diagnose the
error statistics (Desroziers et al., 2005; Cressot et al., 2014).
In this study, only one optimization was performed using one
set of a priori parameters for each dataset. We therefore cal-
culated these metrics by averaging the diagonals of the matri-
ces described by both sides of the equations for all available
observations (Kuppel et al., 2013). This way, both sides are
scalar values (Cressot et al., 2014).

The standard deviation of the errors was determined af-
ter a few trials considering the three single data stream as-
similation experiments independently: for each DA experi-
ment we started from an initial parameter error set at 40 %
of the variation interval for each parameter (as in Peylin et
al., 2016). The errors were then varied in order to fulfill the
consistency diagnostics on the parameter and observation er-
rors (see Sect. S3). Finally, we evaluated the consistency of
the resulting model–data covariance matrices for the DA ex-
periments with multiple data streams using the reduced chi-
square test (i.e., the chi-square statistic normalized by the
number of observations, m; Chevallier et al., 2007; Klonecki
et al., 2012), which is implicitly optimized by the approach
of Desroziers et al. (2005):

χ2
=

2J (xa)

m
. (8)

If the Ro and B covariance matrices are well defined,
the ratio of each term of the diagnostics of Desroziers et
al. (2005) (ratio between Ro and E

[
do

a · d
o T
b
]
; Ho
·B ·HoT

and E
[
da

b · d
o T
b
]
; and Ho

·B ·HoT
+Ro and E

[
do

b · d
o T
b
]
)

should approach 1. Table 3 shows the values of the consis-
tency diagnostics for the final parameter error setup.

The diagnostics for Ro (ratios slightly above 1 for all data
streams) and for the reduced chi-square (Table S1 in the Sup-
plement – values below 1) indicate a slight overestimation of
the observation error. The diagnostics for B (ratioB) show
a stronger overestimation of the a priori error for NEE, LE
and atmospheric CO2 but an underestimation for NDVI. For
fluxes and satellite data, the combined diagnostics for Ro and
B (ratioBR) appear consistent with ratios close to 1. For CO2
however, the value of ratioBR close to the value of ratioB

highlights the strong influence of the background informa-
tion (B matrix) or of the model structure on the optimiza-
tion, while the large value of χ2 expresses a strong underes-
timation of the observation error. Indeed, when determining
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Table 3. Consistency diagnostics of the error covariance matrices
for the F (using NEE and LE data), VI and CO2 assimilation exper-
iments. The ratios are calculated with the mathematical expectation
term as the denominator.

NEE LE VI CO2

Ro 1.75 1.75 0.33 1.22

E
[
do

a · d
o T
b

]
1.49 1.49 0.21 1.16

ratioR 1.17 1.17 1.55 1.05

Ho
·B ·Ho T 1.45 8.30 0.2 15.17

E
[
da

b · d
o T
b

]
0.92 5.45 0.24 6.29

ratioB 1.59 1.52 0.83 2.41

Ho
·B ·Ho T

+Ro 2.28 23.63 0.38 15.22

E
[
do

b · d
o T
b

]
1.75 22.11 0.31 6.39

ratioBR 1.17 1.07 1.23 2.38

Ho
·A ·Ho T 0.25 1.82 0.07 3.26

E
[
da

b · d
o T
a

]
−0.45 −5.12 −0.15 −2.13

ratioA
−0.56 −0.36 −0.43 −1.53

RCO2 , we purposely did not account for the large bias (by
about 1 ppm yr−1) between the observed CO2 temporal pro-
files at stations and the prior simulations, which is due to the
initialization of ORCHIDEE’s carbon pools (which is dis-
cussed in the Results section).

Finally, for the diagnostics on the analysis, the various
tests performed (Sect. S3) all lead to negative quantities. In-
stead, the simulations of the calibrated model were expected
to be contained in between their prior state and the obser-
vations (the residuals having opposite signs; their product is
positive). This result may reflect too strong a model correc-
tion. However, it should be noted that a strong assumption as-
sociated with these tests concerns the linearity of the model,
which may not hold for terrestrial biosphere models.

2.4 Diagnostics for system evaluation

2.4.1 Optimization performance

We measured the efficiency of any assimilation by quanti-
fying the reduction of the cost function as the ratio of the
prior to posterior values. It should be noted that the minimum
value of the cost function is not expected to be zero given the
uncertainty in both the data and model and the limited num-
ber of degrees of freedom (number of optimized parameters)
allowed. We also looked at the ratio of the norm of the gra-
dient between the prior and posterior misfit functions, as it
illustrates the progression towards the expected optimum, for
which the gradient is null. The decrease of the norm of the
gradient depends on the estimation problem (nonlinearities,
number of observations versus number of optimized param-
eters, constraints of the data on the model processes, etc.);

However, based on our experience with nonlinear problems,
we still expect the norm of the gradient to be reduced by at
least 2 orders of magnitude.

The analysis of the optimization performances is summa-
rized in Sects. 3.1 and S4.

2.4.2 Model improvement and posterior predictive
checks

The model improvement was quantified by the reduction of
the RMSD between the model and data, prior and poste-
rior to optimization, expressed in a percentage, as 1× (1−
RMSDpost/RMSDprior).

We conducted posterior predictive checks by running
the model optimized after assimilation of one or two data
streams and quantifying the resulting model improvement
with respect to the data streams not accounted for in the as-
similation.

2.4.3 Uncertainty reduction on parameters and error
budget

The knowledge improvement on the model parameters
brought by assimilation was assessed by the uncertainty re-
duction determined by 1−σpost/σprior, where σpost and σprior
are the standard deviation derived from the posterior (A) and
prior (B) covariance matrices on the model parameters and
output variables.

A comprehensive quantification of the uncertainty reduc-
tion on model variables would require accounting also for
the covariance matrix of the model structural error, which
could be the dominant factor. Because this covariance matrix
is difficult to estimate for complex process-based terrestrial
biosphere models (see Kuppel et al., 2013, for a first attempt
in the case of the NEE), we instead analyzed the posterior
errors on NEE and gross primary productivity (GPP) at re-
gional to global scales, as the projection of the posterior error
on parameters in the space of the model variables. The poste-
rior error on C fluxes is then characterized by the covariance
matrix Ra as

Ra
=Ho

·A ·Ho T , (9)

with the Jacobian matrix Ho being the first derivative of the
target quantity (e.g., NEE, GPP) to the optimized parameters
derived from an assimilation experiment o.

2.4.4 Assessment of the information content of each
data stream

For the joint assimilations using the three different data
streams, we further analyzed the influence matrix S that
quantifies their leverage on the model–data fit (Cardinali et
al., 2004):

S= R−1
·Ho
·A ·Ho T . (10)
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A diagonal element Sii is the rate of change of the sim-
ulated observable i with respect to variations in the corre-
sponding assimilated observation i. Sii is referred to as “self-
sensitivity” of “self-influence”. A zero self-sensitivity indi-
cates that this ith observation does not contribute to improv-
ing its simulation by the model, whilst Sii = 1 indicates that
the fit of the sole observation i mobilizes an entire degree of
freedom (i.e., one parameter). In addition to the total influ-
ence matrix (Eq. 10), we also determined the partial influ-
ence matrices associated with each data stream o, using the
corresponding diagonal Ro matrices and in Eq. (10).

We analyzed the trace (i.e., the sum of all diagonal ele-
ments, and denoted tr hereafter) of S that quantifies a mea-
sure of the amount of information that can be extracted from
all observations/all data streams. We used two derived quan-
tities: the global average observation influence (OI) and the
relative degrees of freedom for signal (DFS) associated with
the data stream o, which measures its relative contribution to
the fit. They are defined as follows (with m the total number
of observations):

OI=
tr(S)
m

(11)

and

DFS= 100×
tr(So)

tr(S)
. (12)

3 Results

3.1 Model improvement for the different assimilation
experiments

3.1.1 Cost function reduction

The reduction of the cost function varies between the dif-
ferent experiments, with the lowest reductions for the single
data streams experiments F and VI (around 10 %). However,
the correction of the model–data misfit when CO2 data are
assimilated is much higher (at least factor of 10 reduction).
It is noteworthy that this strong model improvement is ob-
tained for a lower departure of the parameters from their prior
values than when fluxes or satellite data are assimilated (see
Sect. 3.3 and Fig. 6).

A detailed description of the optimization performances
with respect to the minimization of the cost function is given
in Sect. S4 and Table S2.

3.1.2 Overall fit to the observations

The impact of assimilating one type of observation on all the
data streams (including those that are not assimilated) was
evaluated for the various assimilation experiments. The re-
duction of the model–data mismatch (i.e., reduction in prior
RMSD) after assimilation of each data stream (or any combi-
nation of them) is illustrated in Fig. 2. The length of the boxes

(first and third quartiles) of the whisker plots highlights the
spread in misfit reduction across sites/vegetation types. For
fluxes, only the impact on NEE is shown, given the choice
of the parameters optimized parameters is mostly related to
the carbon cycle. Using the parameter values optimized in ei-
ther the F or VI assimilations has a strong detrimental impact
on the simulated atmospheric CO2 data because the soil car-
bon pools were not adjusted in these DA experiments. There-
fore, we also analyzed the changes induced on the detrended
seasonal cycles of atmospheric CO2 concentrations (Fig. 2c)
(hence removing the trend using the time series decomposi-
tion based on the CCGCRV routine; Thoning et al., 1989 –
see Sect. S2 and Fig. S1 for representative comparisons of
observed vs modeled time series of atmospheric CO2 con-
centrations and their associated trend estimation).

For a given data stream, the improvement is usually bet-
ter for the experiment where that data stream is assimilated
alone. One noteworthy exception is the assimilation of NDVI
alone (VI experiment where only the phenology parameters
are optimized) that results in a lower model improvement
with respect to NDVI than when it is assimilated in com-
bination with other data streams (where a higher number of
parameters are optimized in these joint assimilations, hence
improving the timing of phenology and the amplitude of the
annual cycle when flux or atmospheric CO2 data are also as-
similated). For both experiments F and VI, the reduction of
the model–data misfit can be negative, which reflects how the
assimilation can degrade the model performance for a few
pixels/sites by searching for a common parameter set. This is
not observed with the assimilation of atmospheric CO2 data,
which is the only experiment for which the optimized model
is always closer to the observations than the prior model (due
to a correction of the CO2 trend), at all stations (see Sect. S5
for a detailed description of the reduction in model–data mis-
fit for each single data stream assimilation experiment (F, VI
and CO2)).

The collateral impact of assimilating one data stream on
the other simulated observables is evident in the misfit reduc-
tions shown in Fig. 2 (e.g., examine the “VI” experiment on
the NEE misfit reduction in Fig. 2a). While using optimized
phenological parameters retrieved from satellite data alone
(experiment VI) degrades the modeled seasonality of NEE
as compared to the measurements (median RMSD reduction
of −3 %), the optimization with respect to in situ flux data
(F ), with additional control parameters, leads to a general
improved consistency between modeled FAPAR and satel-
lite NDVI time series (median RMSD reduction of 8 %). The
impact on LE is much lower for all DA experiments (median
values close to 0 % in all cases, result not shown). One can
also note the positive impact of the F and VI assimilations
on the atmospheric CO2 data with median RMSD reductions
of 15.8 % and 11.2 % respectively for the detrended time se-
ries. Such an improvement after assimilation of in situ flux
data corroborates the findings of Kuppel et al. (2014) and
Peylin et al. (2016). It is noteworthy that this improvement is
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Figure 2. For all data streams, boxplots of the reduction of the model–data mismatch following the different assimilation experiments. For a
given data stream, the assimilation experiments in which it is involved are labeled in black (x axis) and the boxplot colors are dark-colored
and in gray/light colors otherwise (back-compatibility check). For the atmospheric CO2 concentration data at stations, the misfit reduction is
calculated both for the raw (not detrended) data (left solid boxplot of each assimilation experiment, with colored boxplots) and the detrended
data (right white boxplot of each assimilation experiment).

of the same order as that achieved when assimilating atmo-
spheric CO2 data alone (median RMSD reduction of 14 %).
The parameters retrieved from the CO2 experiment also have
a small but positive impact at the site level with respect to
NEE (median value of 3 %) and FAPAR (0.8 %).

For the joint assimilation experiment (F+VI, F+CO2,
VI+CO2, or F+VI+CO2; Fig. 2), the model–data agree-
ment is improved for all assimilated data streams, as ex-
pected, while the model degradation relative to the data not
assimilated is generally not as severe as compared to the as-
similation of individual data stream experiments described
above, with the exception of the F+VI experiment. The lat-
ter experiment leads to enhanced model improvement com-
pared to when flux and satellite NDVI data are assimilated
alone (see Sect. S5). In the simultaneous assimilations in-
volving atmospheric CO2 data, most of the model improve-
ment concerns CO2 (Fig. 2c), while the benefit for the fluxes
and FAPAR/NDVI is weak (RMSD reduction below 3 %).
It is noteworthy that the two-step assimilation F+VI+CO2
(see Sect. 2.3.3) results in an even higher model improvement
for both NEE and FAPAR than the one-step approach.

The misfit reduction for the raw (i.e., not detrended) atmo-
spheric CO2 data is high (median reduction ∼ 75 %) and re-
mains quite stable among the various different combinations
of data streams that include atmospheric CO2 (Fig. 2c solid
bars show experiments including “CO2”), with the exception
of the F+VI+CO2-2 steps experiments. The misfit reduc-
tions for the detrended CO2 time series are generally lower

(median reduction less than∼ 15 %), and there are more pro-
nounced differences between experiments.

These results and the low reduction in NEE and FAPAR
RMSDs following the assimilation atmospheric CO2 data de-
scribed above highlight the predominance of the correction
of the trend in atmospheric CO2 time series through the fit-
ting of the carbon pool parameters, over the tuning of the
other model parameters related to photosynthesis and phe-
nology (see Figs. 6 and S2). The two-step approach permits
that limitation to be partially overcome, with the improve-
ment of the mean seasonal cycle for the three data streams
(Fig. 2).

3.1.3 Specific improvements at CO2 stations

Figure 3 further analyzes the impact of each assimilation ex-
periment on the fit to the observed atmospheric CO2 concen-
trations in terms of the bias in the long-term trend (2000–
2009) and fit to the mean seasonal cycle over the same pe-
riod (i.e., bias in seasonal amplitude and length of the car-
bon uptake period – CUP – Sect. S2). For the trend analy-
sis (Fig. 3a), only experiments where atmospheric CO2 mea-
surements were assimilated are considered.

With the default (prior) parameter values, the fluxes sim-
ulated by ORCHIDEE and transported by LMDZ overesti-
mate the trend by about 1 ppm yr−1. When assimilating at-
mospheric CO2 data, most of the parameter correction aims
at reducing this bias. This is mostly achieved by tuning the
regional KsoilC,reg parameters: The net land carbon sink is
increased globally in order to match the observed trend at
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Figure 3. Residual biases of the atmospheric CO2 time series between those measured at stations and the simulations (prior and optimized
for each assimilation experiment), in terms of trend, magnitude of the seasonal cycle and length of the carbon uptake (CUP). The study
results are compared to those obtained using a sequential approach (Peylin et al., 2016). The bars show for each quantity the mean bias
relative to the measurements over the period 2000–2009. The standard deviations of the differences between observations and simulations
over all stations are shown as the vertical gray lines, and the RMSDs are provided below in italic.

most stations (reducing the bias from around 1 ppm yr−1 to
0.1 ppm yr−1). Compared to the improvement in the bias in
the trend, the improvements (reduction in bias) in the ampli-
tude of the CO2 seasonal cycle and in the length of the carbon
uptake period (CUP) (Fig. 3b and c) are marginal. Note that
our joint DA experiments lead to lower trend biases com-
pared to the stepwise approach.

For the amplitude of CO2 concentrations, the joint as-
similations including CO2 data lead to lower improvements
on average compared to any single data stream assimila-
tion experiment. Interestingly, the highest improvements in
CO2 amplitude are achieved when flux data are assimilated
(F or F+VI), which reveals that the constraint on photo-
synthesis and respiration provided by FLUXNET measure-
ments is consistent with the amplitude of the seasonal at-
mospheric CO2 cycle and within the ORCHIDEE-LMDz
model (as already pointed out in Kuppel et al., 2014). Sur-
prisingly, the use of satellite vegetation indices (VI) leads
to a slightly lower residual amplitude bias than when atmo-
spheric CO2 data are assimilated, albeit a lower number of
optimized parameters. For the length of the CUP, the rel-
ative model correction appears small for almost all experi-
ments and is lower than what is achieved for the trend and
amplitude. Some degradation (increased model–data bias) is
even obtained for the cases F and F+CO2. This may be at-
tributed to some inconsistency in the phasing of the CUP de-
rived from the FLUXNET stations and from the atmospheric
stations (given differences in the spatial- and temporal-scale

constraints brought each data stream). Among the single data
stream assimilations, the highest improvement is obtained
for VI, where the optimization of the phenological parame-
ters was the only improvement allowed for tuning the model.
For the joint assimilations, those combining the three data
streams provide the best performance and perform better than
the stepwise approach.

Among the joint assimilations with three data streams, the
two-step approach results in the largest reduction in ampli-
tude and CUP bias but, on the other hand, the larger trend
bias.

3.2 Impact of the assimilations on regional to global
land C fluxes and errors

Figure 4 now compares the carbon fluxes (NEE and GPP)
at the global scale and for three large regions (northern and
southern extratropics and tropics) using hindcast simulations
based on the different optimizations.

NEE is close to equilibrium by construction in the prior
model (about −0.3 GtC yr−1 globally). Note first that ex-
periments excluding CO2 data produce land carbon fluxes
that are not compatible with our understanding of the land C
fluxes (from−10 (F+VI) to+6 (VI) GtC yr−1, not shown in
Fig. 4). For all experiments including atmospheric CO2 data,
the assimilations lead to much more negative NEE (increased
land carbon sink) compared to the prior for nearly all regions:
the optimized carbon sinks are about −2.4 GtC yr−1 at the
global scale, similar to the stepwise approach (see Sect. S6
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for detailed results for each assimilation experiment). There-
fore, our joint assimilations with atmospheric CO2 data re-
sult in a land C sink that is in the range of independent
TBM estimates of the global net carbon budget (over the
same period, the Global Carbon Project reports a global land
sink of −2.9 GtC yr−1

± 0.8 standard deviation; see Table 5
of Friedlingstein et al., 2020). Note that we have imposed
(see method in Sect. 2.1.2) a net emission from land use
change (i.e., deforestation) of +1.1 GtC yr−1 (2000–2009),
which is slightly lower than that reported in Friedlingstein et
al. (2020) from the TBMs (1.6± 0.5 GtC yr−1) or the Book-
keeping methods (1.4± 0.7 GtC yr−1), hence our lower ter-
restrial carbon sink.

These similar posterior global-scale budgets however hide
large regional contrasts. While the three joint assimilation
experiments F+CO2, VI+CO2 and F+VI+CO2 lead to
similar NEE budgets across regions (with magnitudes com-
parable to the stepwise assimilation setup), the CO2 and
F+VI+CO2-2steps experiments result in distinctly differ-
ent estimates. In the northern extratropics, the CO2 assim-
ilation results in the largest C sinks (numbers provided in
Sect. S6) while the F+VI+CO2-2steps assimilation leads
to the lowest C sink. The reverse is obtained for the tropics.

With a global-scale budget of 171 GtC yr−1 for GPP, the
prior ORCHIDEE model is on the high range of recent esti-
mates of the global GPP, as synthesized in Anav et al. (2015),
the mean value of which is around 140 GtC yr−1. Depending
on the data assimilated in this study, the posterior GPP ranges
from 147 GtC yr−1 (F+VI) to 170 GtC yr−1 (VI+CO2) at
the global scale. The largest differences with the prior are
obtained for the experiments involving flux and satellite data
(alone or the two combined). This is directly linked to large
corrections in photosynthesis and phenology parameters for
these experiments (see Sect. 3.3). In comparison, the assim-
ilations involving atmospheric CO2 concentration data are
more conservative with respect to GPP. Assimilating atmo-
spheric CO2 data alone lessens the GPP reduction by a factor
of about 3 compared to assimilations with F and VI data,
and the correction for the joint assimilations using CO2 data
is even lower (see Sect. S6 for details).

By propagating the error on the parameters in the obser-
vation space (see Eq. 9), we calculated the uncertainty in
NEE and GPP fluxes caused by parameter uncertainty for the
prior and optimized models. The error statistics, initially cal-
culated at monthly/grid-scale resolutions, were aggregated
over the same regions as above, fully accounting for the spa-
tiotemporal correlations between grid cells (Fig. 5).

At the global scale, the prior error standard deviation for
NEE (4.7 GtC yr−1) is high compared to the typical uncer-
tainty associated with TBMs (about 0.5 GtC yr−1, Friedling-
stein et al., 2020) or to atmospheric inversions (estimated
uncertainty ∼ 0.4 GtC yr−1 in Peylin et al., 2013). This is
a consequence of neglecting negative error correlations be-
tween them (as done in nearly all C cycle DA studies). Given
this high prior uncertainty, the posterior error for NEE and

GPP is significantly reduced, as expected. Because of the
strong dependence of the posterior errors on the optimiza-
tion setup and the fact we do not consider the error of the
model, we should only compare the relative error reduction
between DA experiments. It is noteworthy that the posterior
errors in global NEE obtained for the experiments CO2 and
VI+CO2 are about 15 times lower than the posterior errors
resulting from the other data combinations (and three orders
of magnitude lower than the prior error). This is due both
(i) to the need for the DA system to correct the large a priori
mismatch of the atmospheric CO2 growth rate and (ii) to the
lower number of optimized parameters in these configura-
tions (Table 2: about 60 % more parameters being optimized
in F+VI+CO2 than in CO2 or VI+CO2). The joint as-
similations result in higher posterior errors on NEE, while
they usually lead to the lower posterior errors on GPP. For
GPP, the lowest posterior errors are found for the experi-
ments combining F and CO2 data, while experiments F, CO2
and VI+CO2 lead to larger posterior errors. This is due to
the fact that (i) F and CO2 data provide a stronger constraint
on the annual mean photosynthesis than VI data and that (ii) F
and CO2 data provide cross constraints on photosynthesis.
Experiment VI, in which about 10 times fewer parameters
are optimized and targeting primarily the timing of phenol-
ogy, results in the highest posterior GPP errors (although still
a reduction from the prior).

Finally, one can observe that the posterior errors are higher
in the tropics for both NEE and GPP (and the reduction
compared to the prior error is lower), which is even more
prominent in the experiments using in situ flux data alone
or with satellite data, a direct consequence of the lower data
availability (eddy-covariance measurements) to constrain the
model parameters for tropical PFTs.

3.3 Parameter estimates and associated uncertainties

Figure 6 shows the impacts of the different assimilation ex-
periments on a subset of the retrieved parameter values and
their associated uncertainties (the remaining parameters are
shown in Fig. S2).

While the stepwise study showed only few changes in the
parameter estimates between the sequential steps (and hence
as a function of the data stream from which the parameters
were constrained) (Peylin et al., 2016), our results show a
large variability between the assimilation experiments. For
most parameters, the highest departures from the prior val-
ues are obtained for the single data stream assimilations.
Higher changes are obtained for flux or satellite data as com-
pared to the estimates retrieved with atmospheric CO2 data
alone which remain closer to the prior values. This reflects
the lower constraint brought by the CO2 assimilation experi-
ment on photosynthesis- and phenology-related processes, as
already pointed out in Sect. 3.1.2. This is largely due to the
correction of the trend bias via a few respiration-related pa-
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Figure 4. Global and regional C budget for NEE and GPP and for the Northern Hemisphere (30–90◦ N), tropics (30◦ N–30◦ S) and Southern
Hemisphere (30–90◦ S) regions, for the prior model and the model calibrated for the several assimilation experiments. For NEE, only the
experiments involving atmospheric CO2 data are shown. The period considered is 2000–2009.

rameters, which prevails over the improvement of the other
photosynthesis and phenology parameters.

The joint assimilations usually result in a lower depar-
ture from the background. For the parameters constrained
by two data streams, the optimized values generally fall in
between those retrieved when these data streams are assim-
ilated alone. This feature shows how the system tries to
find a compromise solution and illustrates potential overfit-
ting with only one data stream. The values optimized in the
three experiments involving atmospheric CO2 data show lit-
tle variability for all parameters, except in F+VI+CO2-
2steps where the tuning of the multiplicative parameter of
regional soil carbon poolsKsoilC,reg is decoupled from the op-
timization of the other photosynthesis and phenological pa-
rameters. The decrease ofKsoilC,reg parameters from the prior
value is very small in all experiments, although these param-
eters are responsible for most of the correction of the atmo-
spheric CO2 trend. This highlights the challenge of optimiz-
ing soil C disequilibrium with our approach based on a model
spin-up followed by only a short transient period. The small-
estKsoilC,reg changes are obtained for the two-step approach.
Note that in this approach, Q10 is also estimated in the first
step; the corresponding estimate is similar to the value re-
trieved in the second step (which is displayed in Fig. 6), with
below 0.5 % difference, and consistent with the estimates of
the other joint assimilation experiments. For some parame-
ters/PFTs, the direction of the departure with respect to the
prior value (increase or decrease) may differ depending on
the data stream assimilated.

At the first order, the estimated parameter uncertainties
decrease with the number of observations assimilated, as
expected from Eq. (3), and given that the observations are
treated as independent data. However, given that the esti-
mated parameter errors strongly depend on the setup of B
and R matrices and that we did not use error correlations
in these matrices, we should only focus on the relative er-
ror reduction between experiments. The uncertainty reduc-
tion achieved through the assimilation of atmospheric CO2
data is usually lower than when flux and satellite data are as-
similated alone and typically varies between 10 % and 60 %
for most photosynthetic and phenological parameters. Most
often, the joint assimilations involving two data streams re-
sult in an uncertainty reduction higher or of the same order
than that achieved in the single data assimilations. The joint
assimilation combining the three data streams generally re-
sults in the highest uncertainty reduction, with values typi-
cally between 60 % and 90 %. The values are much higher
than those inferred from the stepwise approach, which are
more on the order of the uncertainty reduction obtained in
the CO2 assimilation experiment.

3.4 Relative constraints brought by the different
datasets

We now quantify the impact of each of the three data streams
on the analysis using the global average observation influ-
ence (quantified by OI) and information content (DFS) met-
rics defined in Sect. 2.4.4. We recall that OI (i.e., trace of S
normalized by the number of observations) gauges the aver-
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Figure 5. For NEE (a) and GPP (b) prior errors (top) and posterior errors obtained for each assimilation experiment (bottom), over the
regions considered. For NEE, only the experiments involving atmospheric CO2 data are shown.

Table 4. Observation influence and relative DFS statistics of each
data stream for the joint assimilation experiments F+VI+CO2
and F+VI+CO2-2steps.

OI Relative DFS

One-step Two-step One-step Two-step

Flux 0.000586 0.000577 74.65 76.9
NDVI 0.000048 0.000048 11.12 11.68
CO2 0.002654 0.002035 14.23 11.42

age influence that each single observation has on the anal-
ysis, while the relative DFS measures the overall weight of
one data stream in the optimization (the difference between
OI and DFS is due to the number of observations assimi-
lated; Cardinali et al., 2014). OI and DFS are determined for
the joint assimilation experiments combining the three data
streams.

Because of the very large number of observations (above
300 000) involved in the assimilation, only the diagonal ele-
ments of the influence matrix (Eq. 10) can be calculated. The
trace of S measures the equivalent number of parameters and
is equal to 132. Such a value, lower than the number of pa-
rameters (182), indicates that the optimized parameters may
not be fully independent (although parameter error correla-
tions have been ignored in our B matrix) as already reported
in Kuppel et al. (2012) or that some are not constrained dur-
ing the optimization process (as for instance LAIMAX, whose
estimate remains at its a priori value for some PFTs; Fig. S2).

The values of OI are provided in Table 4 for flux, NDVI
and atmospheric CO2 data. With about the same number of
observations considered (Table 2, last column), one in situ
flux measurement has about 10 times more weight than one
NDVI observation. This is a consequence of the larger num-
ber of parameters constrained by flux measurements than by
NDVI data in our setup. The highest influence is found for at-

mospheric CO2 data, the relative weight of one atmospheric
CO2 measurement being 4 times larger than that of one flux
observation, despite the much lower number of data assim-
ilated. Again, this is a consequence of the large weight of
the mismatch between the a priori-simulated trend and the
observed trend in the atmospheric CO2 data, which is drasti-
cally reduced through the optimization.

However, the smaller number of atmospheric CO2 data as-
similated, compared to flux and NDVI datasets, reduces the
overall constraint on the analysis provided by atmospheric
CO2 data, as gauged by its relative DFS. Hence, our opti-
mization is mainly controlled by flux data, which have an
overall contribution of about 75 %, which is about 5 times
larger than the constraint brought by atmospheric CO2 data
and 7 times larger than that of satellite NDVI. Differences
between F+VI+CO2 and F+VI+CO2-2steps are rela-
tively small for both OI and DFS but show a slightly lower
weight of atmospheric CO2 data for the 2 steps experiment. A
complementary analysis in which the influence of each PFT
and each atmospheric station is differentiated is provided in
Sect. S7.

4 Discussion

4.1 Benefits of simultaneous assimilations

Joint/simultaneous assimilations are more complex to imple-
ment compared to stepwise/sequential assimilations. In prin-
ciple, a stepwise approach could lead to similar results to a
simultaneous approach, if the posterior parameter error co-
variance matrix could be fully characterized at each assim-
ilation step and further propagated as prior information in
the next step. However, given that this is difficult in practice,
and because of model nonlinearities and equifinal solutions,
stepwise/joint approaches lead to different optimized mod-
els (Kaminski et al., 2012; MacBean et al., 2016). With a
joint assimilation, biases and incompatibilities between data
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Figure 6. Prior and posterior parameter values and uncertainties for a set of optimized parameters (two PFT-dependent parameters – SLA and
Vcmax – and four non-PFT-dependent). The prior value is shown as the horizontal black line and the prior uncertainty (standard deviation)
as the gray area encompassing it along the x axis. For the PFT-dependent parameters, each box corresponds to a given PFT; empty boxes
indicate that this parameter was not constrained for the corresponding PFTs. The white zone (non-dashed area) corresponds to the allowed
range of variation. The optimized values are provided for each assimilation experiment (the eight ones considered in this study and the one
from Peylin et al. (2016) – “stepwise”); the corresponding posterior errors are displayed as the vertical bars. For each assimilation experiment
the uncertainty reduction is also provided (right y axis) as the thick opaque horizontal bars. For KsoilC,reg, the posterior values displayed
here correspond to the mean over the ecoregions (without Antarctica) considered; the semi-transparent horizontal bars on either side of the
posterior values correspond to the standard deviation of the estimates.

streams may impact a larger set of parameters than in a step-
wise assimilation more directly. The characterization of the
prior observation errors also becomes more critical as they
condition the relative weight of the observations in the mis-
fit function to minimize and their influence on the solution
(analysis). Here, we designed several tests beforehand to re-
fine the configuration of the framework for the simultaneous
assimilations. Relying on consistency metrics of Desroziers
et al. (2005), we improved the prior error statistics on the
model parameters and checked that they were consistent with
both the prior model–data mismatch and the observations er-
rors for the different data streams. In spite of the limitation of
their application to nonlinear models like ORCHIDEE, their

implementation has proved to be useful and has led to an im-
proved consistency of the optimized models at regional and
global scales.

Single data stream assimilations usually lead to the best
model–data fit for the assimilated data stream, as compared
to joint assimilations. However, most often these single data
stream assimilations also produce degraded results with re-
spect to the data that were not assimilated. This reveals po-
tential overfitting issues with a higher variability of the opti-
mized parameter values than in the joint assimilations. Over-
fitting is a key issue for DA studies, which can be partly alle-
viated when combining different data streams within a con-
sistent framework: because they bring different information
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on the model processes, they contribute to better circumscrib-
ing a set of model parameters. Among the several assimila-
tion experiments considered, those where several data were
assimilated simultaneously were those in which there was al-
ways an improvement in optimized variables (i.e., no deteri-
oration in model–data fit). The joint assimilations resulted in
a reduced variability in parameter estimates and in optimized
NEE and GPP.

4.2 Realism of the regional- to global-scale C fluxes

The overarching objective of the study was more about as-
sessing how to make the best of a synergistic exploitation of
different data streams within a consistent assimilation frame-
work rather than achieving an up-to-date reanalysis of the
global carbon fluxes, especially since we focused on a lim-
ited dataset both in terms of temporal coverage (no atmo-
spheric CO2 data nor satellite data after 2010, no in situ flux
data beyond 2007) and of informational constraint. Indeed,
we did not assess the potential of other data that can bring
relevant (and possibly more direct) additional constraints on
the dynamics of terrestrial carbon stocks and fluxes, such as
aboveground biomass (Thum et al., 2017) or solar-induced
fluorescence (Bacour et al., 2019b), which have already been
investigated with ORCHIDAS and with an updated version
of the ORCHIDEE model. The expansion of the assimilated
datasets to provide the most up-to-date constraint on mod-
eled carbon fluxes will be the subject of future work.

In spite of these limitations, we saw that the regional-
/global-estimated NEE and GPP budgets are realistic and in
agreement with independent estimates. There are still im-
portant differences in the model predictions for the differ-
ent assimilation experiments (and we have not attempted to
identify what was the most reliable optimized model, which
would require the use of an ensemble of independent data,
an effort beyond the scope of this paper). Still, our optimized
simulations allow for a more in-depth exploration of the par-
titioning of the land carbon budget between the northern ex-
tratropics and the tropics. From the global carbon budget, a
discrepancy exists between the partition estimated by the at-
mospheric CO2 inversions and by the terrestrial biosphere
models (Kondo et al., 2020). Atmospheric inversions esti-
mate a larger sink over the northern extratropics than TBMs
(around 1.8 GtgC yr−1 versus 1.0 GtC yr−1 for the period
2010–2020), although with large variations between TBMs
(Friedlingstein et al., 2020, Fig. 8). Conversely, TBMs esti-
mate a larger C sink over the tropics (Ahlström et al., 2015;
Sitch et al., 2015), possibly due to strong CO2 fertilization
effects in TBMs (Schimel et al., 2015), than the inversions,
which estimate an approximately net neutral C sink (Peiro
et al., 2022). The F+VI+CO2-2steps assimilation follows
the typical partitioning pattern of TBMs’ behavior, with a
stronger C sink in the tropics than in the Northern Hemi-
sphere (Fig. 4). In contrast, all other multiple data stream
experiments with CO2 included (F+CO2, VI+CO2 and

F+VI+CO2) and the stepwise approach lead to an approx-
imately equal C sink in the Northern Hemisphere and trop-
ics (thus unlike the general pattern for TBMs and more in
line with atmospheric inversions); and on the other hand, the
CO2 experiment leads to a similar regional partitioning as
the atmospheric inversions. For the F+VI+CO2-2steps ex-
periment, the tropical sink is almost doubled as compared to
the other simultaneous assimilation experiments in spite of a
slightly reduced GPP.

4.3 Caveats and perspectives concerning the
initialization of the soil carbon pools

We showed that reaching the global terrestrial carbon sink
was mostly achieved by correcting the initial soil carbon
reservoirs in the ORCHIDEE model. Their tuning enables
the correction of the biased trend between atmospheric
CO2 time series measurements at stations and the prior
ORCHIDEE-LMDz model. The impact of this biased trend
on the optimization performance was highlighted by the
quantification of the influence for the three data streams
on the optimization, with atmospheric CO2 data having the
largest average observation influence on the solution. A con-
sequence of correcting the biased trend is that the model im-
provement with respect to other processes (photosynthesis
and phenology) is hindered.

From a more general perspective, the detrimental conse-
quences of model–data biases become even more important
when assimilating multiple observational constraints because
of their interconnected contribution to the model calibration.
It should be noted that the impact of systematic model–data
errors is not inherent to our minimization approach (gradient-
based) and has also been highlighted using random search
approaches (Brynjarsdóttir and O’Hagan, 2014; Cameron et
al., 2022). Thus, accounting for bias correction approaches in
data assimilation schemes (Dee, 2005; Trémolet, 2006; Ku-
mar et al., 2012) is becoming increasingly important as the
complexity of models and the number of observational con-
straints increase.

We attempted to overcome this here by setting up a two-
step assimilation process where the trend correction is mostly
achieved in the first step by tuning the regional parameters
controlling the soil carbon pools. In doing so, the two-step
approach optimizes the constraint brought by in situ and
satellite data (in the second step) in the joint assimilation
process. Therefore, the two-step assimilation results in en-
hanced model–data consistencies compared to a standard si-
multaneous assimilation (as observed in Figs. 2 and 3), with
a caveat regarding atmospheric CO2 data (the improved fit
is mostly with the detrended atmospheric CO2 data but not
the raw data) and the distribution of the land C sink (we saw
above that this experiment tends to favor a tropical C sink).
We acknowledge the fact that this method is not optimal and
requires further investigation. Going beyond the steady-state
assumption following model spin-up has been discussed al-
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ready (Carvalhais et al., 2010; MacBean et al., 2022), as the
steady-state assumption results in biased estimates of soil
carbon reservoirs (Exbrayat et al., 2014). Extending the pe-
riod for the transient simulations following spin-up, like is
done in the TRENDY experiment (Sitch et al., 2015), would
have led to more realistic soil C imbalance and increased the
consistency of the modeled atmospheric data with the mea-
surements. Improving the representation of soil carbon stock
trajectories in TBMs is pivotal to predicting NEE in regional
to global assessments of the capacity of the terrestrial ecosys-
tems to absorb or not atmospheric CO2. We used atmospheric
CO2 data here to optimize a scalar that accounts for the soil
C disequilibrium. The optimization of scaling factors of soil
carbon pools is a handy alternative to the optimization of the
parameters controlling the turnover times and soil carbon in-
put of the ORCHIDEE soil C model. This would require the
spin-up (over at least 1000 years) and transient simulations
to be included in the minimization process at each iteration;
the prohibitive calculation times for performing this type of
optimization preclude us doing this for now. Exploiting TBM
databases more directly related to regional soil carbon con-
tents, such as the Harmonized World Soil Database (HWSD)
(FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), the International
Soil Carbon Network (Nave et al., 2016) or the global soil
respiration database (Jian et al., 2021), is not straightforward
because of the errors associated with these datasets (Todd-
Brown et al., 2013) and inconsistencies between the esti-
mated quantities and the model state variables and underly-
ing processes (as for instance the depth of the soil carbon).
In any case, what is sorely needed is data that track changes
in C stocks over long time periods. Still, it is of primary im-
portance for the science community to endeavor to bridge the
gap between state-of-the art estimates of soil carbon stocks
and the quantities that TBMs simulate over the historical pe-
riod.

5 Conclusions

By assimilating up to three independent carbon-cycle-related
data streams simultaneously or separately (in situ measure-
ments of net carbon and latent heat fluxes, satellite-derived
NDVI data, and measurements of atmospheric CO2 concen-
tration at surface stations) within the ORCHIDEE global
model (and an offline transport model based on precalculated
transport fields with LMDz), we have been able to analyze
their compatibility, complementarity and usefulness, in the
frame of a global-scale carbon data assimilation system. To
do so, the study relied on different metrics to set up and in-
terpret the assimilation performances. The approach as well
as the explored metrics is general enough to benefit a broader
set of data assimilation applications, supporting guidance for
setting up such a C cycle DA framework and for better use
of the data to be assimilated.

We investigated how the different combinations of data
streams constrain the parameters of the ORCHIDEE land
surface model and by consequence the simulated historical
spatial and temporal distribution of the net and gross carbon
fluxes (NEE and GPP), as well as FAPAR and atmospheric
CO2 concentrations. We quantified how the combination of
these data streams (two by two or all together) impacts the re-
liability of the model predictions. Although it leads to lower
fitting performances with respect to the assimilation of any
individual dataset (because the optimization seeks a trade-
off solution between all data streams), the simultaneous as-
similation of the three data streams is found to be the most
consistent approach. In particular, it avoids model overfitting,
which can degrade the model predictions with respect to data
streams not assimilated. The successive model evaluations
performed after the assimilation highlighted challenges in
handling model–data bias in Bayesian optimization frame-
works.

In this study, we focused on biases associated with the
initialization of the soil carbon pools in our setup (the fact
that they are out of equilibrium because of all historical land
cover change and land management impacts). A careful spin-
up including a transient simulation to account for the im-
pact of all past disturbances (climate, land cover and land
management) is mandatory but likely not sufficient (due to
uncertainties in the historical evolution of these drivers) to
achieve accurate simulation of the space–time distribution of
the global land C sink. Next steps should focus on includ-
ing part of the spin-up (i.e., such as the transient simulation)
in the assimilation procedure, possibly in conjunction with
initial C pool optimization.

Terrestrial ecosystem modelers are anticipating the many
novel types of observations that are being made available for
model evaluation and assimilation. As a result, and in parallel
to the growing complexity of TBMs incorporating new bio-
geophysical processes related to the carbon and water cycles,
new observation operators are being developed to be able to
make use of this new wealth of data. With these new per-
spectives ahead, the global land surface modeling commu-
nity should investigate some of the issues highlighted in this
study and linked to multiple data streams assimilation, ini-
tial model state optimization and/or the inclusion of the spin
up in the DA system, etc. more deeply in order to achieve
significant reduction in land surface model projection uncer-
tainties.

Code availability. The ORCHIDEE model code is open-source
(http://forge.ipsl.jussieu.fr/orchidee, last access: April 2015, Krin-
ner et al., 2005), and the associated documentation can be found at
https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation (last ac-
cess: April 2022). The ORCHIDAS data assimilation scheme (in
Python) is available through a dedicated website (https://orchidas.
lsce.ipsl.fr/, last access: April 2022, Bastrikov et al., 2018). Infor-
mation about the LMDz model, source code and contact is pro-
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vided at https://lmdz.lmd.jussieu.fr/le-projet-lmdz-en-bref-en (last
access: April 2016, Hourdin et al., 2006).
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