
HAL Id: hal-04086933
https://hal.science/hal-04086933

Submitted on 12 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aggregation using Genetic Algorithms for Federated
Learning in Industrial Cyber-Physical Systems

Souhila Badra Guendouzi, Samir Ouchani, Mimoun Malki

To cite this version:
Souhila Badra Guendouzi, Samir Ouchani, Mimoun Malki. Aggregation using Genetic Algorithms for
Federated Learning in Industrial Cyber-Physical Systems. 2022 International Conference on INnova-
tions in Intelligent SysTems and Applications (INISTA), Aug 2022, Biarritz, France, France. pp.1-6,
�10.1109/INISTA55318.2022.9894236�. �hal-04086933�

https://hal.science/hal-04086933
https://hal.archives-ouvertes.fr

Aggregation using Genetic Algorithms for Federated
Learning in Industrial Cyber-Physical Systems

Souhila Badra GUENDOUZI
LabRi-SBA laboratory ,

Ecole supérieure en Informatique,
Sidi Bel-abbes, Algeria

LINEACT CESI, Lyon, France
b.guendouzi@esi-sba.dz

Samir OUCHANI
LINEACT CESI

Aix-en-Provence, France
souchani@cesi.fr

Mimoun MALKI
LabRi-SBA laboratory ,

Ecole supérieure en Informatique,
Sidi Bel-abbes, Algeria

m.malki@esi-sba.dz

Abstract—Industry and academics are interested in indus-
trial cyber-physical systems (ICPS). Complexity makes it hard
to grasp these systems design and functioning. By offering
FedGA-ICPS, a federated learning framework based on genetic
algorithms, we can solve ICPSś performance and decision sup-
port. To simulate the structure and behavior of these systems,
we use ICPS. FedGA-ICPS investigates the performance of the
ICPS sensors by offering locally integrated learning models.
Genetic algorithm then speeds up and improves federated learn-
ing aggregation. Transfer learning is used to disseminate model
parameters across restricted entities. Fashion MNIST’s initiative
achieved notable outcomes.

Index Terms—Cyber-Physical Systems, Performance, Re-
silience, Federated Learning, Aggregation.

I. INTRODUCTION

IoT is one of the most crucial 21st-century technologies.
Internet of Industrial Things (IoIT) and Internet of Medical
Things (IoMT) utilize smart sensors, actuators, rapid com-
munication protocols, and efficient cybersecurity procedures
to enhance industrial and medical processes and applications.
Clever devices create a lot of data in vast networks, hence IoT
frameworks need smart, resilient big data analysis tools. Deep
learning (DL) algorithms have shown promise in network
applications owing to their intelligent learning and processing.
Traditional AI in CPS was centralized, with a central server
training a model using data from linked end devices. Trans-
mitting so much data from end-devices to the cloud causes
bandwidth bottlenecks, processing delays, and privacy leaks.
This form of learning has recently been altered to distributed
or federated learning, which groups clients (end devices) with
their own secured and non-shareable data. They share learning
parameters to achieve the same degree of learning.

Google announced decentralized, collaborative, and feder-
ated learning (FL) in 2016. FL creates a model for a certain
application. Choose the proper machine learning model to
utilize, select devices on which candidates will be able to
learn, and train the model until convergence. The central server
receives the model parameters from all linked devices after
local training has been completed. The aggregator (central
server) aggregates the parameters of all local models before it
updates the global model when it receives all local models. The
server re-shares global model parameters, and devices update
theirs. This is performed until training converges.

In the literature, Brendan McMahan et al. [1] proposed the
FedAVG algorithm, which combines the weights of several
local models to produce a new weight and an aggregated
model based on the average. Similarly to FedAVG, FedPer
proposed by Arivazhagan et al. [2] uses an aggregated model
to calculate the new weights used in the aggregation process
[3]. The clients only send the neural model’s base layers to the
server, keeping the rest. Base layers deal with representation
learning and may be aggregated by clients. Upper levels
focus on client-specific decision-making [3]. This study aims
to overcome FedAVG and FedPer’s limitations by using a
genetic algorithm to improve FL aggregation for ICPS . As
shown in Figure 1, FedGA-ICPS develops five stages: ICPS
(red rectangle), Learning (blue rectangle), Election (green
rectangle), Aggregation (yellow rectangle), and Broadcasting
(violet rectangle). In the following, we explain each part and
steps of FedGA-ICPS.

(1) Initially, FedGA-ICPS develops and implements a
ICPS as a composition of entities and components of
different forms and nature. Structure and behavior are
unique to each entity. Communication and interleaving
are possible between the entities in a variety of environ-
ments.

(2) Then, through simulation and run-time execution ,
FedGA-ICPS collects, formats, cleans and normalizes
streaming data ” generated and communicated between
different ICPS components. ” will be used for the
learning step that relies on a convolution neural network
that is assigned to a given device.

(3) Consequently, FedGA-ICPS proposes a set of compo-
nent to elect the best candidate to federate the learning
between the embedded CNN. The election takes into
consideration different parameters, like: processing and
memory capacities, latency, availability, security, etc.

(4) After a local convergence learning, FedGA-ICPS per-
form the aggregation through genetic algorithms. The
latter takes into consider: the weights of the local
models. Then, produced in the elected component the
optimal weight vector for broadcasting.

(5) Finally, FedGA-ICPS broadcasts to the different edges,
and components the resulting optimal weights through
transfer learning.

ICPS Learning Election Aggregation Broadcast

Entities

Network

Tasks

Attributes

Structure

Scoring

Classification

Models
Transfer

Loss/Accuracy

Models

Clients

Selection

Global Model

Clients

Aggregator

Prepare data Candidating Performing Publishing

Fig. 1. Aggregation using Genetic Algorithms Approach for Federated Learning in Industrial Cyber-Physical Systems.

In a nutshell, we present our main contributions.
• Surveying the main contributions related to the applica-

tion of FL on CPS.
• Develop a framework called FedGA-ICPS to enhance

the performance to ICPS.
• Model formally ICPS components and their composi-

tions.
• Propose a federated solution to enhance the collabora-

tive learning phases between ICPS components through
genetic algorithms.

• Compare FedGA-ICPS within the existing solutions and
validates it on benchmarks.

The remainder of this paper is organized as follows. Section
II surveys contributions related to federated learning and its
applications. Section III develops our proposed framework,
FedGA-ICPS that is validated in IV. Finally, Section V
concludes the paper and give hints on our FedGA-ICPS
related perspectives.

II. LITTERATURE

The purpose of this section is to examine and discuss
approaches that deal with performance analysis and decision
support for ICPS.

Połap et al. [4] proposed an agent-based system to eval-
uate and secure IoMT medical data. Decentralized data are
encrypted on a blockchain. Learning, indirect, and data man-
agement are actors in the solution (DM). Learning agent (LA)
launches six threads to train CNN models for a specified
database section. Indirect Agent (IA) classifies DM agent
inputs and notifies LA when results are too low or unclear
to retrain the model. If the training data are insufficient, IA
asks additional entries from the DMA. DMA takes time to
gather patient and doctor information, thus this solution isn’t
real-time. Despite FL techniques, choosing the appropriate
classification method for noisy and diverse data is difficult.

Tian et al. [5] used methods from deep learning to come
up with a proposal for an asynchronous FL-based anomaly
detection method that they described as a Delay Compensated
Adam for use with IoT devices that have limited resources.
Their strategy is built up in stages, beginning with step one.
First, there will be a pre-initialization of the parameters in
such a way that an arbitrary number of clients will be chosen

for the purpose of having them submit a tiny portion of
their data to the server. As a result, the initial global model
will be trained on the server. Second, they implemented
an asynchronous training method for the model. They did
not evaluate the dependability of the participating nodes,
despite the fact that this method is specifically designed for
anomaly identification. As soon as the three-task server has
started running, it is confronted with the difficulties of a
high bandwidth demand, and if it crashes, the whole system
is terminated. As part of wearable healthcare, Chen et al.
[6] proposed federated transfer learning to be integrated with
cloud computing. Their framework handles FL data separation
and model personalization. The cloud server builds a global
model using public datasets, distributes it to clients through
homomorphic encryption, and clients retrain local models and
upload them. The aggregator refreshes the global model using
fedAVG and does transfer learning..

Hao et al. [7] presented Privacy-enhanced FL (PEFL) for
Industrial AI to promote model gradient security and local
model accuracy. (1) Key generation center (KGC) distributes
private keys to each participant, (2) CS is a Cloud-based
aggregator, and (3) participants. Each participant learns a local
model, produces local gradients, and perturbs them using Dif-
ferential Privacy (DP). The perturbed gradients are encrypted
into BGV ciphertext using Homormorphic encryption. The CS
reverses encryption by decrypting for aggregation. When a
small fraction of participants are impacted, accuracy is barely
affected. Zhou et al. [8] proposed a fog computing federated
learning approach with privacy protection as a means of
protecting privacy. In order to complete the learning process,
each fog node collects and analyzes data from IoT devices.
Due to unequal data distribution and computational resource
gaps, this strategy increases the efficiency of training and
improves model accuracy due to the unequal distribution of
data. Using blinding and Paillier homomorphic encryption to
protect the parameters of a model and deploying differential
privacy to resist data attacks on IoT devices, they are able to
resist data attacks on IoT devices.

Wang et al. [9] suggested the use of fog computing to
monitor air quality using a multisource heterogeneous dataset
that uses a FL approach with a multi-source approach using
multi-source heterogeneous data collection. IoTs, Edge Nodes,

and Fog Gateway Devices (FGD) make up the architecture of
the Local Multi-source Heterogeneous Data Fusion System
(LMFS) and the Centralized Homogeneous Data Training
System (CHTS), which represents the centralized homoge-
neous training system of IoTs, Edge Nodes, and Fog Gateway
Devices. LMFS was deployed with five sub-classifiers on the
fog node, each of them has one or more heterogeneous datasets
that needs pre-processing first, followed by a shared task, and
the numerical features are extracted from all five layers on the
edge node to get the local assessment results. Yao and Ansari
[10] used fog computing to accelerate FL time and minimize
the power consumption of its IoT devices, he proposed a new
FL enhancement method that uses CPU frequency control and
wireless transmission power (WTP) control to simplify FL and
accelerate FL time and minimize energy consumption. There
is a requirement for the FL time to be less than the maximum
FL time, since the FL time includes the computation time
for the local model training and the wireless transmission
time for uploading the local model updates to the fog node
that should satisfy the QoS requirement. It is the same with
regard to the energy consumption of FLs. In all IoT devices
that have been tested, they have implemented an alternative
direction algorithm (ALTD) within each local iteration in order
to calculate the optimal WTP and CPU frequency values.

Regarding survey approaches, the proposed solution im-
proves federated learning aggregation for ICPS . At this
stage, we concentrate on the accuracy of FL aggregation and
application on ICPS by developing FedGA-ICPS a federated
learning framework.

III. FEDGA-ICPS FRAMEWORK

This section follows FedGA-ICPS steps depicted in Fig.
1 by firstly presenting ICPS formalism. has been applied on
Fashion MNIST.

A. Industrial CPS

In our approach, a system S is composed from a set of
nodes (atomic entities) E that communicate and interact over
a network composed from physical and logical channels (N)
to ensure that a given task is completed (T) in a specific
context CT . We formulate a given system S by the tuple
⟨E ,N , T , CT ⟩ detailed as follows.

1) Entities formalization: A given entity ε ∈ E can be
an IIoT, an edge node, a fog node or a cloud server that
are enabled to execute specific actions, or organize a global
task-execution system in collaboration with other entities.
To evaluate the guard related to an action, the entity ε
run its associated machine learning mlε that evaluates the
variables of the specified guard. To enhance the decision-
making of an entity ε, FedGA-ICPS develops techniques
to help entities to update periodically their associated mls.
However, the atomic entity ε that describes ICPSis stipulated
as ⟨id, attr, Actuator,M,Σ, Beh⟩, where:

• id is a closest set of identifiers,
• attr : id → 2T is a function associating the possible

attributes to a given identified entity,
• Actuator evaluates the attributes of an entity to set its

status,

• M is a function that associate to an entity ε its ml.
• Σ = {Sending,Receiving,Updating,
Predicting,Training,Aggregating} is the fi-
nite set of atomic actions that depend on the type of entity
εi and executed by the latter.

• Beh : id × Σ → L sets the behavior of an entity εi
expressed in the language L. The BNF of L is described
by: B ::= B +g B | α | B · B, where α ∈ Σ, “ · “ is
sequential composition operator, and +g is a deterministic
choice operator relying on the guard evaluation. The
atomic propositions g is evaluated by Predicting. The
case when no propositions assigned to g, we consider
g

∆
= ⊤. Thus, the deterministic decision become a non-

deterministic.

2) Networking Composition: By using this network N , the
entities can communicate and establish a connection between
each other in a safe and secure environment. In order to
communicate with another entity εi or to a subsystem, an
entity εi must be connected to it through either a physical or
logical channel. Networks are defined as graphs with vertices
representing entities and edges representing the way in which
they interact and are connected. A network N is defined as
the combination of entities, channels, protocols, and relations.
It is represented by the tuple ⟨E ,Chan,Prot,Rel⟩, where:

• Chan is a finite set of secure and accessible channels that
can be accessed,

• Prot is a range of protocols compatible and classified
for nodes and channel where ϵProt denotes the empty
protocol.

• Rel : E ×E → Chan×Prot links two entities through
the use of a channel and a protocol. The assigned value
of ϵprotocols indicates that the two nodes have a physical
connection between them.

3) Tasks Modeling: In order to accomplish the main
function of the system, the task T is the primary objective. As
a result, each entity is expected to realize a specific sequence
of actions to accomplish its goals.Our definition of a task is
based on a tree, if the root of the tree represents the main goal
of the system S , the children represent the sub-goals of each
entity, and the leaves represent the final result of each entity.
The task T is represented by the tuple ⟨G,⪯⟩, where:

• G is a finite set of goals where g ∈ G is the root (the
main goal),

• (G,⪯) is a preorder relation on G.

4) Context: It can be seen as a container of entities that
can change dynamically, by integrating or excluding enti-
ties, changing protocols, and updating tasks, but they should
follow certain rules and policies PL. A context CT is the
tuple ⟨E ′ ⊆ E , T ′ ⊆ T ,PL⟩. In FedGA-ICPS, a policy is
expressed as a temporal logic formula.

B. Learning

The creation of a local model for each edge item is the
goal of this step of the process. It is made up of two separate
processes working in tandem. Specifically, the following is
what should be done:

1) Classification: CNN, short for convolutional neural net-
work, is a kind of deep neural network [11] that is used in
the learning phase of FedGA-ICPS. This stage depends on
CNN. A specific CNN is machine-learned in that machine
by evaluating just the data that pertains to that CNN. The
architecture of a CNN is represented in Figure 2, which shows
that the architecture is composed from the convolution layer,
the pooling layer,as well as the fully-connected layer. The
dataset is capable of having its spatial information preserved
when the convolution process with many filters is applied to
it. This results in the extraction of features (feature map).
Convolution is a method for creating feature maps, while
pooling technique is to reduce the size of the resulting feature
maps. Often, Two types of pooling are widely used in CNN
[12]: maximum and averaging. The fully-connected layer is in
charge of classifying the data into several categories according
to the attributes that were gathered by the layers that came
before it. In the convolutional and pooling layers of a neural
network, ReLu functions are often employed to classify the
inputs. On the other hand, in the FC layers, a softmax
activation function is typically utilized to give a probability
ranging from 0 to 1. Because it is reliant on the structure of
its own dataset, each edge client in our system has its own
CNN model. This model does not have to be similar to other
local models in terms of the number of filters, layer design,
function activation, and so on.

Fig. 2. CNNs Architecture.

At training stage, Zhang and Sabuncu[13] mentioned that
integrating stochastic gradient descent with the Cross Entropy
was the most popular method used to train CNNs for classifi-
cation issues (CE).

2) Models Transfer: Transfer learning, also known as TL, is
the practice of reusing a model that has already been trained
on another learning task that is related to the first. A deep
neural network requires a great deal of data and resources
along with a lot of computing power to make good decisions,
and hence transfer learning is recognized as a solution that
can help to overcome these challenges by using data and
resources in order to accelerate the learning process. Because
the majority of practical applications do not need millions
of labeled samples to train intricate deep learning models,
this is especially useful in industrial settings. In fact, this is
particularly effective in industrial contexts. The mechanism
of transfer learning may be used in two different ways: (1)
This procedure involves taking a model that has already been
trained on a source dataset and training it again on a target
dataset to improve its performance. This process is called fine-
tuning pre-trained models. Then, (2) Performing fine-tuning
on the feature extractors, which involves freezing the feature

extractor layers and just retraining the classification layers. In
the course of our research, we concentrate on the process of
fine-tuning the feature extractors presented in Figure 3.

Fig. 3. Transfer Learning Architecture.

When a new edge node is added to the industrial network,
the cloud server searches for pre-trained models that are
comparable to those already deployed on other nodes of the
same kind. These models must have been trained using a large
dataset and must have reached a high level of accuracy. As a
consequence of this, only the base layers of the network need
to be retrained as opposed to the whole network, since the
feature extractor layers are the only ones that are sent to the
target node.

C. Election

For FL, FedGA-ICPS seeks for the most powerful Fog
or Edge node. As default, we consider the cloud server as
the aggregator. Depending on a component’s free memory
and processing capabilities, the cloud server may elect it as
a secondary aggregator. FedGA-ICPS reorders all system
components into a prioritized list.

We have formulated the election process by an election tree
ET , which is characterized by the tuple ⟨E , C,P⟩, where:

• E are the entities that are detailed in Section III-A1.
• C returns a value that takes into consideration an entity

attributes as its actual available capacity memory, pro-
cessing capacity, etc.

• P assigns a priority value to a given entity ε to resolve
the non-determenistic problem when entities capacities
are equals.

FedGA-ICPS considers to measure periodically the ca-
pacity of each node that can change the election order. As
example, in Fig 4, the cloud server ε1, which is the most
powerful entity at the moment t = 0, is represented by the
root of the tree tree. Children are the least efficient entities,
whereas leaves, which are often IoT devices, are the weakest.
Each entity’s priority Pi functions are represented by the arcs.

D. Aggregation

Unlike FedAVG and FedPer, FedGA simply uploads en-
crypted base layer (classification layer) weights to the des-
ignated aggregator. The latter creates the new weights by
executing the genetic algorithm (line 7) and using a weight
vector to describe the system across chromosomes.

⟨ε1, C(ε1)⟩

⟨ε2, C(ε2)⟩ ⟨ε3, C(ε3)⟩ ⟨ε4, C(ε4)⟩
P4P3P2

⟨ε5, C(ε5)⟩ ⟨ε6, C(ε6)⟩ ⟨ε7, C(ε17)⟩
P7P6

P5

Fig. 4. A Configuration of the Election Process at a slot of time.

(1) Define an adequate chromosome which the weight vec-
tors.

(2) Select a large set of chromosomes, population takes into
account all weight vectors collected from the different
components.

(3) The reproduction operators include selection, crossover,
and mutation, which are all used in the process of
enhancing the trained models. selection is applied on
vectors with high ranking (fitness evaluation). In our
case, the fitness is the loss function. The crossover
operation is based on the single point paradigm. It means
that a vector is divided into two parts to be exchanged
with another vector to form a new population. Finally,
the mutation operation collects randomly only 10% of
weights to reproduce new vectors.

(4) FedGA-ICPS repeats this process until the accuracy of
all edge nodes models is more than 99%.

Algorithm 1 Federated Genetic Algorithm (FedGA), The K
clients are indexed by k; B is the local mini-batch size, Dkis
the dataset available to client k, Dt is the dataset used for the
test which is available on the aggregator, WB is the vector
of base layers (classification layers), WP is the vector of
personalized layers (features extractor layers), E is the number
of local epochs, and η is the learning rate.

1: Procedure FedGA ▷ Run on the server.
2: W 0

B ← Rand(); ▷ Initialize the weights randomly.
3: for t = 1, 2, 3, ... do ▷ Round t.
4: for k ∈ K do ▷ To select a client k.
5: W t+1

B,k ← k.Update(k,Wt
;bfB,k); ▷ In Parallel call

the function Update.
6: end for
7: W t+1

B = GA(Dt,W
t
B); ▷ Only base layers are

aggregated
8: end for
9: End procedure FedGA

10: Procedure Update(k,wt
B) ▷ Run on the client k.

11: β ← (Split Dkinto mini-batches of size B;)
12: for i from 1 to E do ▷ i is an epoch.
13: for b ∈ β do ▷ b is a batch.
14: wB, wP ← w − η∆L(wB, wP, b); ▷ base layers are

updated and trained and personnalized layers are trained
15: end for
16: end for
17: return t ▷ t will be stored in the Server.
18: End procedure

E. Broadcasting

After aggregation, FedGA-ICPS passes model base layer
weights to learning phase components. In the training phase,
a high-accuracy, low-loss model is created. Homomorphic
encryption is used during broadcast phase. Distributed ho-
momorphic cryptosystem (DHC) implements homomorphic
operations utilizing secure multiparty computing (SMC).

IV. EXPERIMENTAL RESULTS

We evaluated the performance of our FedGA-ICPS frame-
work using the Fashion MNIST dataset [14], it is a large
collection of handwritten digits that is often used for the
purpose of training a variety of image processing systems. We
employed this dataset in order to test the effectiveness of our
project framework. We divide it into four distinct subsets to
better understand it. Each user has a unique component that
differs from that of other users and is of uneven size (non-
iid data). We carried out experiments using CNN to evaluate
the effectiveness of federated learning when combined with
genetic algorithms results, as opposed to FedAVG and FedPer,
in comparison with the results obtained with FedAVG. Every
user has their own convolutional layers, in addition to the
classification layers that everyone else uses. To train the
models , we have used a mini-batch SGD of size 1000, a ReLU
activation function, and a dropout is employed to prevent over-
fitting. PyTorch was used throughout the development of the
models for our various implementations. Using FedAVG as
an aggregation algorithm in the case where the models are
homogeneous, the results presented in Figure 6 show that there
is a perturbation of the accuracy for each customer due to data
heterogeneity and dataset size variance. This is shown by the
fact that the FedAVG aggregation algorithm was used.

Fig. 5. FedAVG Aggregation Algorithm.

The FedPer model divides the model into two layers: the
base layer and the personalized layer. Only the base layers
are aggregated by the federated server in order to create a
personalized layer, and only the base layers are communicated
back to the server to be personalized. The results depicted
in Figure 6 present that there is an improvement in accuracy
compared to FedAVG. Finally, using FedGA-ICPS, we obtain
a rapid convergence for all clients with an average accuracy
greater than 99% as shown in Figure 7.

Fig. 6. FedPer Aggregation Algorithm.

Fig. 7. FedGA Aggregation Algorithm.

V. CONCLUSION

In this research, we have provided a first step toward a
complete approach for strengthening performance analysis in
order to construct a more robust ICPS . This step was one
of the goals that we set out to accomplish. A system is
defined as a collection of items, each of which has its own
structure and behavior for the goal of carrying out a given
function, according to the framework that was designed for
FedGA-ICPS . FedGA-ICPS plans to employ federated
learning and genetic algorithms to aid restricted devices in
locally embedding their decision models in order to speed
up the analysis and learning processes. This will allow the
project to do these tasks more quickly. By using a well-known
standard, we were able to provide evidence that the proposed
framework is effective. In the future, we plan to expand
the capabilities of the framework by (1) incorporating addi-
tional machine learning techniques and automatically selecting
the best agent, primarily through reinforcement learning; (2)
decentralizing the system through the implementation of a
blockchain architecture; and (3) evaluating the framework on
use cases and benchmarks that are more complex.

REFERENCES

[1] H. Brendan McMahan, E. Moore, D. Ramage, S. Hamp-
son, and B. Agüera y Arcas, “Communication-efficient

learning of deep networks from decentralized data,”
arXiv e-prints, pp. arXiv–1602, 2016.

[2] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and
S. Choudhary, “Federated learning with personalization
layers,” arXiv preprint arXiv:1912.00818, 2019.

[3] S. Ek, F. Portet, P. Lalanda, and G. Vega, “A federated
learning aggregation algorithm for pervasive computing:
Evaluation and comparison,” in 19th IEEE International
Conference on Pervasive Computing and Communica-
tions PerCom 2021, 2021.

[4] D. Połap, G. Srivastava, and K. Yu, “Agent architecture
of an intelligent medical system based on federated learn-
ing and blockchain technology,” Journal of Information
Security and Applications, vol. 58, p. 102748, 2021.

[5] P. Tian, Z. Chen, W. Yu, and W. Liao, “Towards asyn-
chronous federated learning based threat detection: A
dc-adam approach,” Computers & Security, vol. 108, p.
102344, 2021.

[6] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “Fed-
health: A federated transfer learning framework for wear-
able healthcare,” IEEE Intelligent Systems, vol. 35, no. 4,
pp. 83–93, 2020.

[7] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu,
“Efficient and privacy-enhanced federated learning for
industrial artificial intelligence,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 10, pp. 6532–6542,
2019.

[8] C. Zhou, A. Fu, S. Yu, W. Yang, H. Wang, and Y. Zhang,
“Privacy-preserving federated learning in fog comput-
ing,” IEEE Internet of Things Journal, vol. 7, no. 11,
pp. 10 782–10 793, 2020.

[9] W. Wang, C. Feng, B. Zhang, and H. Gao, “Environmen-
tal monitoring based on fog computing paradigm and
internet of things,” IEEE Access, vol. 7, pp. 127 154–
127 165, 2019.

[10] J. Yao and N. Ansari, “Enhancing federated learning
in fog-aided iot by cpu frequency and wireless power
control,” IEEE Internet of Things Journal, vol. 8, no. 5,
pp. 3438–3445, 2020.

[11] S.-C. Huang and T.-H. Le, “Chapter 4 - multi-category
classification problem,” in Principles and Labs for Deep
Learning, S.-C. Huang and T.-H. Le, Eds. Academic
Press, 2021, pp. 81–116.

[12] W. Zhu, Y. Ma, Y. Zhou, M. Benton, and J. Romagnoli,
“Deep learning based soft sensor and its application on
a pyrolysis reactor for compositions predictions of gas
phase components,” in 13th International Symposium on
Process Systems Engineering (PSE 2018). Elsevier,
2018, vol. 44, pp. 2245–2250.

[13] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy
loss for training deep neural networks with noisy labels,”
in 32nd Conference on Neural Information Processing
Systems (NeurIPS), 2018.

[14] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms,” arXiv preprint arXiv:1708.07747, 2017.

