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TTProfiler: Types and Terms Profile Building for Online Cultural
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As more and more knowledge graphs (KG) are published on the Web, there is a need for tools that show their content. This

implies showing the schema-level patterns instantiated in the graph, but also the terms used to qualify its entities. In this

paper, we present a new profiling tool that we call TTprofiler. It shows the predicates that relate types in the KG, and also

the terms present in this KG, because of their paramount importance in most KGs, especially in the Cultural Heritage (CH)

domain. We recall the role of terminologies and how they are implemented and used on the Web, we give the algorithm for

building a TT profile from an online KG’s Endpoint, and we report on experiments performed over a set of Cultural Heritage

Web KGs. A tool for visualizing TT profiles is also provided.
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1 INTRODUCTION
It has become widespread in the Cultural Heritage (CH) field to generate Knowledge Graphs from legacy datasets,

using one or more ontologies [4]. A knowledge graph (KG) is a dataset in RDF [9], i.e. a set of (𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 , 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 ,

𝑜𝑏 𝑗𝑒𝑐𝑡 ) triples. CH KGs contribute to the Linked Open Data
1
(LOD) construction, publicly offering inter-linked

and semantically defined datasets, which is supposed to boost knowledge discovery and efficient data-driven

analytics at a world-wide scale. However, using LOD datasets, or KGs, for data analytics requires a clear idea of

their content and this is a long-standing challenge. These KGs generally use ontological schemas, composed of

classes (types) and predicates. It is not enough to know which ontologies are used, it is necessary to know how

they are used, i.e. which of their components serve in that particular dataset, and in what way. A very common

practice is then to look for types and predicates that are instantiated in the graph, and their number of instances.

These types and predicates are “universals” in the sense of metaphysics[17], contrary to the “individuals”

described in the dataset (of which universals are abstract representations). Nevertheless, when we try to explore in

this way the content of a CH LOD dataset, it quickly becomes apparent that many other universals than types and

1
https://lod-cloud.net
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predicates exist in those KGs: these are elements of controlled vocabularies, taxonomies, thesauri, more generally

terminologies. Those terminological resources are conceived to improve communication among experts in certain

domains, and to retrieve information. In the digital world it is well known by database creators that terminologies

play an important role for interoperability of the data they store. This is also a W3C recommendation [13]: shared

and standardized vocabulary terms (i.e. URIs) must be used to encode data and metadata. The authors of the

recommendation state that the benefits of this good practice are: reuse, ease of processing, understanding, trust

and interoperability. In the Web, some terminological resources naturally take the form of ontologies formalised

using RDFS
2
or OWL

3
, others take the form of thesauri using for instance SKOS

4
, or, with a more linguistic

point of view, the form of lexical resources formalized with an extension of Ontolex-lemon
5
, called Terminology

Module
6
. In this article, we are interested in showing the universals used in a KG because they give a clear idea of its

structure and content. In KGs, universals are types and predicates, and elements of a terminological resource that

are not types and predicates, but are associations of a concept to a word, documented somewhere. We call term

the words associated to the concept, and for showing it, we look for the concept’s URI (as we look for types and

predicates URIs).

In the last ten years, several proposals have been made for helping users in knowing what contains a given KG,

by extracting its predicates, the types of entities they link, and some basic statistics. For instance this is what

ABSTAT [18] does. Our aim is to generate such a profile of a KG, via its SPARQL Endpoint. ABSTAT does not

run on an online SPARQL Endpoint, but it allows us to clearly present what we call a profile: from a given KG,

ABSTAT builds a set of (𝐶, 𝑃, 𝐷) triples with statistics, where 𝐶 and 𝐷 are types (classes) and 𝑃 is a predicate

(property). Such a triple is called an Abstract Pattern (AP). Figure 1 shows the four first APs returned by ABSTAT

when asking for the predicate dbo:country on a dump of DBpedia 2016 in English, using ABSTAT’s website
7
. For

instance the first AP indicates that there are 560, 532 RDF triples (last column) in this KG for which the predicate

dbo:country (second column) relates a 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 of type dbo:Location to an 𝑜𝑏 𝑗𝑒𝑐𝑡 of type dbo:Country, which

informs us that we can query locations and their associated countries in DBpedia. In the bottom of Figure 1 we

show the Basic Graph Pattern (BGP) able to compute the instances of an ABSTAT AP (𝑛 being its frequency, or

the number of its instances in the KG, i.e. the last column of the table above). In this BGP, edges labeled with “a”

represent the predicate “rdf:type”.

Considering again the results returned by ABSTAT in Figure 1, we notice that dbo:Location and schema:Place

are probably both types of the subjects of predicate dbo:country that have objects of type dbo:Country, since the

two APs have exactly the same frequency (560, 532). More generally, ABSTAT returns thousands of APs just for

the predicate dbo:country from this dataset, several of them representing the same facts in the KG. If the BGP in

Figure 3 (a) was instanciated in the KG, then ABSTAT would generate four APs (cartesian product of subject’s

and object’s types), all with the same frequency 𝑛. For representing each fact in the KG with only one AP, we

propose to deal with a new kind of AP, where the predicate 𝑃 relates two sets of types, as in Figure 3 (a).

Moreover, to the best of our knowledge there is no tool that shows not only the types of the subject and object

of a predicate, but also the terms, elements of a terminological resource, used to characterise individuals in the

KG. For example, it is one thing to see that there are instances of E22_Human-made_Object in a graph, but the fact

that this graph contains information about coins, or burials, is much more interesting and precise. In KGs that

use the CIDOC Conceptual Reference Model
8
(hereafter CIDOC), the reference ontology for Cultural Heritage,

2
https://www.w3.org/TR/rdf-schema

3
https://www.w3.org/TR/owl-ref

4
https://www.w3.org/TR/skos-reference

5
https://www.w3.org/2016/05/ontolex/

6
https://www.w3.org/community/ontolex/wiki/Terminology

7
http://abstat.disco.unimib.it/

8
cidoc-crm.org/
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Fig. 1. ABSTAT Abstract Patterns and corresponding Basic Graph Pattern to compute their instances.

Fig. 2. Example of representing a coin (the 𝑜𝑏 𝑗𝑒𝑐𝑡 ) with CIDOC CRM.

this information is denoted by elements of a terminological resource, such as http://nomisma.org/id/coin for

instance. Quoting [3], “CIDOC defines and is restricted to the underlying semantics of database schemata and

document structures used in cultural heritage and museum documentation in terms of a formal ontology. It does

not define any of the terminology appearing typically as data in the respective data structures; however it foresees

the characteristic relationships for its use.” To this end, the class crm:E55_Type is provided as a gateway to these

controlled vocabularies. An example using this class is given in Figure 2, and more explanations are provided in

Section 2. CIDOC’s policy for terminologies is in line with the use of databases in CH communities insofar, as it

organises in ontology the entities of the domain and their relationships, but not the descriptive values, i.e. most of

the values in databases. In general, these are listed and described elsewhere in authority lists, for interoperability

purposes. This means that CIDOC-based KGs generally employ various sets of terms, which provide at least as
much meaning and clues on the KG’s content as the types and predicates it uses.
For taking this into account, we define another kind of abstract pattern to show terms used in the graph,

shown in Figure 3 (b), where the edge labeled with “prefLabel” represents the situation where the variable ?𝑡 is

instantiated by a terminological concept and ?𝑙 by its label, whatever the property actually used, which may be

rdfs:label, skos:prefLabel, etc. The example in Figure 2 is therefore represented by the Term Abstract Pattern

ACM J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Fig. 3. Types (a) and Terms (b) Abstract Patterns, with their corresponding Basic Graph Pattern (to their left).

Fig. 4. Excerpts of profiles for MMM (left) and SILKNOW (right), generated by TTProfiler.

where 𝐶 = E22_Human-made_Object, 𝑃 = P2_has_type, 𝑡𝑖 = http://nomisma.org/id/coin (and ?𝑙 =“Coin”). In this

pattern the third item is a set of concepts denoting terms detected by Function Term, defined in Section 4, whose

implementation depends on how the terminologies are implemented, and how they are used in the KGs.

To sum-up our contribution, we deal with KGs in the LOD as presented in [9], offering an online SPARQL

endpoint, which use formally defined existing RDFS or OWL schemas, and contain terminology elements that

are defined in existing terminological resources. We consider that the KG may not contain the definition of

the schemas and terminological resources it uses, which is the most common situation for Web KGs, so we

don’t make use of it. We present a program called TTProfiler which builds a set of Types and Terms (TT)

Abstract Patterns from an online KG, that we call a TT-profile. It does so by querying the KG’s SPARQL endpoint.

TTProfiler’s code is publicly available
9
. Moreover, some of its results can be visualized online

10
. Figure 4 shows

such visualizations for TTprofiles of MMM
11
and SILKNOW

12
. Those knowledge graphs contain millions of RDF

triples but their structure and their terms can be explored via their profile. To the best of our knowledge it is

the only software that acts by querying a knowledge graph via its SPARQL endpoint and displays its terms, in

addition to its types and predicates.

This article extends the one presented at SWODCH 2021 [7] in three ways: firstly, we motivate in Section 2

the particular attention we pay to the terminology elements that appear in KGs, by recalling their utility and

the way they are used in the Web. In this way, the notion of term is much more precise and this is propagated

in definitions, algorithms and implementations, hence in experimental results too. Secondly, we provide a new

9
https://github.com/DTTProfiler/DTTProfiler

10
https://kgsumviz.univ-tours.fr/

11
Mapping Manuscripts Migration: http://ldf.fi/mmm/sparql

12
https://data.silknow.org/sparql
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section for related work. Thirdly, we present and discuss new experimental results. The rest of this article is

organized as follows: Section 2 is dedicated to terms, Section 3 deals with related proposals for giving hints

about knowledge graphs’ content, in Section 4 we provide definitions and formulate the problem resolved by

TTProfiler. In Section 5 we explain its algorithm. We report in Section 6 our experiments on various online

Cultural Heritage KGs, and we conclude in Section 7.

2 WHERE ARE THE TERMS WE NEED IN KG PROFILES
When a community wants to share a consensus on how to name universals

13
of its domain, it works on two

related questions: what are these universals and which words best represent what they are? This defines the

concept-terms of the domain, in other words the domain’s terminology. In many sciences this is a significant

part of the research activities. In this paper, we call term an element of a terminology, i.e. a concept and its

word(s), or a word and its related concept (cf. Section 2.2, and Definition 4.4). In general, but particularly in the

Semantic Web, terminologies are created either by linguists, following an onomasiological (the concept is the

entry point) or semasiological (the word is the entry point) point of view, or by ontologists, or by information
processing professionals for information retrieval purposes. Terminologies can be lists (controlled vocabularies), or

taxonomies, or thesauri (Knowledge Organisation Systems), or ontologies. Their items may be in the intensional

part of a KB, taking the form of class and property names (as in the “Terminological Box” of Description logics),

or they may be in the extensional part of a KG, taking the form of data, instances of classes (for instance of

the skos:Concept class). With TTProfiler, when they are classes or properties they are extracted using Types

Abstract Patterns, while the in-data terms are extracted using Terms Abstract Patterns shown in Figure 3. In this

section, we begin with the term usage policy adopted by CIDOC because it is the basis for our awareness of the

fundamental importance of terms, followed by a short survey on terminological resources on the Web, because

we think that the Web and its uses bring a new light to the old notion of universals. Then we recall the principles

of terminologies, thesauri, and ontologies, in order to clarify what their relationships are.

2.1 The well defined convention adopted by CIDOC
In the Cultural Heritage domain, the community that defined and maintains CIDOC, the CRM SIG, has a

clear policy for the use of terminological descriptions in conjunction with the ontology, which we now briefly

recall. CIDOC is an ontology designed to support the semantic interoperability of digital cultural heritage re-

sources. The use of terminologies is addressed in the introduction of the document that defines it [3], in the

section entitled About Types14. A particular class, E55_Type, is intended to group the terminology elements used

to characterize and classify the instances of CIDOC classes. The highest class in the subsumption hierarchy,

E1_CRM_Entity, is the domain of the property P2_has_type, whose range is E55_Type. Thus, each CIDOC class

(except E59_Primitive_Value), inherits the P2_has_type property, which provides a general mechanism for special-

izing the classification of instances at any level of detail. This can be done by linking to external sources (thesauri

or ontologies). To classify in this way, it is possible to implement the concept either as a subclass (E55_Type

being used as a kind of Region from a DOLCE point of view [5]), or as an instance of E55_Type. According to the

foundational principles of CIDOC, a new subclass should only be created if the concept is sufficiently stable and

associated with additional properties, otherwise an instance of E55_Type must be chosen. In Figure 2 we show

for example how the information about a coin is structured in this case. Instances of E55_Type can be associated

with labels and organized hierarchically (with broader/narrower and part-of properties). Moreover, E55_Type is a

subclass of E28_Conceptual_Object, it therefore also inherits all the properties of this superclass in order to be

13
In metaphysics universals are what particular things have in common [17].

14
It is also explained in more detail here: https://www.cidoc-crm.org/FunctionalUnits/taxonomic-discourse
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documented. This coherent treatment of terminologies reinforces the capacity of CIDOC to serve as a pivot for

the integration of knowledge relating to CH.

2.2 Terminological Resources on the Web
Terminological resources can be found in the form of thesauri or ontologies in the Semantic Web, both of which

support semantic interoperability, the former at the data level and the latter at the metadata level. Terminological

resources are more massively reused than ontologies designed to represent a knowledge domain, because the

consensus required for their reuse is on the terms (and their definition in context), and not on the more complex

question of how the domain representation is organized and structured (ontology). It seems to be easier to choose

a relevant term from a thesaurus, which most often contains textual definitions of terms, than to understand and

reuse an ontology, except for the simplest ones like FOAF andDublin Core, which aremostly used as terminological

resources. Thus, there are many, and in some cases very large, terminological resources on the Web. For example,

in the biomedical field, UMLS
15
gathers concepts from several dozen terminologies, MeSH

16
(defined by the US

National Library of Medicine) indexes Medline and PubMed article directories, while SNOMED CT
17
gathers

several hundred thousand concepts used in clinical environments, in particular for patient records. Similarly,

in the environmental domain, AGROVOC
18
gathers more than 38,000 concepts of food, agriculture, fisheries,

forestry, etc. with which are associated more than 800,000 terms in 40 languages. In the field of Cultural Heritage,

the Backbone thesaurus of DARIAH
19
is an initiative for the aggregation and maintenance of vocabularies built in

communities, but it is above all the Getty AAT vocabulary
20
which is used and with which the thesauri produced

by projects are aligned. This is the case for example in EUROPEANA
21
or in the ARIADNEplus

22
platform. The

latter organizes the possible searches according to three axes When-Where-What: the Getty AAT is used in the

What axis, to describe what is searched for, Periodo
23
is used for the When axis and Geonames

24
for the Where

axis. It is interesting to note here that, for search axes such as When (historical periods), Where (places) and Who

(people, organizations), URIs from authority lists are also used, but they are then named entities, which refer to a

unique element. On contrary, terms are universals in the same way as the types and predicates of an ontology, even

when they are instances (of skos:Concept, crm:E55_Type, or other types). Interestingly, WordNet®
25
is sometimes

presented, or used, as a terminology. It has been used for structuring the first versions of YAGO
26
, for instance.

Basically, it is a large and popular lexical database of English, where words are grouped into synsets, each synset

expressing a concept, and synsets are interlinked by means of conceptual-semantic and lexical relations. Last,

Wikidata with its more than 100 millions entities
27
increasingly tends to be used as a terminological resource, as

many thesauri are now aligned with it, or incorporated in it.

15
Unified Medical Language System: https://www.nlm.nih.gov/research/umls/index.html

16
Medical Subject Headings: https://www.ncbi.nlm.nih.gov/mesh

17
Systematized Nomenclature Of Medicine Clinical Terms: https://www.snomed.org/

18
urlhttps://www.fao.org/agrovoc/

19
urlhttps://www.backbonethesaurus.eu/

20
Art and Architecture Thesaurus: https://www.getty.edu/research/tools/vocabularies/aat/

21
https://pro.europeana.eu/page/europeana-aat

22
https://ariadne-infrastructure.eu/Portal/

23
perio.do

24
geonames.org

25
https://wordnet.princeton.edu/

26
A huge knowledge base of the LOD: https://yago-knowledge.org/getting-started

27
https://www.wikidata.org/
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2.3 Terminology Definition, and Implementations on the Web
A terminology is particularly useful for filling in database fields in a consistent manner. In this sense, terms

are data. ISO/TC 37’s ISO 1087:2019 defines a terminology as a set of designations used in a specialty language,

where a designation represents a concept by a sign that denotes it. ISO/TC 37 is also the originator of the TMF

(Terminological Mark-up Framework) and LMF (Lexical Mark-up Framework) standards that inspired the OntoLex-

lemon
28
ontology (representation of morpho-syntactic properties of lexical entries and their meanings) and its

extension for terminology (in the process of being defined
29
), which is dedicated to documenting information about

terms. This ontology allows to clearly represent the interface between syntax (sign) and semantics using Class

LexicalSense, which can be linked to an ontology in which the concept is described. This question of linking lexical

forms and concepts for the description of terms is also the subject of a proposal called onto-terminology [16]. But

these are not very commonly used implementations for terminologies on the Web. Rather, some of them take the

form of ontologies, like the Dublin Core and DCTerms
30
, or the quality regions in DOLCE [5], while most of them

are realized with SKOS
31
. It is an ontology for defining thesauri, taxonomies, classification schemes or subject

heading systems, used in documentary systems for indexing and information retrieval purposes. Moreover, some

terminologies on the Web are implemented with other Knowledge Organisation System ontologies than SKOS,

which also contain classes for representing terms, for instance Schema.org
32
has classes schema:DefinedTermSet

and schema:DefinedTerm, and CIDOC has crm:E55_Type, that we already presented.

2.4 Thesauri Definition, and Purposes
ISO 25964-1 defines a thesaurus as a controlled and structured vocabulary which concepts are represented by

terms, relationships between concepts are made explicit, and preferred terms are completed with synonyms. A

concept is a unit of thought and a term is a word or phrase used to label a concept (ISO 25964-1 sections 2.11

Concept and 2.61 Term). These definitions are similar to those of a terminology. The difference between thesauri

and terminologies, however, lies in their purpose. The aim of defining terminologies is to reach a consensus on

the designations used in a domain, for semantic interoperability. Whereas the main objective of thesauri is to
index and retrieve elements according to their content. The thesaurus is then used as an access structure: the

declarations of synonymy between terms on the one hand, and the hierarchical relationship between concepts

on the other hand, allow the information retrieval system to widen or restrict the queries. For this purpose, the

hierarchy used in a thesaurus covers the subsumption relation, the partition relation, and sometimes also the

instance relation, merged into a single hierarchical relation: Concept A is broader than Concept B if in any search
for A, articles dealing with B should be returned. This usage-based hierarchical relation does not correspond to

any mathematical logic. Large thesauri are organized into facets, which group together hierarchies of concepts

to facilitate information retrieval. As noted by [12], the structure of thesauri can not be used for more general

reasoning than information retrieval, unlike ontologies.

2.5 Ontologies, versus Thesauri
Wewill not define here what an ontology is in the Web, as the authors of [12] do, but it is important to clarify its

differences with respect to a thesaurus. Formal and consensual model of a shared conceptualization of a domain

of knowledge, it consists of intensional (TBox) and extensional (ABox, gathering instances) descriptions [2]. It

includes a set of entities (classes, or types), roles (properties, or predicates), constructors, and axioms to describe

28
urlhttps://www.w3.org/2016/05/ontolex/

29
urlhttps://www.w3.org/community/ontolex/wiki/Terminology

30
See https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

31
See https://www.w3.org/TR/skos-reference/

32
See https://schema.org/
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them. An entity is seen as a class that has instances, the subsumption link between entities being that if A

subsumes B then any instance of B is also an instance of A. Roles are described by their domain and range and

there may be a subsumption link between them. According to the needs, other constraints can be specified on

entities and roles. All these declarations are automatically exploitable by reasoners, which is not the case for thesauri.
It is possible to represent terminologies in ontologies as topic spaces, for instance with DOLCE regions [5] as done

in 𝑜𝑛𝑡𝑜𝑝𝑖𝑐33, an ontology for modeling topics, subjects, or themes of something. This makes it possible to benefit

directly from the reasoner: for instance asking for resources dealing with places will return resources dealing

with all the kinds of places subsumed by the class Place. We recognize here the vocation of a thesaurus, so an

ontology covers the thesaurus purposes. For this reason, the question of transforming the knowledge contained

in a thesaurus into an ontology, in order to exploit it automatically by a reasoner, has been addressed in many

works. Among others, [11] shows why it is not simple by any means. Firstly, the broader-narrower relationship

in a thesaurus covers both the subsumption relation, the partition relation and the instantiating one. Secondly,

the generic associative relation often present in a thesaurus is also complex to transpose automatically into an

ontology. Moreover, it must be decided which concepts of the thesaurus must become classes and which become

data (instances). Nevertheless, there exist versions of SNOMEDCT and AGROVOC in the form of OWL ontologies.

This overview of the presence of terms in LOD demonstrates the usefulness of showing them in a KG profile,

because they clearly inform about its content. This also gives an idea of the variety of possible representations for

terms in LOD, which makes their extraction non-obvious. This is why we use Function Term, defined in Section 4,

to subsume the various concrete implementations of term detection.

3 RELATED WORK ON KNOWLEDGE GRAPH PROFILING
To profile a knowledge graph, it is of course possible to use a generic graph profiling method. These methods are

interesting, but they tend to disregard the semantics of the relations and they ignore the distinction between the

schema and the instances. Yet, these two dimensions are exactly what we seek to capture in our profiles. For

this reason, generic graph profiling methods are out the scope of this related work section. As explained earlier,

we want to construct a knowledge graph profile that captures the main usage patterns of the schema across its

instances. First, a task close to knowledge graph profiling is schema discovery [10] from instances. This task aims

at building representative classes from the data. These methods therefore appear rather as a preliminary task to

knowledge graph profiling, as in our setting types are defined in ontologies and are used in the KGs we analyze.

Second, several approaches in the literature propose to summarise a knowledge graph based on the concept of

quotient graph [6, 8]. The key idea of quotient graphs is to define equivalent classes among the original graph

nodes and to assign a representative node for each class. Interestingly, it is possible to answer some queries

from the summary instead of considering the original knowledge graph. In the same way, the characteristic sets

[15], which are other structures to represent node classes, provide an accurate cardinality estimation for RDF

queries with multiple joins. [10] provides a list of potential uses of such discovered structures in KGs exploitation.

Finally, many KG summarization techniques select a small number of nodes and relations benefiting from user

interaction [19, 22] or centrality measures [21, 23]. For instance, RDF digest [20] is a method that selects several

types using a centrality metric. Then, relations with intermediate types are added in order to link the initially

selected types. On the contrary, profiling aims at representing all the information present in the knowledge graph.

Furthermore, to the best of our knowledge, all the methods based on schema discovery or summarization do not

extract patterns describing the main relations between types, but rather focus on classifying nodes. We found

only one exception: ABSTAT. ABSTAT [1, 18] builds a summary by identifying the main relationships between
types, called Abstract Patterns (cf. Figure 1). Compared to TTProfiller, this approach takes into account the type

hierarchy to remove from the resulting profile, which is an intermediate result, some subsumption redundancies.

33
http://www.ontologydesignpatterns.org/ont/dul/ontopic.owl
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This leads to a summary. However, redundancies remain because many patterns are incomparable. Also, all facts

of the KG are represented in ABSTAT’s profiles because entities that are not explicitly declared as instances of

some type are grouped in owl:Thing, while TTProfiller ignores these entities for now.

The main weakness of all these approaches proposed in the literature, compared to our aim of highlighting the

topics of a KG, is that they all ignore the terms present in the KG, while terms are often essential to understand

its organization (especially in the case of Cultural Heritage where the use of terms is omnipresent). Of course, it

would still be possible to apply one of these methods by ignoring terms (scenario 1). We could also apply one of

these methods, search for terms, and add a type per term (scenario 2). Scenario 1: As explained in Introduction and

in more detail in Section 2, terms play an important role in general, and in Cultural Heritage knowledge graphs

in particular, especially for those exploiting CIDOC because CIDOC classes and properties are abstract ones for

the purpose of interoperability, and can be further specified by using terminologies. Ignoring the terms for these

KGs is ignoring the real topics of their contents. Scenario 2: Adding a type per term is not straightforward. First,

since the terms are not used as types in the KG, the basic graph patterns devised for profiling cannot be used for

terms. Second, a large number of terms (which is the case in most KGs) would lead to an explosion of nodes and

edges in the profile, with important redundancies.

Contrary to these approaches, we take into account the terms which are very informative entities to describe

the content of a knowledge graph. Taking terms into account has an impact on the design of profiles as we

propose to build virtual nodes allowing to gather several types or terms. This guarantees a compact form of

the output and brings out common relationships. Finally, we propose a method that relies on SPARQL queries

that are simple enough to directly querying public endpoints. This aspect is very important to avoid having to

download and process huge dumps [1, 8], and to propose profiles that are always up-to-date with respect to the

available data.

4 DEFINITIONS AND PROBLEM FORMULATION
Notations defined in this section are summarized in Table 1. We use Description Logics (DL) [2] notion of ABox for

defining our problem: a knowledge base (KB) K is composed of a TBox T (names and assertions about concepts

and roles, respectively called types and predicates in what follows) and a ABox A (assertions about individuals,

called entities and facts). For instance DBpedia
34
is a KBK = (T ,A), one example of assertion in T is dbo:Artist

⊑ dbo:Person, meaning that the type dbo:Artist is subsumed by the type dbo:Person, i.e. all artists are persons. T
also includes assertions like ∃dbo:birthYear ⊑ dbo:Person, meaning that the predicate dbo:birthYear is defined

for persons. On the ABox side, dbo:Person (dbr:Michelle_Obama) declares that entity dbr:Michelle_Obama is a

person and birthYear (dbr:Michelle_Obama, 1964) states the fact that Michelle Obama was born in 1964. Also,

some persons are related via the predicate dct:subject to a SKOS concept, for instance we find in DBpedia Person

(dbr:Ringo_Madlingozi), skos:Concept (Category:1964) and dct:subject (dbr:Ringo_Madlingozi, Category:1964).

In the Web all this is written with triples (𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏 𝑗𝑒𝑐𝑡), for instance the two last examples cor-

respond to the two following RDF triples: (Category:1964, rdf:type, skos:Concept) and (dbr:Ringo_Madlingozi,

dct:subject, Category:1964). Like most of KGs on the Web, DBpedia does not use only its own ontology but

many other ones, as SKOS and DCTerm in the previous examples. This means that entities and facts in Web KGs

instantiate types and predicates coming from many different ontologies.

What are the Knowledge Graphs we want to analyze? The KGs we analyze are ABoxes, which in the Web of data

are in general far bigger than TBoxes. We work with the asserted KG that is queriable via its SPARQL Endpoint.

By default, SPARQL endpoints do not perform entailments. So in this paper, what we call KG is a ABox (i) whose
entities and facts instantiate types and predicates coming from many different ontologies, and (ii) that is not saturated

34
The well known hub of the LOD that mirrors for programs the content of Wikipedia; its SPARQL human interface is:

https://dbpedia.org/sparql
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Table 1. Notations

Symbol Denotes

?𝑠 variable representing subjects

?𝑜 variable representing objects

𝑡 term

𝑃 predicate

𝐶 type of an entity (class)

A ABox, assertions about individuals, called entities and facts

T TBox, names and assertions about types and predicates

𝑇𝑒𝑟𝑚(A) function that returns the set of terms of A
C set of types (classes) appearing together as subject or object into a TT abstract pattern

D set of concepts (terms) appearing together as object into a TT abstract pattern (C, 𝑃,D)
P TT profile

K Knowledge base K = (T ,A)
𝜔 ((C, 𝑃,D)) weight of the TT abstract pattern (C, 𝑃,D), frequency of (C, 𝑃,D) in A
AP TT abstract pattern

C(K) set of types, i.e. entities appearing as object of rdf:type into the knowledge base K
BP basic patterns

𝑃𝑉 profile visualization structure

by applying a reasoner. Exploiting the ontologies and thesauri that are used in the KG is out of the scope of this

work, but will be considered as future work. When publicly available, they can be used latter on, for enriching the

information already present in the profile. There may also be cases in which the TBox is limited to few ontologies

that are consistent by themselves and semantically compatible with each other. In those rare cases, a reasoning

step combining the TBox and ABox could also be performed before or during the profile generation.

What we extract from these Knowledge Graphs. We put in evidence all the types and predicates used in the

ABox, whatever the ontologies they belong to. Web KGs frequently use several ontologies, so we do not limit

ourselves to only one given ontology. We also want to show the terms used in the KG, whether they are defined

in the graph itself or come from external resources. Remember that in this paper we call term an element of a

terminology, as defined in ISO 1087:2019. We saw in Section 2 that, in the Web of data, such an element may be

implemented either as a TBox element or as a ABox element. In the first case, if the type characterizes an entity in

the KG then it will appear in the profile. For the second case, as terms are implemented in many different ways in

Web KGs, we define a generic function called 𝑇𝑒𝑟𝑚, implemented by a SPARQL query. For example, it may look

for skos:Concept or crm:E55_Type instances, or for subjects of skos:prefLabel or objects of crm:P2_has_type, or

for declared prefixes that correspond to some known thesauri, or any combination of these features. We consider

three implementations of Function 𝑇𝑒𝑟𝑚 in Section 6 (Figure 9), among those many possibilities deriving from

Section 2. Hence, the following definition does not state that Function 𝑇𝑒𝑟𝑚 returns all terms of a KG.

Definition 4.1 (Function Term). Given a ABox A, Function 𝑇𝑒𝑟𝑚 extracts from A URIs of concepts defined in a

terminology, which are not used as types in A.

Definition 4.2 (Type). Given a ABox A, a type used in A is an entity 𝑡 that appears as object of Predicate

rdf:type in A, i.e. (𝑠 , rdf:type, 𝑡 ) ∈ A.

Definition 4.3 (Predicate). Given a ABox A, a predicate used in A is a resource 𝑃 that appears as predicate in

A, i.e. (𝑠 , 𝑃 , 𝑜) ∈ A.

Definition 4.4 (Term). Given a ABox A, a term appearing in A is an entity 𝑡 such that 𝑡 ∈ 𝑇𝑒𝑟𝑚(A).
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Fig. 5. Example of a knowledge graph

Example 4.5. Figure 5 shows a toy example of a knowledge graph K = (T ,A) in order to illustrate our

approach where the set of types is {𝐶1,𝐶2,𝐶3,𝐶4}, the set of predicates is {𝑎 (for rdf:type), 𝑃1, 𝑃2, 𝑃3} and the set

of terms is 𝑇𝑒𝑟𝑚(A) = {𝑡1, 𝑡2, 𝑡3}. The other entities in K are denoted either by ?𝑠𝑖 or by ?𝑜𝑖 . For instance, the

entity denoted by object in Figure 2 may be represented by ?𝑠4, with 𝐶1 standing for E22 Human-made Object, 𝑃3
standing for P2 has type and 𝑡1 standing for the entity denoted by term-concept.

The algorithm presented in this paper builds a profile of the KG queried via its SPARQL endpoint. We call A
this KG as it is a ABox. The resulting profile is composed of TT AP (Types and Terms Abstract Patterns), which

are triples whose subjects and objects are sets. This is defined in Definition 4.6. As discussed in Introduction,

APs in [18] are triples (𝐶, 𝑃, 𝐷), where 𝐶 and 𝐷 are types and 𝑃 is a predicate: we call them basic APs. TT APs

generalise basic APs in two ways: first, objects can be either types or terms. Second, both subjects and objects are

sets (either set of types or set of terms), as illustrated in Figure 3.

Definition 4.6 (TT Abstract Pattern, and represented facts). Given a ABox A, a TT abstract pattern of A is a

triple (C, 𝑃,D) such that C is a set of types used in A, P is a predicate used in A, and D is either a set of types

used in A or a set of terms appearing in A. A TT abstract pattern (C, 𝑃,D) represents the fact 𝑃 (𝑎, 𝑏) of A iff:

• The entity 𝑎 occurs inA as an instance of each type in C (i.e.,𝐶𝑖 (𝑎) ∈ A for𝐶𝑖 ∈ C), and there is no other

type in A of which 𝑎 occurs as an instance, and

• The entity 𝑏 occurs inA as an instance of each type inD (i.e., 𝐷𝑖 (𝑏) ∈ A for 𝐷𝑖 ∈ D) and there is no other

type inA of which 𝑏 occurs as an instance, or the entity 𝑏 is a term and 𝑏 ∈ D (i.e., 𝑏 ∈ (𝑇𝑒𝑟𝑚(A) & D)).

This definition can be adapted to other cases, depending on what is considered as input. For instance, the subject

and object of an AP could be generalised to types not actually appearing in A but defined using T , as owl:Thing,
rdfs:Literal and so-called minimal types used in [18]. For terms, one could also use some definitions in their

respective thesaurus. But in our context, as already stated, we do not access external resources. Contrary to [18],

if 𝑎 or 𝑏 have several types asserted in A (whether or not linked in T by a subsumption) then by Definition 4.6

the fact 𝑃 (𝑎, 𝑏) is represented by only one AP. Also contrary to [18], a fact 𝑃 (𝑎, 𝑏) having no type asserted for 𝑎,

or having neither a type asserted for 𝑏 nor any clue allowing to detect that 𝑏 is a term, does not raise any AP.

Example 4.7. Figure 6 depicts the 4 TT abstract patterns stemming for the knowledge graph depicted by Figure 5:

({𝐶1,𝐶2}, 𝑃1, {𝐶3}) (in red), ({𝐶1,𝐶3}, 𝑃2, {𝐶4}) (in green), ({𝐶1}, 𝑃3, {𝑡1, 𝑡2}) (in blue) and ({𝐶3}, 𝑃3, {𝑡1, 𝑡3}) (in
gray). For instance, ({𝐶1,𝐶2}, 𝑃1, {𝐶3}) means that the subjects of types 𝐶1 and 𝐶2 are related by 𝑃1 to the objects
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Fig. 6. Abstract of the knowledge graph in Figure 5

of type𝐶3. Interestingly, some TT abstract patterns group together some terms used in the same way (e.g., {𝑡1, 𝑡3}).
As illustration, in Figure 4 the set of terms denoted by “Plain (technique)@en_et_al” sums up some techniques of

silk weaving like brocading weft or two-coloured damask.

Given the set of APs generated from an ABox A according to Definition 4.6, we can associate statistics with

those patterns, leading to the following definition of a TT profile:

Definition 4.8 (TT Profile). Given an ABox A, a TT profile P of A is a set of pairs ((C, 𝑃,D),𝑤) such that

(C, 𝑃,D) is a TT AP generated from A, and𝑤 is a statistic value describing (C, 𝑃,D).

There are many ways to define interesting statistics of a KG. We may consider the global number of assertions

𝐶 (𝑎) for each type𝐶 , the global number of assertions 𝑃 (𝑎, 𝑏) for each predicate 𝑃 , the global number of assertions

𝑃 (𝑎, 𝑏) for each term 𝑏 appearing in A, and so on. In this paper, we deal with the frequency of a TT AP, that is

how many facts ofA it represents. We call weight the function that associates with (C, 𝑃,D) its frequency inA.

Definition 4.9 (Weight of a TT Abstract Pattern). The weight of the TT abstract pattern (C, 𝑃,D), denoted
𝜔 ((C, 𝑃,D)), is the function that associates with (C, 𝑃,D) its frequency inA.𝜔 ((C, 𝑃,D)) = |{𝑃 (𝑎, 𝑏), 𝑃 (𝑎, 𝑏) ∈
A and 𝑃 (𝑎, 𝑏) is represented by (C, 𝑃,D) according to Definition 4.6}|.

Last, to reduce the number of nodes to be displayed in the profile visualization, we perform a little optimisation

by grouping the sets of types and the sets of terms, in such a way that each type, or term, appears in only one set

(node) of the profile.

Example 4.10. If we have in a TT profile P the TT APsAP1 = ({𝐶1,𝐶2}, 𝑃1, {𝐶3})),AP2 = ({𝐶1,𝐶3}, 𝑃2, {𝐶4}),
AP3 = ({𝐶1}, 𝑃3, {𝑡1, 𝑡2}) and AP4 = ({𝐶3}, 𝑃3, {𝑡1, 𝑡3}), with 𝜔 (AP1) =20, 𝜔 (AP2) =18, 𝜔 (AP3) =100 and
𝜔 (AP4) =50, then we merge sets {𝐶1,𝐶2}, {𝐶3}, {𝐶1,𝐶3} and {𝐶1} into a maximal set {𝐶1,𝐶2,𝐶3} and sets {𝑡1, 𝑡2}
and {𝑡1, 𝑡3} into a maximal set {𝑡1, 𝑡2, 𝑡3}, which gives the representation shown in Figure 7

35
.

Searching for maximal sets is searching for the components of the graph formed by the profile’s nodes (subjects

and objects of TT APs), with an edge connecting two nodes if and only if there is a non-empty intersection

between these two nodes. The union of component’s nodes is a maximal set. Computing the components of a

graph is generally done by a linear depth-first search, but in Algorithm 1 we incrementally compute the maximal
sets 𝜑 during the TT profile building. In the profile visualization (cf. Section 6.2), maximal nodes are represented

by the name of one of their types or terms followed by 𝑒𝑡_𝑎𝑙 , and the others are shown on demand. In the same

way as in Figure 7, edges are annotated with the corresponding AP and its respective weight.

Problem formulation. Given the assertional partA of a knowledge baseK = (T ,A), how to efficiently
generate and visualize a TT profile P = {((C, 𝑃,D),𝑤)} of A, where𝑤 denotes the weight of abstract
patterns and C and D denote maximal sets)?
35
The notation ( ( {𝐶1,𝐶2 }, 𝑃1, {𝐶3 }), 20) associates the AP ( {𝐶1,𝐶2 }, 𝑃1, {𝐶3 }) to its weight: 20.
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{𝐶1,𝐶2,𝐶3}{𝐶4} {𝑡1, 𝑡2, 𝑡3}

(({𝐶1,𝐶2}, 𝑃1, {𝐶3}), 20)

(({𝐶1}, 𝑃3, {𝑡1, 𝑡2}), 100)

(({𝐶3}, 𝑃3, {𝑡1, 𝑡3}), 50)

(({𝐶1,𝐶3}, 𝑃2, {𝐶4}), 18)

Fig. 7. Graph with maximal sets

5 TTProfiler ALGORITHM
In this section, we first present the general workflow of our program, that we call TTProfiler, and then we

focus on the three-step procedure to build a TT profile, formalized in Algorithm 1.

5.1 Workflow of TTProfiler
Figure 8 presents the workflow of TTProfiler. Given a knowledge base K , it first extracts the set of concepts
C(K) = {𝐶1, · · · ,𝐶𝑛} and that of predicates P = {𝑃1, · · · , 𝑃𝑚} with getClasses and getPredicates respectively.
After that, it computes the basic patterns (i.e. ABSTAT abstract patterns as depicted in Figure 1) that can be obtained

from the combination of the two previous extracted sets: BP = {(𝐶𝑖1 , 𝑃 𝑗 ,𝐶𝑖2 ) : (𝐶𝑖1 ,𝐶𝑖2 ∈ C(K)) ∧ (𝑃 𝑗 ∈ P)}.
These extractions and computations rely on SPARQL queries. All computations requiring a SPARQL query

are represented by dotted brown lines in Figure 8. The following step consists in computing the weight 𝑤 of

each pattern (𝐶𝑖1 , 𝑃 𝑗 ,𝐶𝑖2 ) ∈ BP. Then, it collects the terms of the knowledge base with the getTerms method

in Figure 8, such that for each term 𝑡 we have a triple (𝐶, 𝑃, 𝑡) with 𝐶 ∈ C(K) and 𝑃 ∈ P. It also computes the

weight for each of these triples. From the union of the sets of weighted concept-based basic abstract patterns

((𝐶𝑖1 , 𝑃 𝑗 ,𝐶𝑖2 ),𝑤) and weighted term-based basic abstract patterns ((𝐶, 𝑃, 𝑡),𝑤 ′), we compute the corresponding

TT Abstract Patterns that are contained in the resulting TT profile and the structure to visualize it. This is detailed

in Algorithm 1. Notice that we also collect the data properties that qualify the instances of each profile node, in

order to show them on demand.

5.2 Algorithm of TTProfiler
TTProfiler computes a TT profile of an ABox A following a three-step procedure: 1) basic abstract patterns

and statistics recovery, 2) TT profile computing, and 3) TT profile visualization structure building.

Step 1: Basic Abstract Patterns and Statistics Recovery.We mine all basic abstract patterns (𝐶, 𝑃, 𝐷) with𝑤 , their

frequency, i.e. the number of instances of (𝐶, 𝑃, 𝐷) inA (line 1). An assertion 𝑃 (𝑎, 𝑏) inA is said to be an instance

of the basic abstract pattern (𝐶, 𝑃, 𝐷) if and only if 𝑎 is of type𝐶 inA (i.e.,𝐶 (𝑎) ∈ A) and 𝑏 is either of type 𝐷 or

a term in A (cf. Definition 4.6). Note that in the case where 𝑏 is a term, then all elements of 𝐷 are also terms. In

other words, a type and a term are not grouped together.

Step 2: Profile Computing. To fit Definitions 4.6 and 4.8, for each predicate appearing in a basic abstract pattern

we group all types that have common instances (lines 5-11), and we also group terms for subjects having the

same type (lines 12-14). For this last case, we associate to the predicate a weight equals to the sum of the weights

computed in Step 1. With the resulting weighted TT APs, each fact 𝑃 (𝑎, 𝑏) is represented by only one pattern.

Each computed TT AP is added into the TT profile P (line 15). We also incrementally compute the set 𝜑 of

maximal nodes, incorporating in it the nodes C andD (that are sets of types or terms) (line 16). The incorporation
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Fig. 8. The workflow of TTProfiler

of a node in 𝜑 consists in grouping its elements with other nodes containing them, as explained in Section 4 (cf.

the example illustrated in Figure 7).

Step 3: Profile Visualization Structure Computing. In this last step, for each weighted TT abstract pattern we replace

its subject and object by their corresponding maximal node in 𝜑 (lines 19-20) and we add the resulting triple to

the Profile Visualization structure 𝑃𝑉 .

Regarding the complexity, Step 1 consists in querying the KG, so it depends on the SPARQL endpoint and the

network capacities; Step 2 is linear in the number of predicates and quadratic in the number of basic abstract

patterns computed in Step 1; Step 3 is linear in the number of TT abstract patterns.

6 EXPERIMENTS ON CULTURAL HERITAGE SPARQL ENDPOINTS
We first explain how Function 𝑇𝑒𝑟𝑚 can be implemented, and how it is implemented in TTProfiler. Next, we

present the knowledge graphs we used for experiments, we show some features of their profiles and an example

of profile visualization. We finally report the running times.

6.1 Implementation of Function Term
Our aim is to show in KG profiles terms that are universals, in the same way as classes and properties, in cases

where those terms are data. As shown in Section 2, there are several ways to use terms as data in KGs, so Function

𝑇𝑒𝑟𝑚 has several possible implementations. It is therefore necessary to experiment the following ones until

founding the best one for each graph.
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Algorithm 1 TTProfiler: Types and Terms Profiler

Input: The ABox A of a knowledge base K = (T ,A)
Output: The TT profile P of A and its visualization structure 𝑃𝑉

//Step 1: BASIC abstract patterns extraction from A and statistics computation
1: Let 𝑅 = {((𝐶, 𝑃, 𝐷),𝑤)/(∃𝑃 (𝑎, 𝑏) ∈ A) ∧𝐶 (𝑎) ∈ A ∧ (𝐷 (𝑏) ∈ A ∨𝑏 ∈ 𝑇𝑒𝑟𝑚(A)))} where𝑤 is the number of instances

𝑃 (𝑎, 𝑏) in A for (𝐶, 𝑃, 𝐷)
//Step 2: TT profile computing: grouping types and terms in sets

2: Let P = {𝑃/(∃((𝐶, 𝑃, 𝐷),𝑤) ∈ 𝑅)} ⊲ P is the set of predicates in 𝑅

3: P← ∅, 𝜑 ← ∅ ⊲ 𝜑 is a set of maximal sets of types or terms

4: for (𝑃 ∈ P) do ⊲ grouping types and terms by predicates

5: for ((𝐶1, 𝑃, 𝐷1),𝑤1) ∈ 𝑅 do
6: C ← {𝐶1}, D ← {𝐷1},𝑤 ← 𝑤1

7: for ((𝐶2, 𝑃, 𝐷2),𝑤2) ∈ 𝑅 ∧ ((𝐶1 ≠ 𝐶2) ∨ (𝐷1 ≠ 𝐷2)) do
8: if (𝐶1 ≠ 𝐶2) ∧ (𝐷1 = 𝐷2) ∧ (∀𝑃 (𝑎, 𝑏) ∈ A : 𝐶1 (𝑎) ∈ A ∧𝐶2 (𝑎) ∈ A) then
9: C ← C ∪ {𝐶2} ⊲ group the types of subjects

10: if (𝐷1 ≠ 𝐷2) ∧ (𝐶1 = 𝐶2) ∧ (∀𝑃 (𝑎, 𝑏) ∈ A : (𝐷1 (𝑏) ∈ A ∧ 𝐷2 (𝑏) ∈ A) then
11: D ← D ∪ {𝐷2} ⊲ group the types of objects

12: if (𝐷1 ∈ 𝑇𝑒𝑟𝑚(A)) ∧ (𝐷2 ∈ 𝑇𝑒𝑟𝑚(A)) ∧ (𝐶1 = 𝐶2) then
13: D ← D ∪ {𝐷2} ⊲ group the terms

14: 𝑤 ← 𝑤 +𝑤2

15: P← P ∪ {((C, 𝑃,D),𝑤)}
16: 𝜑 ← 𝑎𝑑𝑑 (C, 𝜑), 𝜑 ← 𝑎𝑑𝑑 (D, 𝜑)

//Step 3: Profile visualization structure
17: 𝑃𝑉 ← ∅
18: for ((C, 𝑃,D),𝑤) ∈ P do
19: X ←𝑚𝑎𝑥𝑁𝑜𝑑𝑒 (C, 𝜑)
20: Y ←𝑚𝑎𝑥𝑁𝑜𝑑𝑒 (D, 𝜑)
21: 𝑃𝑉 ← 𝑃𝑉 ∪ (X, ((C, 𝑃,D),𝑤),Y)
22: return ( P, 𝑃𝑉 )

// 𝑎𝑑𝑑 (𝜑, C) returns the set of maximal nodes 𝜑 having incorporated C
//𝑚𝑎𝑥𝑁𝑜𝑑𝑒 (C, 𝜑) returns the maximal node that contains C

Dedicated Class. Sometimes, concepts denoting terms are explicitly declared in the analyzed graph as instances

of a class that is known to represent terminological resources, for instance skos:Concept in Figure 9. Other

dedicated classes may be skos:Collection, schema:DefinedTerm for Schema.org, ontolex:LexicalConcept for

OntoLex-lemon Terminology or crm:E55_Type for CIDOC. We saw indeed that for knowledge graphs using

CIDOC and following its recommendations, the instances of crm:E55_Type (and its subclasses) must be elements

of a terminology. This clue is safe. The class skos:Concept alone allows to cover many terms by its frequent use.

Unfortunately, the knowledge graph queried via its SPARQL endpoint does not often contain this statement,

which is present only in the remote thesaurus. Moreover, using this clue requires to know well the principles

of the ontologies used in the KG (for example for CIDOC to know that the class crm:E55_Type has for instances

elements of terminologies). Last, it supposes that these ontologies are correctly used in the KG.

Dedicated Property. The subjects or objects of some properties have a chance of being concepts denoting terms,

for instance the subjects of skos:prefLabel in Figure 9, or the objects of crm:P2_has_type. We first thought that

skos:prefLabel would be a strong clue in the same way that rdfs:type identifies surely a class instance. In

practice, however, this is not at all the case because, even if this property is widely adopted, there is no convention
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Fig. 9. Three implementations of Function Term.

for its use: its definition does not constrain its domain and there is no clear good practice for using it. As a result,

the precision of this hint with this property is low. The recall is potentially high, however it may happen that,

rather than a skos:prefLabel, it is a skosxl:prefLabel that is used, when the graph creator preferred to associate

a lexical entity to the concept, rather than directly a character string. Other properties relevant to a terminology

description can be tested, such as other SKOS properties, those of SKOS-XL, ontolex:isEvokedBy for OntoLex-

lemon, 𝑖𝑛𝐷𝑒 𝑓 𝑖𝑛𝑒𝑑𝑇𝑒𝑟𝑚𝑆𝑒𝑡 and 𝑡𝑒𝑟𝑚𝐶𝑜𝑑𝑒 (that have schema:DefinedTerm as domain), or P127_has_broader_term

and P150_defines_typical_parts_of for CIDOC. But, as for the dedicated class clue, these properties are rarely

present in the analyzed graph, but rather in the graph where the terminology is defined.

Dedicated URI. A naive but efficient method is to detect URI prefixes corresponding to known thesauri, for

instance https://ark.frantiq.fr/ in Figure 9. For example, all URIs beginning with http://vocab.getty.edu/aat/ belong

to the thesaurus Getty AAT
36
. The accuracy of this approach is obviously very high, but its recall depends on

whether the targeted knowledge graph uses known thesauri or not. Moreover, it does not allow the discovery of

new thesauri and is therefore not very suitable for unknown knowledge graphs.

In practice, none of the previous methods can work perfectly on all Web KGs, because of the variety of

terminology implementations and uses on the Web, presented in Section 2. Thus, Function𝑇𝑒𝑟𝑚 must be tailored

for each KG. This can be done based on the KG’s metadata and some simple tests. Dedicated properties or classes

are very useful, in particular because they provide clues that help detecting vocabulary prefixes, be they internal

or external to the KG. These vocabulary prefixes help identifying terms via the URI prefix of their associated

concept. But, it is tricky to exploit dedicated properties or classes if they are used for anything other than

terminology or thesaurus elements, which is quite frequent. So, most often Function𝑇𝑒𝑟𝑚 has to be implemented

using a combination of the previous methods. We show in Figure 9 the three combinations used for computing

the profiles of the thirteen graphs that we analyzed. The corresponding SPARQL queries can be found in the Git

repository referenced by footnote 9.

6.2 Knowledge Graphs and their TT Profiles
We first tested TTProfiler on archaeological KGs grouped in the semantic Web platform OpenArchaeo

37
[14].

Those graphs are generated from legacy databases, based on a common model which is a small excerpt of the

CIDOC and its extensions. Even with such a restricted ontology, all types and predicates do not have instances

in all OpenArchaeo’s KGs, so the visual query tool that OpenArchaeo provides, which is a special case of

Sparnatural
38
, may be complemented by the display of TT profiles, to show what can be asked from those

36
It is of course necessary that all concepts of the thesaurus share the same prefix and that this prefix designates only concepts denoting

terms. This is a problem for thesauri like SNOMED CT, for instance

37
http://openarchaeo.huma-num.fr/explorateur/home

38
http://sparnatural.eu/
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graphs. In addition, the producers of these graphs use the TT profiles to inspect the results of their KG automatic

generation workflow, which is based on mappings expressed with tools like Ontop
39
and X3ML

40
. Those KG

producers know which predicates, types and terms they want to appear in their graphs, and they use the TT

profiles to easily detect anomalies in the generated graphs, which denote anomalies in their mappings.

Besides the KGs in OpenArchaeo, we looked for other graphs that use CIDOC and offer a SPARQL endpoint

for programs. Of those found, many are not always online, and many do not answer to counting SPARQL queries

of Step 1. We present in Table 2 thirteen graphs that were regurlarly capable of answering the Step 1 queries

during May-June-July, 2022. Seven of them are from OpenArchaeo (Kition, Iceramm, Arsol, Epicherchell,
Outagr, Rita and Chronique). They are rather small (at most 670 000 RDF triples) and contain various datasets

like recordings of archaeological excavations, a corpus of antique inscriptions from Cesarea in Mauretania, an

inventory of Roman hydraulic works in Northern Italy, etc. The other KGs that we report are: Smithsonian41 that
contains data about museum collections (sculpture, painting, photography), Silknow42 that is about European
silk heritage, Culturaitalia43 that contains italian museum collections descriptions, and Doremus44 that groups
datasets about music, coming from BnF, Radio France and Philharmonie de Paris. The two last datasets have

been addressed to show that TTProfiler scales up to quite big graphs, but their TT profiles are still too large

to be clearly shown and require more sophisticated means to be explored. More precisely, Beniculturali45

contains datasets from various italian cultural sources: database of the Places of Culture; records of Archives and

Libraries; database of the Catalogue of Cultural Heritage; and other documentary and photographic databases.

Lastly, DBpedia is considered here only for comparison with ABSTAT. All these graphs are of different designs,

use different terminologies in various languages, and are of various sizes. For those like Doremus and DBpedia
which contains multilingual terms, we choose only English for our experiments. All these KGs except DBpedia
use types (classes) of CIDOC and some of its extensions (CRMsci, CRMarch, CRMba, ...). Doremus, Silknow and

Beniculturali use its so-called Erlangen implementation. Beniculturali and DBpedia46 use types of many

ontologies. Concerning the predicates, again all KGs except DBpedia use those of CIDOC and its extensions,

and sometimes predicates of other ontologies too. Regarding the vocabularies, OpenArchaeo’s graphs use the

PACTOLS
47
, and Smithsonian, Doremus, Culturaitalia, Beniculturali and Silknow use internally defined

vocabularies and external ones, for instance the Getty AAT
48
. When thesauri are used, the number of terms is

always larger than that of types.

All the profiles of the graphs presented in this paper can be visualized and explored online through a web

application (cf. footnote 10), implemented in Javascript. More profiles are provided in this web application, for

which we do consider in this paper because the source KGs did not regurlarly correctly answer Step 1 queries

during our experimental period (May to July, 2022). We plan to add in this web application Tables 2, 3 and 4

completed for all the profiles it displays.

Table 2 shows the number of edges (triples) and nodes in KGs on the one hand, and on the other hand the

number of distinct types and terms, the number of edges (nb TT APs i.e., |P|) and the number of maximal nodes

(i.e., |𝑃𝑉 |, for 𝑃𝑉 defined in Algorithm 1) appearing in their TT profile. The types extracted in first steps of

TTProfiler (cf. Figure 8) are filtered in order to ignore the types of RDF, RDFS and OWL, plus some other

39
https://ontop-vkg.org/

40
https://www.ics.forth.gr/isl/x3ml-toolkit

41
SPARQL endpoint: http://edan.si.edu/saam/sparql

42
https://silknow.eu/ and SPARQL endpoint: https://data.silknow.org/sparql

43
http://www.culturaitalia.it/opencms/index.jsp?language=en and SPARQL endpoint: http://dati.culturaitalia.it/sparql

44
https://www.doremus.org/ and SPARQL endpoint: http://data.doremus.org/sparql

45
https://dati.beniculturali.it/il-progetto/ and SPARQL endpoint: https://dati.beniculturali.it/sparql

46
We use only classes of DBpedia’s ontology (dbo).

47
https://pactols.frantiq.fr

48
https://www.getty.edu/research/tools/vocabularies/aat/
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Table 2. Knowledge graphs and TT profiles

statistics for A statistics for TT profile

A nb. of triples nb. of nodes language nb. of types

& terms

nb. of AP nb. of nodes

Epicherchell 3,945 1,438 - 31 15 13

Kition 32,714 11,280 fr 18 28 14

Iceramm 44,538 10,717 - 567 37 17

Rita 76,885 19,034 - 515 11 9

Outagr 115,462 49,719 fr 253 19 13

Chronique 557,724 183,839 fr 72 29 19

Arsol 669,099 212,179 - 93 34 17

Smithsonian 2,542,142 969,172 en 75 41 17

Silknow 4,927,819 1,843,623 en 519 477 50

Culturaitalia 41,901,551 9,951,821 en 144 271 144

Doremus 91,093,377 18,696,243 en 2,399 1,785 115

Beniculturali 755,704,024 ≥ 23,930,910 en 641 7,518 440

DBpedia 1,095,869,333 5,674,487 en 404 6,010 204

vocabularies depending on the KG. For instance for DBpedia we retrieve only its proper types. Although the

set of basic abstract patterns is already a condensed representation of the original graph, it can be too large to

be easily visualized, hence the grouping of types and terms and the use of the notion of maximal node, which

allows us to display graphs with less nodes. In general it is the terms that are grouped in the same node. Notice

that terms are not grouped in one node for Culturaitalia. This is because there are instantiation statements

(rdf:type) with term URIs as object (those URIs being declared as skos:Concept instances), then TTProfiler

considers them as types. Another noticeable fact concerns DBpedia: its terms (instances of skos:Concept) are the

categories used in Wikipedia, they qualify DBpedia’s entities with the dcterm:subject predicate. But as it is a

hub for the LOD, DBpedia uses a lot of existing ontologies. The number appearing in the fifth column is only

the number of types belonging to the DBpedia’s ontology (dbo: types), and it does not comprise the number of

Wikipedia categories (terms).

Function 𝑇𝑒𝑟𝑚 has been the subject of much experimentation and various optimizations. It can be seen as a

SPARQL query corresponding to the union of the three patterns shown in Figure 9. More precisely, Table 3 shows,

for each KG, the number of entities (or subjects) that are qualified by terms discovered, for each of the three

patterns of Figure 9. Each knowledge graph uses its specific way to represent the terms, which also complicates its

exploration.We notice that even the knowledge graphs that come fromOpenArcheo do not all use the same pattern.

For instance, Epicherchell, Iceramm, Rita, Outagr and Arsol use both skos:prefLabel and skosxl:altLabel to

instantiate their terms while Kition and Chronique use only skos:prefLabel, respectively skosxl:altLabel, to

label their terms. Smithsonian, Culturaitalia, Beniculturali and DBpedia use skos:Concept to instantiate

their terms. Doremus and Silknow use both skos:Concept and skos:prefLabel49. We provide Table 3 to concretely

show the important role of terms in KGs. The benefit of viewing them in profiles is demonstrated with the web

API for visualizing TT profiles.

To show that, we present in Figure 10 the visualization of Chronique’s TT profile. Nodes suffixed by et_al are

sets of terms and colours denote namespaces, as specified at the top. A click on a node, here S19_Encounter_Event,

highlights its direct neighbourhood, while putting the rest of the profile in grey. Notice that the weight of

49
For Doremus, if we put optional the skos:prefLabel in the query then we get a “Time-Out” response, as the result is far bigger.
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Table 3. Statistics of the patterns that provide the terms

A 𝑛𝑏𝑆𝑢𝑏 𝑗𝑇𝐶𝑜𝑛𝑐𝑒𝑝𝑡 𝑛𝑏𝑆𝑢𝑏 𝑗𝑇𝑝𝑟𝑒𝑓 𝐿𝑎𝑏𝑒𝑙 𝑛𝑏𝑆𝑢𝑏 𝑗𝑇𝑥𝑙𝑎𝑙𝑡𝐿𝑎𝑏𝑒𝑙

Epicherchell 0 202 182

Kition 0 1,484 0

Iceramm 0 2,109 624

Rita 0 1,586 1,247

Outagr 0 2,636 7,369

Chronique 0 0 50,863

Arsol 0 34,865 34,793

Smithsonian 60,911 0 0

Silknow 327,113 138,593 0

Culturaitalia 62,793 0 0

Doremus 4,511,304 >3,143,134 0

Beniculturali 165,362 0 0

DBpedia 1,052,223 0 0

predicates is depicted on edges. Node’s content is also displayed on demand, for instance Figure 11 shows a focus

on one term-node, the one that groups the terms used to qualify the use of the built archaeological artifacts

described in Chronique. We invite interested readers to explore the profiles presented online, as the visualization

tool well demonstrates the usefulness of TTProfiler, at least for rather small graphs. It still needs to provide

ways to better navigate in the profiles when they contain too many nodes and edges. Profiles can also be explored

as lists of patterns (as proposed by ABSTAT web site).

6.3 Scalability of TTProfiler
TTProfiler is implemented in Java using the Jena library to query the public SPARQL endpoints. It was run on

Windows 10 with an Intel core i7 processor and 32 GB of RAM. Its code is published in Github (footnote 9). It

is devised to apply to KGs that can be queried online via a SPARQL endpoint. This requires to carefully write

the SPARQL queries in Step 1 because of fair use policies applied by public SPARQL endpoints. Moreover, as

already said about the time complexity, Step 1 of computing a TT profile depends on the configurations of the

SPARQL endpoint and the network capacities. Considering only the client side computation (Step 2 and Step 3),

on small graphs, less than 1,000,000 triples, the TT profile generation takes about 0.06 seconds. For 91,000,000

triples it takes 1.15 seconds. Table 4 presents the whole execution times (including time for getting SPARQL

queries results from the online Endpoints) of TTProfiler for the thirteen knowledge graphs used in this paper.

As we can see it, TTProfiler lasts few seconds in those that come from OpenArcheo, at most 116.528 seconds in

Iceramm when data properties are recovered, and 111.963 seconds if not. In the larger ones, the execution times

are significantly bigger and reach 5 hours with Beniculturali when data properties are recovered, while it lasts

about 4 hours in DBpedia in the same case. We note that the data property recovery phase is time consuming

with large knowledge graphs like DBpedia (2.2 hours), Beniculturali (1.39 hours), and Doremus (0.21 hours).

These execution times confirm that TTProfiler is fast and can be used with large knowledge graphs without

loading them locally: all TTProfiler’s queries are executed online on SPARQL endpoints. We can not directly

compare these execution times with related works, especially with ABSTAT, because (i) they do not run on a

SPARQL Endpoint (but on various dumps of DBpedia that are loaded locally), and (ii) they do not compute exactly

the same patterns. Nevertheless, even in [1] where the authors present optimized parallel implementations,
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Fig. 10. Chronique’s TT profile.

Fig. 11. Focus on a node which groups terms.
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Table 4. Execution time of TTProfiler in seconds

Epicherchell Kition Iceramm Rita Outagr Arsol Smithsonian
With data properties 13.741 22.917 116.528 44.307 22.742 107.557 126.857

Without data properties 10.97 18.785 111.963 40.737 18.222 95.716 90.103

Cost of data properties 2.771 4.132 4.565 3.57 4.52 11.841 36.754

Doremus Culturaitalia Beniculturali Silknow Chronique DBpedia
With data properties 2,717.571 333.978 18,517.262 283.717 95.724 16,385.592

Without data properties 1,966.629 288.194 13,488.834 241.521 93.433 8,453.727

Cost of data properties 750.942 45.784 5,028.428 42.196 2.291 7,931.865

ABSTAT’s executions still take hours on various DBpedia dumps, therefore TTProfiler’s execution appears to

be reasonably efficient.

7 CONCLUSION
We presented TTProfiler, a program that extracts from a knowledge graph the predicates it uses and what they

connect, which is represented by the types of the connected entities, and the sets of terms that characterize the
entities in this KG. TTProfiler’s implementation is findable and accessible on Github, and freely reusable. It

can be easily adapted to each specific use of terminological resources in KGs. Terms play an important role in

Web KGs in general, and in Cultural Heritage knowledge graphs in particular, especially for those exploiting

CIDOC (because CIDOC classes and properties are abstract for the purpose of interoperability, and can be further

specified by using terminologies). Ignoring the terms for these KGs when profiling them is ignoring the real

topics of their contents.

It is a well-established practice in humanities and digital libraries to create and use authority lists of terms, i.e.

shared controlled vocabularies, and our experiments demonstrate how interesting it is for humanists users to

explore terms in TT profile visualizations. But, the usefulness of terms goes beyond humanities: categories are

first class citizen in Wikipedia, and of paramount importance for crowdsourcing stakeholders; folksonomies are

also a well-known and studied phenomenon. User communities tend to organise themselves to create lists of

terms for their needs of descriptions. Being it in a scholarly and structured way, as in natural sciences, humanities

and libraries, or simply spontaneously like in the social web, the phenomenon must be taken into account when

it comes to give an idea about a knowledge graph’s content and topics.

A TT profile can be used for supporting humans in discoverins KG’s content, in order to retrieve the information

they want. We have designed a public Web application to visualize the profiles generated by TTProfiler and

interactively explore them, and we plan to provide also an API for applications to query the profiles. We are also

studying ways of completing a TT profile with information from the ontologies, by extracting the minimal parts

of ontologies concerned by the profile’s types and predicates. Another need demonstrated by our experiments,

is to build summaries or sampling of the profile when it is too large to be easily shown, or at least to provide

zooming capabilities in order to cope with their too large number of nodes and edges.
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