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Genetic Algorithm based Aggregation for
Federated Learning in Industrial Cyber Physical
Systems

Souhila Badra GUENDOUZI and Samir OUCHANI and Mimoun MALKI

Abstract During the last decade, Industrial Cyber-Physical Systems (ICPS ) have
attracted a significant amount of interest from industries as well as academic in-
stitutions. These kinds of systems have proved to be very complicated, and it may
be a difficult task to get a handle on their architecture and make sure everything
works properly. By putting up a framework for federated learning that we’ve dubbed
FedGA-ICPS the purpose of this study is to address some of the difficulties that
are associated with the performance and decision-making aids provided by ICPSṪo
begin, we launch an ICPSmodeling formalism with the goal of specifying the struc-
ture and behaviour of such systems. FedGA-ICPS then conducts an analysis of the
performance of the industrial sensors based on the data supplied by the ICPS from
the industrial sensors by putting forth locally integrated learning models. Following
that, a genetic algorithm drives federated learning in order to quicken and enhance
the aggregation process. In the end, transfer learning is used so that the learned
parameters of the models may be distributed across a variety of limited entities.
FedGA-ICPS has been implemented on MNIST, and the results have been rather
significant.

1 Introduction

The Internet of Things (IoT) has emerged as one of the most essential technologies of
the 21st century during the years. There are many different fields, such as the Internet
of Industrial Things (IoIT) and the Internet of Medical Things (IoMT), which refer
to the improvement of industrial processes and medical applications through the
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utilization of smart sensors, actuators, quick communication protocols, and effective
cybersecurity mechanisms. In vast networks, intelligent devices create a significant
quantity of data; hence, IoT frameworks demand methods that are both clever and
resilient for analyzing massive volumes of data.
Precisely, deep learning (DL) approaches have achieved promising results in

networks application owing to their intelligent learning and processing skills. These
qualities have enabled these techniques to create positive outcomes. Historically, the
application of AI in CPS has been done in a centralized manner. This means that
there is a central server that trains the model by using all of the data from the end
devices that are linked to it. The transmission of such a massive volume of data from
these end devices to the cloud, however, leads to congestion on the bandwidth, delays
in the processing of data, and perhaps a breach of privacy. Recently, this method of
learning has been modified to be either distributed learning or federated learning,
which brings together a collection of clients (end devices) that each have their own
set of data that is kept private and is not shared with other clients. They coordinate
their efforts with one another so that they may achieve the same degree of learning
by exchanging information on the learning parameters.
Google first presented the concept of federated learning (FL), which is a decen-

tralized and collaborative method of machine learning, in the year 2016. The goal of
the FL process is to produce a model that is suitable for a certain application in its
entirety. Choose the appropriate machine learning model to use and select devices
candidates to participate in the learning process where each device initializes its em-
bedded model parameters and trains the model until it converges. This is an example
of a typical workflow for its Life cycle, which includes: choosing the appropriate
machine learning model to use. Following a training session on the local level, each
of the linked devices then uploads its model parameters to the centralized server via
a secure communication method that we will go over in more detail later. Then, after
the aggregator (for example, a central server) has received all of the local models,
it will aggregate the parameters in order to update the new global and optimum
model. Once again, the server will re-share the parameters of the global model, and
the devices will update their own parameters based on the new information. This
procedure is carried out in a loop until the whole of the training process has been
completed.
In the literature, McMahan et al. [1] introduced a new aggregated model called

FedAVG, which stands for federated average. In this model, the weights of the
several local models are averaged by the server, which then provides new weights
and, therefore, a new model.
Also, FedPer proposed by Arivazhagan et al. [2] similar to the FedAVG in the

way it computes new weights in the aggregated models [3]. However, the clients
communicate the neural model’s base layers to the server instead of the totality of
the model and retain the other layers. The underlying idea is that the base layers deal
with representation learning and can be advantageously shared by clients through
aggregation. The upper layers are more concerned with decision-making, which is
more specific to each client [3]. FedPer can be seen as an adaption of the transfer
learning methodology into a federated learning scheme.
The main goal of this work is to overcome the limitations of FedAvg and FedPer

by introducing genetic algorithm to enhance the aggregation process of FL and
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Fig. 1 The Interoperability and Integrity Validation and Evaluation.

deploy it for ICPS. As shown in Figure 1, FedGA-ICPS develops five stages: CPS
(red rectangle), Learning (blue rectangle), Election (green rectangle), Aggregation
(yellow rectangle), and Broadcasting (violet rectangle). In the following, we explain
each part and steps of FedGA-ICPS.

(1) Initially, FedGA-ICPS develops and implements a CPS as a composition of en-
tities and components of different forms and nature. Each entity has its proper
structure and behavior. The entities can communicate and interleave in different
environment.

(2) Then, through simulation and run-time execution , FedGA-ICPS collects, formats,
cleans and normalizes streaming data ” generated and communicated between
different CPS components. ” will be used for the learning step that relies on
convolution neural network that is assigned to a given device.

(3) Consequently, FedGA-ICPS proposes a set of component to elect the best can-
didate to federate the learning between the embedded CNN. The election takes
into consideration different parameters, like: processing and memory capacities,
latency, availability, security, etc.

(4) After a local convergence learning, FedGA-ICPS perform the aggregation through
genetic algorithms. The latter takes into consider: the weights of the local models.
Then, produced in the elected component the optimal weight vector for broad-
casting.

(5) Finally, FedGA-ICPS broadcast to the different clients, edges, and components
the resulting optimal weights through transfer parameter learning.

In a nutshell, we present our main contributions in the present paper.

• Surveying the main contributions related to the application of FL on CPS.
• Develop a framework called FedGA-ICPS to enhance the performance to ICPS.
• Model formally ICPS components and their compositions.
• Propose a federated solution to enhance the collaborative learning phases between
ICPS components through genetic algorithms.

• Compare FedGA-ICPS within the existing solutions and validates it on bench-
marks.

The remainder of this paper is organized as follows. Section 2 surveys con-
tributions related to federated learning and its applications. Section 3 develops our
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proposed framework, FedGA-ICPS that is validated in 4. Finally, Section 5 concludes
the paper and give hints on our FedGA-ICPS related perspectives.

2 Related Work

This section reviews and discusses approaches that deal with performance analysis
and decision supports for ICPS. Połap et al. [4] proposed an agent-based system to
analyze medical data collected from IoMT stored in a blockchain. The solution im-
plements three agents: learning, indirect, and datamanagement (DM). Unfortunately,
this solution is not real-time since DMA takes time to get information from patients
and doctors. Also, despite the use of FL methods, selecting the best classification
method for this kind of noisy and heterogeneous data is challenging.
Tian et al. [5] used an asynchronous FL-based anomaly detection for resources

constrained IoT devices using deep learning techniques. Their approach is established
through: pre-initialization of the parameters, and deploy an asynchronous model
training. Unfortunately, they did not study the reliability of the participating nodes.
Chen et al. [6] proposed FedHealth framework that applies federated transfer learning
approach on cloud computing architecture for wearable healthcare. Their framework
deals with the issues of data isolation and model personalising in FL. Initially, the
cloud server develops the global model using public datasets, distributes it to the
clients using homomorphical encryption, then the clients retrain local models and
upload them to the cloud server. Monotonously, the aggregator builds the global
model using fedAVG algorithm, distributes it to the clients and perform transfer
learning.
Hao et al. [7] proposed Privacy-enhanced FL (PEFL) scheme to increase the

security of model gradients shared between the server and clients and ensure a good
accuracy for local models. Their system architecture consists of (1) Key generation
center (KGC) to distribute private keys to each participant, (2) CS is the aggrega-
tor based on Cloud and (3) participants. First, each participant learns local model,
calculates local gradients and perturbs these by adding local noises using Differen-
tial Privacy (DP) technique. The perturbed gradients are encrypted into the BGV
ciphertext using Homormorphic encryption and the ciphertext BGV encrption is
embedded into augmented learning. Then, the CS performs the reverse process of
encryption by executing a set of decryption steps for aggregation.The results show
that when only a small percentage of participants are affected by the adversary,
accuracy decreases little. Zhou et al. [8] proposed a privacy preserving federated
learning scheme in fog computing. Acting as a participant, each fog node is enabled
to collect IoT device data and complete the learning task. Such design effectively
improves the low training efficiency and model accuracy caused by the uneven dis-
tribution of data and the large gap of computing power. They enabled IoT device data
to satisfy differential privacy to resist data attacks and leverage the combination of
blinding and Paillier homomorphic encryption against model attacks, which realize
the security aggregation of model parameters.
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3 FedGA-ICPS Framework

This section follows FedGA-ICPS steps depicted in Fig. 1 by firstly presenting ICPS
formalism.

3.1 Industrial CPS

We consider a system S as a composition of a set of entities E that interact and
interleave through a network of physical and logical channels (N ) to accomplish a
given task (T ) in a specific context CT . A system S is a tuple ⟨E,N ,T , CT⟩.

3.1.1 Modeling the entities

An entity Y ∈ E can be an IIoT, an edge node, a fog node or a cloud server that are
enabled to execute specific actions, or collaborate with other entities to form a system
executing a global task. To evaluate the guard related to an action, the entity Y run its
associated machine learning mlY that evaluates the variables of the specified guard.
To enhance the decision making of an entity Y, FedGA-ICPS develops techniques
to help entities to update periodically their associated mls. However, Y is the main
entities describing ICPS, and it is defined by the tuple ⟨𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟, ,Σ, 𝐵𝑒ℎ⟩
, where:

• 𝑖𝑑 is a finite set of tags,
• 𝑎𝑡𝑡𝑟 : 𝑖𝑑 → 2T returns the attributes of an entity,
• 𝐴𝑐𝑡𝑢𝑎𝑡𝑜𝑟 specifies the status of an entity by evaluating its attributes,
• is a function that associate to an entity Y its ml.
• Σ = {Send, Receive, Update, Predict, Train,
Aggregate} is a finite set of atomic actions that depend on the type of entity Y𝑖
and executed by the latter.

• 𝐵𝑒ℎ : 𝑖𝑑×Σ→ L returns the expression written in the language L that describes
the behavior of an entity. The syntax of L is given by: 𝐵 F 𝛼 | 𝐵 · 𝐵 | 𝐵 +𝑔 𝐵,
where 𝛼 ∈ Σ, “ · “ composes sequentially the actions and +𝑔 is a guarded choice
decision that depends on the evaluation of the guard, a propositional formula,
𝑔, by the functionality Predict. When 𝑔 Δ

= ⊤ the guarded decision become a
non-deterministic choice.

3.1.2 Modeling the Network

The network N defines how the entities are connected and communicate. An en-
tity Y𝑖 can be connected to another one through a physical or logical channel for
communication or to a subsystem. We define a network N as a graph where ver-
tices are the entities and the edges are the way that they interact and connected
N = ⟨E, Chan, Prot, Rel⟩, where:
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• Chan is a finite set of channels,
• Prot is a finite set of protocols where 𝜖Prot is the empty protocol.
• Rel : E × E → Chan × Prot relies two entities with a channel and a protocol.
When 𝜖Prot is assigned, it means both nodes are physically connected.

3.1.3 Modeling the Tasks

The task T is the main goal of the system. It describes the sequence of actions that
should be realized by each entity. We define a task by a tree where the root represents
the main goal of the system S, the children are sub-goals of the entities, and leafs
are the final product for each entity. The task T is the tuple ⟨Goals, ⪯⟩, where:

• Goals is a finite set of goals where G ∈ Goals is the root (the main goal),
• (Goals, ⪯) is a preorder relation on Goals.

3.1.4 Context

It can be seen as a container of entities that can change dynamically, by integrating
or excluding entities, changing protocols, and updating tasks, but they should follow
certain rules and policies PL. A context CT is the tuple ⟨E ′ ⊆ E,T ′ ⊆ T ,PL⟩.
In FedGA-ICPS, a policy is expressed as a temporal logic formula.

3.2 Learning

3.2.1 Classification

In the learning step, FedGA-ICPS relies on CNN, convolutional neural network,
which is a class of deep neural network [9]. A given CNN is locally learned in a
machine by considering only its proper data. The architecture of CNN consists of
three layers: (1) convolution, (2) pooling, and (3) fully connected. The convolution
process with several filters is capable of extracting features from the data set. Pooling
is a technique for reducing the dimensionality of feature maps. The most popular
pooling methods employed in CNN are maximum pooling and average pooling
[10]. The fully-connected layer is in charge of categorizing the data based on the
characteristics collected by the previous layers. While ReLu functions are often used
to categorize inputs in convolutional and pooling layers, FC layers generally employ
a softmax activation function to offer a probability from 0 to 1. Each edge client
(manufacturing) has its own CNN model in our system, which does not have to
be identical to other local models in terms of number of filters, layer architecture,
function activation, etc., because it is dependent on its own dataset’s structure. At
training stage, Zhang and Sabuncu[11] argued that the most common way to train
CNNs for classification problems is to couple stochastic gradient descent coupled
with the Cross Entropy (CE).
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3.2.2 Models Transfer

As the deep neural network needs a large amount of data and resources with com-
puting power to accelerate learning to have good decision-making, the reuse of a
pre-trained model on a related learning task is known as transfer learning (TL) that
is considered as a solution to deal with these challenges. Two ways are possible
to exploit transfer learning process: (1) Fine-tuning pre-trained-models, which uses
a pre-trained model with a source dataset and retrain it with a target dataset. (1)
Fine-tuning feature extractors, which freezes feature extractor layers and retrain only
classification layers. In our study, we focus on Fine-tuning feature extractors. When-
ever a new edge node joins the industrial network, the cloud server looks first for
similar pre-trained models deployed on other similar nodes that were trained using
a large dataset and achieved high accuracy. This then results in only retraining the
base layers, rather than the whole network, since it transfers only the feature extractor
layers to the target node.

3.3 Election

To elect the appropriate candidate for a federated learning, FedGA-ICPS looks for the
most powerful component that can be a Fog or Edge node. As default, we consider
the computing cloud server as the aggregator, then, depends on their capacities e.g
the free memory of a component and its processing capacity, the cloud server can
elect it as a secondary aggregator. FedGA-ICPS reorders all S components as a list
of aggregators with priorities.

3.4 Aggregation

Compared to FedAvg [12] and FedPers [2], with FedGA developed in FedGA-ICPS,
all edge nodes upload only the encrypted base layer (classification layers) weights
to the elected aggregator. Then, the latter calculates the new weights by calling the
genetic algorithm (line 9) that runs as follows where a weight vector is used to
represent the system throughout the chromosomes.

(1) Define an adequate chromosome which the weight vectors.
(2) Select a large set of chromosomes, population takes into account all weight vectors
collected from the different components.

(3) Apply the reproduction operators (selection, crossover, mutation). selection is
applied on on vectors with high ranking (fitness evaluation). In our case, the
fitness is the loss function. The crossover operation is based on the single point
paradigm. It means that a vector is divided into two parts to be exchanged with
another vector to form a new population. Finally, the mutation operation collects
randomly only 10% of weights to reproduce new vectors.

(4) FedGA-ICPS repeats this process until the accuracy of all edge nodes models is
more than 99%.
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Algorithm 1 Federated Genetic Algorithm (FedGA), C is the fraction of clients
selected randomly to participate in each communication round. The K clients are
indexed by k; B is the local mini-batch size, D𝑘 is the dataset available to client k,
D𝑡 is the dataset used for the test which is available on the aggregator, 𝑊B is the
vector of base layers (classification layers), E is the number of local epochs, and [ is
the learning rate.
1: Procedure FedGA ⊲ Run on the server.
2: Initialize𝑊0

B;
3: for each round t = 1, 2, 3, ... do
4: 𝑚← 𝑚𝑎𝑥 (C.𝐾, 1);
5: 𝑆𝑡 ← (random set of m clients);
6: for each client k ∈ 𝑆𝑡 do
7: 𝑊 𝑡+1

B,k ← 𝐶𝑙𝑖𝑒𝑛𝑡𝑈𝑝𝑑𝑎𝑡𝑒 (k,W𝑡
;𝑏 𝑓 𝐵,𝑘

); ⊲ In Parallel.
8: end for
9: 𝑊 𝑡+1

B = 𝐺𝐴(D𝑡 , 𝑊
𝑡
B); ⊲ Only base layers are aggregated

10: end for
11: End procedure FedGA
12: Procedure ClientUpdate(𝑘, 𝑤𝑡

𝐵
) ⊲ Run on client k.

13: 𝛽 ← (Split D𝑘 into mini-batches of size B;)
14: for each local epoch i from 1 to E do
15: for batch b ∈ 𝛽 do
16: 𝑤B, 𝑤P ← 𝑤 − [ΔL(𝑤B, 𝑤P, 𝑏); ⊲ Only base layers are aggregated
17: end for
18: end for
19: return t to the Server
20: End procedure ClientUpdate(𝑘, 𝑤B)

3.5 Broadcasting

After the aggregation phase, FedGA-ICPS transmits the weights of the model’s base
layers to participating components in the learning phase. Thus, a new model with
high accuracy and low losses is generated in the training phase. Thus, broadcast
phase is provided with Homomorphic encryption represented.

4 Experimental results

We evaluated the performance of our FedGA-ICPS framework using the MNIST
dataset [13]. We divide it into heterogeneous subsets. Each client has a different part
to other clients with an unequal size (non-iid data). We use a window-frame size
of 1000 samples. Our experiments were done using CNN to compare the federated
learning combined with genetic algorithm results against FedAVG and FedPer. Our
CNN model has two convolutional layers followed by a max-pooling layer where
the outputs are fed to two fully-connected layers. The models are trained using a
mini-batch SGD of size 1000, ReLU activation function and to counter over-fitting,
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a dropout is used. The models were developed using Pytorch for our implementa-
tions. Using FedAVG as an aggregation algorithm, the results show that there is a
perturbation of the accuracy for each customer due to data heterogeneity and dataset
size variance. Using FedPer, the model is split in base and personalized layers.
Personalized layers are not communicated to the server, only the base layers are
aggregated by the federated server, using transfer learning. The results show that is a
perturbation of the accuracy for each customer due to data heterogeneity and dataset
size variance. The obtained results present that there is an improvement in accuracy
compared to FedAVg. Finally, using FedGA-ICPS, we obtain a rapid convergence for
all clients with an average accuracy greater than 98% as shown in Figure 2.

Fig. 2 FedGA Aggregation Algorithm.

5 Conclusion

We have given a first step toward a comprehensive methodology for enhancing
performance analysis in order to create a more robust ICPS in this study. The
developed FedGA-ICPS framework describes a system as a collection of things,
each of which has its own structure and behavior for carrying out a certain purpose.
To expedite the analysis and learning processes, FedGA-ICPS intends to use federated
learning and genetic algorithms to assist limited devices in locally embedding their
decision models. We demonstrated the efficacy of the suggested framework using a
renowned benchmark.
We intend to expand the framework’s capabilities in the future by (1) incorporating

additional machine learning techniques and automatically selecting the best agent
mostly through reinforcement learning, (2) decentralizing the system through a
blockchain architecture, and (3) evaluating the framework on more complex use
cases and benchmarks.
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