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Introduction

In this paper, for µ, ν in the set P 1 (R) of probability measures on the real line with a finite first order moment, we are interested in martingale couplings between µ and ν that attain M ρ (µ, ν) and M ρ (µ, ν) defined for ρ > 0 by By Strassen's theorem [START_REF] Strassen | The existence of probability measures with given marginals[END_REF],

Π M (µ, ν) = ∅ ⇐⇒ µ ≤ cx ν,
where µ ≤ cx ν means that µ is smaller than ν in the convex order :

∀ϕ : R → R convex, R ϕ(x) µ(dx) ≤ R ϕ(y) ν(dy).
When µ, ν ∈ P 1 (R) are such that µ ≤ cx ν, then M ρ (µ, ν) ≤ M ρ (µ, ν) < +∞ for ρ ∈ (0, 1]. For ρ > 1, the finiteness remains true when µ, ν belong to the set P ρ (R) of probability measures on the real line with a finite moment of order ρ. For ρ ≥ 1, a martingale Wasserstein inequality is investigated in [START_REF] Jourdain | Martingale Wasserstein inequality for probability measures in the convex order[END_REF]: it is proved that there exists a finite constant K ρ such that for µ, ν ∈ P ρ (R) with µ ≤ cx ν,

M ρ ρ (µ, ν) ≤ K ρ inf π∈Π(µ,ν) R×R
|x -y| ρ π(dx, dy)

1 ρ min z∈R R
|z -y| ρ ν(dy)

ρ-1 ρ

.

The couplings attaining M 1 (µ, ν) and M 1 (µ, ν) were first investigated in the literature. Motivated by the robust pricing and hedging of forward start straddle options, Hobson and Neuberger state in Theorem 8.2 [START_REF] Hobson | Robust Bounds for Forward Start Options[END_REF] that for the cost function |x -y|, there exists a maximizing martingale coupling with the form π HN = 1 0 r(u) -q(u) r(u) -p(u) δ (q(u),p(u)) + q(u) -p(u) r(u) -p(u) δ (q(u),r(u)) du with p, q, r non-decreasing on (0, 1) and such that p ≤ q ≤ r (by convention the integrand is equal to δ (q(u),q(u)) when p(u) = q(u) = r(u)). This provides an example of a martingale coupling nondecreasing in the sense of Definition 2.3 that we give below. The study of such non-decreasing martingale couplings is one of main contributions of the present paper. The necessary optimality criterion given by Beiglböck and Juillet in Lemma 1.11 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] ensures that any maximizing martingale coupling is non-decreasing. When µ does not weight points, we have the equality

π HN = R g(x) -x g(x) -f (x) δ (x,f (x)) + x -f (x) g(x) -f (x) δ (x,g(x)) µ(dx)
for non-decreasing functions f and g such that ∀x ∈ R, f (x) ≤ x ≤ g(x) and, according to Theorem 7.3 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], uniqueness of maximizing martingale couplings holds. Under the dispersion assumption that there exists a finite interval I such that (ν -µ) + (I) = 0 and (µ -ν) + (I) = (µ -ν) + (R), Hobson and Klimmek state in Theorem [START_REF] Hobson | Robust price bounds for the forward starting straddle[END_REF] that for the cost function |x -y|, there is a minimizing martingale coupling of the form

π HK = R δ (z,z) µ ∧ ν(dz) + (1 -µ ∧ ν(R)) 1 0
r(u) -q(u) r(u) -p(u) δ (q(u),p(u)) + q(u) -p(u) r(u) -p(u) δ (q(u),r(u)) du for a non-decreasing function q and non-increasing functions p, r such that p ≤ q ≤ r. When µ = ν the integral over u provides an example of a coupling in Π M (µ-ν) +

1-µ∧ν(R) , (ν-µ) +

1-µ∧ν(R)

non-increasing in the sense of Definition 2.3 below. Without the dispersion assumption, according to Theorem 7.4 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], there is a unique minimizing coupling when µ does not weight points and this coupling writes

R δ (z,z) µ ∧ ν(dz) + R g(x) -x g(x) -f (x) δ (x,f (x)) + x -f (x) g(x) -f (x) δ (x,g(x)) (µ -ν) + (dx)
with f and g such that ∀x ∈ R, f (x) ≤ x ≤ g(x).

For many choices of µ, ν ∈ P ρ∨1 (R) such that µ ≤ cx ν, when solving the linear programming problem for the cost function |x -y| ρ obtained by approximating µ and ν by finitely supported probability measures still in the convex order, it turns out that the coupling π HN maximizing when ρ = 1 still maximizes when ρ ∈ (0, 2) and minimizes when ρ > 2: see the numerical results in Section 2.1. It is not surprising that 2 appears as a threshold for the power ρ since the martingale property ensures that when µ, ν ∈ P 2 (R),

∀π ∈ Π M (µ, ν), R 2 |x -y| 2 π(dx, dy) = R y 2 ν(dy) - R x 2 µ(dx) = M 2 2 (µ, ν) = M 2 2 (µ, ν).
With the complete lattice structure of {η ∈ P 1 (R) : R zη(dz) = R y 2 ν(dy) -R x 2 µ(dx)} for the convex order stated in [START_REF] Kertz | Complete lattices of probability measures with applications to martingale theory[END_REF], we deduce in Proposition 2.1 below that {sq#π : π ∈ Π M (µ, ν)} where sq#π denotes the image of the measure π by the square cost function sq(x, y) = (y -x) 2 admits an infimum and a supremum for this order. When there exists π ∈ Π M (µ, ν) such that sq#π is equal to the infimum, then R 2 |x -y| ρ π(dx, dy) is equal to M ρ ρ (µ, ν) when ρ ∈ (0, 2) and to M ρ ρ (µ, ν) when ρ > 2. In particular, when ν(dy) = x∈R 1 2 (δ x-a (dy) + δ x+a (dy)) µ(dx) for some a ∈ R, the infimum is equal to δ a 2 and is attained with π(dx, dy) = 1 2 (δ x-a (dy) + δ x+a (dy)) µ(dx). When there exists π ∈ Π M (µ, ν) such that sq#π is equal to the supremum, then R 2 |x -y| ρ π(dx, dy) is equal to M ρ ρ (µ, ν) when ρ ∈ (0, 2) and to M ρ ρ (µ, ν) when ρ > 2. When µ does not weight points, the uniqueness of the maximizing and minimizing couplings for ρ = 1 stated in Theorems 7.3 and 7.4 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] implies that π HN (resp. π HK ) is the only possible value for π (resp. π). Unfortunately, even if we are able to exhibit in Proposition 2.21 a simple situation where the infimum and supremum are attained, we also provide examples where they are not attained (see Propositions 2.10 and 2.23 where some of the above consequences of attainment do not hold). That is why we directly study couplings that attain M ρ ρ (µ, ν) and M ρ ρ (µ, ν). It turns out that, the non-decreasing property of maximizing couplings as well as their uniqueness when µ does not weight points can be extended from the specific value ρ = 1 to the case ρ ∈ (0, 1]. But the optimizers may be distinct for distinct values of ρ. This motivates our investigation of non-decreasing martingale couplings and we find the decomposition of ν into ( x∈R 1 {y<x} π(dx, dy), x∈R 1 {y=x} π(dx, dy), x∈R 1 {y>x} π(dx, dy)) for π ∈ Π M (µ, ν) is in one to one correspondence with martingale couplings in Π M (µ, ν) non-decreasing in a generalized sense. We also show that the existence of a non-increasing martingale coupling is equivalent to a restrictive nested supports condition between µ and ν, under which there is a unique non-increasing and a unique non-decreasing martingale couplings. Even under the nested supports condition, the image sq#π HN of the unique non-decreasing martingale coupling π HN is not necessarily the infimum of {sq#π : π ∈ Π M (µ, ν)} for the convex order. But under a more and more restrictive supports condition as ρ grows, this coupling π HN attains M ρ ρ (µ, ν) when ρ ∈ (1, 2) and M ρ ρ (µ, ν) when ρ > 2. Our results are stated in Section 2 while their proofs are given in Section 3. The proofs rely on several properties of the quantile function, which we list below. We denote the cumulative distribution function of η ∈ P(R) by F η : R

x → η(-∞, x] ∈ [0, 1], and its quantile function by

F -1 η : (0, 1) u → inf {x ∈ R : u ≤ F η (x)} ∈ R.
The following properties hold :

(a) F η is right-continuous with left-hand limits, F -1 η is left-continuous with right-hand limits;

(b) For all u ∈ (0, 1) and x ∈ R,

F -1 η (u) ≤ x ⇐⇒ u ≤ F η (x), (1) 
denoting F η (y-) the left-hand limit of F η at y ∈ R,

F η (x-) < u ≤ F η (x) =⇒ x = F -1 η (u) and F η (F -1 η (u)-) ≤ u ≤ F η (F -1 η (u)); (2) (c) For η(dx)-almost every x ∈ R, F η (x) > 0, F η (x-) < 1, and F -1 η (F η (x)) = x; (3) 
(d) By the inverse transform sampling, for f : R → R measurable and bounded,

R f (x) η(dx) = 1 0 f (F -1 η (v)) dv (4) 
We also denote by

u η : R x → R |y -x|η(dy) ∈ R + the potential function of η ∈ P 1 (R). For µ, ν ∈ P 1 (R), we have µ ≤ cx ν ⇐⇒ ∀x ∈ R, u µ (x) ≤ u ν (x).
We say that µ is smaller than ν in the stochastic order and denote µ ≤ st ν if there exists π ∈ Π(µ, ν)

such that π({(x, y) ∈ R 2 : x ≤ y}) = 1. We have µ ≤ st ν ⇐⇒ F µ ≥ F ν ⇐⇒ F -1 µ ≤ F -1 ν .
2 Main results

Numerical experiments

For µ, ν such that µ ≤ cx ν, we consider (X i ) 1≤i≤I (resp. (Y j ) 1≤j≤J ) independent and identically distributed according to µ (resp. ν). The empirical measures

μI = 1 I I i=1 δ Xi-XI with XI = 1 I I i=1 X i and νJ = 1 J J j=1 δ Yj -ȲJ with ȲJ = 1 J J j=1 Y j ,
are both centred and respectively approximate the respective images μ and ν of µ and ν by x → x -R yν(dy). Applying [1, Algorithm 1], we compute μI ∨ cx νJ . The computation of M ρ (μ I , μI ∨ cx νJ ) (resp. M ρ (μ I , μI ∨ cx νJ )) is a linear programming problem that we solve using the CVXPY package [START_REF] Diamond | CVXPY: A Python-embedded modeling language for convex optimization[END_REF] in python for I = J = 100. We call π HN the obtained maximizer for the cost |y -x|. When ρ ∈ (0, 1) ∪ (1, 2) (resp. ρ > 2), we compare the optimal value M ρ (μ I , μI ∨ cx νJ ) (resp. M ρ (μ I , μI ∨ cx νJ )) and corresponding maximizer π (resp. minimizer π) computed by the solver with I π HN ρ := |x -y| ρ π HN (dx, dy) and π HN respectively. It turns out that the values always coincide while the couplings π and π are distinct from π HN when µ and ν are continuous distributions.

Normal distributions : µ = N (0, 0.24) and ν = N (0, 0.28) The conclusion follows from the next lemma and the complete lattice structure of the set {η ∈ P 1 (R) :

ρ M ρ I π HN ρ π -π HN ρ M ρ I π HN ρ π -π HN 0.
µ = L(Y -1) ν = L(X -2) with X ∼ E(1) and Y ∼ E(0.5) ρ M ρ I π HN ρ π -π HN ρ M ρ I π HN ρ π -π HN 0.
distributions : µ = L(X -5), ν = L(Y -20) with X ∼ B(10, 0.5), Y ∼ B(40, 0.5) ρ M ρ I π HN ρ π -π HN ρ M ρ I π HN ρ π -π HN 0.3 1.
R zη(dz

) = R y 2 ν(dy) - R x 2 µ(dx)} with minimal element δ R y 2 ν(dy)- R x 2 µ(dx)
stated in [START_REF] Kertz | Complete lattices of probability measures with applications to martingale theory[END_REF].

Lemma 2.2. Let µ, ν ∈ P 2 (R) be such that µ ≤ cx ν. Then the set {sq#π : π ∈ Π M (µ, ν)} is bounded from above in the convex order.

Definition and optimality of non-decreasing and non-increasing martingale couplings

Definition 2.3. Let µ, ν ∈ P 1 (R) be such that µ ≤ cx ν. A martingale coupling π(dx, dy) ∈ Π M (µ, ν) is called non-decreasing if there exists a Borel set Γ ⊆ R × R such that π(Γ) = 1 and (a) if (x -, y -), (x + , y + ) ∈ Γ with y -≤ x -, y + ≤ x + , and x -< x + , then y -≤ y + (b) if (x -, z -), (x + , z + ) ∈ Γ with x -≤ z -, x + ≤ z + , and x -< x + , then z -≤ z + .
Respectively, π(dx, dy) is called non-increasing if there exists a Borel set Γ ⊆ R × R such that π(Γ) = 1 and (c) if (x -, y + ), (x + , y -) ∈ Γ with y + ≤ x -, y -≤ x + , and

x -< x + , then y -≤ y + (d) if (x -, z + ), (x + , z -) ∈ Γ with x -≤ z + , x + ≤ z -, and x -< x + , then z -≤ z + . y - y + x - x + (a) non-decreasing (left) x - x + z - z + (b) non-decreasing (right) y - y + x - x + (c) non-increasing (left) x - x + z - z + (d) non-increasing (right)
Figure 1: Non-decreasing / non-increasing coupling A different notion of monotone martingale couplings is introduced by Beiglböck and Juillet in [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] where they prove that there exists a unique martingale coupling π left-monotone (resp. rightmonotone) in the sense that π(Γ) = 1 for some Borel subset Γ of R 2 such that (x -, y -), (x -, z -) and (x + , w) ∈ Γ with x -< x + and y -< z -implies that w / ∈ (y -, z -) (resp. (x + , y + ), (x + , z + ) and (x -, w) ∈ Γ with x -< x + and y + < z + implies that w / ∈ (y + , z + )). According to [START_REF] Henry-Labordère | An explicit martingale version of the one-dimensional Brenier theorem[END_REF], the leftmonotone (resp. right-monotone) martingale coupling minimizes (resp. maximizes) over Π M (µ, ν) the integral of smooth cost functions c(x, y) satisfying the martingale Spence-Mirrlees condition

∂ 3 xyy c ≤ 0.
In the beginning of the proof of Theorem 7.3 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], combining the necessary optimality condition that they give in Lemma 1.11 together with some specific properties of the cost function R 2 (x, y) → |x -y| stated in Lemma 7.5, Beiglböck and Juillet show that any coupling maximizing R 2 |x -y|π(dx, dy) over π ∈ Π M (µ, ν) is non-decreasing. Replacing Lemma 7.5 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] by Lemma 3.4 below, we generalize this result to costs ϕ(|x -y|) where R + z → ϕ(z) ∈ R is increasing and concave. To check that, on the other hand, any coupling minimizing R 2 ϕ(|x -y|)π(dx, dy) for such a function is non-increasing, we need µ and ν to satisfy the following nested supports condition.

Definition 2.4. We say that µ, ν ∈ P 1 (R) satisfy the nested supports condition if there exist

-∞ < a ≤ b < +∞ such that µ ([a, b]) = 1 and ν ((a, b)) = 0.
The nested supports condition is slightly weaker than the Reinforced Dispersion Assumption 7.1 considered by Hobson and Klimmek [START_REF] Hobson | Robust price bounds for the forward starting straddle[END_REF] and which amounts to the existence of some interval I such that µ(I) = 1 and ν(I) = 0. Indeed, under the nested supports condition, it may happen that µ({a})ν({a}) > 0 or µ({b})ν({b}) > 0.

Proposition 2.5. Let µ, ν ∈ P 1 (R) be such that µ ≤ cx ν and ϕ : R + → R be some increasing concave function.

(i) If π ∈ Π M (µ, ν) maximizes ϕ(|x -y|)π(dx, dy) over π ∈ Π M (µ, ν), then π is non-decreasing
and, when ϕ is continuous, there exists such a maximizing coupling.

(ii) There exists π ∈ Π M (µ, ν) which minimizes ϕ(|x -y|)π(dx, dy) over π ∈ Π M (µ, ν) and when µ and ν satisfy the nested supports condition, then any such coupling M is non-increasing.

Remark 2.6. Let λ ∈ [ϕ r (1), ϕ l (1)] where ϕ r (1) and ϕ l (1) are the respective right-hand and lefthand derivatives of the increasing concave function ϕ at point 1. We have

∀z ∈ R + , ϕ(0) ≤ ϕ(z) ≤ ϕ(1) + λ(z -1) so that for π ∈ Π M (µ, ν), ϕ(0) ≤ R 2 ϕ(|x -y|)π(dx, dy) ≤ ϕ(1) + λ R 2
|x -y|π(dx, dy)

≤ ϕ(1) + λ R |x|µ(dx) + R |y|ν(dy) ,
where the right-hand side is finite for µ, ν ∈ P 1 (R). The concavity of the function ϕ : R + → R implies that this function is continuous on (0, +∞). It may have a positive jump lim x→0+ ϕ(x)ϕ(0) at the origin and then R 2 (x, y) → ϕ(|x -y|) is lower semi-continuous but not uppersemicontinuous.

Remark 2.7. For ρ ∈ (0, 1], since R + z → z ρ is concave and increasing, a martingale coupling that maximizes |x -y| ρ π(dx, dy) is non-decreasing.

It turns out that the nested supports condition is also necessary for the existence of a nonincreasing coupling in Π M (µ, ν) and that, under this condition there is exists a unique nonincreasing coupling and also a unique non-decreasing coupling in Π M (µ, ν). Proposition 2.8. Let µ, ν ∈ P 1 (R) be such that µ ≤ cx ν. The following assertions are equivalent (i) there exists a non-increasing martingale coupling in Π M (µ, ν), The next proposition generalizes to continuous, increasing and concave functions ϕ : R + → R the statement in Theorem 7.3 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] which deals with the case when ϕ is the identity function .

Proposition 2.9. Let µ, ν ∈ P(R) be such that µ ≤ cx ν and that µ does not weight points. Let ϕ : R + → R be some continuous increasing concave function. There exists a unique nondecreasing martingale coupling π that maximizes ϕ(|x -y|)π(dx, dy). Moreover, there exist two non-decreasing functions T 1 , T 2 : R → R such that T 1 (x) ≤ x ≤ T 2 (x) and π is concentrated on the graphs of these functions.

Notice that the example in Section 7.3.1 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] shows that for general continuous, increasing and concave functions ϕ, the uniqueness of maximizers may fail without the continuity assumption on µ. The next proposition illustrates that unique maximizers may be distinct for distinct power functions ϕ. Since those maximizers are non-decreasing couplings, this motivates the investigation of the set of non-decreasing couplings in the next subsection.

Proposition 2.10. Let 0 < ρ < ρ ≤ 1, y < y+z 2 < m < z, β ∈ 0, 2ρ m -y z -y (z -m) ρ-1 - z -m z -y (m -y) ρ-1 ∧ 2m -y -z z -m , and 
µ ε = 1 1 + (1 + βε 1-ρ ) 1 ρ δ m-(1+βε 1-ρ ) 1 ρ ε + 1 + βε 1-ρ 1 ρ 1 + (1 + βε 1-ρ ) 1 ρ δ m+ε , ν = 1 3 δ m + 2(z -m) 3(z -y) δ y + 2(m -y) 3(z -y) δ z . For ε < (z -m) ∧ m-y (1+β) 1 ρ ∧ 2(z-m)(m-y) 3(z-y)
∧ 1, Π M (µ ε , ν) contains distinct martingale couplings and any element of Π M (µ ε , ν) is non-decreasing. For ε small enough, the non-decreasing martingale coupling that attains M ρ (µ ε , ν) is different from the one that attains M ρ (µ ε , ν).

Directionally decomposed non-decreasing martingale couplings

The uniqueness of non-decreasing couplings under the nested supports condition which determines the parts of the measure ν attained in the left direction and in the right direction in any martingale coupling motivates the introduction of the following decomposition. For π ∈ Π M (µ, ν), we denote by

ν π l (dy) = x∈R 1 {y<x} π(dx, dy) = x∈R 1 {y<x} π x (dy)µ(dx), ν π 0 (dy) = x∈R 1 {y=x} π(dx, dy) = x∈R 1 {y=x} π x (dy)µ(dx), ν π r (dy) = x∈R 1 {y>x} π(dx, dy) = x∈R 1 {y>x} π x (dy)µ(dx).
Note that ν π l + ν π 0 + ν π r = ν. For (ν l , ν r ) a couple of non-negative measures such that ν l + ν r ≤ ν, we denote

Π M (µ, ν, ν l , ν r ) = {π ∈ Π M (µ, ν) : (ν π l , ν π 0 , ν π r ) = (ν l , ν -ν l -ν r , ν r )}.
Our main result, stated in the next theorem and in assertion (i) of the corollary that follows is that Π M (µ, ν, ν l , ν r ) is not empty if and only if there exists a coupling in this set which is non-decreasing away from the support of ν -ν l -ν r where it goes straight. Theorem 2.11. Let µ, ν ∈ P 1 (R) be such that µ ≤ cx ν and µ = ν. Let (ν l , ν r ) a couple of non-negative measures such that ν l + ν r = ν. We have

Π M (µ, ν, ν l , ν r ) = ∅ ⇐⇒ ∃!π ↑ ∈ Π M (µ, ν, ν l , ν r ) non-increasing,
and then, for each continuous increasing concave function ϕ : R + → R,

∀π ∈ Π M (µ, ν, ν l , ν r ) \ {π ↑ }, R 2 ϕ(|y -x|)π(dx, dy) < R 2 ϕ(|y -x|)π ↑ (dx, dy). (5) 
Corollary 2.12. Let µ, ν ∈ P 1 (R) be such that µ ≤ cx ν and µ = ν. For (ν l , ν r ) a couple of non-negative measures such that ν l + ν r ≤ ν, we have that

(i) Π M (µ, ν, ν l , ν r ) = ∅ ⇐⇒ ∃!π ↑ ∈ Π M (µ, ν, ν l , ν r ) s.t. π ↑ (dx, dy) + (ν l + ν r -ν)(dx)δ x (dy) ν l (R) + ν r (R) is non-decreasing and then ∀π ∈ Π M (µ, ν, ν l , ν r ) \ {π ↑ }, R 2 ϕ(|y -x|)π(dx, dy) < R 2 ϕ(|y -x|)π ↑ (dx, dy) (6) 
for each continuous increasing concave function ϕ : R + → R,

(ii) ∃π ∈ Π M (µ, ν, ν l , ν r ) non-decreasing =⇒ ν -ν l -ν r = 1 {uµ=uν } µ + x∈R: µ∧ν({x})×(uν (x)-uµ(x))>0 p(x)δ x for some p(x) ∈ [0, µ ∧ ν({x})],
(iii) There is at most one non-decreasing coupling π ∈ Π M (µ, ν, ν l , ν r ).

According to the next proposition, some restrictive structure on the supports of µ and ν is needed to ensure the existence of a martingale coupling in Π M (µ, ν, ν l , ν r ) non-increasing away from the support of ν -ν l -ν r where it goes straight. Proposition 2.13. Let µ, ν ∈ P 1 (R) be such that µ ≤ cx ν and µ = ν. For (ν l , ν r ) a couple of non-negative measures such that ν l + ν r ≤ ν, the existence of

π ↓ ∈ Π M (µ, ν, ν l , ν r ) such that π ↓ (dx,dy)+(ν l +νr-ν)(dx)δx(dy) ν l (R)+νr(R)
is non-increasing is equivalent to the Dispersion Assumption 2.1 in [START_REF] Hobson | Robust price bounds for the forward starting straddle[END_REF] i.e. the existence of a non-empty finite interval I with ends a ≤ b such that (µ -ν)

+ (I) = (µ -ν) + (R) and (ν -µ) + (I) = 0 combined with ν l (dy) = 1 {y≤a} (ν -µ) + (dy) and ν r (dy) = 1 {y≥b} (ν -µ) + (dy).
In view of statement (ii) in Corollary 2.12, to better characterize the couples (ν l , ν r ) such that ν l + ν r ≤ ν and there exists a truly non-decreasing coupling in Π M (µ, ν, ν l , ν r ), it is useful to study the points x ∈ R such that inf π∈Π M (µ,ν) π({(x, x)}) > 0.

Proposition 2.14. Let µ ≤ cx ν and x ∈ R be such that u ν (x) > u µ (x). Then there exists a unique couple

(p -(x), p + (x)) ∈ (0, F ν (x-)] × (0, 1 -F ν (x)] such that R (z -x) + ν(dz) = R (y -x) + µ(dy) + Fν (x)+p+(x) Fν (x) (F -1 ν (v) -x)dv. (7) 
and

R (x -z) + ν(dz) = R (x -y) + µ(dy) + Fν (x-) Fν (x-)-p-(x) (x -F -1 ν (v))dv (8) 
Moreover, inf π∈Π M (µ,ν) π({(x, x)}) = (µ({x}) -p -(x) -p + (x)) + where the infimum is attained. When µ({x}) > p -(x) + p + (x), then any π ∈ Π M (µ, ν) satisfying π({(x, x)}) = (µ({x}) -p -(x) - p + (x)) + is such that π({(-∞, x) × (x, +∞)} ∪ {(x, +∞) × (-∞, x)}) = 0 and π x is equal to η x = 1 - p -(x) + p + (x) µ({x}) δ x + 1 µ({x}) Fν (x-) Fν (x-)-p-(x) δ F -1 ν (v) dv + 1 µ({x}) Fν (x)+p+(x) Fν (x) δ F -1 ν (v) dv. (9) 
When µ({x}) ∈ (0, p -(x)+p + (x)], there exists a unique q(x)

∈ (µ({x}) -p + (x)) + , p -(x) ∧ µ({x}) such that Fν (x-) Fν (x-)-q(x) F -1 ν (v)dv + Fν (x)+µ({x})-q(x) Fν (x) F -1 ν (v)dv = µ({x})
x and there exists π ∈ Π M (µ, ν) such that π x is equal to

η x = 1 µ({x}) Fν (x-) Fν (x-)-q(x) δ F -1 ν (v) dv + 1 µ({x}) Fν (x)+µ({x})-q(x) Fν (x) δ F -1 ν (v) dv. ( 10 
)
Remark 2.15. The case when µ = δ x and ν ∈ P 1 (R) is such that R zν(dz) = x and ν({x}) ∈ (0, 1) provides an example where p

-(x) = F ν (x-), p + (x) = 1 -F ν (x) so that p -(x) + p + (x) = 1 -ν({x}) < µ({x}). The only element π(dy, dz) = δ x (dy)ν(dz) of Π(µ, ν) and Π M (µ, ν) satisfies π({(x, x)}) = ν({x}) = 1 -F ν (x-) -(1 -F ν (x)) = µ({x}) -p -(x) -p + (x). Corollary 2.16. Let µ ≤ cx ν and X 0 = {x ∈ R : u ν (x) > u µ (x) and µ({x}) > p -(x) + p + (x)}. Then for each π ∈ Π M (µ, ν), one has 1 {uµ(y)=uν (y)} µ(dy) + x∈X0 (µ({x}) -p -(x) -p + (x)) δ x (dy) ≤ ν π 0 (dy) ≤ µ ∧ ν(dy),
where the bound from above is attained but the bound from below may not be attained. Moreover, when µ = ν and (ν l , ν r ) is a couple of non-negative measures such that ν-ν l -ν r = 1 {uµ(y)=uν (y)} µ+

x∈X0 (µ({x}) -p -(x) -p + (x)) δ x , then Π M (µ, ν, ν l , ν r ) = ∅ ⇐⇒ ∃!π ↑ ∈ Π M (µ, ν, ν l , ν r ) non-decreasing.
In the next example, the bound from below is not attained.

Example 2.17.

Let µ = 1 2 (δ -1 + δ 1 )
and

ν(dy) = 1 4 (δ -1 (dy) + δ 1 (dy)) + 1 6 1 [-2,-1] (y) + 1 [1,2] (y) dy + 1 12 1 [-1,1] (y)dy. Then u µ (-1) = 1 = u µ (1), u ν (-1) = 7 6 = u ν (1), p -(-1) = 1 6 = p + (1) and p + (-1) = √ 2 12 = p -(1). By Proposition 2.14, there exists π ∈ Π M (µ, ν) such that π -1 ({-1}) = 1 -p-(-1)+p+(-1) µ({-1}) = 4- √ 2 6
and then π -1 = η -1 with η -1 given by (9) and

π 1 = 2ν -η -1 . Therefore the unique coupling π ∈ Π M (µ, ν) such that π -1 ({-1}) = 1 -p-(-1)+p+(-1) µ({-1}) = 4- √ 2 6 is π(dx, dy) = 1 2 δ -1 (dx) 1 3 1 [-2,-1] (y)dy + 4 - √ 2 6 δ -1 (dy) + 1 6 1 [-1,-1+ √ 2] (y)dy + 1 2 δ 1 (dx) √ 2 -1 6 δ -1 (dy) + 1 6 1 [-1+ √ 2,1] (y)dy + 1 2 δ 1 (dy) + 1 3 1 [1,2] (y)dy and satisfies π 1 ({1}) = 1 2 > 4- √ 2 6 = 1 -p-(1)+p+(1) µ({1})
. In a symmetric way, the only coupling π ∈

Π M (µ, ν) such that π 1 ({1}) = 1-p-(1)+p+(1) µ({1}) satisfies π -1 ({-1}) = 1 2 > 4- √ 2 6 = 1-p-(-1)+p+(-1) µ({-1})
.

The next example shows that one cannot restrict the summation over {x ∈ R :

µ ∧ ν({x}) × (u ν (x) -u µ (x)) > 0} to a summation over {x ∈ R : inf π∈Π M (µ,ν) π({x, x}) > 0} in Assertion (ii) of Corollary 2.12. Example 2.18. Let for α ∈ [0, 1], ν = 1 6 ((2 -α)δ -4 + αδ -1 + 2δ 0 + αδ 1 + (2 -α)δ 4 ) and µ = 1 3 (δ -2 + δ 0 + δ 2 ). Then u ν (0) = 8-3α 3 = u µ (0) + 4-3α 3 , p -(0) = 1 6 = p + (0), q(0) = 1 6 and π := 1 6 δ (-2,-4) + δ (-2,0) + (1 -α)δ (0,-4) + αδ (0,-1) + αδ (0,1) + (1 -α)δ (0,4) + δ (2,0) + δ (2,4)
is a non-decreasing martingale coupling such that π 0 = η 0 given by (10) and which does not weight (0, 0). On the other hand,

4 -α 24 δ (-2,-4) + δ (2,4) + α 6 δ (-2,-1) + δ (2,1) + 4 -3α 24 δ (-2,0) + δ (0,-4) + δ (0,4) + δ (2,0) + α 4 δ (0,0)
(and any strict convex combination with the former coupling) is a non-decreasing martingale coupling which weights (0, 0) when α > 0.

2.5 Do π ↑ and π ↓ optimize the cost function |x -y| ρ for ρ > 1 under the nested supports condition?

In this section, we suppose that the probability measures µ and ν in the convex order satisfy the nested supports condition so that, by Proposition 2.8, there exist a unique non-decreasing coupling π ↑ and a unique non-increasing coupling π ↓ in Π M (µ, ν). Then, by Proposition 2.5, π ↑ maximises (resp. π ↓ minimizes) R 2 c(x, y)π(dx, dy) over π ∈ Π M (µ, ν) for cost functions c(x, y) = ϕ(|x -y|) with ϕ : R + → R continuous, increasing and concave and in particular for c(x, y) = |x -y| ρ with ρ ∈ (0, 1]. We investigate whether π ↑ (resp. π ↓ ) still maximises (resp. minimises) for c(x, y) = |x -y| ρ with ρ ∈ (1, 2) and minimises (resp. maximises) for c(x, y) = |x -y| ρ with ρ > 2. It turns out that this is the case under a reinforced support condition with µ and ν not weighting some non empty intervals at the left of a and at the right of b. The larger ρ, the larger these gaps should be chosen. When µ only weights two points and ν weights two points to the left of the support of µ and two points to the right, we exhibit conditions ensuring that sq#π ↑ is equal to the infimum inf cx {sq#π : π ∈ Π M (µ, ν)} and sq#π ↓ is equal to the supremum sup cx {sq#π : π ∈ Π M (µ, ν)} for the convex order. Last, we check that, still with such finite supports, optimality may fail when the gaps are too small.

Preservation of the optimality

Proposition 2.19. Let µ ≤ cx ν be such that there exist y < y <

x < x < z < z with µ ([x, x]) = 1 and ν [y, y] ∪ [z, z] = 1. If x -y ≥ α ρ (z -y), z -x ≥ α ρ (z -y),
where α ρ ∈ (0, 1 2 ) is the unique solution of ψ ρ (α) = 0 with ψ ρ : (0, 1] → R defined by

ψ ρ (α) = α + α 2-ρ (1 -α) ρ-1 + 1 -ρ.
Then, the unique non-decreasing coupling π ↑ (resp. non-increasing coupling π

↓ ) in Π M (µ, ν) is the unique optimal coupling in Π M (µ, ν) that attains M ρ (µ, ν) (resp. M ρ (µ, ν)) when ρ ∈ (1, 2) and M ρ (µ, ν) (resp. M ρ (µ, ν)) when ρ > 2.
Remark 2.20. Let ρ ∈ (1, 2) ∪ (2, +∞) and y < z. Since, by the fifth and seventh assertions in Lemma 3.10 below,

α ρ < 1 2 , it is possible to find x, x ∈ (y + α ρ (z -y), z -α ρ (z -y)) such that x -x > 0. Then for any y ∈ 1 αρ (x -(1 -α ρ )z), y and any z ∈ z, 1 αρ (x -(1 -α ρ )y)
, the conditions on the points y, y, x, x, z, z in Proposition 2.19 are satisfied.

Proposition 2.21. Let p ∈ (0, 1) and y -< y + < x -< x + < z -< z + be such that

x + -y -≥ z --x -, z + -x -≥ x + -y + and (x --y -) ∧ (x + -y + ) ∧ (z --x -) ∧ (z + -x + ) ≥ (x --y + ) ∨ (z --x + ). (11) 
We set

µ = pδ x-+ (1 -p)δ x+ , ν = p z --x - z --y - δ y-+ p x --y - z --y - δ z-+ (1 -p) z + -x + z + -y + δ y+ + (1 -p) x + -y + z + -y + δ z+ , π ↑ = p z --x - z --y - δ (x-,y-) + x --y - z --y - δ (x-,z-) + (1 -p) z + -x + z + -y + δ (x+,y+) + x + -y + z + -y + δ (x+,z+) , ν = p z + -x - z + -y + δ y+ + p x --y + z + -y + δ z+ + (1 -p) z --x + z --y - δ y-+ (1 -p) x + -y - z --y - δ z-, π ↓ = p z + -x - z + -y + δ (x-,y+) + x --y + z + -y + δ (x-,z+) + (1 -p) z --x + z --y - δ (x+,y-) + x + -y - z --y - δ (x+,z-) . One has π ↑ ∈ Π M (µ, ν), sq#π ↑ (dx, dy) = inf cx {sq#π : π ∈ Π M (µ, ν)} and π ↓ ∈ Π M (µ, ν), sq#π ↓ (dx, dy) = sup cx {sq#π(dx, dy) : π ∈ Π M (µ, ν)}. Remark 2.22. • If x --y + = z --x + , then inequality (11) is satisfied. So for y + < x -< x + < z -such that x --y + = z --x + ,
we may choose z + large enough and y -small enough so that the conditions in Proposition 2.21 are met.

• We deduce that for any convex function ϕ : R

+ → R R 2 ϕ(|y -x| 2 )π ↑ (dx, dy) = inf π∈Π M (µ,ν) R 2 ϕ(|y -x| 2 )π(dx, dy) and R 2 ϕ(|y -x| 2 )π ↓ (dx, dy) = sup π∈Π M (µ,ν) R 2 ϕ(|y -x| 2 )π(dx, dy).
Indeed the function ϕ(z) = 1 {z=0} lim w→0+ ϕ(w) + 1 {z>0} ϕ(z) is the uniform limit of the restriction to R + of the non-decreasing sequence (ϕ n ) n≥1 of convex functions on R defined by

ϕ n (z) = 1 {z< 1 n } (ϕ( 1 n )+ϕ l ( 1 n )(z -1 n ))+1 {z≥ 1 n } ϕ(z)
where ϕ l denotes the left-hand derivative of ϕ. Moreover, ϕ(0) -lim w→0+ ϕ(w) ≥ 0 and for probability measures θ, ϑ

∈ P 1 (R) such that θ(R + ) = 1 = ϑ(R + ), θ ≤ cx ϑ ⇒ θ({0}) ≤ ϑ({0}).
In particular since R + z → z ρ/2 is concave for ρ ∈ (0, 2) and convex for ρ > 2,

∀ρ > 0, (ρ -2) R 2 |y -x| ρ π ↑ (dx, dy) = inf π∈Π M (µ,ν) (ρ -2) R 2
|y -x| ρ π(dx, dy) and

(ρ -2) R 2 |y -x| ρ π ↓ (dx, dy) = sup π∈Π M (µ,ν) (ρ -2) R 2
|y -x| ρ π(dx, dy).

Non-preservation of the optimality

For p ∈ (0, 1) and y -< y + < x -< x + < z -< z + , we set

µ = pδ x-+ (1 -p)δ x+ , ν = p z + -x - z + -y - δ y-+ p x --y - z + -y - δ z+ + (1 -p) z --x + z --y + δ y+ + (1 -p) x + -y + z --y + δ z-, ν = p z --x - z --y + δ y+ + p x --y + z --y + δ z-+ (1 -p) z + -x + z + -y - δ y-+ (1 -p) x + -y - z + -y - δ z+ .
The couplings

π = p z + -x - z + -y - δ (x-,y-) + x --y - z + -y - δ (x-,z+) + (1 -p) z --x + z --y + δ (x+,y+) + x + -y + z --y + δ (x+,z-) , π = p z --x - z --y + δ (x-,y+) + x --y + z --y - δ (x-,z-) + (1 -p) z + -x + z + -y - δ (x+,y-) + x + -y - z + -y - δ (x+,z+) ,
respectively belong to Π M (µ, ν) and Π M (µ, ν). Since (x -, z + ) and (x + , z -) (resp. (x -, y + ) and (x + , y -)) belong to any Borel subset Γ of R 2 such that π (Γ) = 1 (resp. π (Γ) = 1), π and π are not non-decreasing. Since (x -, y -) and (x + , y + ) (resp. (x -, z -) and (x + , z + )) belong to any Borel subset Γ of R 2 such that π (Γ) = 1 (resp. π (Γ) = 1), π and π are not non-increasing.

Proposition 2.23. Let ρ ∈ (1, 2)∪(2, +∞) and y -< y + < z -< z + be such that z --y -> z + -z - and z --y + ≥ (ρ-1) 1 2-ρ (z + -z -). For ρ ∈ (1, 2) (resp. ρ > 2), there exists x ρ ∈ (y + , z -) such that for x ρ < x -< x + < z -, π is the unique optimal coupling that attains M ρ (µ, ν) (resp. M ρ (µ, ν))
and π is the unique optimal coupling that attains

M ρ (µ, ν) (resp. M ρ (µ, ν)). Remark 2.24. For ρ ∈ (1, 2) ∪ (2, +∞), (ρ -1) 1 2-ρ < 1 so that when y -< y + < z -< z + , it is enough that z --y + ≥ z + -z -to ensure z --y -> z + -z -and z --y + ≥ (ρ -1) 1 2-ρ (z + -z -). Remark 2.25. Let y -< y + < x -< x + < z -< z + be such that z --y + ≥ z + -z -and β = z--y+ z++z--y+-y-. Since β ∈ (0, 1 
2 ), by Lemma 3.10, the equation α ρ = β admits a unique root ρ β > 1. Since (1, +∞) ρ → α ρ is increasing by the fifth item in Lemma 3.10, for ρ ∈ (1, ρ β ), α ρ < β and setting x + = (1 -α ρ )z -+ α ρ y -, we have

x + -y + = z --y + + α ρ (y --z -) = z --y + -α ρ (z + + z --y + -y -) + α ρ (z + -y + ) > z --y + -β(z + + z --y + -y -) + α ρ (z + -y + ) = α ρ (z + -y + ).
We may choose x -< x + close to x + such that x --y + ≥ α ρ (z + -y + ) and then, by Proposition 2.19, the only martingale coupling in Π M (µ, ν) that maximizes (resp. minimizes) |x-y| ρ π(dx, dy)

when ρ ∈ (1, 2 ∧ ρ β ) (resp. ρ ∈ (2, ρ β )) is non-decreasing. Hence for ρ ∈ (1, 2) ∪ (2, +∞) such that ρ < ρ β , one has x ρ ≥ (1 -α ρ )z -+ α ρ y -.
In particular, since lim ρ→1+ α ρ = 0 by the sixth item in Lemma 3.10, we have lim ρ→1+ x ρ = z -.

Remark 2.26. By Propositions 2.5 and 2.8, the unique non-decreasing coupling in Π M (µ, ν) (resp. non-increasing coupling in Π M (µ, ν)) is the unique optimal coupling that attains M ρ (µ, ν) (resp. M ρ (µ, ν)) for ρ ∈ (0, 1]. When π (resp. π ) is the unique optimal coupling that attains M ρ (µ, ν)

(resp. M ρ (µ, ν)) for ρ ∈ (1, 2) and M ρ (µ, ν) (resp. M ρ (µ, ν)) for ρ > 2, then inf cx {sq#π : π ∈ Π M (µ, ν)} (resp. sup cx {sq#π : π ∈ Π M (µ, ν)}) does not belong to {sq#π : π ∈ Π M (µ, ν)} (resp. {sq#π : π ∈ Π M (µ, ν)}).

Proofs

To recall the necessary optimality condition stated by Beiglböck and Juillet in Lemma 1.11 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], we first recall their definition of competitors : Definition 3.1 (Competitor, taken from Definition 1.10 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF]). Let α be a measure on R × R with finite first moment in the second variable. We say that α , a measure on the same space, is a competitor of α if α has the same marginals as α and y∈R α(dx, dy) a.e., y α x (dy) = y α x (dy).

Now, we state a version of Lemma 1.11 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] slightly reinforced by also taking into account Lemma 3.3 just below. Lemma 3.2. Let µ, ν ∈ P 1 (R) be such that µ ≤ cx ν and c : R 2 → R be a measurable cost function such that ∀(x, y) ∈ R 2 , c(x, y) ≥ a(x)+b(y) for measurable functions a and b integrable with respect to µ and ν respectively. When π ∈ Π M (µ, ν) is a minimizing coupling leading to finite cost, there exists a Borel set

Γ ⊂ R 2 such that π(Γ) = 1, ∀x ∈ R, ∃y < x s.t. (x, y) ∈ Γ ⇐⇒ ∃z > x s.t. (x, z) ∈ Γ, (12) 
and if α is a measure finitely supported on Γ, then c(x, y)α(dx, dy) ≤ c(x, y)α (dx, dy) for each competitor α of α.

Lemma 3.3. Let µ, ν ∈ P 1 (R) be such that µ ≤ cx ν and π ∈ Π M (µ, ν). For any Borel subset Γ of R 2 such that π(Γ) = 1, we may find a Borel subset Γ of R 2 such that Γ ⊂ Γ, π( Γ) = 1 and ∀x ∈ R, ∃y < x s.t. (x, y) ∈ Γ ⇐⇒ ∃z > x s.t. (x, z) ∈ Γ. Proof of Lemma 3.3. For x ∈ R, let Γ x = {y ∈ R : (x, y) ∈ Γ}. We set A = {x ∈ R : π x (Γ x ∩ (-∞, x)) × π x (Γ x ∩ (x, +∞)) = 0} , and Γ = Γ \ x∈A {x} × {Γ x ∩ {(-∞, x) ∪ (x, +∞)}} . Since µ(dx) almost everywhere, π x (Γ x ) = 1 and Γx y π x (dy) = R y π x (dy) = x, µ(dx) a.e., x ∈ A ⇒ π x (Γ x ∩ {(-∞, x) ∪ (x, +∞)}) = 0. Therefore π x∈A {x} × {Γ x ∩ {(-∞, x) ∪ (x, +∞)}} = x∈A π x (Γ x ∩ {(-∞, x) ∪ (x, +∞)}) µ(dx) = 0, which implies π( Γ) = π(Γ) = 1. Let Γ x = y ∈ R : (x, y) ∈ Γ for x ∈ R. For x ∈ A, Γ x ⊂ {x}. For x / ∈ A, Γ x ∩ (-∞, x) = Γ x ∩ (-∞, x) = ∅ and Γ x ∩ (x, +∞) = Γ x ∩ (x, +∞) = ∅, which concludes the proof.

Proof of Lemma 2.2

When ν = µ, the conclusion holds since the set under consideration is {δ 0 }. We now suppose that ν = µ, which implies that R y 2 ν(dy) > R x 2 µ(dx). Since 2(x 2 + y 2 ) ≥ (y -x) 2 , we have that (y -x) 2 > z implies 4x 2 > z or 4y 2 > z so that, for π ∈ Π(µ, ν) and z ≥ 0,

π (x, y) : (y -x) 2 > z ≤ f (z) where f (z) = µ({x : 4x 2 > z}) + ν({y : 4y 2 > z}) ∧ 1. (13)
The non-increasing function f is right-continuous on [0, +∞) and so is [0, +∞) z → zf (z) + +∞ z f (w)dw. We have

zf (z) + +∞ z f (w)dw ≤ 4 1 {x> √ z/2} x 2 µ(dx) + 1 {y> √ z/2} y 2 ν(dy) -→ z→+∞ 0.
On the other hand

+∞ 0 f (w)dw ≥ +∞ 0 ν({y : 4y 2 ≥ w})dw = 4 R y 2 ν(dy) > R y 2 ν(dy) - R x 2 µ(dx).
As a consequence z := sup{z > 0 :

zf (z) + +∞ z f (w)dw ≥ R y 2 ν(dy) - R x 2 µ(dx)} be- longs to (0, +∞) and is such that z lim z→z-f (z) + +∞ z f (w)dw ≥ R y 2 ν(dy) - R x 2 µ(dx) ≥ zf (z) + +∞ z f (w)dw. Therefore we may find p ∈ [f (z), lim z→z-f (z)] ⊂ [0, 1] such that zp + +∞ z f (w)dw = R y 2 ν(dy) - R x 2 µ(dx). The probability measure η with cumulative distribution function F η (z) = 1 {0≤z≤z} (z)(1-p)+1 {z>z} (1-f (z)) is such that R zη(dz) = +∞ 0 (1-F η (z))dz = R y 2 ν(dy) - R x 2 µ(dx). Let π ∈ Π M (µ, ν), η = sq#π and G(z) = +∞ z (1 -F η (w))dw - +∞ z (1 - F η (w))dw for z ∈ R. By (13), we have ∀z > z, 1 -F η (z) ≤ f (z) = 1 -F η (z) so that G(z) ≥ 0 for all z ∈ [z, +∞). Since +∞ 0 (1 -F η (w))dw = R zη(dz) = R y 2 ν(dy) - R x 2 µ(dx), G(0) = 0 and since F η (z) = F η (z) = 0 for z ∈ (-∞, 0), G(z) = 0 for z ∈ (-∞, 0].
The function G being concave on [0, z] by constancy of F η on this interval, we conclude that G(z) ≥ 0 for all z ∈ R. By Theorem 3.A.1 (a) [START_REF] Shaked | Stochastic Orders[END_REF], this together with the equality of means implies that η ≤ cx η. Therefore {sq#π : π ∈ Π M (µ, ν)} is bounded by η for the convex order.

Proofs of the optimality results in Section 2.3 but Proposition 2.8

The proof of Proposition 2.8, which relies on the one of Theorem 2.11, is postponed to the next section.

Lemma 3.4. Let ϕ : R + → R be concave and increasing. Let y < m < z and f : R → R be the function defined by

f (x) = z -m z -y ϕ(|x -y|) + m -y z -y ϕ(|z -x|) -ϕ(|x -m|).
Then, f is increasing on [y, m] and decreasing on [m, z].

Proof of Lemma 3.4. To check the monotonicity on [y, m], we choose x -and x + such that y ≤

x -< x + ≤ m, f (x + ) -f (x -) = z -m z -y (ϕ(x + -y) -ϕ(x --y) -ϕ(m -x + ) + ϕ(m -x -)) + m -y z -y (ϕ(z -x + ) -ϕ(z -x -) -ϕ(m -x + ) + ϕ(m -x -)) .
Since x + -y > x --y and m -x -> m -x + , we have ϕ(x + -y) > ϕ(x --y) and ϕ(m -x -) > ϕ(m -x + ) so that the first term in the right-hand side is positive. On the other hand, we know that m -

x + ≤ (z -x + ) ∧ (m -x -) ≤ (z -x + ) ∨ (m -x -) ≤ z -x -.
By the concavity of ϕ, we have

ϕ(z -x + ) ≥ z -m z -m + x + -x - ϕ(z -x -) + x + -x - z -m + x + -x - ϕ(m -x + ), ϕ(m -x -) ≥ z -m z -m + x + -x - ϕ(m -x + ) + x + -x - z -m + x + -x - ϕ(z -x -), which implies ϕ(z -x + ) + ϕ(m -x -) ≥ ϕ(z -x -) + ϕ(m -x + ). Therefore, f (x + ) -f (x -) > 0 and f is increasing on [y, m].
Similarly, to check the monotonicity on [m, z], we choose x -and x + such that m ≤ x -< x + ≤ z,

f (x + ) -f (x -) = z -m z -y (ϕ(x + -y) -ϕ(x --y) -ϕ(x + -m) + ϕ(x --m)) + m -y z -y (ϕ(z -x + ) -ϕ(z -x -) -ϕ(x + -m) + ϕ(x --m)) .
Since z -x + < z -x -and x --m < x + -m, we have ϕ(z -x + ) < ϕ(z -x -) and ϕ(x --m) < ϕ(x + -m) so that the second term in the right-hand side is negative. On the other hand, we know that

x --m ≤ (x + -m) ∧ (x --y) ≤ (x + -m) ∨ (x --y) ≤ x + -y.
By the concavity of ϕ, we have

ϕ(x + -m) ≥ m -y m -y + x + -x - ϕ(x --m) + x + -x - m -y + x + -x - ϕ(x + -y), ϕ(x --y) ≥ m -y m -y + x + -x - ϕ(x + -y) + x + -x - m -y + x + -x - ϕ(x --m), which implies ϕ(x + -y) + ϕ(x --m) ≤ ϕ(x --y) + ϕ(x + -m). Therefore, f (x + ) -f (x -) < 0 and f is decreasing on [m, z].
Proof of Proposition 2.5. The cost function R 2 (x, y) → ϕ(|x -y|) is lower-semicontinuous and even continuous when ϕ is continuous. Since it satisfies the bounds in Remark 2.6, the existence of optimizers follows from Theorem 1 [START_REF] Beiglböck | Model-independent bounds for option prices: A mass transport approach[END_REF]. Let us establish the monotonicity properties. By Lemma 3.2, if π ∈ Π M (µ, ν) is a maximizing (resp. minimizing) martingale coupling which leads to finite costs, then there exists a Borel set

Γ ⊆ R × R (resp. Γ ⊆ [a, b] × (-∞, a] ∪ [b, +∞)) with π(Γ) = 1 such that ∀x ∈ R, ∃y < x s.t. (x, y) ∈ Γ ⇐⇒ ∃z > x s.t. (x, z) ∈ Γ, (14) 
and for a measure α which is finitely supported on Γ, we have

ϕ(|x -y|) α (dx, dy) (resp. ≥) ≤ ϕ(|x -y|) α(dx, dy), (15) 
for every competitor α of α. Assume that (x -, y -), (x

+ , y + ) ∈ Γ (resp. (x -, y + ), (x + , y -) ∈ Γ ) with y -≤ x -, y + ≤ x + (resp. y + ≤ x -, y -≤ x + ) and x -< x + .
Let us assume y + < y -and obtain a contradiction against (15). Then y

+ < y -≤ x -< x + (resp. y + < y -≤ a ≤ x -< x + ).
By [START_REF] Strassen | The existence of probability measures with given marginals[END_REF], there exists z > x + such that (x + , z) ∈ Γ (resp. z > x -such that (x -, z) ∈ Γ and then y + < y -≤ a ≤ x -< x + ≤ b ≤ z). By Lemma 3.4 applied with (y, m, z) = (y + , y -, z), the function f defined by

f (x) = z -y - z -y + ϕ(|x -y + |) + y --y + z -y + ϕ(|z -x|) -ϕ(|x -y -|)
is decreasing on [y -, z]. We deduce that for

β(dx, dy) = δ (x-,y-) + z -y - z -y + δ (x+,y+) + y --y + z -y + δ (x+,z) , γ(dx, dy) = δ (x+,y-) + z -y - z -y + δ (x-,y+) + y --y + z -y + δ (x-,z) , ϕ(|x -y|) β(dx, dy) -ϕ(|x -y|) γ(dx, dy) = f (x + ) -f (x -) < 0.
This contradicts inequality (15) since γ (resp. β) is a competitor of β (resp. γ), which is finitely supported on Γ. Therefore, we deduce that y -≤ y + . On the other hand, assume that (x -, z -), (x + , z + ) ∈ Γ (resp. (x -, z + ), (x + , z -) ∈ Γ) with x -≤ z -, x + ≤ z + (resp. x -≤ z + , x + ≤ z -) and x -< x + . Let us assume that z + < z -and obtain a contradiction against (15). Then

x -< x + ≤ z + < z -(resp. x -< x + ≤ b ≤ z + < z -).
By [START_REF] Strassen | The existence of probability measures with given marginals[END_REF], there exists y < x -such that (x -, y) ∈ Γ (resp. y < x + such that (x + , y) ∈ Γ and then y ≤ a ≤ x -< x + ≤ b ≤ z + < z -). By Lemma 3.4 applied with (y, m, z) = (y, z + , z -), the function g defined by

g(x) = z --z + z --y ϕ(|x -y|) + z + -y z --y ϕ(|z --x|) -ϕ(|x -z + |)
is increasing on [y, z + ]. We deduce that for

β(dx, dy) = δ (x+,z+) + z --z + z --y δ (x-,y) + z + -y z --y δ (x-,z-) , γ(dx, dy) = δ (x-,z+) + z --z + z --y δ (x+,y) + z + -y z --y δ (x+,z-) , |x -y| β(dx, dy) -|x -y| γ(dx, dy) = g(x -) -g(x + ) < 0.
This contradicts inequality (15) since γ (resp. β) is a competitor of β (resp. γ), which is finitely supported on Γ. Therefore, we deduce that z -≤ z + .

Remark 3.5. The support assumption µ([a, b]) = 1 = 1 -ν((a, b)) made in Proposition 2.5 to ensure that any minimizing martingale coupling for the cost ϕ(|y -x|) is non-increasing is crucial to avoid in the proof the situations (x -, y + ), (x + , y -) ∈ Γ with y + ≤ x -< y -≤ x + and (x -, z + ), (x + , z -) ∈ Γ with x -≤ z + < x + ≤ z -where we could not derive a contradiction.

Proof of Proposition 2.9. The existence follows from Proposition 2.5. The proof for uniqueness is the same as the one of Theorem 7.3 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF]. Since, from Lemma 3.4, we only know that f is increasing on [y, m] and decreasing on [m, z], the forbidden cases in Equation ( 23) [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] should be replaced by

y ≤ x < x ≤ y + or y -≤ x < x ≤ y . (16) 
Actually, in the case ϕ(u) = u considered in Theorem 7.3 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], f is constant on (-∞, y] and on [z, +∞) and the forbidden cases should be y ≤ x < x ∧ y + or y -∨ x < x ≤ y instead of the more general condition in Equation (23) [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF]. Nevertheless, in view of Lemma 3.3, in the second paragraph of the proof of Theorem 7.3 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], we can assume that b -< a < b + so that we end up with a situation in the restricted set of forbidden cases (16).

Proof of Proposition 2.10. We set

x -= m -1 + βε 1-ρ 1 ρ ε and x + = m + ε. Let us suppose that ε < (z -m) ∧ m-y (1+β) 1 ρ ∧ 1. This ensures that y < x -and x + < z. For x ∈ (-∞, x -] ∪ [x + , +∞), u µε (x) = |x -m| ≤ u ν (x). The function u µε is affine on [x -, x + ]. Since y < x -< m < x + < z, the function u ν is affine on [x -, m] and on [m, x + ]. The inequality ε < 2(z-m)(m-y) 3(z-y) in our assumptions implies that u µε (m) = 2(1+βε 1-ρ ) 1 ρ 1+(1+βε 1-ρ ) 1 ρ ε < 4(z-m)(m-y) 3(z-y) = u ν (m). Then, ∀x ∈ R, u µε (x) ≤ u ν (x) and µ ε ≤ cx ν.
Since y < x -< m < x + < z, the set Γ = {(x -, y), (x -, m), (x -, z), (x + , y), (x + , m),

(x + , z)} is such that Γ ∩ {(x 1 , x 2 ) ∈ R 2 : x 2 ≤ x 1 } = {(x -, y), (x + , y), (x + , m)} and Γ ∩ {(x 1 , x 2 ) ∈ R 2 : x 1 ≤ x 2 } = {(x -, m
), (x -, z), (x + , z)} so that Γ satisfies conditions (a)(b) in Definition 2.3. Since any martingale coupling gives full weight to Γ, it is non-decreasing.

Then, let π(dx, dy) = µ ε (dx) π x (dy) ∈ Π M (µ ε , ν). Since u µε (m) < u ν (m) and Therefore, we always have

u µε (m) = µ ε ({x -})(m -x -) + µ ε ({x + })(x + -m) u ν (m) = µ ε ({x -}) |m -w| π x-(dw) + µ ε ({x + })
π x-({m}) π x+ ({y}) π x+ ({z}) > 0 or π x-({y}) π x-({z}) π x+ ({m}) > 0,
and there exists more than one martingale coupling between µ ε and ν since for α positive and small enough in the first case and -α positive and small enough in the second case, adding

α δ (x+,m) + z -m z -y δ (x-,y) + m -y z -y δ (x-,z) -δ (x-,m) - z -m z -y δ (x+,y) + m -y z -y δ (x+,z)
to π leads to a distinct coupling in Π M (µ ε , ν). To further parametrize the coupling π, let us apply the martingale property again. For x ∈ {x -, x + }, we have

π x ({y}) + π x ({m}) + π x ({z}) = 1 y π x ({y}) + m π x ({m}) + z π x ({z}) = x =⇒        π x ({y}) = z -x -(z -m)π x ({m}) z -y , π x ({z}) = x -y -(m -y)π x ({m}) z -y . Since µ ε ({x + })π x+ ({m}) = ν({m}) -µ ε ({x -})π x-({m})
, the coupling π can be parameterized with respect to the variable π x-({m}) only as follows:

π = γ + µ ε ({x -})π x-({m}) z -m z -y δ (x+,y) + m -y z -y δ (x+,z) -δ (x+,m) - z -m z -y δ (x-,y) - m -y z -y δ (x-,z) + δ (x-,m) with γ = µ ε ({x -}) z -x - z -y δ (x-,y) + x --y z -y δ (x-,z) + µ ε ({x + }) z -x + z -y δ (x+,y) + x + -y z -y δ (x+,z) + ν({m}) δ (x+,m) - z -m z -y δ (x+,y) - m -y z -y δ (x+,z) .
For ρ ∈ (0, 1], defining the cost function

f ρ : [y, z] → R by f ρ(x) = z -m z -y (x -y) ρ + m -y z -y (z -x) ρ -|x -m| ρ,
we have

|x -y| ρπ(dx, dy) = |x -y| ργ(dx, dy) + µ ε ({x -})π x-({m})(f ρ (x + ) -f ρ (x -)).
To maximize |x -y| ρπ(dx, dy), we need to maximize π x-({m}) when f ρ(x + ) > f ρ(x -) and minimize π x-({m}) when f ρ(x + ) < f ρ(x -). Applying the first order Taylor expansion at x = m to the first two terms of the function f ρ with ρ ∈ (0, 1], we get

f ρ(x + ) -f ρ(x -) = ρ z -m z -y (m -y) ρ-1 - m -y z -y (z -m) ρ-1 (x + -x -) + o(x + -x -) + (m -x -) ρ -(x + -m) ρ. ( 17 
)
Let us suppose that ρ ∈ (0, 1). We have that

(m -x -) ρ -(x + -m) ρ = βε. When ε → 0+, 1 + βε 1-ρ 1 ρ → 1 so that x + -x -∼ 2ε and f ρ (x + ) -f ρ (x -) = 2ρ z -m z -y (m -y) ρ-1 - m -y z -y (z -m) ρ-1 + β ε + o(ε). Since β ∈ 0, 2ρ m-y z-y (z -m) ρ-1 -z-m z-y (m -y) ρ-1
by assumption, for ε positive small enough,

f ρ (x + ) -f ρ (x -) < 0.
On the other hand, for ρ ∈ (0, ρ), we have

1 + βε 1-ρ ρ ρ -1 ∼ ρ ρ β ε 1-ρ so that (m -x -) ρ -(x + -m) ρ ∼ ρ ρ β ε 1-ρ+ρ . Hence, by (17) for ρ = ρ , f ρ (x + ) -f ρ (x -) ∼ ρ ρ β ε 1-ρ+ρ > 0.
Finally, let us suppose that ρ = 1. We have

f 1 (x + ) -f 1 (x -) = 2ε(β(z -m) -(2m -y -z)) z -y . Since y < y+z 2 < m < z and β < 2m-y-z z-m
by assumption, we have

f 1 (x + ) -f 1 (x -) < 0. For ρ ∈ (0, 1), (m -x -) ρ -(x + -m) ρ ∼ (1 + β) ρ -1 ε ρ and, since x + -x -= (2 + β)ε, by (17) applied with ρ = ρ , f ρ (x + ) -f ρ (x -) ∼ (1 + β) ρ -1 ε ρ > 0.
Therefore, for 0 < ρ < ρ ≤ 1 and ε positive small enough, to maximize |x -y| ρ π(dx, dy), we need to maximize π x-({m}) and to maximize |x -y| ρ π(dx, dy), we need to minimize π x-({m}).

Proof of the results in Section 2.4 and Proposition 2.8

Proof of Corollary 2.12. (i) As µ = ν, the non vacuity of π ∈ Π M (µ, ν, ν l , ν r ) implies that ν l + ν r is not the zero measure. Since

Π M (µ, ν, ν l , ν r ) π → π(dx, dy) + (ν l + ν r -ν)(dx)δ x (dy) ν l (R) + ν r (R) ∈ Π M µ + ν l + ν r -ν ν l (R) + ν r (R) , ν l + ν r ν l (R) + ν r (R) , ν l ν l (R) + ν r (R) , ν r ν l (R) + ν r (R)
is a bijection, the statement follows from Theorem 2.11 (concerning [START_REF] Hobson | Robust price bounds for the forward starting straddle[END_REF], this relies on the fact that the corresponding mapping between the integrals is affine with a positive factor).

(ii) Let π ∈ Π M (µ, ν, ν l , ν r ) be non-decreasing and let Γ denote a Borel subset of R×R satisfying the properties in Definition 2.3. Since π({(x, x)}) ≤ µ({x}) ∧ ν({x}), we remove {(x, x) : µ({x}) > 0 and ν({x}) = 0} ∩ Γ from Γ, while preserving these properties. Since π(Γ) = 1, we have

ν π 0 (R) = π({(x, x) : x ∈ R}) = π({(x, x) : x ∈ R} ∩ Γ) = ν π 0 ({x ∈ R : (x, x) ∈ Γ}). Let x ∈ R be such that (x, x) ∈ Γ. Then, Γ ⊂ {(-∞, x] × (-∞, x]} ∪ {[x, +∞) × [x, +∞)} and either µ({x}) > 0 or u ν (x) = R 2 |z -x|π(dy, dz) = (y,z)∈(-∞,x)×R (x -z)π y (dz)µ(dy) + (y,z)∈(x,+∞)×R (z -x)π y (dz)µ(dy) = (-∞,x) (x -y)µ(dy) + (x,+∞) (y -x)µ(dy) = u µ (x). Hence ν π 0 (R) = ν π 0 ({x ∈ R : u ν (x) = u µ (x) or (u ν (x) -u µ (x)) × (µ({x}) ∧ ν({x})) > 0}
) . The conclusion follows since ν π 0 ≤ µ ∧ ν by definition and ν π 0 (dx) ≥ 1 {uµ(x)=uν (x)} µ(dx) from the decomposition in irreducible components stated in [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF]Theorem A.4].

(iii) Since for any non-decreasing coupling π ∈ Π M (µ, ν, ν l , ν r ), π(dx,dy)+(ν l +νr-ν)(dx)δx(dy)

ν l (R)+νr(R)
is non-decreasing, the uniqueness is ensured by (i).

The proof of Theorem 2.11 relies on the following lemmas. Lemma 3.6. Let η ∈ P(R) and η be a non-negative measure on the real line such that η ≤ η. For f : R → R non-decreasing such that R |f (x)|η(dx) < +∞, one has R |f (x)|η(dx) < +∞ and

η(R) 0 f (F -1 η (u))du ≤ R f (x)η(dx) ≤ 1 1-η(R) f (F -1 η (u))du,
and if η(R) > 0, 1 η(R) η(R) 0 δ F -1 η (u) du ≤ st η η(R) ≤ st 1 η(R) 1 1-η(R) δ F -1 η (u) du. Lemma 3.7. For µ, ν ∈ P(R), ∃π ∈ Π(µ, ν) s.t. π {(x, y) ∈ R 2 :
x > y} = 1 ⇐⇒ du a.e. on (0, 1), F -1 µ (u) > F -1 ν (u). Proof of Lemma 3.6. Since the inequalities are obvious when η(R) = 0, we suppose that η(R) > 0 and denote

η = η η(R) . Since η ≤ η, R |f (x)|η(dx) ≤ R |f (x)|η(dx) < +∞. Moreover, by the inverse transform sampling, R f (x)η(dx) = η(R) R f (x)η(dx) = η(R) 1 0 f (F -1 η (u))du.
For u ∈ (0, 1), using (2) for the first inequality then η(R)η = η ≤ η for the second, we have

η(R)u ≤ η(R)F η (F -1 η (u)) ≤ F η (F -1 η (u)) so that F -1 η (u) ≥ F -1 η (η(R)u). With the monotonicity of f , we deduce that R f (x)η(dx) ≥ η(R) 1 0 f (F -1 η (η(R)u))du = η(R) 0 f (F -1 η (v))dv.
On the other hand, still for u ∈ (0, 1), using η ≤ η η(R) for the first inequality and (2) for the second,

1 -F η (F -1 η (1 -η(R)u)) = η((F -1 η (1 -η(R)u), +∞)) ≤ η((F -1 η (1 -η(R)u), +∞)) η(R) = 1 -F η (F -1 η (1 -η(R)u)) η(R) ≤ u so that F -1 η (1 -u) ≤ F -1 η (1 -η(R)u). We conclude that R f (x)η(dx) = η(R) 1 0 f (F -1 η (1-u))du ≤ η(R) 1 0 f (F -1 η (1-η(R)u))du = 1 1-η(R) f (F -1 η (v))dv.
Proof of Lemma 3.7. Since the image of the Lebesgue measure on (0, 1) by (F -1 µ , F -1 ν ) belongs to Π(µ, ν), the sufficient condition is obvious. To prove the necessary condition, we let (X, Y ) be distributed according to π ∈ Π(µ, ν) such that π {(x, y) ∈ R 2 : x > y} = 1. We have

P(X > Y ) = 1 and, since Q is dense in R, {X > Y } = q∈Q {X ≥ q > Y }. Since Q is countable, there exists a bijection N n → q n ∈ Q. For n ∈ N, let A n = {X ≥ q n > Y } ∩ n-1 k=0 {X ≥ q k > Y } c
. The events (A n ) n∈N are disjoint and such that n∈N P(A n ) = P(X > Y ) = 1. The discrete random variable Z = n∈N q n 1 An is such that P(X ≥ Z > Y ) = 1 so that ν ≤ st η ≤ st µ, where η denotes the distribution of Z. For n ∈ N, we have

F η (q n ) = P(Z ≤ q n ) = P(Y < Z ≤ q n ) ≤ P(Y < q n ) = F ν (q n -).
We deduce that for all u ∈ (F η (q n -),

F η (q n )), F -1 ν (u) < q n = F -1 η (u). Since 1 0 1 n∈N (Fη(qn-),Fη(qn)) (u)du = n∈N P(Z = q n ) = 1,
and

F -1 η ≤ F -1 µ
as η ≤ st µ, the statement follows.

Proof of Theorem 2.11. Since µ = ν, the non vacuity of π ∈ Π M (µ, ν, ν l , ν r ) implies that ν l + ν r is not the zero measure. Since the equality of the means of µ and ν implies that 0 = R 2 (yx)1 {y<x} π x (dy)µ(dx) + R 2 (y -x)1 {y>x} π x (dy)µ(dx), then ν l = 0 and ν r = 0. Let π ∈ Π M (µ, ν, ν l , ν r ). Since for x < x ,

0 ≤ R 2 1 {z<y≤x } π(dy, dz) - R 2 1 {z<y≤x} π(dy, dz) ≤ R 2 1 {x<y≤x } π(dy, dz) = F µ (x ) -F µ (x),
there exists a function φ π such that

φ π (F µ (x)) = R 2 1 {z<y≤x} π(dy, dz) ∈ [0, ν l (R)]. ( 18 
)
One has, using

ν π 0 (R) = 0, ν r (R) ≥ R 2 1 {y≤x,y<z} π(dy, dz) = R 2 1 {y≤x} π(dy, dz)- R 2 1 {z<y≤x} π(dy, dz) = F µ (x)-φ π (F µ (x)).
Let νl = ν l ν l (R) , νr = νr νr(R) and for u

∈ [0, 1] and v ∈ [(u -ν r (R)) + , u ∧ ν l (R)], G(u, v) = v 0 F -1 νl w ν l (R) dw + u-v 0 F -1 νr w ν r (R)
dw.

We are going to prove the existence of a non-decreasing function

φ ↑ : [0, 1] → [0, ν l (R)] such that u → u -φ ↑ (u) is also non-decreasing and ∀u ∈ [0, 1], φ ↑ (u) ∈ [(u -ν r (R)) + , u ∧ ν l (R)] and u 0 F -1 µ (w)dw = G(u, φ ↑ (u)). (19) 
The existence of

φ ↑ (F µ (x)) ∈ [(F µ (x)-ν r (R)) + , φ π (F µ (x))] for x ∈ R is addressed in Step 1 below.
Step 2 deals with the monotonicity of x → φ ↑ (F µ (x)) and x → F µ (x) -φ ↑ (F µ (x)). The existence of φ ↑ (u) for u ∈ x∈R [F µ (x-), F µ (x)), and the monotonicity of u → φ ↑ (u) and u → u -φ ↑ (u) on (0, 1) are addressed in Step 3, while ( 5) is proved in Step 4. When F µ (x) > 0 for each x ∈ R (resp. F µ (x) < 1 for each x ∈ R), the function φ ↑ is continuously and monotonically extended by φ ↑ (0) = 0 since lim u→0+ (u -ν r (R))

+ = 0 = lim u→0+ u ∧ ν l (R) (resp. φ ↑ (1) = ν l (R) since lim u→1-(u -ν r (R)) + = ν l (R) = lim u→1-u ∧ ν l (R)
) so that (19) holds for u = 0 (resp. u = 1).

We are now going to prove the existence of a non-decreasing coupling

π ↑ ∈ Π M (µ, ν, ν l , ν r ) such that φ π ↑ = φ ↑ . Because of the monotonicity of [0, 1] u → φ ↑ (u) and [0, 1] u → u -φ ↑ (u),
these two functions are 1-Lipschitz and therefore absolutely continuous. Up to modifying the derivative φ ↑ of φ ↑ in the sense of distributions on a Lebesgue negligible subset of (0, 1), we may

suppose that it is [0, 1]-valued. The functions [0, 1] u → φ ↑ (u) 0 F -1 νl w ν l (R) dw and [0, 1] u → u-φ ↑ (u) 0 F -1
νr w νr(R) dw are convex and continuous and therefore absolutely continuous. Using [START_REF] Marcus | Absolute continuity on tracks and mappings of Sobolev spaces[END_REF]Lemma 1.2] to differentiate (19), we obtain

F -1 µ (u) = φ ↑ (u)F -1 νl φ ↑ (u) ν l (R) + (1 -φ ↑ (u))F -1 νr u -φ ↑ (u) ν r (R) , du a.e. on (0, 1), ( 20 
)
with the convention that the first (resp. second) product in the right-hand side is 0 when φ ↑ (u) = 0 (resp. φ ↑ (u) = 1). We set

π ↑ (dx, dy) = 1 0 φ ↑ (u)δ F -1 µ (u),F -1 νl φ ↑ (u) ν l (R)
(dx, dy)

+ (1 -φ ↑ (u))δ F -1 µ (u),F -1 νr u-φ ↑ (u) νr (R)
(dx, dy) du.

We have y∈R π ↑ (dx, dy) = 1 0 δ F -1 µ (u) (dx)du, so that, by the inverse transform sampling, the first marginal of π ↑ is µ. Using Lemma 2.6 in [START_REF] Jourdain | A new family of one dimensional martingale couplings[END_REF] like in the proof of Proposition 2.3 in [START_REF] Jourdain | A new family of one dimensional martingale couplings[END_REF], one checks that π ↑ is a martingale coupling. We are next going to check that φ ↑ (u)du a.e. on (0, 1),

F -1 νl φ ↑ (u) ν l (R) < F -1 µ (u) (21) 
and (1 -φ ↑ (u))du a.e. on (0, 1),

F -1 µ (u) < F -1 νr u -φ ↑ (u) ν r (R) . ( 22 
)
With the definition of π ↑ , we deduce that

ν π ↑ l = 1 0 φ ↑ (u)δ F -1 νl φ ↑ (u) ν l (R)
du. For g : [0, 1] → R measurable and bounded, by Proposition 4.9 [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] and the remark just above applied with f (u) =

g φ ↑ (u) ν l (R)
and

A u = φ ↑ (u) ν l (R) , 1 0 g φ ↑ (u) ν l (R) φ ↑ (u) ν l (R) du = 1 0 g(v)dv. ( 23 
)
Hence

ν π ↑ l = ν l (R) 1 0 δ F -1 νl (w) dw = ν l (R)ν l = ν l .
In the same way,

ν π ↑ r = 1 0 (1-φ ↑ (u))δ F -1 νr u-φ ↑ (u) νr (R) du = ν r , so that, since ν = ν l + ν r , π ↑ ∈ Π M (µ, ν, ν l , ν r ). Let Γ = F -1 µ (u), F -1 νl φ ↑ (u) ν l (R) : u ∈ R ∩ {(x, y) ∈ R 2 : y < x} ∪ F -1 µ (u), F -1 νr u -φ ↑ (u) ν r (R) : u ∈ R ∩ {(x, y) ∈ R 2 : x < y} .
The definition of π ↑ combined with ( 21) and ( 22) ensures that π ↑ (Γ) = 1. By monotonicity of

u → F -1 µ (u), u → F -1 νl φ ↑ (u) ν l (R) and u → F -1 νr u-φ ↑ (u) νr(R)
, Γ satisfies conditions (a) and (b) in Definition 2.3. Hence π ↑ is non-decreasing.

To check (21), we introduce μl (dy) = 1 ν l (R) z∈R 1 {z<y} π(dy, dz) . As

1 {z<y} ν l (R) π(dy, dz) ∈ Π(μ l , νl ), Lemma 3.7 implies that du a.e., F -1 νl (u) < F -1 μl (u)
. With (23), we deduce that φ ↑ (u)du a.e. on (0, 1),

F -1 νl φ ↑ (u) ν l (R) < F -1 μl φ ↑ (u) ν l (R) . ( 24 
)
For x ∈ R, by (18),

F μl (x) = φπ(Fµ(x)) ν l (R)
and since

F µ (F -1 µ (F µ (x))) = F µ (x), φ π (F µ (F -1 µ (F µ (x)))) = φ π (F µ (x)) and F -1 μl φπ(Fµ(x)) ν l (R) ≤ F -1 µ (F µ (x)). Since, by Step 1, φ ↑ (F µ (x)) ≤ φ π (F µ (x)) and F -1 μl is non-increasing, we deduce that F -1 μl φ ↑ (Fµ(x)) ν l (R) ≤ F -1 µ (F µ (x)). As (0, 1)∩ x∈R:µ({x})>0 [F µ (x-), F µ (x)) c
is included in the range of F µ , with (24) we conclude that φ ↑ (u)du a.e. on (0, 1)

∩    x∈R:µ({x})>0 [F µ (x-), F µ (x))    c , F -1 νl φ ↑ (u) ν l (R) < F -1 µ (u) . If µ({x}) > 0, then by Step 3 below, φ ↑ (u)du a.e. on (F µ (x-), F µ (x)), F -1 νl φ ↑ (u) ν l (R)
< F -1 µ (u) and therefore (21) holds.

In a symmetric way, since

1 {y<z} νr(R) π(dy, dz) ∈ Π(μ r , νr )
where μr (dy) = 1 νr(R) z∈R 1 {y<z} π(dy, dz), Lemma 3.7 implies that du a.e., F -1

νr (u) > F -1 μr (u). For x ∈ R, F μr (x) = Fµ(x)-φπ(Fµ(x)) νr(R)
. Hence for

w > Fµ(x-)-limy→x-φπ(Fµ(y)) νr(R) , F -1 μr (w) ≥ x. Since φ ↑ (F µ (x-)) ≤ lim y→x-φ π (F µ (y)), we deduce that when µ({x}) > 0, F -1 νr (w) > x for w > Fµ(x-)-φ ↑ (Fµ(x-)) νr(R)
. With this argument replacing the above reference to Step 3 when µ({x}) > 0, we check that (22) holds.

Uniqueness : Let π↑ ∈ Π M (µ, ν, ν l , ν r ) be non-decreasing. Let Γ be a Borel subset of R 2 such that π↑ (Γ) = 1 and properties (a)(b) in Definition 2.3 are satisfied. Let x ∈ R be such that

F µ (x) > 0. The set {z ∈ (-∞, x) : ∃y ∈ (z, x] s.t. (y, z) ∈ Γ} is not empty since R 2 1 Γ (y, z)1 {z<y≤x} π↑ (dy, dz) = R 2 1 {z<y≤x} π↑ (dy, dz) = (-∞,x] π↑ y ((-∞, y))µ(dy) > 0,
as ν π↑ 0 = 0 implies that µ(dy) a.e. π↑ y ((-∞, y)) > 0. Therefore l(x)

:= sup{z ∈ (-∞, x) : ∃y ∈ (z, x] s.t. (y, z) ∈ Γ} belongs to (-∞, x]. Since Γ ∩ {(y, z) ∈ R 2 : z < y ≤ x and z > l(x)} = ∅, 0 = R 2 1 Γ (y, z)1 {z<y≤x} 1 {z>l(x)} π↑ (dy, dz) = R 2
1 {z<y≤x} 1 {z>l(x)} π↑ (dy, dz).

On the other hand, by property (a) in Definition 2.3,

Γ ∩ (x, +∞) × (-∞, l(x)) = ∅ so that 0 = R 2 1 Γ (y, z)1 {y>x} 1 {z<l(x)} π↑ (dy, dz) = R 2 1 {y>x} 1 {z<l(x)} π↑ (dy, dz).
With the equality, 1 ν l (R) y∈R 1 {z<y} π↑ (dy, dz) = νl (dz), we deduce that

1 {z<l(x)} νl (dz) ≤ 1 ν l (R) y∈(-∞,x]
1 {z<y} π↑ (dy, dz) ≤ 1 {z≤l(x)} νl (dz).

Therefore

φ π↑ (Fµ(x)) ν l (R) ∈ [F νl (l(x)-), F νl (l(x))
] and

1 ν l (R) y∈(-∞,x] 1 {z<y} π↑ (dy, dz) = 1 {z<l(x)} νl (dz) + φ π↑ (F µ (x)) ν l (R) -F νl (l(x)-) δ l(x) (dz) = φ π↑ (Fµ(x)) ν l (R) 0 δ F -1 νl (u) (dz)du = 1 ν l (R) φ π↑ (Fµ(x)) 0 δ F -1 νl w ν l (R) (dz)dw. (25) 
In a symmetric way, with property (b) in Definition 2.3, we check that y∈(-∞,x]

1 {z>y} π↑ (dy, dz) = Fµ(x)-φ π↑ (Fµ(x)) 0 δ F -1 νr ( w νr (R) ) (dz)dw. (26) 
Using the martingale property of π↑ for the second equality and ν π↑ 0 = 0 for the fourth, we deduce that

Fµ(x) 0 F -1 µ (u)du = y∈(-∞,x] yµ(dy) = y∈(-∞,x] z∈R zπ ↑ y (dz)µ(dy) = (-∞,x]×R zπ ↑ (dy, dz) = (-∞,x]×R z1 {z<y} π↑ (dy, dz) + (-∞,x]×R z1 {z>y} π↑ (dy, dz) = φ π↑ (Fµ(x)) 0 F -1 νl w ν l (R) dw + Fµ(x)-φ π↑ (Fµ(x)) 0 F -1 νr w ν r (R) dw = G(F µ (x), φ π↑ (F µ (x))).
Equations ( 25) and (26) also hold with π↑ replaced by π ↑ so that G(F µ (x),

φ π ↑ (F µ (x))) = Fµ(x) 0 F -1 µ (u)du. Note that the equalities y∈(-∞,x] 1 {z<y} π ↑ (dy, dz) = φ π ↑ (Fµ(x)) 0 δ F -1 νl w ν l (R) (dz)dw y∈(-∞,x] 1 {z>y} π ↑ (dy, dz) = Fµ(x)-φ π ↑ (Fµ(x)) 0 δ F -1 νr ( w νr (R) ) (dz)dw, together with φ π ↑ (F µ (x)) = Fµ(x) 0 φ ↑ (u)du = φ ↑ (F µ (x))
can also be derived from the definition of π ↑ combined with (21), ( 22), (1), Proposition 4.9 [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] and the remark just above applied like in the above derivation of (23).

By

Step 1 below applied with π = π↑ and π = π ↑ , there exists a unique

v ∈ [(F µ (x) - ν r (R)) + , φ π↑ (F µ (x))∨φ π ↑ (F µ (x))] such that G(F µ (x), v) = Fµ(x) 0 F -1 µ (w)dw so that φ π↑ (F µ (x)) = φ π ↑ (F µ (x)) for each x ∈ R and y∈(-∞,x] π↑ (dy, dz) = φ π ↑ (Fµ(x)) 0 δ F -1 νl w ν l (R) (dz)dw + Fµ(x)-φ π ↑ (Fµ(x)) 0 δ F -1 νr ( w νr (R) ) (dz)dw = y∈(-∞,x]
π ↑ (dy, dz).

μ(dy) := z∈R ψ(z)1 {y<z} π y (dz) µ(dy) ≤ µ(dy) since z∈R ψ(z)1 {y<z} π y (dz) ∈ [0, 1] and satisfies

μ(R) = R×R ψ(z)1 {y<z} π(dy, dz) = ν r (R) R ψ(z)ν r (dz) = F µ (x).
By Lemma 3.6 applied with (η, η) = (µ, μ), this ensures that R y μ(dy) ≥

Fµ(x) 0 F -1 µ (v)dv so that Fµ(x) 0 F -1 µ (v)dv ≤ Fµ(x) 0 F -1 νr w ν r (R) dw = G(F µ (x), 0). If F µ (x) ≥ ν r (R), one has using νr(R) 0 F -1 νr w νr(R) dw = R yν r (dy) = R yµ(dy) - R yν l (dy) and ν r (R) = 1 -ν l (R) for the second equality, G(F µ (x), F µ (x) -ν r (R)) = Fµ(x)-νr(R) 0 F -1 νl w ν l (R) dw + νr(R) 0 F -1 νr w ν r (R) dw = ν l (R)-(1-Fµ(x)) 0 F -1 νl w ν l (R) dw + R yµ(dy) - R yν l (dy) = Fµ(x) 0 F -1 µ (w)dw + 1 Fµ(x) F -1 µ (w)dw - ν l (R) ν l (R)-(1-Fµ(x)) F -1 νl w ν l (R) dw.
By a reasoning similar to the above derivation of

Fµ(x) 0 F -1 µ (v)dv ≤ Fµ(x) 0 F -1
νr w νr(R) dw, we check that the sum of the last two terms in the right-hand side is non-negative. Combining the two cases, we obtain that

G(F µ (x), (F µ (x) -ν r (R)) + ) ≥ Fµ(x) 0 F -1 µ (w)dw. Step 1.3 : To prove that v → G(F µ (x), v) is decreasing on [(F µ (x) -ν r (R)) + , φ π (F µ (x))], it is enough to check that ∀w ∈ 0, φ π (F µ (x)) ν l (R) , F -1 νl (w) < x and ∀w ∈ F µ (x) -φ π (F µ (x)) ν r (R) , 1 , x < F -1 νr (w) . (27) 
Let x be such that φ π (F µ (x)) > 0. Then F µ (x) > 0 and F µ (x)-φ π (F µ (x)) > 0. Since, by definition of φ π (F µ (x)) and ν π l = ν l ,

φ π (F µ (x)) = R 2 1 {z<y≤x} π(dy, dz) = R 2 1 {z<y∧x} π(dy, dz) - R 2 1 {z<x<y} π(dy, dz) = ν l (R)ν l ((-∞, x)) - R 2 
1 {z<x<y} π(dy, dz), ) , from which we deduce the first part in (27). In a symmetric way and since ν π 0 = ν 0 = 0,

we have νl ((-∞, x)) ≥ φπ(Fµ(x)) ν l (R
F µ (x) -φ π (F µ (x)) = R 2 1 {y≤x} π(dy, dz) - R 2 1 {z<y≤x} π(dy, dz) = R 2 1 {y<z≤x} π(dy, dz) + R 2 1 {y≤x<z} π(dy, dz) = ν r (R)F νr (x) + R 2
1 {y≤x<z} π(dy, dz),

so that F νr (x) ≤ Fµ(x)-φπ(Fµ(x)) νr(R)
. With the right-continuity of F νr , we deduce the other part in (27).

Step 2 : monotonicity of x → φ ↑ (F µ (x)) and x → F µ (x) -φ ↑ (F µ (x)).

Step 2.1 : Let us first check that when

F µ (x) < F µ (x ), F µ (x) -φ ↑ (F µ (x)) ≤ F µ (x ) - φ ↑ (F µ (x )). If φ π (F µ (x )) ≤ φ ↑ (F µ (x)) + F µ (x ) -F µ (x), then we conclude with the inequality φ ↑ (F µ (x )) ≤ φ π (F µ (x )) established in step 1. Let us now suppose that φ ↑ (F µ (x)) + F µ (x ) - F µ (x) ≤ φ π (F µ (x )). Then, by the monotonicity of F -1 νl , φ ↑ (Fµ(x))+Fµ(x )-Fµ(x) φ ↑ (Fµ(x)) F -1 νl w ν l (R) dw ≤ φπ(Fµ(x )) φπ(Fµ(x ))+Fµ(x)-Fµ(x ) F -1 νl w ν l (R) dw. F -1 µ (w)dw ≥ 1 F µ (x ) Fµ(x ) u π F -1 µ (w) ((-∞, F -1 µ (w)))F -1 µ (w)dw. (30) 
For the desintegrations π(dy, dz) = µ(dy)π y (dz) = ν(dz) ←π z (dy), let

σ(dy) = 1 {y≤x } φ π (F µ (x ))
π y ((-∞, y))µ(dy) and

θ(dz) = 1 {z<x } ← - π z ((z, x ]) ν(dz) φ π (F µ (x )) = 1 {z<x } ← - π z ((z, x ]) ← - π z ((z, +∞)) × ν l (dz) φ π (F µ (x ))
.

The coupling

1 {z<y≤x } φπ(Fµ(x )) π(dy, dz) ∈ Π (σ, θ)
giving full weight to {(y, z) ∈ R 2 : y > z}, one has σ ≥ st θ. On the other hand, Lemma 3.6 applied with η = νl and η =

φπ(Fµ(x )) ν l (R) θ such that η(R) = φπ(Fµ(x )) ν l (R) implies that θ ≥ st ϑ := ν l (R) φ π (F µ (x )) φπ (Fµ(x )) ν l (R) 0 δ F -1 νl (w) dw. Hence σ ≥ st ϑ so that F -1 σ ≥ F -1 ϑ where F -1 ϑ (w) = F -1 νl φπ(Fµ(x )) ν l (R)
w and 

Fµ (x )-Fµ(x) φπ (Fµ (x )) F -1 σ (w)dw ≥ 1 1- Fµ(x )-Fµ(x) φπ (Fµ(x )) F -1 ϑ (w)dw = 1 φ π (F µ (x )) φπ(Fµ(x )) φπ(Fµ(x ))+Fµ(x)-Fµ(x ) F -1 νl w ν l (R) dw.
F -1 µ (w)dw and using that, according to (2), F -1 µ (w) = x for w ∈ (F µ (x-), F µ (x)], we obtain

φ ↑ (Fµ(x)) φ ↑ (Fµ(x-)) F -1 νl w ν l (R) -x dw + Fµ(x)-φ ↑ (Fµ(x)) Fµ(x-)-φ ↑ (Fµ(x-)) F -1 νr w ν r (R) -x dw = 0. (32) By (27) and φ ↑ (F µ (x)) ≤ φ π (F µ (x)), F -1 νl w ν l (R) -x < 0 for w ∈ (φ ↑ (F µ (x-)), φ ↑ (F µ (x))). Since, for y < x, by (27) and φ ↑ (F µ (y)) ≤ φ π (F µ (y)), F -1 νr w νr(R) -y > 0 for w ∈ (F µ (y) -φ ↑ (F µ (y)), ν r (R)), one has F -1 νr w νr(R) -x ≥ 0 for w ∈ (F µ (x-) -φ ↑ (F µ (x-)), F µ (x) -φ ↑ (F µ (x))). Now let u ∈ (F µ (x-), F µ (x)) and, for v ∈ [φ ↑ (F µ (x-)) ∨ (u + φ ↑ (F µ (x)) -F µ (x)), φ ↑ (F µ (x)) ∧ (u + φ ↑ (F µ (x-)) -F µ (x-))], H(u, v) = v φ ↑ (Fµ(x-)) F -1 νl w ν l (R) -x dw + u-v Fµ(x-)-φ ↑ (Fµ(x-)) F -1 νr w ν r (R) -x dw. If φ ↑ (F µ (x-)) ≥ u + φ ↑ (F µ (x)) -F µ (x), H(u, φ ↑ (F µ (x-))) = u-φ ↑ (Fµ(x-)) Fµ(x-)-φ ↑ (Fµ(x-)) F -1 νr w ν r (R) -x dw ≥ 0 while if φ ↑ (F µ (x-)) ≤ u + φ ↑ (F µ (x)) -F µ (x)
, using (32) for the equality,

H(u, u + φ ↑ (F µ (x)) -F µ (x)) = φ ↑ (Fµ(x)) u+φ ↑ (Fµ(x))-Fµ(x) x -F -1 νl w ν l (R) dw ≥ 0, so that H(u, φ ↑ (F µ (x-)) ∨ (u + φ ↑ (F µ (x)) -F µ (x))) ≥ 0. In a similar way, H(u, φ ↑ (F µ (x)) ∧ (u + φ ↑ (F µ (x-)) -F µ (x-))) ≤ 0 and since v → H(u, v) is decreasing on the interval, there exists a unique φ ↑ (u) such that φ ↑ (F µ (x-)) ≤ φ ↑ (u) ≤ φ ↑ (F µ (x)), F µ (x-) -φ ↑ (F µ (x-)) ≤ u -φ ↑ (u) ≤ F µ (x) -φ ↑ (F µ (x)
) and H(u, φ ↑ (u)) = 0. With (31), this implies that G(u, φ ↑ (u)) = 0.

Repeating the above reasoning with the equality H(u, φ ↑ (u)) = 0 replacing (32), we obtain for u ∈ (F µ (x-), u) the existence of a unique φ ↑ (u )

∈ [φ ↑ (F µ (x-)) ∨ (u + φ ↑ (u) -u), φ ↑ (u) ∧ (u + φ ↑ (F µ (x-)) -F µ (x-))] solving H(u , φ ↑ (u )) = 0, which implies that u + φ ↑ (u) -u ≤ φ ↑ (u ) and φ ↑ (u ) ≤ φ ↑ (u).
Hence φ ↑ and u → u -φ ↑ (u) are non-decreasing on (0, 1). Moreover, φ ↑ (u)du a.e.

on (F µ (x-),

F µ (x)), φ ↑ (u) < φ ↑ (F µ (x)) and F -1 νl φ ↑ (u) ν l (R) < x < F -1 νr u-φ ↑ (u) νr(R)
.

Step 4 : Let us now prove [START_REF] Henry-Labordère | An explicit martingale version of the one-dimensional Brenier theorem[END_REF]. Since π ↑ is the only non-decreasing coupling in Π M (µ, ν, ν l , ν r ), it is enough to check that any coupling maximizing R 2 ϕ(|x -y|)π(dx, dy) over π ∈ Π M (µ, ν, ν l , ν r ) is non-decreasing. To do so, we are going to adapt the proof of Lemma 1.11 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF]. We modify the definition of the set M in this proof into M = τ ∈S3 {M l,τ ∪ M r,τ }, where for τ in the set S 3 of permutations of {1, 2, 3}, M l,τ and M r,τ are the respective images of [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] like in the proof of Lemma 1.11 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], we obtain in case (1) of this theorem a Borel subset Γ of R 2 such that π( Γ) = 1 and M l ∩ Γ3 = ∅ = M r ∩ Γ3 . By Lemma 3.3, we may suppose that

M l = {((x -, y -), (x + , y + ), (x + , z)) ∈ {R 2 } 3 : y + < y -< x -< x + < z} and M r = {((x -, y), (x -, z -), (x + , z + )) ∈ {R 2 } 3 : y < x -< x + < z + < z -}. by {R 2 } 3 (χ 1 , χ 2 , χ 3 ) → (χ τ (1) , χ τ (2) , χ τ (3) ) ∈ {R 2 } 3 . Applying Theorem 3.1
∀x ∈ R, ∃y < x s.t. (x, y) ∈ Γ ⇔ ∃z > x s.t. (x, z) ∈ Γ.
We deduce that {((x -, y -), (x + , y + )) ∈ {R 2 } 2 : y + < y -< x -< x + } ∩ Γ2 = ∅ and {((x -, z -), (x

+ , z + )) ∈ {R 2 } 2 : x -< x + < z + < z -} ∩ Γ2 = ∅. Setting Γ = Γ ∩ {(x, y) ∈ R 2 : y = x}, we have {((x -, y -), (x + , y + )) ∈ {R 2 } 2 : y + < y -≤ x -< x + } ∩ Γ 2 = ∅ and {((x -, z -), (x + , z + )) ∈ {R 2 } 2 : x -< x + ≤ z + < z -} ∩ Γ 2 = ∅.
Conditions (a)(b) in Definition 2.3 hold and since

π({(x, y) ∈ R 2 : y = x}) = π({(x, y) ∈ R 2 : y < x}) + π({(x, y) ∈ R 2 : y > x}) = ν l (R) + ν r (R) = 1,
π(Γ) = 1 so that π is non-decreasing. Like in the proof of Lemma 1.11 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF], we still need to check that case (2) in Theorem 3.1 [START_REF] Beiglböck | On a problem of optimal transport under marginal martingale constraints[END_REF] cannot occur. In the notation of the proof of the lemma, we need to construct a competitor ω of ω such that π -ω + ω ∈ Π M (µ, ν, ν l , ν r ) and

R 2 ϕ(|x -y|)ω (dx, dy) > R 2 ϕ(|x -y|)ω(dx, dy). ( 33 
)
This is done by choosing

α p = 1 3 z -y - z -y + δ (x-,y+) + δ (x+,z) + y --y + z -y + δ (x-,z) + δ (x+,y+) + δ (x+,y-)
when α p = 1 3 δ (x-,y-) + δ (x+,y+) + δ (x+,z) for some y + < y -< x -< x + < z and by choosing

α p = 1 3 z --z + z --y δ (x-,z-) + δ (x+,y) + z + -y z --y δ (x-,y) + δ (x+,z-) + δ (x-,z+)
when α p = 1 3 δ (x-,y) + δ (x-,z-) + δ (x+,z+) for some y < x -< x + < z + < z -. Note that, in the first case, which contributes to ensuring that π -ω + ω ∈ Π M (µ, ν, ν l , ν r ). Moreover, by Lemma 3.4 applied with (y, m, z) = (y + , y -, z), the function f defined by

f (x) = z -y - z -y + ϕ(|x -y + |) + y --y + z -y + ϕ(|z -x|) -ϕ(|x -y -|)
is decreasing on [y -, z]. We deduce that, still in the first case,

R 2 ϕ(|v -w|)α p (dv, dw) - R 2 ϕ(|v -w|)α p (dv, dw) = 1 3 (f (x -) -f (x + )) > 0,
which contributes to ensuring (33). One checks in the same way that the two properties still hold in the second case.

Let us now give an alternative simple argument in the particular case when ϕ is the identity function. For π ∈ Π M (µ, ν, ν l , ν r ), we have R 2 (y -z)1 {z<y} π(dy, dz)-R 2 (z -y)1 {z>y} π(dy, dz) = 0. Since ν π l = ν l , we deduce with Fubini's theorem and (18) that

1 2 R 2 |y -z|π(dy, dz) = R 2 (y -z)1 {z<y} π(dy, dz) = R 2 R+ 1 {y>x} dx1 {z<y} π(dy, dz) - R 2 R- 1 {y≤x} dx1 {z<y} π(dy, dz) - R zν l (dz) = R+ (ν l (R) -φ π (F µ (x)))dx - R- φ π (F µ (x)))dx - R zν l (dz).
Since, according to Step 1, ∀x ∈ R, φ ↑ (F µ (x))) ≤ φ π (F µ (x)), we conclude that

R 2 |y -z|π ↑ (dy, dz) = sup π∈Π M (µ,ν,ν l ,νr) R 2
|y -z|π(dy, dz).

Proof of Proposition 2.13. Let us suppose that there exists π ↓ ∈ Π M (µ, ν, ν l , ν r ) such that the coupling π(dx, dy) := π ↓ (dx,dy)+(ν l +νr-ν)(dx)δx(dy)

ν l (R)+νr(R) ∈ Π M µ+ν l +νr-ν ν l (R)+νr(R) , ν l +νr ν l (R)+νr(R) , ν l ν l (R)+νr(R) , νr ν l (R)+νr(R)
is non-increasing. Then, by Proposition 2.8, there exist -∞ < a ≤ b < +∞ such that

(µ + ν l + ν r -ν)([a, b]) = (ν l + ν r )(R), (ν l + ν r )((a, b)) = 0 and π({(x, x)}) = (µ+ν l +νr-ν)({x}) ν l (R)+νr(R) ∧ (ν l +νr)({x}) ν l (R)+νr(R)
for x ∈ {a, b}. Since π({(x, x) : x ∈ R}) = 0, we deduce that we may choose a closed or semi-open or open interval I with ends a and b such that µ+ν l +νr-ν ν l (R)+νr(R) (I) = 1 and

ν l +νr ν l (R)+νr(R) (I) = 0. Since ν -(ν l +ν r ) = ν π ↓ 0 ≤ µ∧ν, we have that µ+ν l +ν r -ν -(µ-ν) + = ν l +ν r -(ν -µ)
+ is a non-negative measure and we deduce that ν l + ν r = (ν -µ) + and µ + ν l + ν r -ν = (µ -ν) + . Hence the Dispersion Assumption is satisfied. Moreover, since π({(-∞, a) ∪ (b, +∞)} × R) ≤ (µ+ν l +νr-ν)(R\I) and, in a symmetric way, ν r (dy) = 1 {y≥b} (ν -µ) + (dy) (notice that, when a = b, then µ = δ a and (ν -µ) + ({a}) = 0).

ν l (R)+νr(R) = 0, π(R × (a, b)) ≤ ν l +νr ν l (R)
Moreover, by the martingale property for the first equality and by ( 7), ( 8) and (34) for the second equality,

µ({x}) R (z -x) + π x (dz) -µ({x}) R (x -z) + π x (dz) = 0 = Fν (x)+p+(x) Fν (x) (F -1 ν (v) -x)dv - Fν (x-) Fν (x-)-p-(x) (x -F -1 ν (v))dv.
Hence,

µ({x}) R (z -x) + π x (dz) ≤ Fν (x)+p+(x) Fν (x) (F -1 ν (v) -x)dv, (37) 
µ({x}) R (x -z) + π x (dz) ≤ Fν (x-) Fν (x-)-p-(x) (x -F -1 ν (v))dv.
We have µ({x})1 {x<z} π x (dz) ≤ 1 {x<z} ν(dz) so that, by Lemma 3.6 applied with f (z) = z -x,

η(dz) = µ({x})1 {x<z} πx(dz) 1-Fν (x)
and η(dz) =

1 {x<z} ν(dz) 1-Fν (x)
such that η(R) = µ({x})πx((x,+∞))

1-Fν (x) , F η (z) = (Fν (z)-Fν (x)) + 1-Fν (x)
and

F -1 η (u) = F -1 ν (F ν (x) + (1 -F ν (x))u),
Fν (x)+µ({x})πx((x,+∞))

Fν (x) F -1 ν (v) -x dv = (1-F ν (x)) η(R) 0 F -1 η (v) -x dv ≤ µ({x}) R (z-x) + π x (dz),
and when µ({x})π x ((x, +∞)) > 0,

1 {x<z} π x (dz) π x ((x, +∞)) ≥ st 1 µ({x})π x ((x, +∞)) Fν (x)+µ({x})πx((x,+∞)) Fν (x) δ F -1 ν (u) du. (38) 
With (37), the first inequality implies that Fν (x)+µ({x})πx((x,+∞))

Fν (x) F -1 ν (v) -x dv ≤ Fν (x)+p+(x) Fν (x) (F -1 ν (v) -x)dv.
Since F -1 ν (v)-x > 0 for v ∈ (F ν (x), 1), we deduce that µ({x})π x ((x, +∞)) ≤ p + (x). In a symmetric way, µ({x})π x ((-∞, x)) ≤ p -(x). Since π({(x, x)}) = µ({x}) (1 -π x ((-∞, x)) -π x ((x, +∞))), we conclude that (35) holds.

Let us now suppose that µ({x}) > p -(x) + p + (x) and that π ∈ Π M (µ, ν) is such that π({(x, x)}) = µ({x})-p -(x)-p + (x). Then µ({x})π x ((x, +∞)) = p + (x) and µ({x})π x ((-∞, x)) = p -(x). Moreover, by (38) and (37),

1 {x<z} π x (dz) = 1 µ({x}) Fν (x)+p+(x) Fν (x) δ F -1 ν (u) du. In a symmet- ric way, 1 {z<x} π x (dz) = 1 µ({x}) Fν (x-) Fν (x-)-p-(x) δ F -1
ν (u) du so that π x = η x with η x given by ( 9). Moreover, the inequality in (36) becomes an equality, so that, with the martingale constraint,

0 = R 2 1 {y<x} x -z + 2(z -x) + -x + y + 1 {y>x} z -x + 2(x -z) + -y + x π y (dz)µ(dy) = R 2 2 1 {y<x} (z -x) + + 1 {y>x} (x -z) + π y (dz)µ(dy). Hence π({(-∞, x) × (x, +∞)} ∪ {(x, +∞) × (-∞, x)}) = 0.
Step 2 : Let us suppose that inf π∈Π M (µ,ν) π({(x, x)}) > 0, which implies that µ({x}) > 0. Let π ∈ Π M (µ, ν). We are now going to modify π into π ∈ Π M (µ, ν) such that π x = η x where η x is given by [START_REF] Jourdain | Martingale Wasserstein inequality for probability measures in the convex order[END_REF]. By lemma 3.8, we have that µ(dy) a.e. on (-∞, x), πy ((x, +∞)) > 0 implies the existence of πy (dz) ≤ 1 {z<x} πy (dz) such that R zπ y (dz) + (x,+∞) zπ y (dz) = x (π y (R) + πy ((x, +∞))). In the same way µ(dy) a.e. on (x, +∞), πy ((-∞, x)) > 0 implies the existence of πy (dz) ≤ 1 {z>x} πy (dz) Proposition 2.14, so that π

↑ x∈X0 {(-∞, x) × (x, +∞)} ∪ {(x, +∞) × (-∞, x)} = 0. Hence Γ ↑ = Γ ∩ x∈X0 {{(-∞, x] × (-∞, x]} ∪ {[x, +∞) × [x, +∞)}} is such that π ↑ (Γ ↑ ) = 1.
Let (x -, y -), (x + , y + ) ∈ Γ ↑ with y -≤ x -, y + ≤ x + , and x -< x + . Either y + = x + and then y -< y + or there exists n x+ ∈ N such that x + ∈ (a nx+ , b nx+ ) and then y + ∈ [a nx+ , b nx+ ). In the latter case, if u µ (x -) = u ν (x -), then y -= x -≤ a nx+ ≤ y + and if there exists n x-∈ N such that x -∈ (a nx-, b nx-), then either (x -, y -), (x + , y + ) ∈ Γ so that y -≤ y + or x -∈ X 0 and y -= x -so that, since Γ ↑ ∩ {(x -, +∞) × (-∞, x -)} = ∅, y + ≥ x -= y -. A similar reasoning ensures that if (x -, z -), (x + , z + ) ∈ Γ ↑ with x -≤ z -, x + ≤ z + , and x -< x + , then z -≤ z + . So Definition 2.3 is satisfied by π ↑ with set Γ ↑ .

Proof of Proposition 2.8. Since, clearly, (iii) ⇒ (i), to prove that (i) ⇔ (ii) ⇔ (iii), it is enough to check that (i) ⇒ (ii) and (ii) ⇒ (iii), which we do now.

Proof of (i) ⇒ (ii) : Let π be a non-increasing coupling in Π M (µ, ν) and Γ be a Borel subset of R 2 such that π(Γ) = 1 and conditions (c)(d) in Definition 2.3 hold. Let for x ∈ R, Γ x = {y : (x, y) ∈ Γ}. We have µ(dx) a.e. π x (Γ x ) = 1. With the martingale property, this implies µ(dx) a.e., Γx yπ x (dy) = x so that π

x (Γ x ∩ (-∞, x]) ∧ π x (Γ x ∩ [x, +∞)) > 0. ( 43 
) Therefore {(x, y) ∈ Γ : y ≤ x} = ∅ and {(x, z) ∈ Γ : z ≥ x} = ∅. Let a = inf {x ∈ R : ∃ y ≤ x, (x, y) ∈ Γ} and b = sup {x ∈ R : ∃ z ≥ x, (x, z) ∈ Γ} . Since when x < a, Γ x ∩ (-∞, x] = ∅ and when x > b, Γ x ∩ [x, +∞) = ∅, (43) implies that µ((-∞, a) ∪ (b, +∞)) = 0.
Let (x 0 , y 0 ) ∈ Γ be such that y 0 ≤ x 0 . By condition (c) in Definition 2.3, for any (x, y) ∈ Γ with y ≤ x < x 0 , we have y 0 ≤ y so that y 0 ≤ x. Hence y 0 ≤ a, -∞ < a and Γ ∩ {(x, y) :

y ≤ x} ⊂ [a, +∞) × (-∞, a]. In a symmetric way, condition (d) in Definition 2.3 implies that b < +∞ and Γ ∩ {(x, z) : z ≥ x} ⊂ (-∞, b] × [b, +∞). Therefore Γ ⊂ R × {(-∞, a] ∪ [b, +∞)} and ν((-∞, a] ∪ [b, +∞)) = π(R × {(-∞, a] ∪ [b, +∞)}) ≥ π(Γ) = 1.
Proof of (ii) ⇒ (iii) : By Proposition 2.5, there exists a coupling π ∈ Π M (µ, ν) minimizing R 2 |x -y|π(dx, dy) over π ∈ Π M (µ, ν) and this coupling is non-increasing. It remains to check that π is the only non-increasing coupling in Π M (µ, ν) and that π ({(a, a)}) = µ({a}) ∧ ν({a}) and π ({(b, b)}) = µ({b}) ∧ ν({b}). This is clear when a = b since then δ a (dx)ν(dy) is the only element of Π(µ, ν). We thus suppose that a < b. Let π ↓ ∈ Π M (µ, ν) be non-increasing, x ∈ R and

ψ π ↓ (x) = π ↓ ((-∞, x] × (-∞, a]). Since ψ π ↓ (x) ≤ π ↓ (R × (-∞, a]) = F ν (a) and 0 ≤ F µ (x) -ψ π ↓ (x) = π ↓ ((-∞, x] × R) -π ↓ ((-∞, x] × (-∞, a]) = π ↓ ((-∞, x] × [b, +∞)) ≤ ν([b, +∞)) = 1 -F ν (a), we have ψ π ↓ (x) ∈ [(F ν (a) + F µ (x) -1) + , F ν (a) ∧ F µ (x)]. Using properties (c)(d) in Definition 2.3,
we check like in the derivation of ( 25) and (26) in the uniqueness part of the proof of Theorem 2.11 that y∈(-∞,x]

1 {z≤a} π ↓ (dy, dz) = Fν (a) Fν (a)-ψ π ↓ (x) δ F -1 ν (u) (dz)du y∈(-∞,x] 1 {z≥b} π ↓ (dy, dz) = 1 1+ψ π ↓ (x)-Fµ(x) δ F -1 ν (u) (dz)du.
With the martingale property, this ensures that

(-∞,x] yµ(dy) = (-∞,x] R zπ ↓ y (dz)µ(dy) = (-∞,x]×R 1 {z≤a} zπ ↓ (dz, dy) + (-∞,x]×R 1 {z≥b} zπ ↓ (dz, dy) = Fν (a) Fν (a)-ψ π ↓ (x) F -1 ν (v)dv + 1 1+ψ π ↓ (x)-Fµ(x) F -1 ν (v)dv = G(ψ π ↓ (x)),
Lemma 3.9. Let y < m < z and f ρ : R → R be defined by

f ρ (x) = z -m z -y |x -y| ρ + m -y z -y |z -x| ρ -|x -m| ρ .
When ρ ∈ (1, 2) (resp. ρ > 2), f ρ is increasing (resp. decreasing) on [y, (1 -α ρ )m + α ρ y)] and decreasing (resp. increasing) on [(1 -α ρ )m + α ρ z, z], where α ρ ∈ (0, 1 2 ) is defined in Lemma 3.10 just below.

On the other hand, for any ρ ∈ (1, 2) ∪ (2, +∞) and any α ∈ (0, α ρ ), we may find y < m < z such that (2 -ρ)f ρ ((1 -α)m + αy) < 0 and y < m < z such that (2 -ρ)f ρ ((1 -α)m + αz) > 0.

Lemma 3.10. For any ρ > 1, let ψ ρ : (0, 1] → R be the function defined by

ψ ρ (α) = α + α 2-ρ (1 -α) ρ-1 + 1 -ρ, (44) 
the following statements hold:

• for all ρ ∈ (1, 2) ∪ (2, +∞), there exists a unique α ρ ∈ (0, 1) such that ψ ρ (α ρ ) = 0,

• if α ∈ (α ρ , 1], then ψ ρ (α) > 0 when ρ ∈ (1, 2) and ψ ρ (α) < 0 when ρ > 2,
• if α ∈ (0, α ρ ), then ψ ρ (α) < 0 when ρ ∈ (1, 2) and ψ ρ (α) > 0 when ρ > 2,

• ρ → α ρ (represented by Figure 2 below) is continuously differentiable on (1, 2) ∪ (2, ∞) and can be extended by continuity at ρ = 2 with the value α 2 which is the unique solution to h(α) = 0 where (0, 1)

α → h(α) = 1 + (1 -α) ln α 1-α , • the extended function ρ ∈ (1, ∞) → α ρ ∈ (0, 1] is increasing, • α ρ < ρ-1 2 when ρ ∈ (1, 2), • lim ρ→∞ α ρ = 1 2 .
1.0 1.5 2.0 2.5 3.0 3. The proof of Lemma 3.10 is postponed after the one of Lemma 3.9 which relies on the next lemma. 

ρ : [0, 1] × R + → R by ϕ ρ (α, w) = (αw) ρ - w 1 + w (1 + αw) ρ - w ρ 1 + w (1 -α) ρ .
Then, we have

∀α ∈ [α ρ , 1], ∀w > 0, (2 -ρ)∂ α ϕ ρ (α, w) > 0, ∀α ∈ [0, α ρ ), for w large enough, (2 -ρ)∂ α ϕ ρ (α, w) < 0.
where α ρ is defined in Lemma 3.10.

The proof of Lemma 3.11 is postponed after the one of Lemma 3.9.

Proof of Lemma 3.9.

When x ∈ [y, m], we have

f ρ (x) = z -m z -y (x -y) ρ + m -y z -y (z -x) ρ -(m -x) ρ = (z -m) ρ z -m z -y × m -y z -m ρ × 1 - m -x m -y ρ + m -y z -y × 1 + m -x z -m ρ - m -x z -m ρ = -(z -m) ρ ϕ ρ m -x m -y , m -y z -m , By Lemma 3.11, since x ∈ [y, (1 -α ρ )m + α ρ y)] ⇔ m-x m-y ∈ [α ρ , 1], we deduce that for ρ ∈ (1, 2) (resp. ρ > 2), f ρ is increasing (resp. decreasing) on [y, (1 -α ρ )m + α ρ y)]. Moreover, for any α ∈ (0, α ρ ), when m-y z-m is large enough, (2 -ρ)f ρ ((1 -α)m + αy) < 0. When x ∈ [m, z], we have f ρ (x) = z -m z -y (x -y) ρ + m -y z -y (z -x) ρ -(x -m) ρ = (m -y) ρ z -m z -y × 1 + x -m m -y ρ + m -y z -y × z -m m -y ρ × 1 - x -m z -m ρ - x -m m -y ρ . = -(m -y) ρ ϕ ρ x -m z -m , z -m m -y . By Lemma 3.11 again, since x ∈ [(1 -α ρ )m + α ρ z, z] ⇔ x-m z-m ∈ [α ρ , 1 
], we deduce that for ρ ∈ (1, 2) (resp. ρ > 2), f ρ is decreasing (resp. increasing) on [(1 -α ρ )m + α ρ z, z]. Moreover, for any α ∈ (0, α ρ ), when z-m m-y is large enough, (2 -ρ)f ρ ((1 -α)m + αz) > 0.

Proof of Lemma 3.11. Taking the derivative of ϕ ρ (α, w) with respect to α, we have

1 ρ ∂ α ϕ ρ (α, w) = α ρ-1 w ρ - w 2 1 + w (1 + αw) ρ-1 + w ρ 1 + w (1 -α) ρ-1
so that 1 ρ ∂ α ϕ ρ (0, w) = w ρ -w 2 1+w is negative (resp. positive) when w > 1 and ρ ∈ (1, 2) (resp. ρ > 2). Let us now suppose that α ∈ (0, 1). Then For α ∈ (0, α ρ ), since lim w→∞ 1+αw αw 1 -αw v 2-ρ dv = 0, by the third item in Lemma 3.10, we may find w large enough so that ∂ α ϕ ρ (α, w) < 0 when ρ ∈ (1, 2) and ∂ α ϕ ρ (α, w) > 0 when ρ > 2.

Proof of Lemma 3.10.

Taking the derivative of ψ ρ , we get

ψ ρ (α) = 1 + (2 -ρ) 1 -α α ρ-1 -(ρ -1) α 1 -α 2-ρ .

It appears that

• when 1 < ρ < 2,

(1) ψ ρ is a decreasing function, so ψ ρ is strictly concave, (2) lim α→0 + ψ ρ (α) = 1 -ρ < 0 and ψ ρ (1) = 2 -ρ > 0.

• when ρ > 2,

(1) ψ ρ is an increasing function, and ψ ρ is strictly convex, (2) lim α→0 + ψ ρ (α) = +∞ and ψ ρ (1) = 2 -ρ < 0.

With the continuity of ψ ρ , we deduce that there exists a unique α ρ ∈ (0, 1) such that ψ ρ (α ρ ) = 0. Moreover, for α ∈ (α ρ , 1], ψ ρ (α) > 0 when ρ ∈ (1, 2) and ψ ρ (α) < 0 when ρ > 2. And for α ∈ (0, α ρ ), ψ ρ (α) < 0 when ρ ∈ (1, 2) and ψ ρ (α) > 0 when ρ > 2.

Since ψ ρ (α ρ ) = 0, we have 

ψ ρ (α ρ ) = 1 + (2 -ρ) ρ -1 -α ρ α ρ -(ρ -1) ρ -1 -α ρ 1 -α ρ = (ρ -1)(2 -ρ) α ρ (1 -α ρ ) ,
so that ψ ρ (α ρ ) > 0 for ρ ∈ (1, 2) and ψ ρ (α ρ ) < 0 for ρ > 2. Furthermore, by the implicit function theorem, as the mapping (ρ, α) ∈ {(1, 2) ∪ (2, ∞)} × (0, 1] → ψ ρ (α) ∈ R is C 1 , it follows that the function ρ → α ρ is also C 1 on (1, 2) ∪ (2, ∞) and its derivative writes

∂ ρ α ρ = 1 -α 2-ρ ρ (1 -α ρ ) ρ-1 ln 1-αρ αρ ψ ρ (α ρ ) .
Since ψ ρ (α ρ ) = 0, we have

(ρ -2) ln 1 -α ρ α ρ = ln ρ -1 -α ρ 1 -α ρ = (ρ -2) 1 0 du 1 -α ρ + (ρ -2)u .
Then, since α 2-ρ ρ (1 -α ρ ) ρ-1 = ρ -1 -α ρ , the numerator of the formula of ∂ ρ α ρ can be written as

1 -α 2-ρ ρ (1 -α ρ ) ρ-1 ln 1 -α ρ α ρ = 1 - 1 0 ρ -1 -α ρ 1 -α ρ + (ρ -2)u du.
When ρ ∈ (1, 2),

ψ ρ ρ -1 2 = ρ -1 2 + ρ -1 2 3 -ρ ρ -1 ρ-1 + 1 -ρ = ρ -1 2 3 -ρ ρ -1 ρ-1 -1 > 0,
so that α ρ < ρ-1 2 , and

1 0 ρ -1 -α ρ 1 -α ρ + (ρ -2)u du < 1 0 ρ -1 -α ρ 1 -α ρ + (ρ -2) du = 1.
When ρ > 2,

1 0 ρ -1 -α ρ 1 -α ρ + (ρ -2)u du > 1 0 ρ -1 -α ρ 1 -α ρ + (ρ -2) du = 1.
Hence, we can deduce that

• 1 -α 2-ρ ρ (1 -α ρ ) ρ-1 ln 1-αρ αρ > 0 when ρ ∈ (1, 2),
• 1 -α 2-ρ ρ (1 -α ρ ) ρ-1 ln 1-αρ αρ < 0 when ρ > 2. We conclude that ∂ ρ α ρ > 0 on (1, 2) ∪ (2, +∞).

Since h (α) = 1 α -ln α 1-α is a decreasing function, h is strictly concave. We have lim α→0+ h(α) = -∞ and lim α→1-h(α) = 1. With the continuity of h and h( 12 ) = 1, we deduce that there exists a unique α 2 ∈ (0, 1 2 ) such that h(α 2 ) = 0. Furthermore, by the fact that e x ≥ 1 + x with strict inequality when x = 0, we have

ψ ρ (α) = α + (1 -α)e (2-ρ) ln α 1-α + 1 -ρ ≥ α + (1 -α) 1 + (2 -ρ) ln α 1 -α + 1 -ρ = (2 -ρ) 1 + (1 -α) ln α 1 -α = (2 -ρ)h(α),
with strict inequality when ln α 1-α = 0. Hence ψ ρ (α 2 ) > (2 -ρ)h(α 2 ) = 0. We deduce that • for ρ ∈ (1, 2), we have α ρ < α 2 and h(α ρ ) < 0,

• for ρ ∈ (2, +∞), we have α ρ > α 2 and h(α ρ ) > 0.

On the other hand, applying Taylor's theorem to the term e (2-ρ) ln α 1-α , we have

ψ ρ (α) = α + (1 -α) 1 + (2 -ρ) ln α 1 -α + 1 -ρ + O (2 -ρ) 2 = (2 -ρ) (h(α) + O(2 -ρ)) .
For α ∈ (0, α 2 ), we have h(α) < 0 and therefore for ρ < 2 close enough to 2, ψ ρ (α) < 0, which implies that α < α ρ < α 2 . Hence lim ρ→2 -α ρ = α 2 . In the same way, we can prove that lim ρ→2 + α ρ = α 2 .

We have ψ ρ ( 1 2 ) = 2 -ρ, so that, when ρ > 2, ψ ρ ( 1 2 ) < 0 and α ρ < 1 2 . On the other hand, for α < 1 2 , 1-α α > 1 and lim ρ→+∞ ψ ρ (α) = +∞ so that for large values of ρ, we have ψ ρ (α) > 0 and α < α ρ . We deduce that 

The difference between π and π ↑ can be expressed as π -π ↑ = ps δ x-⊗ (τ -τ ) + psδ x+ ⊗ (τ -τ ).

Let us denote

γ m = 1 2 z --m z --y - δ (x--y-) 2 + m -y - z --y - δ (z--x-) 2 + z + -m z + -y + δ (x+-y+) 2 + m -y + z + -y + δ (z+-x+) 2 , γ m = 1 2 z + -m z + -y + δ (x--y+) 2 + m -y + z + -y + δ (z+-x-) 2 + z --m z --y - δ (x+-y-) 2 + m -y - z --y - δ (z--x+) 2 .
We have sq#π -sq#π ↑ = 2ps(γ m -γ m ).

Let us check that for any m ∈ [y + , z -], γ m ≤ cx γ m . Since γ m and γ m linearly depend on m, it is equivalent to check that γ y+ ≤ cx γ y+ and γ z-≤ cx γ z-. Since (x --y + ) 2 ∨ (z --x + ) 2 ≤ (x + -y + ) 2 ∧ (x --y -) 2 ∧ (z --x -) 2

≤ (x + -y + ) 2 ∨ (x --y -) 2 ∨ (z --x -) 2 ≤ (x + -y -) 2 , we have

γ y+ = 1 2 δ (x+-y+) 2 + z --y + z --y - δ (x--y-) 2 + y + -y - z --y - δ (z--x-) 2 ≤ cx 1 2 δ (x--y+) 2 + z --y + z --y - δ (x+-y-) 2 + y + -y - z --y - δ (z--x+) 2 = γ y+ .
In a symmetric way, since

(x --y + ) 2 ∨ (z --x + ) 2 ≤ (x + -y + ) 2 ∧ (z + -x + ) 2 ∧ (z --x -) 2 ≤ (x + -y + ) 2 ∨ (z + -x + ) 2 ∨ (z --x -) 2 ≤ (z + -x -) 2 ,
we have γ z-≤ cx γ z-. Combining the two cases together, we conclude that for any m ∈ [y + , z -],

γ m ≤ cx γ m , so that, by ( 46 

  , ν) = sup π∈ΠM(µ,ν) R×R |x -y| ρ π(dx, dy) and M ρ ρ (µ, ν) = inf π∈ΠM(µ,ν) R×R |x -y| ρ π(dx, dy).Here Π M (µ, ν) denotes the subset ofΠ(µ, ν) = π probability measure on R × R | y∈R π(dx, dy) = µ(dx), x∈R π(dx, dy) = ν(dy)consisting in martingale couplings :Π M (µ, ν) = π(dx, dy) = µ(dx)π x (dy) ∈ Π(µ, ν) | µ(dx)-a.e.,y∈R y π x (dy) = x .

(

  ii) µ and ν satisfy the nested supports condition : ∃ -∞ < a ≤ b < +∞ s.t. µ ([a, b]) = 1 and ν ((a, b)) = 0, (iii) there exists a unique non-increasing martingale coupling π ↓ in Π M (µ, ν) and π ↓ ({(a, a)}) = µ({a}) ∧ ν({a}), π ↓ ({(b, b)}) = µ({b}) ∧ ν({b}). Moreover, under the nested supports condition, there exists a unique non-decreasing martingale coupling π ↑ ∈ Π M (µ, ν) and, when u ν (a) > u µ (a) (resp. u ν (b) > u µ (b)), then π ↑ ({(a, a)}) = (µ({a}) -p -(a) -p + (a)) + (resp. π ↑ ({(b, b)}) = (µ({b}) -p -(b) -p + (b)) + ) where p -and p + are defined in Proposition 2.14 below.

  |m -w| π x+ (dw), we have either m -x -< |m -w| π x-(dw) so that π x-({y})π x-({z}) > 0 or x + -m < |m -w| π x+ (dw) so that π x+ ({y})π x+ ({z}) > 0. We deduce that when π x-({m})π x+ ({m}) > 0, then either π x-({m}) π x+ ({y}) π x+ ({z}) > 0 or π x+ ({m}) π x-({y}) π x-({z}) > 0. If π x+ ({m}) = 0 (resp. π x-({m}) = 0), then π x+ ({y})π x+ ({z}) > 0 (resp. π x-({y})π x-({z}) > 0) by the martingale property, and since ν({m}) > 0, we have π x-({m}) > 0 (resp. π x+ ({m}) > 0).

v∈R 1

 1 {w<v} α p (dv, dw) = 1 3 δ y-(dw) + δ y+ (dw) = v∈R 1 {w<v} α p (dv, dw) and v∈R 1 {w>v} α p (dv, dw) = 1 3 δ z (dw) = v∈R 1 {w>v} α p (dv, dw),

  +νr(R) (I) = 0 and π({a, a}) = 0, we have ν l (dy) = ν π l (dy) = x∈R 1 {y<x} π(dx, dy) = x∈R 1 {y<x≤b} π(dx, dy) = x∈R 1 {y<x,y≤a} π(dx, dy) = x∈R 1 {y≤a} π(dx, dy) = 1 {y≤a} (ν -µ) + (dy).

Figure 2 :

 2 Figure 2: The function ρ → α ρ (with α ρ computed by a root finding algorithm).
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 311 For ρ ∈ (1, +∞) \ {2}, let us define the function ϕ

1 =when ρ > 2 ,

 12 ρ (α, w) = α ρ-2 w ρ 1 + w α + α 2-ρ (1 -α) ρ-1 -(ρα ρ-2 w ρ 1 + w ψ ρ (α) + w 2 (ρ -1) 1 + w 1+αw αw (αw) ρ-2 -v ρ-2 dv = α ρ-2 w ρ 1 + w ψ ρ (α) + (ρ -1)by the first and second items in Lemma 3.10, we deduce that for α ∈ [α ρ , 1], we have ∂ α ϕ ρ (α, w) > 0 when ρ ∈ (1, 2) and ∂ α ϕ ρ (α, w) < 0 when ρ > 2.

lim ρ→+∞ α ρ = 1 2 .

 2 Proof of Proposition 2.21. For π ∈ Π M (µ, ν), we haveπ x-({y + }) ≥ 0 = π ↑ x-({y + }), π x-({z + }) ≥ 0 = π ↑ x-({z + }), π ↑ x-({y -}) = ν({y -}) µ({x -}) ≥ π x-({y -}), π ↑ x-({z -}) = ν({z -}) µ({x -}) ≥ π x-({z -}).Now suppose that π = π ↑ and defineτ = π x-({y + })δ y+ + π x-({z + })δ z+ π x-({y + }) + π x-({z + }) , τ = π ↑ x-({y -}) -π x-({y -}) δ y-+ π ↑ x-({z -}) -π x-({z -}) δ z- π ↑ x-({y -}) -π x-({y -}) + π ↑ x-({z -}) -π x-({z -}) . Since π x-({y -}) + π x-({y + }) + π x-({z -}) + π x-({z + }) = 1 = π ↑ x-({y -}) + π ↑x-({z -}), the denominators of the formulas defining τ and τ are equal. Let us denote the common value by s. Clearly s > 0 and πx--π ↑ x-= s(τ -τ ). Moreover, since pπ x-+(1-p)π x+ = ν = pπ ↑ x-+(1-p)π ↑ x+ , π x+ -π ↑ x+ = ps 1-p (τ -τ ). Since y π x-(dy) = x -= y π ↑ x-(dy), τ and τ have a common expectation m and m ∈ [y + , z + ] ∩ [y -, z -] = [y + , z -] and we have τ = z + -m z + -y + δ y+ + m -y + z + -y + δ z+ , τ = z --m z --y - δ y-+ m -y - z --y - δ z-.

  ), |y -x| 2 #π ↑ (dx, dy) ≤ cx |y -x| 2 #π(dx, dy). For π ∈ Π M (µ, ν) \ {π ↓ }, we check in the same way thatπ -π ↓ = ps δ x-⊗ (τ -τ ) + psδ x+ ⊗ (τ -τ )with τ and τ satisfying (45) for some m ∈ [y + , z -] ands = π ↓ x-({y + }) -π x-({y + }) + π ↓ x-({z + }) -π x-({z + }) = π x-({y -}) + π x-({z -}) > 0.As a consequence, sq#π -sq#π ↓ = 2ps(γ m -γ m ) so that sq#π ≤ cx sq#π ↓ .

  Infimum and supremum of {sq#π : π ∈ Π M (µ, ν)}for the convex order Proposition 2.1. Let µ, ν ∈ P 2 (R) be such that µ ≤ cx ν. Then the set {sq#π : π ∈ Π M (µ, ν)} admits an infimum and a supremum for the convex order.

	ρ	M ρ	I π HN ρ	π -π HN	ρ	M ρ	I π HN ρ	π -π HN
	0.3	1.116329	1.116329	1.2e-09	2.1	2.776364	2.776364	7.0e-09
	0.7	1.317531	1.317531	2.0e-09	2.3	3.148135	3.148135	1.4e-09
	1.0	1.513291	1.513291	0.0	2.5	3.584910	3.584910	4.8e-09
	1.4	1.854353	1.854353	1.1e-09	3.0	5.047828	5.047828	1.1e-09
	1.9	2.459404	2.459404	1.2e-08	5.0 24.477011	24.477011	1.2e-09
	2.2							
		366952	1.366793	5.6e-03	2.1	10.025562	10.025562	3.9e-09
	0.7	2.090477	2.090467	2.9e-03	2.3	12.680593	12.680593	4.0e-09
	1.0	2.893664	2.893664	0.0	2.5	16.085421	16.085421	3.3e-09
	1.4	4.504064	4.504064	4.2e-09	3.0	29.533935	29.533935	4.5e-09
	1.9	7.949088	7.949088	3.2e-09	5.0 407.035561 407.347830	2.7e-03

Poisson distributions : µ = L(X -1), ν = L(Y -4) with X ∼ P(1), Y ∼ P

[START_REF] Diamond | CVXPY: A Python-embedded modeling language for convex optimization[END_REF] 

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945322.

Step 1 : For x ∈ R, we are going to check that G(F µ (x), φ π (F µ (x))) ≤ Fµ(x) 0

µ (w)dw (Step 1.2 below) and that v → G(F µ (x), v) is decreasing on [(F µ (x) -ν r (R)) + , φ π (F µ (x))] (Step 1.3 below). Since this function is also continuous, this implies the existence of a unique φ

, where the notation φ ↑ (F µ (x)) is justified since this point clearly only depends on x through F µ (x).

Step 1.1 : By Lemma 3.6, applied with η = νl and η(dz) = 1 ν l (R) y∈(-∞,x] 1 {z<y} π(dy, dz) such that η(R) = φπ(Fµ(x)) ν l (R) , Using [START_REF] Alfonsi | Sampling of one-dimensional probability measures in the convex order and computation of robust option price bounds[END_REF] for the first equality, the inverse transform sampling for the second and the martingale property of π, and ν π l + ν π r = ν for the third, we deduce that

Step 1.2 :

, we have that

where

We are going to prove that φπ(Fµ(x ))

Adding the two inequalities to

To prove (28), we first remark that since

where we used the inverse transform sampling and (1) for the equality,

By Lemma 3.6, applied with η =

By the inverse transform sampling and (1), σ =

Combining this inequality with (30), we obtain (28).

Step 2.2 : Let us now check that when

νr is non-decreasing, we have, using a reasoning analogous to the above derivation of (28) for the second inequality,

Fµ(x)-φπ(Fµ(x))

Adding this inequality to

Step 3 : Let x ∈ R be such that µ({x}) > 0. The monotonicity proved in Step 2 ensures the existence of the left-hand limit

µ (w)dw, taking the limit y → x-in the equality G(F µ (y), φ ↑ (F µ (y))) = Fµ(y) 0 F -1 µ (w)dw, we obtain that

In the other direction, under the Dispersion Assumption, denoting by a ≤ b the ends of the interval I, we have

Hence x∈R 1 {y<x} π(dx, dy) = 1 {y≤a}

The proof of Proposition 2.14 relies on the following lemma.

From now on, we suppose that

We deduce the existence of a unique p + (x) ∈ (0, 1 -F ν (x)] such that (7) holds. In a similar way, there exists a unique p -(x) ∈ (0, F ν (x-)] such that (8) holds.

The proof of the other statements relies on three steps. In the first step, we are going to check that inf

and that when µ({x}

x with η x given by ( 9) and π({(-∞, x)×(x, +∞)}∪{(x, +∞)×(-∞, x)}) = 0. In the second step, we will check that if inf π∈Π M (µ,ν) π({(x, x)}) > 0, then there exists π ∈ Π M (µ, ν) such that π x = η x where η x is given by ( 9) so that π({(x, x)}) = µ({x})-p -(x)-p + (x) and, by (35), 35) is an equality. In the last step, we prove that when µ({x}) ∈ (0, p -(x) + p + (x)], there exists π ∈ Π M (µ, ν) such that π x = η x where η x is given by [START_REF] Kertz | Complete lattices of probability measures with applications to martingale theory[END_REF].

Step 1 : Let π ∈ Π M (µ, ν). Since, by the martingale property and Jensen's inequality, µ(dy) a.e., R |z -x|π y (dz) ≥ |y -x|, one has

π(u, dy, dz) = π(dy, dz) + u1 {y<x} µ(dy) (π y ((x, +∞)) + πy (R))δ x (dz) -1 {z>x} πy (dz) -πy (dz)

1 {z>x} πw (dz) + πw (dz) -(π w ((x, +∞)) + πw (R))δ x (dz) µ(dw)

w∈(x,+∞)

Since µ(dy) a.e. on (-∞, x) (resp. (x, +∞)), πy (dz) -u1 {z>x} πy (dz) -uπ y (dz) + u(π y ((x, +∞)) + πy (R))δ x (dz) (resp. πy (dz) -u1 {z<x} πy (dz) -uπ y (dz) + u(π y ((-∞, x)) + πy (R))δ x (dz)) is a probability measure with expectation y, as long as

π(u, dy, dz) ∈ Π M (µ, ν) and π(u, {(x, x)}) > 0, so that the inequality in (39) is strict. Therefore (39) holds with strict inequality for u ∈ [0, 1], and π(1, dy, dz) ∈ Π M (µ, ν). Denoting for simplicity π(dy, dz) = π(1, dy, dz), we have that

With the martingale property, this implies that

and σ(dz) = µ({x})1 {z<w} πx (dz) + (π({(x, w)}) -r) + δ w (dz).

Since

Fν (x-)

Since

the same mean and, by comparison of their supports, satisfy γ γ(R) ≤ cx

For µ(dy) a.e. y ∈ (-∞, x), since f (v)π y (dv) a.e. R zθ v (dz) = v by (41) and the martingale property of θ, we have

Using (41), the definition of θ and (42), we obtain

The positivity of π({(x,

as we did with π(u, dy, dz) = (1 -u)π(dy, dz) + uπ(dy, dz)in Step 1. Hence π ∈ Π M (µ, ν). With a symmetric reasoning, we construct from π a coupling π ∈ Π M (µ, ν) such that π x = η x .

Step 3 : Let us now suppose that µ({x}) ∈ (0, p -(x) + p + (x)], so that, by Step 2,

Let (π n ) n∈N denote a Π M (µ, ν)-valued sequence such that lim n→∞ π n ({(x, x)}) = 0. Since Π M (µ, ν) is compact for the weak convergence topology, we may extract a subsequence that we still index by n for notational simplicity and which converges weakly to π ∞ ∈ Π M (µ, ν). For ε ∈ (0, F ν (x-) ∧ (1 -F ν (x))), we have

Taking the limit n → ∞ in this inequality and using the closedness of {x} × {(-∞,

ν (F ν (x) + ε), +∞)} together with the Portmanteau theorem for the left-hand side, we obtain

)dv is continuous and increasing. If µ({x}) ≥ p + (x) then, using ( 7), ( 8) and (34) for the equality and -p -(x) ≤ p + (x) -µ({x}) for the inequality, we get

in a symmetric way, G(p -(x) ∧ µ({x})) ≥ 0, there exists a unique q(x) in the interval such that G(q(x)) = 0. If µ({x}) = 1, then p -(x) + p + (x) = 1 by (35), F ν (x-) = F ν (x) = q(x) and η x given by ( 10) is such that η x = ν so that the unique element of Π M (µ, ν) is δ x (dy)η x (dz) . Let us now suppose that µ({x}) ∈ (0, 1) and check that the probability measure η x given by ( 10) is such that

Fν (x)+µ({x})-q(x) p(v)dv and either C = 0 and then π ∞ x = η x or C > 0, which we now suppose. Then

x and η x have common mean, so do ϑ and θ. Moreover,

Either ϑ((-∞, F -1 ν (F ν (x-) -q(x))]) = 0 so that θ ≤ st ϑ and, with the equality of means, θ = ϑ or ϑ((-∞, F -1 ν (F ν (x-) -q(x))]) = 1 so that ϑ ≤ st θ and, with the equality of means,

In all cases, θ ≤ cx ϑ and η x ≤ cx π ∞

x . As a consequence µ-µ({x})δx

. Then, π := (1 -µ({x}))π(dy, dz) + µ({x})δ x (dy)η x (dz) belongs to Π M (µ, ν) and satisfies π x = η x .

Proof of Corollary 2.16. Let us first deal with the bound from above. Since for each π ∈ Π(µ, ν), µ(dx)π x ({x}) ≤ µ ∧ ν(dx), we have

From the decomposition in irreducible components stated in [3, Theorem A.4], we have ν π 0 (dy) ≥ 1 {uµ(y)=uν (y)} µ(dy) for each π ∈ Π M (µ, ν). With Proposition 2.14, we deduce the bound from below for ν π 0 . In Example 2.17, this bound from below is not attained. Let us now suppose that µ = ν and that (ν l , ν r ) is a couple of non-negative measures such that ν -ν l -ν r = ν 0 :=

By Corollary 2.12 (iii), there is at most one non-decreasing coupling in Π M (µ, ν, ν l , ν r ). We now assume that Π M (µ, ν, ν l , ν r ) = ∅ and check that the coupling π ↑ given by Corollary 2.12 (i) is non-decreasing. Let Γ be a set associated, in the sense of Definition 2.3, to π(dx, dy) = π ↑ (dx,dy)-ν0(dx)δx(dy)

which is non-decreasing. We denote by ((a n , b n )) n∈N the irreducible components for (µ, ν). Since

The three last equalities also hold with π ↓ and ψ π ↓ (x) replaced by π (the coupling minimizing

Therefore G x is a decreasing function and the equality

1 {z≤a} π (dy, dz) y∈(-∞,x]

1 {z≥b} π (dy, dz)

and

π y µ(dy).

We conclude that π ↓ = π like in the end of the uniqueness part of the proof of Theorem 2.11. Let us suppose the existence of (x -, y -), (x + , y + ) ∈ Γ (resp. (x -, y + ), (x + , y -) ∈ Γ) such that x -< x + , y -≤ x -, y + ≤ x + , y + < y -and obtain a contradiction. By [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], there exists z > x + such that (x + , z) ∈ Γ (resp. z > x -such that (x -, z) ∈ Γ). We have

Let us define the function f ρ : R → R by

Since (1 -α ρ )y -+ α ρ z ≤ (1 -α ρ )y + α ρ z ≤ x, by Lemma 3.9 just below applied with (y, m, z) = (y + , y -, z), f ρ is decreasing on [x, x] when ρ ∈ (1, 2) and increasing on [x, x] when ρ > 2. We deduce the desired contradiction like in the proof of Proposition 2.5. In a symmetric way, the existence of (x -, z -), (x

Since (1 -α ρ )z + + α ρ y ≥ (1 -α ρ )z + α ρ y ≥ x, by Lemma 3.9 just below applied with (y, m, z) = (y, z + , z -), the function R x → z--z+ z--y |x -y| ρ + z+-y z--y |z --x| ρ -|z + -x| ρ is increasing on [x, x] when ρ ∈ (1, 2) and decreasing on [x, x] when ρ > 2, yielding again a contradiction.

Proof of Proposition 2.23. Reasoning like in the beginning of the proof of Proposition 2.21, we check that for π

Therefore the difference between the costs of π and π can be calculated as

where for

In the same way, we can check that any π ∈ Π M (µ, ν) distinct from π can be expressed as

for τ and τ satisfying (47) for some m ∈ [y + , z -] and

Hence the difference between the costs of π and π can be calculated as

Checking the optimality of π and π is equivalent to check when

The function m → f (x, m) being affine, it is also equivalent to show f (x -, y + ) < f (x + , y + ) and f (x -, z -) < f (x + , z -) for 1 < ρ < 2 (resp. f (x -, y + ) > f (x + , y + ) and f (x -, z -) > f (x + , z -) for ρ > 2), which we are now going to demonstrate. We have f (x, y + ) = (x -y + )

ρz + -y + z + -y - (x -y -) ρy + -y - z + -y - (z + -x) ρ ,

We are going to check that (2 -ρ)∂ x f (z -, z -) > 0 and (2 -ρ)∂ x f (z -, y + ) > 0, so that by continuity of x → (∂ x f (x, z -), ∂ x f (x, y + )), there exists x ρ ∈ (y + , z -) such that for all x ∈ [x ρ , z -], (2 -ρ)∂ x f (x, z -) > 0, (2 -ρ)∂ x f (x, y + ) > 0 and for all x -, x + such that x ρ < x -< x + < z -, (2 -ρ) (f (x + , z -) -f (x -, z -)) > 0 and (2 -ρ) (f (x + , y + ) -f (x -, y + )) > 0.

On the one hand, we have

Since, by assumption z --y -> z + -z -, we deduce that ∂ x f (z -, z -) > 0 when 1 < ρ < 2 and ∂ x f (z -, z -) < 0 when ρ > 2. On the other hand, Since y + -y -> 0, z --y + > 0 and z --y + ≥ (ρ -1)

1 2-ρ (z + -z -), we have ∂ x f (z -, y + ) > 0 when ρ ∈ (1, 2) and ∂ x f (z -, y + ) < 0 when ρ > 2.