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Abstract: We propose the design of a phononic crystal to sense the acoustic properties of a liquid that
is constituted by an array of silicon ridges on a membrane. In contrast to other concepts, the ridges
are immersed in the liquid. The introduction of a suitable cavity in the periodic array gives rise to a
confined defect mode with high localization in the cavity region and strong solid–liquid interaction,
which make it sensitive to the acoustic properties of the liquid. By using a finite element method
simulation, we theoretically study the transmission and cavity excitation of an incident flexural wave
of the membrane. The observation of the vibrations of this mode can be achieved either outside
the area of the phononic crystal or just above the cavity. We discuss the existence of the resonant
modes, as well as its quality factor and sensitivity to liquid properties as a function of the geometrical
parameters. The performance of the proposed sensor has then been tested to detect the variation in
NaI concentration in a NaI–water mixture.

Keywords: acoustic sensor; phononic crystal; defect mode; liquid viscosity; transmission curve;
dispersion curve; membrane

1. Introduction

It is well known that periodic phononic crystals (PnCs) exhibit forbidden bands which
prevent the propagation of acoustic or elastic waves. This ability finds wide applications
in guiding, controlling, and manipulating acoustic and elastic waves [1–4]. However,
localized modes may exist inside the bandgaps when a defect is inserted in a perfect PnC.
Such a mode can be used for the purpose of sensing applications, for example, to measure
the volumetric properties of a liquid filling a cavity [5,6]. Such a functionality can be
developed in a broad range of targeted frequencies, depending on the size of the unit
cell in designed PnC systems. The sensing properties may include material parameters,
such as mass density, sound velocity, viscosity and their variations with temperature [7],
concentration in a mixture solution [8], or the phase transition of the analyte [9].

The concept and feasibility of liquid sensors based on 1D multilayered structures and
2D PnCs with holes filled with a liquid were proposed during the 2000s [10]. Other authors
have demonstrated high-performance designs by introducing cavities [11,12] slots [13,14],
or waveguides [15] in 1D or 2D periodic crystals. A concept based on the ring resonator
employing a 2D surface phononic crystal has been proposed to analyze binary gas mixtures
facing the ring resonator with high sensitivity [16]. Achieving both the high-quality factor
and sensitivity of the characteristic response, i.e., peak or dip in the transmission spectrum,
is required in order to reach a sufficient resolution of the successive features.

The recent development of PnC sensors is going toward integration. PnCs made of
finite plate thicknesses with hollow pillars filled with a liquid have been both theoreti-
cally [17] and experimentally [18] investigated, showing that the resulting localized modes
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were sensitive to the height of the liquid in the hole, its concentration, or temperature. The
application range of pillared PnCs was further extended to include the detection of the
mass of nanoparticles [19].

Recently, we studied a tubular-type PnC, consisting of a periodic arrangement of
cylindrical washers distributed along a tube [20–22] in which the liquid flows, for the
purpose of sensing the physical properties of the liquid filling the tube. This design has
the advantage of avoiding any perturbation of a flowing fluid by any element inside the
tube, for instance, a periodic arrangement of its internal section. Finite element simulations
allowed us to demonstrate the existence of complete, as well as polarization-dependent,
bandgaps, inside which localized modes associated with defects can be found. Their
signature appears as peaks or dips in the transmission spectrum. We found the dramatic
effect of the liquid viscosity on the transmission features, as well as the significant damping
from the polymer used as the material for the tube.

It should be mentioned that contrary to traditional liquid sensors, in which the inspec-
tion of the acoustic properties of the liquid is conducted in the interfacial layer between
the solid and the liquid, PnC liquid sensors enable the acoustic waves to penetrate into the
whole analyte, thus probing its acoustic properties in the entire volume [6], one can also
notice that, thanks to the scalability of frequencies with the structure periodicity, PnC-based
sensors can be designed to operate in any required frequency range. They are also interest-
ing for flammable liquids because the electronic components that compose the source and
the detector may be easily separated from the liquid being monitored [23].

The three main types of transduction techniques extensively studied for mass-sensitive
acoustic biosensors are quartz crystal microbalance [24–28], film-bulk acoustic-wave res-
onators [29–31], and surface acoustic waves [32–34]. The first two suffer from acoustic
radiation in liquids, unless making the device work in shear wave mode. Potential ways to
efficiently suppress this kind of radiation loss reside in reducing the useful wave velocity to
a value below the sound speed of liquids. Based on this idea, the Lamb wave of lower orders
can be exploited, either with very thin plates (a few percent of the wavelength) [35–38] or
with other means, such as using relatively thick interdigitated electrodes [39]. A similar idea
was exploited to design a novel Lamb wave resonator for the high-resolution mass-sensitive
detection of biomolecules [40]. Using a piezoelectric plate and an interdigitated transducer
made of high-aspect-ratio electrodes to excite slow velocity hybrid mode, acoustic radiation
in water was largely suppressed. The authors improved the overall sensing resolution
by achieving high-quality factor resonance in water, increasing the mass sensitivity and
reducing the noise frequency. The involved elastic resonance arose from a combination of
the fundamental Lamb mode and the flexural mode of the electrodes.

In this paper, we focus on a PnC structure that is similar in shape but conceptually
different, consisting of a silicon membrane supporting, on one side, high-aspect-ratio ridges
immersed into the liquid volume. Indeed, we are interested in the design of a cavity
that can support a confined mode with sufficient solid–liquid interaction and yield a very
good quality of detection. This architecture permits the probing of the acoustic properties
within the maximum liquid volume, while producing significant vibrations in the solid
membrane. Therefore, detection can be conducted both at the exit of the membrane and at
the top of the cavity, for instance, by a laser vibrometry technique. We analyze the effect of
mass density and sound velocity variations in the liquid on the characteristics of acoustic
transmission through the PnC. For a given PnC design that gives rise to a defect mode
within the bandgap, we demonstrate that the quality factors of the frequency response
can be improved by increasing the number of ridges to reach the Q-factor of the order of
hundreds with about a tenth of ridges. We also study the effect of liquid viscosity on the
characteristics of the sensor.

The outline of the paper is as follows. In Section 2, we study the frequency character-
istics of the PnC and the solid–fluid interaction by means of dispersion and transmission
curves. They show the existence of bandgaps and are helpful in understanding their phys-
ical origin. In Section 3, a particular type of defect is introduced into the PnC, and the
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characteristics of the associated defect modes (in particular, the Q-factor) are investigated
by varying the defect parameter and the number of ridges. Section 4 deals with the sensing
performance of the designed PnC with lossless liquids, while Section 5 considers the effects
of liquid viscosity on the transmission responses. In Section 6, the sensor is tested to
detect NaI concentration in the NaI–water mixture. Finally, some conclusions are drawn in
Section 7.

2. Dispersion Curves and Transmission Spectra

The PnC that we study (see Figure 1) consists of a silicon membrane (thickness
h1 = 100 µm) and a periodic arrangement of silicon ridges of length hp = 800 µm and
thickness d = 100 µm with the period a = 628 µm. The ridges are immersed in the liquid
to be sensed, which is therefore in direct contact with the membrane. The elastic prop-
erties used in the calculation for the silicon membrane and ridges are C11 = 165.7 GPa,
C12 = 63.9 GPa, C44 = 79.9 GPa, and ρ = 2330 kg/m3, whereas the liquid medium (water) is
defined by its sound velocity Clf = 1490 m/s and its mass density ρf = 1000 kg/m3. This
geometry is preferable compared to the case where the ridges are on the air side because
the solid–liquid interaction is less efficient in the latter case. The liquid is assumed to be
very thick, so in the simulation Plane Wave Radiation, conditions are used at the bottom
of the structure, as well as the Perfectly Matched Layer (PML), at both vertical sides of
the structures to allow the waves travelling towards the structure’s boundaries to escape
the simulation area. Due to the infinite length of the ridges in the lateral (z) direction and
the weak coupling between the liquid and the shear components of the displacement field
associated with the (z) direction, the simulation was conducted in two-dimensional (2D)
geometry. Here, we focus on the case of excitation by a transverse force Fy, which gives
the most promising results, and the PnC does, in general, constitute 12 to 18 ridges. It
should be noted that the experimental implementation can be conducted with conventional
techniques, such as the use of piezoelectric transducers to excite and detect transverse
waves. The harmonic force Fy is applied by a transducer on top of the membrane operating
in piston mode. The measurement of the transmission coefficient is conducted thanks to
a second transducer whose bandwidth is calibrated and placed on top or downstream of
the phononic crystal [41]. When a non-contact approach is required, a laser-ultrasound
technique is more relevant. In short, it consists of exciting the membrane into vibration by
an ultra-short light pulse (typically a few ps to a few ns) and detecting the out-of-plane
motion of the surface by an interferometer [42], or by an optical heterodyne technique [43].

The numerical simulations are performed by COMSOL Multiphysics®(Stockholm,
Sweden), using the Solid Mechanics module and the Pressure Acoustic module to describe
the elastic wave propagation in the solid part of the structure and the pressure variation
in the liquid part, respectively [44]. The dispersion curves, corresponding to a perfect
periodic array of ridges, are first calculated by considering the elementary unit cell shown
in Figure 2a. Periodic boundary conditions are applied at two opposite edges of the unit
cell, perpendicular to the propagation direction (x direction), whereas plane wave radiation
conditions and free boundary conditions are used at the bottom limit of the unit cell and at
the air/solid interface of the membrane, respectively (Figure 2a). As shown in Figure 2b, the
modes in the dispersion curves can be separated into two sets depending on their frequencies
with respect to the sound velocity of the liquid (indicated by the black line in Figure 2b).
Indeed, the modes located below this sound line cannot propagate in the liquid and are
localized in the solid part with weak acoustic radiation in the liquid, while the modes located
above the sound line propagate in both the solid and the liquid. The colors on the branches
correspond to the ratio between the Uy component of the displacement field in the solid part
and the total displacement field of the whole unit cell. Figure 2c shows the transmission
curves obtained for the vertical excitation (Fy = 1 N/m) of the membrane. The obtained
transmission curve was calculated by considering a finite PnC made up of twelve ridges.
Elastic wave generation is carried out by applying a force Fy loaded at the entry of the PnC,
then the transmission curve is then obtained by probing the displacement field at the outlet
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of the PnC and normalized to the displacement field evaluated for the membrane without
the PnC. One can remark the presence of two bandgaps indicated by the gray area on the
graphs, located at around 550 and 1150 kHz. As highlighted by the colors on the branches
of the dispersion curves, the obtained transmission curve corresponds to the excitation of
the branches with relatively strong vertical components of the displacement field. In what
follows, we focus our study on the first bandgap, in which the acoustic radiation of the
excited flexural (A0 mode) mode of the silicon membrane in the liquid is relatively weak.
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Figure 1. Schematic model used to study the transmission of elastic waves along a membrane and
through a PnC of twelve periodic ridges excited by a transverse force Fy (1 N/m). The membrane has
a thickness h1 = 100 µm, the ridges are defined by their length hp = 800 µm and their thickness d =
100 µm, and the period of the PnC is a = 628 µm.
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Figure 2. (a) Unit cell used for the calculation of the dispersion curves, (b) dispersion and (c) trans-
mission curves considering 12 ridges obtained with parameters a = 628 µm, d = 100 µm, hp = 800 µm.
The black line represents the sound velocity in water, the color on the branches corresponds to the
ratio between the Uy component in the solid part, and the total displacement field in the whole
structure. The gray areas indicate the bandgap regions.
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3. Design of a Cavity and Defect Modes

We consider a transverse excitation (Fy = 1 N/m) to launch the incident wave and
focus on the frequency range of the first bandgap at around 550 kHz where we shall
demonstrate the existence of a confined mode that is sensitive to the properties of the liquid
surrounding the ridges. The considered cavity is obtained by varying the period of the
PnC at the middle. A parameter a0 is defined by the ratio a0 = ad/a, where ad is the space
between the two ridges in the middle of the PnC (Figure 3). A value of a0 ≥ 1 or a0 ≤ 1
implies that the two parts of the PnC are moved away or brought closer to each other.
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Figure 3. Zoom around the cavity created in the middle of the PnC. The cavity is defined by the
geometrical parameter ad indicated by the red arrow.

We chose the quality factor of the relevant peak and its position in the transmission
spectrum as the criteria for the choice of the parameter a0. Figure 4 displays the trans-
mission curves of the PnC cavity calculated for different values of the parameter a0. The
transmission curves are separated into two graphs according to the value of the parameter
ad of the cavity compared to the lattice parameter a of the perfect PnC. The left and right
panels (Figure 4a,b) gather the transmission curves of the cavity that meet the conditions a0
≥ 1 and a0 < 1, respectively. The simulation results show that a defect mode appears in the
bandgap around f ~(400–800) kHz for some values of the parameter a0, as indicated by the
transmission peak, and this peak shifts to lower or higher frequencies as the two parts of
the PnC move away (a0 ≥ 1, Figure 4a) or becomes closer (a0 ≤ 1, Figure 4b), respectively.
Note that due to the finite size of the PnC, the limits of the bandgap change slightly with
a0, as does the dip immediately next to the peak at f = 450 kHz. With cavity parameter ad
greater than the lattice parameter of the perfect PnC (a0 ≥ 1), the associated transmission
curves give rise to peaks with a poor quality factor. The only one with a relatively high
Q-factor (a0 = 1.2) is located near the bandgap edge, which is not suitable for realizing the
sensing functionality. In contrast, with a cavity parameter ad less than the lattice parameter
of the perfect PnC (a0 ≤ 1), the obtained transmission curves provide peaks with a relatively
high Q-factor and for some a0 values, and it is possible to obtain peaks in the middle of the
phononic bandgap. Consequently, the a0 parameter value that complies the aforementioned
criteria is a0 = 0.6. In order to understand the physical origin of the associated peaks, in
Figure 4c, we present both the displacement field and the absolute acoustic pressure of
the cavity modes associated with the two values of the parameter a0: 0.6 and 1.5. One
can observe that for a0 ≤ 1, the cavity mode corresponds to the strong localization of the
displacement field in both ridges constituting the cavity and in the liquid at the bottom of
the ridges, thus resulting in the weak radiation of the confined mode in the liquid. When
the space between the two ridges exceeds the value of the lattice parameter a, e.g., a0 = 1.5,
the acoustic radiation of the vibrating membrane increases in the liquid, which results in a
decrease in the Q-factor of the peaks in the transmission curves (Figure 4a).
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Figure 4. Frequency responses of the displacement excited by a transverse force and detected on
the opposite side of a PnC of 12 ridges with defect (a) a0 ≥ 1 and (b) a0 ≤ 1, showing the variation
in the peaks with a value of a0. The insets show a schematic view of the PnCs with a central
defect. (c) Displacement field (solid) and absolute acoustic pressure (liquid) maps obtained with the
parameters a0 = 1.5 and a0 = 0.6.

The highest Q-factor shown in Figure 4b is about 70 for a0 equal to 0.6. However,
this value can be much improved by increasing the number of the ridges in the PnC [21].
Figure 5 presents the transmission spectrum of the relevant peak calculated for the PnC
made up of three sets of ridges, i.e., 12, 14, and 18 ridges. One can remark that the quality
factor increases from 70 with 12 ridges to 500 with 18 ridges. This increase is beneficial to
both increase the figure of merit of the sensor and limit the loss of the quality factor when
the viscosity is introduced into the simulation (Section 5).
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Figure 6 shows the displacement field recorded along the air/membrane interface at
the resonance frequency of the cavity. It shows a strong vibration of the membrane in the
region of the cavity, which is about 15 times higher in comparison with the detector region.
This gives an additional and alternative way to measure the frequency response of the
structure, particularly in the case of relatively highly viscous liquids where the transmission
peak is highly altered.
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4. Sensitivity of the Sensor to the Acoustic Properties of the Liquid

We have seen that the best detection of the transmission peak is obtained with a
shrinked cavity of a0 = 0.6, where a Q-factor of around 500 can be achieved by using 18
ridges in the PnC. In addition to the Q-factor, the efficiency of the acoustic sensor can be
evaluated from the change in the transmission peak when changing the parameters of
the liquid, such as the sound velocity or the mass density. This is illustrated in Figure 7a,
in which we start with water as the reference liquid and change either its velocity or
density by 10%. It can be observed that the proposed sensor is mostly sensitive to the mass
density ρf (with ∆f/f ~1.17%), while a variation in sound velocity does not significantly
affect the resonance peak (∆f/f ~−0.175%). Of course, in a specific experiment in which
the concentration, temperature, or phase of an analyte is the varying parameter, both the
sound velocity and mass density are subject to variations and the detected change in the
resonance frequency is a combination of both effects. This is illustrated in Section 6 in
which we change the concentration of NaI in a NaI–water mixture.
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Figure 7. (a) Transmission peaks with three non-dissipative liquids of different acoustic properties.
The PnC is defined by hp = 800µm, 18 ridges, and a0 = 0.6 The black curve corresponds to the reference
liquid, i.e., water (Clf = 1490 m/s and ρf = 1000 kg/m3). The red and blue curves correspond to
a change in acoustic velocity by 10% (Clf = 1341 m/s, ρf = 1000 kg/m3) or mass density by 10%
(Clf = 1490 m/s, ρf = 900 kg/m3), respectively. (b) Transmission peak frequency as a function of the
percentage change in mass density ρf (blue curve) and sound velocity Clf (red curve).
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From these results, one can also derive two characteristic parameters of a sensor,
namely the sensitivity (S) and the figure of merit (FoM), which are defined as follows:

SCl f =
∆ fr

∆Cl f (%)
(Hz/%) or Sρ f =

∆ fr

∆ρ f (%)
(Hz/%) (1)

FoMCl f =
Q.SCl f

fr
(%)−1 or FoMρ f =

Q.Sρ f

fr
(%)−1 (2)

Here, the sensitivity (S) represents the ratio of the frequency shift ∆ fr of the transmis-
sion peak (cavity mode) with respect to the change in either the velocity or the mass density
expressed in % of its initial value. Then, the inverse of the figure of merit (FOM) has the
ability to define the smallest variation in the acoustic property that can be detected, namely
when the frequency shift, due to the change in the acoustic property, exceeds the width of
the peak. Figure 7b shows that the frequency peak changes almost linearly with both ρf and
Clf, and the slopes obtained from the linear regression of the frequency peak variation give
the sensitivities SCl f = 90 Hz/% (R2 = 0.993) and Sρ f = 600 Hz/% (R2 = 0.999), respectively.
The associated figures of merit are FoMCl f = 0.087 (%)−1 and FoMρ f = 0.5 (%)−1. Thus,
the minimum detectable values of ρf and Clf are evaluated to be 20 kg/m3 and 200 m/s,
respectively. Again, this confirms the higher ability of the design to detect a variation in
the mass density than in the acoustic velocity. In the Appendix A, we briefly present a
similar design with stubs immersed in water but without a PnC that is more suitable for
the detection of sound velocity.

5. Effects of Liquid Viscosity on Frequency Response

In most liquid sensors, the viscosity is a very limiting factor because it strongly de-
creases the Q-factors of the peaks. More particularly, in most PnC crystal sensors, this effect
has often been omitted or not been taken deeply into consideration by neglecting the major
effect due to the dynamic viscosity, which is at the origin of dissipation in the boundary
layers. To incorporate this effect into our study, we used a more rigorous liquid model,
called the Thermoviscous Acoustic module of COMSOL Multiphysics software, which
takes into account both dynamic (µ) and bulk (µB) viscosities [44]. We recalculated the trans-
mission curves in the frequency range of 505 to 530 kHz, which covers the involved defect
mode. With the known values for water viscosity under normal atmospheric conditions,
i.e., µ = 0.89 and µB = 2.3 (mPa.s), the results are shown in Figure 8. It shows a dramatic
effect of the viscosity on the peak amplitudes by a factor of about 4, hence a reduction in
the associated quality factor from 500 to 285. Accordingly, this affects the FOMs, while
the sensitivities SCl f and Sρ f remain unchanged. In addition, it should be noticed that the
amplitude of the transmission peak is also influenced by the variation in both velocity and
mass density; however, this effect remains weak regarding that of the viscosity, particularly
for small variations in velocity or mass density. From the above analysis, one can also
conclude that the amplitude of the peak provides at least a qualitative tool for estimating
liquid viscosity. It should be noted that the amplitude of the resonance or its Q-factor
may be further affected if the membrane is made of a dissipative solid material, such as a
polymer [21]. In the present work, the choice of silicon with low acoustic dissipation avoids
this drawback.
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Figure 8. Transmission peaks with three dissipative liquids of different acoustic properties. The
parameters of the PnC are hp = 800 µm, 18 ridges, and a0 = 0.6. The black curve corresponds to
the reference liquid, i.e., water (Clf = 1490 m/s and ρf = 1000 kg/m3). The red and the blue curves
correspond to (Clf = 1341 m/s, ρf = 1000 kg/m3) and (Clf = 1490 m/s, ρf = 900 kg/m3), respectively.
The viscosity of liquids is taken for all the three cases as µ = 0.89 mPa.s and µB = 2.3 mPa s.

6. Sensing of NaI Concentration in NaI–Water Mixtures

In the previous sections, we investigated the sensitivity (S) and figure of merit (FoM)
of the proposed phononic crystal sensor with respect to hypothetical variations in the
sound velocity and the mass density of the liquid. In this section, we apply our design to a
practical problem of interest, namely testing the ability of the sensor to detect variations in
NaI concentration in a NaI–water mixture. Figure 9a gives both the experimental sound
velocity Clf (red line) and the mass density ρf (blue line) of the NaI–water mixture for
different concentrations of NaI from 0 to 45%, taken from reference [45]. The graphs show
an almost linear relationship between the mass density and concentration of NaI with
an increase of about 50% when the concentration reaches 45%, while the sound velocity
presents a minimum at a concentration of 6% and displays a variation of less than 3%
over the whole range of concentration. Similarly, Figure 6b shows the variations in the
dynamic and bulk viscosities of the NaI solutions as a function of the concentration [45].
The former, which has the main effect on the quality factor of the resonances, is almost
a constant, while the latter increases with the concentration. With these parameters, the
transmission peak was calculated for different concentrations of NaI (0 to 45%). As shown
in Figure 9c, despite the viscosity effect, the obtained peaks are quite distinguishable for
different measured NaI concentrations. One can note a redshift in the resonance frequency
with an increase in NaI concentration, accompanied by an increase in its amplitude in
the transmission spectrum. The redshift frequency is mainly due to the increase in mass
density for higher concentrations. Of course, there is also an effect due to the change in
sound velocity, but this effect remains relatively small and does not change the observed
trend, despite the presence of a minimum in the velocity (Figure 9a). On the other hand,
the variation in the amplitude of the transmission is related to the position of the resonance
frequency in the middle of the bandgap and the associated Q-factor. This explains that the
amplitude and Q-factor of the resonances increase despite an increase in liquid viscosity.
Figure 9d displays the frequency peak as a function of the NaI concentration. It shows
that this frequency changes almost linearly, and the slope of the linear regression of the
associated curve gives the sensitivity S = 566 Hz/% (R2 = 0.997).
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Figure 9. (a) Sound velocity and mass density of NaI–water mixture for different NaI concentra-
tions [45]. (b) Dynamic and bulk viscosities of NaI–water mixture for different NaI concentrations. (c)
Transmission peak of the phononic cavity as a function of the NaI concentration. (d) Frequency of the
peaks as a function of the associated NaI concentration.
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7. Conclusions

We investigated the transmission properties of a PnC based on periodic ridges ar-
ranged along a membrane, both made of silicon. Numerical results were obtained using the
COMSOL Multiphysics simulation for the test structure. We demonstrated that the mixed
solid/liquid system can present bandgaps for flexural Lamb waves. The introduction of
a defect into the PnC structure, by modifying the separation distance of the two parts of
the same PnC, leads to the occurrence of a peak inside the bandgap in the transmission
spectrum. The peak frequency position has been shown to be mainly sensitive to the mass
density and much less to the sound velocity of the liquid in contact with the membrane and
immerging the ridges. The transmission peak is due to the cavity mode, whose frequency
position depends on the liquid properties in addition to the geometric parameters of the
PnC. We highlighted the significant effect of viscosity on the amplitude of the transmis-
sion peak. Such an effect can be partially avoided by probing the elastic vibration in the
cavity region instead of the detection region after the PnC with the same experimental
method. Our sensor demonstrated its ability to detect changes in NaI concentration in a
NaI–water mixture. The proposed device would be a useful platform for sensing liquid
properties in various fields and at different scales, from microfluidic to medical or civil
engineering applications.
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Appendix A

Using a similar concept as in the main text, we show in this appendix that a design
based on ridges immersed in a liquid can be also exploited for the detection of the sound
velocity of the fluid. The design consists only of a pair of ridges (see the inset in Figure A1),
instead of a whole PnC containing a cavity. Actually, the resonant modes exploited here
correspond to some edge modes of the PnC, but the utilization of the PnC makes their
shift more complex due to their sensitivities to the number of periods and the leaky nature
of the waves. The drawback of limiting the design to only one unit cell of the PnC is
that the resonances are broad and the corresponding Q-factors (and, hence, the FoM) are
relatively low.



Sensors 2023, 23, 2080 13 of 16

Sensors 2023, 23, x FOR PEER REVIEW 15 of 18 
 

 

Figure A1. Transmission peaks with three non-dissipative liquids of different acoustic properties 
obtained with transverse excitation (Fy = 1N/m) of the Si membrane with only two ridges. The black 
curve corresponds to the reference liquid, i.e., water (Clf = 1490 m/s and ρf = 1000 kg/m3). The red 
and the blue curves correspond, respectively, to a change in acoustic velocity by 10% (Clf = 1341 m/s, 
ρf = 1000 kg/m3) or mass density by 10% (Clf = 1490 m/s, ρf = 900 kg/m3). The inset shows the 
displacement field (solid) and the absolute acoustic pressure (liquid) of the dip. 

Appendix A1. Transverse Excitation 
Figure A1 presents the transmission curves obtained with a transverse excitation (Fy 

= 1 N/m) of the Si membrane with only two ridges spaced by 628 µm. The length and the 
width of the ridges are hp = 800 µm and d = 100µm, respectively, as described in the main 
text. To evaluate the sensitivity and figure of merit, we use water as the liquid reference 
and change the corresponding sound velocity and mass density by −10%. The result shows 
that the obtained transmission dip is more sensitive to sound velocity than to mass 
density. The shift in the transmission dip gives a sensitivity SClf = 1470 Hz/%, with a Q-
factor Q = 12 of the dip. The figure of merit is evaluated to be equal to FoM = 0.04 (%)-1. 

Appendix A2. Longitudinal Excitation 
In Figure A2, using the same design presented above, the transmission curves are 

calculated for the longitudinal excitation of the Si membrane. The transmission curves 
present a dip of around 1.5 MHz, characterized by the high confinement of the acoustic 
energy in the region between the two ridges (see inset of Figure A2). From the variation 
in both the sound velocity Clf and the mass density f of water, one can note that the 
transmission dip is again more sensitive to sound velocity than to mass density. The 
resulting sensitivity related to Clf is evaluated to be equal to 12800 Hz/%, the Q-factor of 
the relevant dip is 6, and the figure of merit is FoM = 0.05 (%)-1. 

(Clf, f) 
(0.9Clf, f) 
(Clf, 0.9f) 

Max Max 

|p| |U| 

0 0 

Figure A1. Transmission peaks with three non-dissipative liquids of different acoustic properties
obtained with transverse excitation (Fy = 1 N/m) of the Si membrane with only two ridges. The black
curve corresponds to the reference liquid, i.e., water (Clf = 1490 m/s and ρf = 1000 kg/m3). The red
and the blue curves correspond, respectively, to a change in acoustic velocity by 10% (Clf = 1341 m/s,
ρf = 1000 kg/m3) or mass density by 10% (Clf = 1490 m/s, ρf = 900 kg/m3). The inset shows the
displacement field (solid) and the absolute acoustic pressure (liquid) of the dip.

Appendix A.1. Transverse Excitation

Figure A1 presents the transmission curves obtained with a transverse excitation
(Fy = 1 N/m) of the Si membrane with only two ridges spaced by 628 µm. The length
and the width of the ridges are hp = 800 µm and d = 100 µm, respectively, as described in
the main text. To evaluate the sensitivity and figure of merit, we use water as the liquid
reference and change the corresponding sound velocity and mass density by −10%. The
result shows that the obtained transmission dip is more sensitive to sound velocity than to
mass density. The shift in the transmission dip gives a sensitivity SClf = 1470 Hz/%, with a
Q-factor Q = 12 of the dip. The figure of merit is evaluated to be equal to FoM = 0.04 (%)−1.

Appendix A.2. Longitudinal Excitation

In Figure A2, using the same design presented above, the transmission curves are
calculated for the longitudinal excitation of the Si membrane. The transmission curves
present a dip of around 1.5 MHz, characterized by the high confinement of the acoustic
energy in the region between the two ridges (see inset of Figure A2). From the variation
in both the sound velocity Clf and the mass density ρf of water, one can note that the
transmission dip is again more sensitive to sound velocity than to mass density. The
resulting sensitivity related to Clf is evaluated to be equal to 12,800 Hz/%, the Q-factor of
the relevant dip is 6, and the figure of merit is FoM = 0.05 (%)−1.
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Figure A2. Transmission peaks with three non-dissipative liquids of different acoustic properties
obtained with the longitudinal excitation (Fx = 1 N/m) of the Si membrane with only two ridges. The
black curve corresponds to the reference liquid, i.e., water (Clf = 1490 m/s and ρf = 1000 kg/m3). The
red and the blue curves correspond, respectively, to a change in acoustic velocity by 10% (Clf = 1341
m/s, ρf = 1000 kg/m3) or mass density by 10% (Clf = 1490 m/s, ρf = 900 kg/m3). The inset shows the
displacement field (solid) and the absolute acoustic pressure (liquid) of the dip.
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