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Abstract
Purpose Fine sediment deposition is an important component of the catchment sediment budget and affects river morphology, 
biology, and contaminant transfer. However, the driving factors of fine sediment deposition remain poorly understood at the 
catchment scale, limiting our ability to model this process.
Methods Fine sediment deposition and river reach characteristics were collected over the entire river network of three 
medium-sized (200–2200  km2) temperate catchments, corresponding to 11,302 river reaches. This unique database was 
analyzed and used to develop and evaluate a random forest model. The model was used to predict sediment deposition and 
analyze its driving factors.
Results Fine sediment deposition displayed a high spatial variability and a weak but significant relationship with the Strahler 
order and river reach width (Pearson coefficient r =  −0.4 and 0.4, respectively), indicating the likely nonlinear influence of 
river reach characteristics. The random forest model predicted fine sediment deposition intensity with an accuracy of 81%, 
depending on the availability of training data. Bed substrate granularity, flow condition, reach depth and width, and the 
proportion of cropland and forest were the six most influential variables on fine sediment deposition intensity, suggesting 
the importance of both hillslope and within-river channel processes in controlling fine sediment deposition.
Conclusion This study presented and analyzed a unique dataset. It also demonstrated the potential of random forest approaches 
to predict fine sediment deposition at the catchment scale. The proposed approach is complementary to measurements and 
process-based models. It may be useful for improving the understanding of sediment connectivity in catchments, the design 
of future measurement campaigns, and help prioritize areas to implement mitigation strategies.
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1 Introduction

Hillslope erosion can include a significant proportion of fine 
sediment particles (< 2 mm diameter; Vericat and Batalla 
2006). In rivers, fine particles can result in multiple environ-
mental issues, such as increased river turbidity and streambed 
clogging (Brunke 1999), which are detrimental to the aquatic 
environment (Owens et al. 2005) and preclude the achieve-
ment of the Water Framework Directive objectives (Bilotta 
and Brazier 2008). Fine sediment deposition may reduce riv-
erbed infiltration capacity, which in turn affects the hyporheic 
zone dynamics by modifying the water flow (Boano et al. 
2014). Moreover, particle transfer can contribute to the trans-
port of contaminants, such as heavy metals and polycyclic 
aromatic hydrocarbons, as they may have a high affinity for 
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fine particles (Conaway et al. 2013). Understanding fine sedi-
ment deposition as part of river sediment dynamics (Waters 
et al. 1995) is therefore of great importance, as it may also 
affect sediment-associated chemical (Droppo et al. 2015), 
biogeochemical (Nogaro et al. 2007) and microbial (Nogaro 
et al. 2010) processes and dynamics, as well as aquatic life 
(Wood and Armitage 1997; Scheder et al. 2015), including 
fish (Kemp et al. 2011) and invertebrates (Kefford et al. 2010; 
Wagenhoff et al. 2011; Magbanua et al. 2016).

Fine sediment storage and erosion in river channels and 
floodplains have been found to be a significant part of the 
catchment sediment budget in various environments, includ-
ing lowland (Owens et al. 1999; Walling et al. 1999; Collins 
and Walling 2007; Marttila and Kløve 2014) and mountain-
ous catchments (Navratil et al. 2010; Misset et al. 2021). It 
underlines the need to study this process further to improve 
our understanding of sediment (dis)connectivity in catch-
ments (Fryirs 2013). The deposition and accumulation of fine 
particles within river reaches may turn riverbeds into a sig-
nificant supply of fine sediment to downstream environments 
(Fryirs and Brierley 2001), which may be mobilized during 
flood events (Droppo 2004), making sediment deposition an 
important process for understanding fine sediment dynamics 
at the catchment scale. However, several issues limit our abil-
ity to understand and model fine particle deposition. Multiple 
techniques have been proposed in the literature to estimate 
sediment deposition and subsequent riverbed clogging, such 
as visual estimations (Owens et al. 1999; Zweig and Rabeni 
2001), embeddedness (Platts et  al. 1983), resuspension 
method (Lambert and Walling 1988), sediment shear strength 
measures (Grabowski et al. 2010; Legout et al. 2017), sedi-
ment coring (Milan et al. 2000), wooden stakes (Marmonier 
et al. 2004), dynamic penetrometry (Landemaine et al. 2015), 
sediment trap measurements (Seydell et al. 2009), shuffle 
index (Clapcott et al. 2011), or infiltration capacity measure-
ments (Datry et al. 2015). Each of these techniques has spe-
cific advantages (Descloux et al. 2010), but their respective 
results cannot be compared, as they target different proxies 
of sediment deposition (e.g., resistance to shear stress, oxy-
genated depth, and infiltration capacity). Measurements are 
also labor- and time-consuming, limiting large-scale evalua-
tions, particularly considering that fine sediment deposition 
can exhibit high spatial variability at the catchment scale 
(Haddad et al. 2022). Such requirements and variations in 
measurement protocols may explain the lack of standardized, 
in-stream, monitoring programs (Wharton et al. 2017), limit-
ing our ability to describe this complex process.

Once particles enter river channels, suspended particle 
concentrations and flow shear stress affect particle charac-
teristics (Grangeon et al. 2014; Wendling et al. 2016), par-
ticularly particle size (Dyer 1989; Maggi 2005), turning soil 
aggregates into complex organo-mineral composites usually 

referred to as flocs (Droppo et al. 1997; Droppo 2001; Spencer  
et  al. 2021) and changing their depositional dynamics 
(Droppo and Ongley 1994; Droppo et al. 2005). After parti-
cle deposition on the bed surface, Brunke (1999) described 
clogging occurrence through particle infiltration and reten-
tion in the bed, resulting in pore bridging and particle reten-
tion. This reduces bed permeability (Schälchi 1992) and 
porosity (Gayraud and Philippe 2003) and creates a clog-
ging depth, ultimately leading to sediment-column clogging.  
Experimental studies have demonstrated that multiple fac-
tors may affect fine sediment deposition and riverbed clog-
ging, including the suspended-to-matrix particle size and 
shape (Hutson 2014), suspended particle concentration 
(Pholkern et al. 2015), particle characteristics (Rehg et al. 
2005), hydraulic gradient between river and groundwater 
(Schälchi 1992), and flow conditions (Fetzer et al. 2017). 
This may also depend upon the successive occurrence of 
flood events (Blaschke et al. 2003) and the depositional 
history (Lau et al. 2001). However, the upscaling of this 
research to the catchment scale remains limited, which ham-
pers the conceptualization and representation of fine sedi-
ment deposition and potential clogging in catchment-scale 
models (e.g.Arnold et al. 1998; Bieger et al. 2017) that may 
be used to improve our understanding of the sediment cas-
cade and design relevant mitigation strategies to limit the 
deleterious effects of fine sediment deposition. Such models 
indeed face the issues of model parameterization, including 
the difficulty of adequately representing the nonlinear inter-
actions of river and hillslope processes and the subsequent 
interactions between physical and biological factors in river 
channels (Shrivastava et al. 2020).

Field-based studies performed over multiple river reaches 
can help determine the controlling factors of particle depo-
sition and parameterizing models. Indeed, they implicitly 
consider multiple processes affecting sediment deposition, 
evaluated over numerous river reaches and conditions. 
Datry et al. (2015) analyzed clogging through hydraulic 
conductivity in more than 100 river reaches in France over 
2 years, both in winter and summer, to prioritize the factors 
significantly affecting riverbed clogging. Interestingly, one 
of their main results was that clogging varied more over 
the different monitored reaches than over seasons. Naden 
et al. (2016) analyzed fine sediment deposition in 230 catch-
ments in England and Wales and found that stream power 
and flow velocity exhibited a significant relationship with 
deposited sediment density in streams saturated with fine 
particles, suggesting that deposited sediment dynamics were 
controlled by in-stream dynamics. In their study, the sedi-
ment pressure, mostly from agriculture, was also significant, 
as also indicated by Sutherland et al. (2010) and Konrad and 
Gellis (2018). In another large-scale study, Stewardson et al. 
(2016) developed a model of clogging based on hydraulic 
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conductivity data acquired from 153 river reaches. They 
showed that the river reach geometry, catchment character-
istics, and stream power significantly controlled riverbed 
clogging.

The different controlling factors proposed in these stud-
ies also highlights the potentially highly variable dynamics 
of fine sediment deposition and clogging, resulting from 
both in-stream and hillslope processes that may vary both 
between and within catchments. The significant relation-
ships as well as model predictions presented by Naden et al. 
(2016) included scattering between modeled and measured 
values over more than one order of magnitude. Similarly, 
the model by Stewardson et al. (2016) explained 30% of the 
variance in external cross-validation, suggesting that these 
relationships could provide interesting variation trends, 
although they cannot be used as reliable predictors, limiting 
extrapolation possibilities.

Machine-learning models provide alternative approaches 
that can extract knowledge and draw inferences from data. 
As data-driven methods, they are implicitly able to consider 
multiple and potentially nonlinear relationships between var-
iables. They have been successfully used to predict water 
quality, such as dissolved species content (Khullar and Singh 
2021) but also for sediment spatial distribution and tempo-
ral variation modeling (Taşar et al. 2017; Harmshaw et al. 
2018; Hou et al. 2019; Ren et al. 2021). Recent studies such 
as those conducted by Baldan et al. (2020) and Baldan et al. 
(2021) demonstrated the potential of modeling cascades to 
analyze sediment dynamics at the catchment scale. These 
studies made use of physically based catchment and river-
reach models to feed a machine-learning model, with prom-
ising results. However, such an approach requires extensive 
datasets as model inputs to make accurate predictions, which 
may limit their applicability to numerous river reaches and 
extrapolation possibilities. To the best of our knowledge, 
the combined use of field-based monitoring and machine-
learning approaches for modeling fine sediment deposition 
and the associated model performance and extrapolation 
possibilities have not been addressed in previous research.

In this study, we analyzed the spatial variability in fine 
sediment deposition at the catchment scale and attempted 
to gain insights into the driving factors, considering both 
hillslopes and in channel processes. To this end, an extensive 
and unique dataset, including the entire river network of 
three temperate catchments, was collected and analyzed. It 
was then used to develop a random forest model. To evaluate 
the model potential for application in unmonitored catch-
ments, the model extrapolation performance was tested. This 
original modeling approach successfully predicted fine sedi-
ment deposition over the three monitored catchments and 
may therefore contribute to the understanding and manage-
ment of sediment (dis)connectivity in catchments (Poeppl 
et al. 2020).

2  Materials and methods

2.1  Catchment location and characteristics

In this study, we considered three different catchments 
located in different French regions (Fig. 1). We hypoth-
esized that variations in land use would induce differences 
in fine sediment supply to river channels. Consequently, 
two nearby catchments with contrasting land uses were 
selected for this study: the Beuvron and Cisse catchments 
are located in central France and are mostly covered with 
forested (72% of the Beuvron catchment) and agricultural 
areas (61% of the Cisse catchment), respectively. The third 
catchment presented a mix of land uses and was located in 
a different geological context: the Loisance catchment is 
located in Brittany, in western France. The lithology mainly 
consists of Proterozoic magmatic rocks (83%) in the Lois-
ance catchment, while the Beuvron and Cisse catchments 
were mainly covered by Cenozoic sedimentary layers: clay 
and sands (92%) and limestone (80%), respectively. Land 
use was determined using Corine Land Cover. National crop 
statistics indicated that the agricultural lands in the Beuvron 
and Cisse catchments mainly corresponded to cereals (51% 
and 82%, respectively), such as wheat, maize, and barley. Of 
note, 43% of the agricultural lands in the Loisance catch-
ment consisted of grasslands, while grasslands covered 
20% and 3% of the Beuvron and Cisse agricultural lands, 
respectively. Catchment morphological characteristics were 
calculated using a 25-m resolution digital elevation model 
(DEM). The main catchment characteristics are summarized 
in Table 1.

2.2  Fine sediment deposition measurements

In this study, we focused on fine sediments, defined as parti-
cles with diameter finer than 2 mm (Walling and Moorehead 
1989; Walling et al. 2000). Evaluating fine sediment depo- 
sition over the entire river network of the three different  
catchments required a compromise between data accu-
racy and the duration of the monitoring campaigns. We  
therefore did not follow a systematic approach but rather  
considered a river reach as a homogeneous entity in the  
field, delineated following expert knowledge and obser-
vations, following the method proposed by Dupeux and  
Favreau (2017), adapted from Archambaud et al. (2005).  
Consequently, in this study, the measured reach lengths  
varied; the reach length quantiles of 10%, 50% (median)  
and 90% were 39 m, 121 m, and 332 m, respectively. It  
is therefore acknowledged that some reaches may exhibit 
local, although limited, variations in their characteristics.

Fine sediment deposition was visually estimated based 
on the sediment areal coverage and water turbidity following 
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manual stirring (Dupeux and Favreau 2017), which is simi-
lar to the shuffle index proposed by Clapcott et al. (2011). It 
differs from classical methods such as the one from Lambert 
and Walling (1988) or Navratil et al. (2010) in that it allows 
for a quick estimate of sediment deposition intensity, although 
only providing semi-quantitative results as suspended sediment 
concentration or turbidity is not measured. The sediment depo-
sition intensity was divided into four classes: 0%, 25–50%, 
50–75%, and 75–100% (Fig. 2). Although visual assessment 
methods were questioned in regard to their use in the quan-
titative assessment of sediment deposition intensity (Sennatt 
et al. 2006), recent studies have demonstrated that they may 
provide an appropriate method for deposit estimates (Conroy 
et al. 2016), as they was demonstrated to correlate well with 
quantitative estimates of sediment stocks (McKenzie et al. 
2022) while providing quick estimates. Finally, surface stir-
ring ensured that the extreme classes were reliably estimated 
and did not correspond to a thin layer of surficial clogging. 
However, it is acknowledged that the 25–50% and 50–75% 
classes may be difficult to discriminate in the field. Despite 
its drawbacks, this method might be among the few that may 

be applied to studies that include the entire river network with 
multiple catchments.

2.3  Dataset collection

In addition to fine sediment deposition intensity, multiple 
measurements were performed for the river reaches, includ-
ing river geometry and flow conditions during the field 
campaign. We based variable selection on previous litera-
ture results and a national protocol (Gob et al. 2014). It is 
expected that the corresponding dataset will grow over time, 
which would provide interesting opportunities for model 
extrapolation. The monitoring protocol related to in chan-
nel variables is similar to the protocol proposed in Raven 
et al. (2003) and Clapcott et al. (2011), and is summarized 
in McKenzie et al. (2022).

It is hypothesized that stream power, depending upon 
channel geometry and channel slope, may be a variable 
controlling sediment deposition and erosion variability 
(Naden et al. 2016). Consequently, the main morphologi-
cal characteristics of river reaches controlling the local 

Fig. 1  Location and elevation of the studied catchments within the Loire Brittany River basin, France: the a Beuvron, b Cisse, and c Loisance 
catchments. The dots in the right panel correspond to the catchment centroids



Journal of Soils and Sediments 

1 3

hydraulics (Van Rijn 1993) were measured on the field 
through transects (reach width, depth, length) or calculated 
(reach slope, sinuosity). As Fetzer et al. (2017) suggested 
that flow condition is an important controlling variable, it 

was also visually estimated using previously established 
classes (Clapcott et al. 2011). It was assumed that habi-
tat diversity might be a synthetic indicator of degraded 
river reaches, which may therefore be used as a proxy of 
river dynamics. Habitat diversity was estimated as a rela-
tive measure on each river reach. During the field survey, 
the relative proportion of wood debris (length > 30 mm), 
cobbles (width > 128 mm), plant roots, aquatic vegeta-
tion, and organic litter density was estimated for each river 
reach. Habitat diversity was then classified into 4 different 
classes, ranging from “none,” in the absence of habitat 
on the river reach, to “high” when both the density and 
variety of habitats was important (Le Bihan 2020). Finally, 
the visual assessment of the underlying bed substrate was 
found to correlate well with sediment deposited mass 
(Naden et al. 2016). It was therefore evaluated by walk-
ing up in the river reaches and estimating the dominant 
substrate type, in the same way as described in McKenzie 
et al. (2022).

In addition to within-channel dynamics, hillslope dynam-
ics should be considered as potential sediment sources 
(Sutherland et al. 2010; Wagenhoff et al. 2011; Davis et al. 
2021). In particular, agricultural areas may supply important 
fine sediment quantities to river reaches and should there-
fore be considered (Konrad and Gellis 2018). Therefore, the 
lower end of each river reach was considered the outlet of a 
subcatchment. For each of these subcatchments, the corre-
sponding upstream surface area and the land-use proportions 
in the drainage area were calculated.

Table 1  Main characteristics of the studied catchments

Characteristics Beuvron Cisse Loisance

Morphometry
Catchment area (km2) 2207 849 207
Catchment height Minimal (m) 63 47 8

Mean (m) 113 111 110
Maximal (m) 189 151 193

Monitored reaches Length (km) 1098 512 334
Number (−) 6725 1776 2801

Main reach length (km) 113 104 32
Catchment slopes Median (%) 2.8 2.8 4

Quantile 99 (%) 8.3 22.3 24.1
Land use
Forests and  

grasslands
(%) 72 26 48

Croplands (%) 10 61 39
Urban areas (%) 14 12 12
Geology
Granite (%) 0 0 83
Sand (%) 40 10 17
Limestone (%) 8 80 0
Clay (%) 52 10 0

Fig. 2  Illustrations of different 
sediment deposition intensity 
classes, in increasing order, as 
estimated in the field. a No fine 
sediment (0%), b weak intensity 
(25–50%), c moderate intensity 
(50–75%), and d high intensity 
(75–100%)
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Finally, physical barriers such as weirs were observed on 
some of the river reaches (4.7% of the total river reaches). 
Such obstacles were assumed to affect the flow and the 
within-reach sediment dynamics. They were therefore 
included in the dataset.

Fifteen variables were therefore compiled from 11,302 
river reaches. The data acquired, analyzed, and used for 
modeling are summarized in Table 2. A correlation matrix 
was calculated using Pearson’s r and Spearman’s ρ coeffi-
cients to analyze the variables that correlated with deposi-
tion intensity and to draw hypotheses on the factors affecting 
fine sediment deposition. The correlation matrix is provided 
as supplementary material (Table S1).

Important temporal variations in fine sediment deposition 
may occur in river reaches depending on the hydrological 
regime, particularly the occurrence of flood events (Gener-
eux et al. 2008). The monitoring was performed mainly in 
spring and autumn, when limited water height variations 
were expected while maintaining a sufficient water level for 
analysis (McKenzie et al. 2022). However, acquiring this 
extensive dataset required intensive fieldwork: one day was 
required to measure approximately 10 km. A single meas-
urement campaign was therefore available for analysis in 
this study (i.e., no temporal variations could be studied). As 
temporal variations may not always be the most important 
factor driving fine sediment deposition variability (Datry 
et al. 2015), it was assumed that the dataset acquired in 

this study may provide reliable information to analyze fine 
sediment deposition.

2.4  Prediction of sediment deposition intensity classes

In this study, fine sediment deposition was modeled using a 
machine-learning-based approach. Machine-learning models 
are able to autonomously build the relationships between the 
input and output variables, which is an important advantage 
when modeling complex processes such as sediment depo-
sition. Among these algorithms, random forest was used 
because of its ability to address high-dimensional datasets, 
including a mixture of numeric and categorical variables. 
It is able to address nonlinear relationships, as well as cor-
related features, while maintaining good predictive per-
formance (Skurichina and Duin 2002; Darst et al. 2018). 
Moreover, random forest has fewer hyperparameters (i.e., 
parameters controlling the learning process) than alterna-
tive machine-learning techniques. Data processing and ran-
dom forest training were performed using the “caret” (Kuhn 
2020) and “ranger” (Wright and Ziegler 2017) packages of 
R software v4.0.0 (R Core Team 2020).

Comparison exercises such as Hastie et al. (2009) and 
Probst et al. (2019) have shown the importance of tuning the 
number of variables randomly chosen in the learning proce-
dure among all considered predictors in each split (designed 
by mtry) and the node size. The small number of parameters 

Table 2  Estimated, measured, or calculated variables used in the model. As subcatchments may contain different land uses, each land use was 
considered a different variable

Variables Values (unit) Source

Sediment deposition intensity No deposits, weak, moderate, high (−) Field observations
Substrate granulometry Clay, silt, sand, gravel, pebble, stone, block, slab (−) Field observations
Flow condition Riffle, runs, pools, glides + within reach combination of flow conditions (−) Field observations
Flow intermittence Permanent or intermittent flow (−) Field observations
Habitat diversity None, weak, moderate, high (−) Field observations
Reach depth Numeric (m) Field measurement
Reach width Numeric (m) Field measurement
Reach length Numeric (m) Field measurement
Strahler order Numeric (−) GIS calculation
Reach slope Numeric (%) GIS calculation
Reach sinuosity Numeric (−) GIS calculation
Subcatchment area Numeric  (m2) GIS calculation
Subcatchment land use Artificial, cropland, forest, grassland, water bodies and mineral surface areas 

(Numeric,  m2)
Database 

(Corine Land 
Cover) + GIS 
calculation

Catchment identifier Name (−) Main river name
Barriers on the reach Yes/No (−) National database 

(Registre des 
Obstacles à 
l’Ecoulement)
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required by the algorithm reduces potential overlearning 
issues, computational costs, and optimization requirements. 
This is also an important benefit relative to physically based 
models, which usually face the issue of important parameter 
requirements, with associated equifinality and uncertainty 
issues (Beven and Freer 2001). Random forests also have the 
advantage of being able to estimate the relative importance 
of the variables.

However, two main challenges are worth pointing out. 
First, our dataset is relatively imbalanced (i.e., some classes 
are more frequent than others), which can pose some dif-
ficulties for classification models. This means that other 
machine- and/or deep-learning techniques (e.g., neural net-
works) may have provided better prediction performance or 
may have needed a smaller dataset to achieve similar predic-
tion performance. However, these alternatives may not have 
necessarily provided variable importance that were analyzed 
to improve the interpretability of the proposed machine-
learning-based results, which is a current research question 
(Molnar et al. 2020). Second, although of great practical 
importance, the question of variable importance is still a 
very active area of research (e.g., Iooss et al. 2022) because, 
depending on the context of the study (e.g., size of the train-
ing dataset, number of predictors, and dependence among 
them), there is currently no consensus on which approach 
to use. As an attempt to address this problem, we propose 
in Sect. 2.4.3 to apply multiple methods and to retain in the 
analysis only the results that were consistent between the 
different results.

From a more technical point of view, as a tree-based 
ensemble algorithm, random forest uses a large number of 
individual, unpruned decision trees to classify weak classi-
fiers (Breiman 2001). Each decision tree was grown using 
a subset of training data built by random sampling among 
samples and variables. A random selection of samples by 
bootstrap aggregating favors the stability of classifiers with 
good performances. The selection of random subsets of 
variables ensured correlation reduction and increased the 
robustness of the results. Then, branching point selections 
were built considering the best split among those variables 
at each node (Rokach 2010). This process was repeated until 
each branch end contained less than a prespecified number 
of observations. After tree partitioning was completed, the 
classification of a new sample was performed considering all 
decision trees using a majority vote. In this setting, overfit-
ting was avoided by growing many trees during the learning 
process.

2.4.1  Data preprocessing

Deposition intensity was initially divided into four distinct 
classes: no sediment deposition (0%) and weak (25–50%), 
moderate (50–75%), and high (75–100%) sediment 

deposition intensity. A preliminary modeling attempt 
revealed that the model had difficulties discriminating 
between the 25–50% and the 50–75% classes. This result 
was consistent with the inherent difficulty in estimating the 
medium deposition intensity classes in the field (Sect. 2.2). 
Consequently, these classes were merged into a single class 
of intermediary deposition intensity to improve prediction 
performance. Three classes were therefore considered for 
prediction purposes: 0%, 25–75%, and 75–100%, referred 
to as “no sediments,” “medium deposition intensity,” and 
“maximal deposition intensity,” respectively. When variables 
had missing values (3% to 14%, only numerical values), they 
were replaced by the weighted average of nonmissing obser-
vations using the imputation method implemented within the 
“randomForest” R package (Liaw and Wiener 2002).

2.4.2  Model tuning and evaluation

The dataset was randomly divided into a training set (70% of 
the initial dataset) and a test set (30% of the initial dataset), 
and each set had the same proportion of the three deposition 
intensity classes. Hyperparameter estimation was based on 
a stratified, nested k-fold, cross-validation procedure (with 
k-folds = 5) to limit overfitting (Krstajic et al. 2014). Follow-
ing Breiman (2001), three values were tested for mtry (2, 
4, and 8) and three values for node size (1, 3, and 10). The 
final random forest model was trained by setting mtry to 8 
and node size to 1 and using default parametrization for all 
other parameters.

Model performance was assessed considering several 
indicators computed on the test set: accuracy, precision, and 
recall. They were defined as follows:

where TP and TN denote true positives and true negatives, 
respectively, and FP and FN denote false positives and 
false negatives, respectively. These values were presented 
in a confusion matrix (Table S2) and illustrated the per-
formances of the model for each class of deposition inten-
sity. The values of these three indicators vary between 0 
and 1. The closer the value is to 1, the better the model 
performance. Accuracy is a global measurement of the algo-
rithm’s ability to predict deposition intensity. In this study, 
a light imbalance was observed among the three classes of 
deposition intensity with a ratio of 3:12:4 for no sediments, 

(1)Accuracy =
TP + TN

TP + FN + TN + FP

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN
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medium deposition intensity and maximal deposition inten-
sity. This unequal class distribution may bias the interpreta-
tion of accuracy. Consequently, the model performance was 
also evaluated using precision and recall. Precision corre-
sponded to the proportion of reaches for which the predicted 
deposition intensity was that observed in the field among 
all reaches associated with this deposition intensity by the 
model. Recall indicated the proportion of reaches for which 
the predicted deposition intensity was truly that observed 
in the field among all reaches that truly had this deposition 
intensity. Precision can thus be understood as a measurement 
of quality, while recall is a measure of completeness. These 
two metrics were calculated by considering the test set as a 
whole but also then distinguishing the results obtained for 
each catchment.

2.4.3  Variable importance

Variable importance in the random forest model is computed 
to determine the relative influence of each predictor in the 
final prediction. Several studies have indicated that variable 
importance measures may exhibit different flaws in the case 
of correlated features in a dataset (Hooker 2007; Hooker 
et al. 2021). We thus used several measures of variable 
importance based on different computing procedures. First, 
we considered the mean decrease in impurity (MDI), which 
calculates each feature importance as the total decrease in 
node impurity, measured by the Gini index, averaged over 
all trees of the forest. As this measure is known to be biased 
toward covariates with many possible partitions, such as cat-
egorical variables (Strobl et al. 2007; Wright et al. 2017), we 
considered its unbiased counterpart, actual impurity reduc-
tion (AIR) (Nembrini et al. 2018). We then applied the test-
ing procedure of Altmann et al. (2010) to produce a p-value 
for each variable importance measure. Both were imple-
mented in the R package “ranger.” An alternative to Gini 
importance is the use of permutation importance approaches 
based on dataset row or column permutation. They do not 
suffer from the bias of Gini importance (Szymczak et al. 
2016) but may overestimate the importance of correlated 
variables (Hooker and Mentch 2021). We thus considered 
the methodology of Kursa and Rudnicki (2010) based on 
the addition of pseudo variables (called shadow attributes) 
in the model, implemented in the R package “boruta”. This 

procedure also includes statistical testing procedures for 
variable importance measures, which identify significantly 
important variables at the p-value scale.

Given that no standard method has been defined in the 
literature to compute variable importance (Iooss et al. 2022) 
and the uncertainties associated with the AIR and Boruta 
approaches, only those consistent results between both meth-
odologies are discussed.

3  Results

3.1  Field measurements and statistical analysis

An overview of the measured deposition intensity is provided 
in Table 3. Due to differences in catchment area, the propor-
tion of measured river reaches was higher in the Beuvron 
catchment (59.5%), followed by the Loisance (24.8%) and 
Cisse (15.7%) catchments. Most monitored river reaches 
had weak deposition intensity (37%), followed by moderate 
(27%) and high deposition intensity (21%) and no sediment 
deposition (15%). The measured fine sediment deposition 
exhibited contrasting behavior between and within catch-
ments, associated with significant spatial variability (Fig. 3).

Most Cisse catchment (Fig. 3a) upstream reaches were 
connected to agricultural fields, while some were located 
close to forested areas in the central part of the catchment. 
In this catchment, moderate to high fine sediment deposi-
tion intensity was measured in 70% of the reach lengths. 
Conversely, the other 30% mostly corresponded to upstream 
river reaches located in the forested part of the catchment.

In the Loisance catchment (Fig. 3b), a smaller proportion 
of river sections with deposition intensity higher or equal to 
moderate deposition intensity was measured. Indeed, 51% of 
the river reaches displayed no sediments or weak fine sedi-
ment deposition. Important local variations were measured 
with, e.g., alternations of high deposits and no sediments on 
successive river reaches.

In the Beuvron catchment (Fig. 3c), no clear deposition 
tendencies were observed in relation to land use. Indeed, 
weak and high deposition intensities were observed even 
in the most agricultural part of this catchment. However, in 
this catchment, the largest analyzed in this study (Table 1), 
fine sediment deposition exhibited a pattern of increased 

Table 3  Distribution of 
measured river reaches among 
catchments and sediment 
deposition intensity classes 
within the whole dataset

Catchment Beuvron Cisse Loisance Total
Sediment deposition intensity

No deposits (0%) 1179 (10.4%) 120 (1.1%) 399 (3.5%) 1698 (15%)
Weak (25%-50%) 2614 (23.1%) 572 (5.1%) 979 (8.7%) 4165 (37%)
Moderate (50%-75%) 1669 (14.8%) 729 (6.5%) 661 (5.8%) 3059 (27%)
High (75%-100%) 1263 (11.2%) 355 (3.1%) 762 (6.7%) 2380 (21%)
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deposition from upstream to downstream areas, while first-
order reaches exhibited a high number of river reaches with 
fine sediment deposition intensity higher or equal to moder-
ate intensity. Indeed, 56% of the total reach length exhibited 
moderate to high deposition intensity on low Strahler-order 
reaches (lower than 3), suggesting that first- and second-
order streams were more susceptible to fine sediment deposi-
tion. In the higher Strahler-order reaches (higher than 3), a 
progressive increase from weak sediment deposition inten-
sity in the upper reaches to moderate and high deposition 
intensity in the lower reaches was observed.

This observation was in line with the correlation matrix 
results, indicating that the variables that correlated best with 
clogging intensity were the channel width (r = 0.4, ρ = 0.3) 
and Strahler order (r =  −0.4, ρ =  −0.4) (Fig. 4). In our study, 
the autocorrelation between the Strahler order and channel 
width was low (r =  −0.2, ρ = 0.1), which can be explained 
by the investigation of the three different catchments in the 
dataset.

It was not surprising, given the observed variations in fine 
sediment deposition within the three studied catchments, 
that only weak relationships were found between deposition 

and the local variables. It is, however, interesting to note 
that some variables correlated with fine sediment deposi-
tion intensity, particularly when considering each catch-
ment separately (Fig. 5). Indeed, there was, for instance, no 
relationship between fine sediment deposition intensity and 
slope (r and ρ were < 0.1) using the entire dataset (Fig. 5a) 
and those for the Beuvron and Cisse catchments (Fig. 5b). 
However, the relationship between deposition intensity and 
slope was significant at the 5% level of probability for the 
Loisance catchment (r =  −0.3, p =  −0.3), suggesting that the 
local river reach characteristic variations changed local fine 
sediment deposition dynamics in this catchment.

3.2  Modeling fine sediment deposition

The global accuracy of the random forest model was 81% on 
the test set, demonstrating the strong predictive capabilities 
of machine-learning models to predict deposition intensity. 
The model performed well at predicting the different deposi-
tion intensity levels, as the precision was higher than 80% for 
all deposition intensity classes (Table 4). The exception was 
the 46% precision for prediction of the “no sediment” class 

Fig. 3  Overview of the measured deposition intensity in the studied catchments: a Cisse, b Loisance, and c Beuvron
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of the Cisse catchment. However, this class only represented 
120 river reaches (6.7% of the catchment river network). 
Consequently, the data-driven model presented in this study 
had difficulties predicting a small number of river reach con-
ditions. Moreover, the confusion matrix (Table S2) indicated 
that the model tended to predict the medium deposition inten-
sity class (25–75%) more often than observed, which may be 
related to the higher representation of this class in the initial 
data (Table 3). The global recall (70%) was also reasonable, 
but with significant between-class differences. For example, 
the medium deposition intensity class had a high precision 
and recall (81% and 93%, respectively), showing good model 
predictive ability. However, the “no sediment” class had high 
precision but poor recall (80% and 48%, respectively), indi-
cating that the model adequately predicted no sediments on 

a river reach, but it was not able to retrieve more than half 
of the reaches with no sediment deposition. This result sug-
gested that the no sediment class was less well-described 
by the dataset. The between-catchment differences in model 
performance may be partly related to their unbalanced rep-
resentation in the whole dataset, as 59.5% of the data were 
from Beuvron, 15.7% were from Cisse, and 24.8% were from 
Loisance (Table 3).

The global model performance was promising. It was 
therefore assessed whether the model was able to repro-
duce the spatial fine sediment deposition patterns. The pre-
dicted values matched the measured pattern of fine sediment 
deposition in the three studied catchments reasonably well 
(Fig. 6). Interestingly, the model was able to capture the 
progressive deposition increase occurring in downstream 
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directions along reaches (e.g., from east to west in the 
Beuvron catchment), as well as the high deposition inten-
sity measured in first-order reaches. These results demon-
strated that the proposed model was also able to predict 
the observed fine sediment deposition spatial organization. 
It may therefore provide an interesting tool to assess the 
dynamics of this highly heterogeneous process, provided suf-
ficient relevant data are available in the training set.

Indeed, extensive databases such as those acquired in 
this study may not always be available to apply data-driven 
models such as the one proposed in this study. We therefore 
assessed whether the proposed approach could be applied 
in other contexts with fewer measurements. Several models 
were built considering various sizes of training data, from 
1 to 70%, using 7% increments, from the training set (70% 
of initial data) (Fig. 7). The performances of these models 
were then computed using the test set (30% of initial data), 
allowing model comparison. The model accuracy increased 
from 59 to 81% with an increasing number of river reaches 
used for modeling. Being a data-driven model, this increase 
in model performance with increasing dataset size was not 
surprising. However, it is worth noting that using only 8% 
of the training set resulted in a 70% accuracy, which may 
be considered an acceptable result. The model had a bet-
ter performance when only considering the Beuvron catch-
ment than when considering the three catchments together, 
which was probably related to the higher number of river 
reaches analyzed in this catchment. Similarly, lower values 

of precision and recall for the Cisse catchment were prob-
ably related to the lower number of river reaches observed in 
this catchment. Accuracy was lower for the Loisance catch-
ment (76%), which may be consistent with the observed 
highly spatially heterogeneous data measured in this catch-
ment (Fig. 3b). Overall, these results indicated that most 
dataset variability was captured using a dataset including 
8% to 15% of the catchment river reaches, corresponding to 
approximately 630 to 1190 river reaches measured across the 
three catchments, with a good model performance.

4  Discussion

4.1  Driving factors of fine sediment deposition

Given that the model performance can be considered accept-
able for various deposition classes, locations, and contrasted 
river reaches, it was used to determine the hierarchy of the 
factors controlling fine sediment deposition through the 
computation of their relative importance.

Bed substrate granularity, flow condition, reach depth and 
width, cropland cover proportion, and forest and grassland 
cover proportions were the six most influential variables in 
regard to deposition intensity regardless of the considered 
methodology (Figs. S1 and S2). Interestingly, the presence 
of barriers on the river reaches did not provide a significant 
explanatory variable. This result suggested either that the 
barriers did not affect a sufficient number of reaches or that 
the corresponding reaches were characterized by configura-
tions that would have resulted in fine sediment deposition 
even in the absence of barriers (e.g., limited slopes and high 
particle contributions from hillslopes).

The importance of bed substrate granularity, previously 
noted by Sutherland et al. (2010), may reflect at least two 
different processes (Shrivastava et al. 2020). The suspended 
particle size, compared to the size of particles deposited on 
the riverbed, may increase or limit their accumulation on 
the riverbed because of pore bridging (Brunke 1999) and 
associated decreased bed permeability, further consolidat-
ing the bed. It will therefore contribute to the persistence 
or absence of fine sediment deposition (Fetzer et al. 2017). 
The underlying bed substrate may also reflect the under-
lying material and therefore its erodibility, as the texture 
is usually correlated with soil erodibility in the literature 
(Torri et al. 1997). This hypothesis would be consistent with 
the model variable ranking results, indicating that land-use 
indicators are meaningful variables to explain the deposit 
intensity variability, particularly the proportion of cropland 
and forest cover in the reach subcatchments. Moreover, it 
was observed in the Cisse catchment that most upstream 
reaches, displaying high sediment deposition intensity, were 
connected to agricultural fields (Fig. 3a), which produce 

Table 4  Global and per class performances of the random forest 
model

Bold numbers indicate model results considering the three deposition 
classes

Catchment Sediment deposition 
intensity

Precision (%) Recall (%)

All catchments Overall 82 70
No sediments 80 48
Medium 81 93
Maximal 83 70

Beuvron Overall 84 76
No sediments 84 61
Medium 84 93
Maximal 85 73

Cisse Overall 66 55
No sediments 46 16
Medium 83 92
Maximal 70 57

Loisance Overall 75 62
No sediments 66 22
Medium 73 92
Maximal 87 72
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higher suspended-sediment concentrations than forests or 
grasslands during erosive rainfall events (e.g., Cerdan et al. 
2010). They may therefore supply high fine particle loads 
to river channels. The combination of erodible fields and 
a high field-to-stream connectivity (Fryirs 2017) resulted 
in medium to high deposition intensity in 70% of the reach 

lengths, as also found by Sutherland et al. (2010), Naden 
et al. (2016), and Konrad and Gellis (2018). This would also 
suggest that in this lowland, mostly agricultural catchment, 
transport capacity-limited conditions controlled most fine 
sediment deposition dynamics, as supported by the limited 
slopes in this catchment (mean: 3%).

Fig. 6  Modeling results on the three studied catchments for the test 
set. River reaches in green correspond to sediment deposition inten-
sity that was adequately predicted by the model. River reaches in red 

indicate an error in model prediction. Missing reaches were those 
included in the training set
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The flow conditions are representative of the local 
stream morphology and integrate various variables that 
may be particularly important in controlling fine sediment 
deposition (McKenzie et al. 2022), particularly successive 
deposition–erosion cycles. Similarly, and in agreement with 
the correlation matrix, river reach width and depth, which 
directly influences water velocity and therefore sediment set-
tling, was an important variable, as previously suggested in 
the literature (Datry et al. 2015). This importance may be 
explained by an increasing channel reach width resulting in 
lower fluid velocity and, consequently, increased sediment 
settling. This result is consistent with those of Stewardson 
et al. (2016). Similarly, a lower Strahler order corresponded 
to channels with a direct connection between river reaches 
and sediment sources, which may indicate why this vari-
able correlated with sediment deposition intensity, as also 
reported by Relya et al. (2012). This result would support the 
first evidence provided by the statistical analysis (Sect. 3.1). 
However, the high dispersion in the relationships between 
deposition intensity and channel geometry indicated that 
the relationship is probably complex and highly nonlinear 
(maximum correlation coefficient was 0.4; Table S1). The 
model performance indicated that it successfully captured 
this nonlinear behavior. This result may explain the alterna-
tion of maximal deposits and no sediments on successive 
river reaches, as observed in the Loisance catchment, as well 
as the correlation between sediment deposition and the local 
slopes, as previously suggested by Naden et al. (2016), both 
of which suggests the significance of local in-stream pro-
cesses in this catchment.

Consequently, the results from this study indicate the 
importance of considering sediment sources as well as in-
stream processes when analyzing fine sediment deposition. 
The Beuvron catchment provided an example of the linkage 
between hillslopes and river processes, with various depo-
sition intensities measured in first-order reaches and a pro-
gressive increase in sediment deposition in higher reaches. 
This result suggested that first- and second-order streams 
were more susceptible to fine sediment deposition, probably 
because of increased connectivity between hillslope sources 
and streams and their lower transport capacity (Relya et al. 
2012). The model performance was slightly lower on the 
first Strahler-order reaches compared to those with a higher 
Strahler order: modeled values matched measurements 73% 
and 79% of the time, respectively. This may be explained 
by the relatively general descriptions of hillslope processes, 
as the current study only considered land use and the area 
upstream of river reaches (Table 2). This result suggested the 
strong contribution of sediment sources upstream with pos-
sible transport capacity-limited conditions, as supported by 
the mean slope (1%), while the downstream reach deposition 
intensity may be controlled by fine sediment availability in 
this lowland forested catchment.

This study provides the first general illustration of the 
potential of this methodology, combining hillslope and 
river process representations. It may therefore be a relevant 
contribution to study sediment (dis)connectivity in catch-
ment (Fryirs 2013), providing an additional tool to study the 
catchments sediment sinks. Despite providing an extensive 
dataset, some processes or specific combinations of river 
reach characteristics were overlooked in the present study 
and should be further refined. Indeed, it should be noted 
that some residual variability remained regardless of the 
number of measurements used to train the model (Sect. 3.2) 
and was not captured by the variables included in the data-
set. Further developments may rely on the use of numerical 
modeling to improve the representation of hillslope and river 
reach processes in such methodology (Baldan et al. 2021). 
Moreover, due to time constraints in field monitoring, only 
one measurement campaign was used in this study, while the 
progressive deposition and flushing effects of flood events 
should influence fine sediment erosion and deposition pat-
terns. Future studies may therefore use multiple measure-
ment campaigns and evaluate the model’s ability to take into 
account temporally varying variables. Indeed, although the 
spatial variability of clogging may dominate over its tem-
poral variability (Datry et al. 2015), the latter should not be 
neglected, particularly considering the importance of vari-
ables related to flow, such as stream power, as indicated in 
the literature (Naden et al. 2016). Such variables may exhibit 
high temporal variability from the flood event to the annual 
(i.e., low-flow and high-flow periods) scale, with possible 
consequences on the sediment erosion–deposition cycle and 
therefore riverbed clogging (Genereux et al. 2008).

4.2  First attempt to catchment extrapolation

The model showed good predictive performance when the 
river reaches of the three sampled catchments were included 
in the training and testing sets. This result indicated that 
the training sample was representative of the entire dataset, 
ensuring generalization capacities (Barbiero et al. 2020; 
Kernbach and Staartjes 2022) when data were available for 
each catchment in the training set. We then tested the model 
extrapolation ability across a catchment with no samples 
included in the initial training set. To this end, training con-
figurations excluded one or two catchments from the training 
phase. Model performances were then tested on the same test 
set, containing samples from the three catchments (Table 5). 
As expected for this data-driven model, removing one of 
the catchments led to a drastic decrease in model accuracy. 
For instance, removing observations from the Cisse catch-
ment, which had the lowest number of observations, led 
to the highest decrease in performance (accuracy = 24%). 
However, this decrease was similar for each of the three 
catchments, suggesting that the unbalanced distribution of 
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observations among the three catchments did not signifi-
cantly influence model performance. Similarly, considering 
only the Beuvron catchment, which had the highest num-
ber of measured river reaches, but the smaller agricultural 
area proportion to train the model, resulted in poor model 
performance (accuracy = 45%). When considering only the 
Cisse catchment, the decrease in performance was important 
but remained smaller (accuracy = 58%). As the Cisse catch-
ment was mainly covered with cropland areas, this result 
underlined the importance of considering land use to predict 
fine sediment deposition intensity at the catchment scale, as 
already suggested by the analysis of variable importance and 
literature (e.g., Konrad and Gellis 2018; Davis et al. 2021).

Overall, these results illustrated that the incorporation of 
a limited number of observations from different catchments 
may lead to significant improvement in the robustness of 
model predictions. As it may not always be feasible to moni-
tor the entire catchment river network, the proposed model 
may therefore be helpful to upscale an analysis conducted 
on a selection of well-monitored river reaches to the entire 
catchment scale with satisfactory accuracy. Preliminary 
work based on the framework proposed in this study would 
help design such measurement campaigns by selecting the 
most influential variables and representative river reach 
characteristics that should be monitored. It would help target 
the most relevant measurements that should be performed 
and reduce extensive monitoring efforts, such as the one 
performed in this study. Additional time may therefore be 
dedicated to specific measurements (e.g., quantitative clog-
ging assessment; Descloux et al. 2010) or to multiple meas-
urements over time of some representative river reaches to 
study deposit temporal dynamics in relationship with, e.g., 
variations in bed erodibility and sediment sources, which are 
known to exhibit significant temporal variability (Droppo 
et al. 2001; Grabowski et al. 2012; Haddad et al. 2022). 
Future work should benefit from such measurements and 
should study the complementarity between the model and 
existing national databases to prioritize mitigation strategies, 
to be designed in collaboration with stakeholders, consid-
ering both sediment supply from hillslopes and in-stream 
sediment dynamics (Wharton et al. 2017).

5  Conclusions

An extensive database, including fine sediment deposition 
measurements obtained from three temperate catchments, 
was acquired and analyzed. A statistical analysis suggested 
that fine sediment deposition is a nonlinear and multifacto-
rial process. Measurements collected during this study were 
used to develop and evaluate a machine-learning model 
using a random forest approach. The results demonstrated 
that this modeling approach, which has very rarely been 
applied to the study of sediment dynamics, may be relevant 
to evaluate fine sediment deposition at the catchment scale.

Variable ranking was proposed to quantify the relative 
importance of the different factors affecting fine sediment 
deposition. In line with the results from the statistical analy-
sis, the importance of the river channels characteristics as 
well as that of sediment source proximity, particularly in 
agricultural areas, was suggested. It indicated the impor-
tance of considering both hillslope and in channel processes 
when analyzing fine sediment deposition in rivers.

Future work should include other monitoring campaigns 
conducted in catchments located in more contrasting envi-
ronments to evaluate the model representativeness. Our 
central hypothesis was that fine sediment deposition can be 
studied using a single measurement campaign. However, 
we recognize that temporal variations in hillslope and river 
reach processes, including barrier maneuvers, may influ-
ence sediment deposition. Measurements performed over 
various periods (e.g., low-flow versus base-flow periods and 
the effects of flood events) should therefore be considered. 
Improving the representation of hillslope processes in this 
modeling approach may improve our understanding of fine 
sediment transfers along the hillslope-to-river continuum.

The proposed approach may help improve our under-
standing and our capacity to predict fine sediment depo-
sition in streams, which is key to understanding sediment 
dynamics at the catchment scale, particularly sediment  
(dis)connectivity. It may also be used for prioritizing the 
implementation of mitigation measures and/or the design of  
future monitoring campaigns, which should ultimately help 
decision-makers improve water quality to meet the objec-
tives of environmental legislation, such as the Water Frame-
work Directive in the European Union.
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