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Geometric Brownian motion is an exemplary stochastic processes obeying multiplicative noise, with
widespread applications in several fields, e.g. in finance, in physics and biology. The definition of the process
depends crucially on the interpretation of the stochastic integrals which involves the discretization parameter
α with 0 ≤ α ≤ 1 , giving rise to the well-known special cases α = 0 (Itô), α = 1/2 (Fisk-Stratonovich) and
α = 1 (Hänggi-Klimontovich or anti-Itô). In this paper we study the asymptotic limits of the probability distri-
bution functions of geometric Brownian motion and some related generalizations. We establish the conditions
for the existence of normalizable asymptotic distributions depending on the discretization parameter α . Using
the infinite ergodicity approach, recently applied to stochastic processes with multiplicative noise by E. Barkai
and collaborators, we show how meaningful asymptotic results can be formulated in a transparent way.

I. INTRODUCTION

Stochastic processes in the presence of multiplicative noise
are a commonly encountered phenomenon in the sciences. In
a general way, we consider a variable x(t) which follows a
stochastic differential equation. If the corresponding random
term in the equation does not depend on the state of the sys-
tem (i.e., on x(t)), we call it additive noise. On the other
hand, if the random term depends on the state of the system
x(t), then the noise term is called multiplicative. A prime ex-
ample of multiplicative noise from physics is the statistical
theory of turbulence, where the energy cascade can be mod-
eled by a Markov process at least down to the Taylor scale,
which governs the intermediate scale of turbulent eddies [1].
The one-dimensional stochastic process across the scales, the
Kolmogoroff-Obukhov theory (K62) [2] can be approximated
by a geometric Brownian process. The geometric Brownian
process is defined by a stochastic differential equation with
the random term which is directly proportional to the state
x(t) of the system. A highly prominent example of geomet-
ric Brownian motion is the modeling of stock prices, notably
with the celebrated Black-Scholes model of option pricing
[3, 4]. The relation between the stochastic behaviour of finan-
cial markets and the turbulence cascade has been discussed in
Ref.[5]. Multiplicative noises are also used for explaining the
ballistic-to-diffusive transition of the heat propagation [6, 7].
In this case, a chain of particles is considered with a multi-
plicative stochastic force field able to be energy-conserving
for each particle of the system. Random systems with multi-
plicative noise find applications also to cosmology and statis-
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tical field theory [8]. Moreover, stochastic differential equa-
tions with multiplicative noise have been largely studied to
model the heterogeneous diffusion processes with and with-
out resetting, with applications to several problems including
the transport in heterogeneous materials, random fractals or
amorphous systems, the analysis of financial time series, and
the active motion of cells [9–15]. Finally, there are other
applications in biology for which we cite as examples the
stochastic firing of neurons [16, 17], phenotypic variability
and gene expression [18, 19], and the motion of molecular
motors [20], notably chromatin remodeling complexes acting
on nucleosomes [21, 22].

All these cases have in common that they deal with first-
order stochastic differential equations of the form

dx
dt

= h(x, t)+g(x, t)ξ (t), (1)

where h(x, t) is the drift term, g(x, t) is the diffusion term,
and the stochastic process ξ (t) is a Gaussian noise with av-
erage value E {ξ (t)} = 0, and correlation E {ξ (t)ξ (τ)} =
2δ (t − τ). The stochastic differential equation has a well-
defined meaning only if we declare the adopted interpreta-
tion of the stochastic integrals. To achieve this, we have to
specify the discretization parameter α , defining the position
of the point at which we calculate any integrated function in
the small intervals of the adopted Riemann sum (0 ≤ α ≤ 1)
[23–26]. This integration theory includes the Itô (α = 0) [27],
the Fisk-Stratonovich (α = 1/2) [28, 29], and the Hänggi-
Klimontovich or anti-Itô (α = 1) [30, 31] as particular cases
(see also Ref.[32]). In fact, our above-mentioned example of
the turbulent cascade, in which t is identified with the cascade
scale, is commonly interpreted in the Fisk-Stratonovich sense,
while the Black-Scholes stock market model is treated in the
Itô-interpretation. For the heat conduction, it has been proved
that all stochastic interpretations are equivalent [7].
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The stochastic process can likewise be described with the
help of the Fokker-Planck equation, a partial differential equa-
tion for the probability density function (PDF) W (x, t) of the
stochastic process given by [23–26, 33]

∂W
∂ t

=− ∂

∂x

[(
h+2αg

∂g
∂x

)
W
]
+

∂ 2

∂x2

(
g2W

)
, (2)

where the first term represents the force-dependent drift, the
second a noise-induced drift which explicitly depends on α ,
and the third the diffusion term generated by the noise. The
noise-induced drift term is absent when ∂g/∂x = 0, i.e. for
purely additive noise. Thus, the choice of the stochastic cal-
culus - the choice of the discretization parameter - is rel-
evant only in the case of multiplicative noise. The theory
can be generalized to take into consideration possible cross-
correlation of the noises [34, 35]. The Fokker-Planck Eq.(2)
can be also rewritten in the following useful form

∂W
∂ t

=
∂

∂x

{
−hW +g2α ∂

∂x

[
g2(1−α)W

]}
, (3)

which is readily demonstrated by performing the derivatives.
In this paper we are interested in a full characterization

of the probability distribution function (PDF) for geometric
Brownian motion and some generalizations of this process.
We will in particular consider the class of stochastic equations
with simple algebraic nonlinearities for the drift and noise
terms

dx
dt

= H(t)xn +G(t)xm
ξ (t), (4)

since they will readily allow us to obtain analytic results.
Specifically, we are interested in the conditions that guarantee
the existence of a normalizable asymptotic long-time limit, or
stationary PDFs, given by

Was(x) = lim
t→∞

W (x, t) . (5)

That the existence of such PDFs is not generally guaranteed,
and it indeed depends on the discretization parameter α , was
recently shown by Barkai and collaborators [36–38] for cer-
tain cases we comment on below. The authors introduced
the concept of infinite ergodicity in the discussion, which al-
lowed them to define a procedure to extract meaningful phys-
ical quantities from these non-normalizable distributions. In
particular, it is possible to determine the asymptotic behavior
(with time going to infinity) of the expected value of differ-
ent physical observables. In statistical mechanics, these ap-
proaches are used when the potential energy is non-confining
and thus generates an infinite phase space (or infinite mea-
sure space [39]), whence the name infinite ergodicity. In
Ref.[37], the case of geometric Brownian motion was explic-
itly excluded from the discussion, so we extend its analysis in
the present work. More specifically, we consider a geomet-
ric Brownian motion, m = 1 in Eq.(4), with a nonlinear drift
(n ̸= 1) and then we introduce a generalization with a nonlin-
ear diffusion term (m ̸= 1).

The structure of the paper follows. In Section II, we intro-
duce the geometric Brownian motion with time-varying and

linear drift and diffusion terms. We obtain here a generalized
log-normal distribution. In Section III, we introduce a non-
linear drift term in the geometric Brownian motion stochas-
tic equation, and we investigate the existence of normaliz-
able asymptotic densities as defined in Eq.(5). In Section IV,
we discuss the concept of infinite ergodicity by considering a
simple overdamped system taken from statistical mechanics.
We then apply this concept to the geometric Brownian motion
with non linear drift term in Section V. To conclude, we gen-
eralize our approach for systems with an algebraic nonlinear
diffusion term in Section VI.

II. TIME-VARYING GEOMETRIC BROWNIAN MOTION

We initially focus on geometric Brownian motion where
the functions h(x, t) and g(x, t) are proportional to x [40–42].
Thus we consider the time-varying geometric Brownian mo-
tion characterized by the stochastic Eq.(4) with n = m = 1,

dx
dt

= H(t)x+G(t)xξ (t), (6)

where H(t) and G(t) are two arbitrary time-dependent func-
tions. The Fokker-Planck Eqs.(2) and (3) can be written in
this case as

∂W
∂ t

=−
(
H +2αG2) ∂

∂x
(xW )+G2 ∂ 2

∂x2

(
x2W

)
, (7)

and

∂W
∂ t

=−H
∂

∂x
(xW )+G2 ∂

∂x

{
x2α ∂

∂x

[
x2(1−α)W

]}
. (8)

We are interested in finding the general solution of these equa-
tions for arbitrary functions H(t) and G(t). The driftless case
H(t) = 0 and with constant G(t) ≡ G0 is described by a log-
normal distribution [40]

fx(x) =
1

x
√

2πσ2
e−

(logx−µ)2

2σ2 , (9)

defined on the positive real line x > 0, with suitable real pa-
rameters σ and µ that define the shape of the distribution.
The first-order and second-order expectation values are given
by the expressions

E {x}= eµ+ σ2
2 , E

{
x2}= e2µ+2σ2

, (10)

and the variance is given by

σ
2
x = E

{
x2}−E {x}2 =

(
eσ2 −1

)
e2µ+σ2

. (11)

From Eqs.(10), we deduce the parameters µ and σ2 as func-
tion of the expectation values as

µ = log
E {x}2√

E {x2}
, σ

2 = log
E
{

x2
}

E {x}2 . (12)
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We now assume that the solution of the Fokker-Planck equa-
tion has a log-normal form also for arbitrary functions H(t)
and G(t). This leads to the following evolution equations for
the expectation values:

dE {x}
dt

=
[
H(t)+2αG2(t)

]
E {x} , (13)

dE
{

x2
}

dt
= 2

[
H(t)+(2α +1)G2(t)

]
E
{

x2} . (14)

These equations were obtained by multiplying the Fokker-
Planck equation by x and by x2 and integrating the results on
the interval (0,∞). An integration by parts eventually leads to
Eqs.(13) and (14). These differential equations can be solved
to obtain

E {x} = µ0e
∫ t

0[H(u)+2αG2(u)]du, (15)

E
{

x2} =
(
µ

2
0 +σ

2
0
)

e2
∫ t

0[H(u)+(2α+1)G2(u)]du, (16)

where µ0 and σ2
0 are the average value and the variance of

x for t = 0, respectively. Substituting Eqs.(15) and (16) into
Eq.(12), we get

µ =
1
2

log
µ4

0

µ2
0 +σ2

0
+
∫ t

0

[
H(u)+(2α −1)G2(u)

]
du,

(17)

σ
2 = log

µ2
0 +σ2

0

µ2
0

+2
∫ t

0
G2(u)du. (18)

In particular, if σ0 = 0, we have

µ = log µ0 +
∫ t

0

[
H(u)+(2α −1)G2(u)

]
du, (19)

σ
2 = 2

∫ t

0
G2(u)du. (20)

In order to demonstrate that the corresponding log-normal
distribution really is the exact solution of our problem, the
Fokker-Planck equation in Eq.(7) or Eq.(8), with the initial
condition W (x,0) = δ (x − µ0), must be solved by the trial
density

W (x, t) =

exp

{
−
[
log x

µ0
−
∫ t

0[H(u)+(2α−1)G2(u)]du
]2

4
∫ t

0 G2(u)du

}
2x
√

π
∫ t

0 G2(u)du
, (21)

which follows from Eq.(9) combined with Eqs.(19) and (20).
This can be verified by a lengthy but straightforward calcula-
tion, as discussed in Appendix A. Our result in Eq.(21) there-
fore generalizes the log-normal solution to the time-varying
case independent of the interpretation of the stochastic inte-
gration rule (0 ≤ α ≤ 1). We remark that the obtained solu-
tion automatically satisfies the reflecting boundary condition
at x = 0.

While we have found a completely general expression for
the PDF W (x, t), a proper normalizable long-time limit for t →
∞ of the PDF does not always exist, depending on the form of

0 0.5 1 1.5 2 2.5 3
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FIG. 1. Example of log-normal distribution evolution. We imple-
mented Eq.(22) with the parameters H0 = 0, G0 = 1/10, µ0 = 1, and
α = 1/2.

H(u) and G(u). A normalizable stationary PDF exists only
if the integrals

∫ t
0 H(u)du and

∫ t
0 G2(u)du converge to finite

values for t → ∞. For example, if we take constant values
for these functions, H(u) = H0 and G(u) = G0, the density is
given by

W (x, t) =

exp

{
−
[
log x

µ0
−H0t−(2α−1)G2

0t
]2

4G2
0t

}
2xG0

√
πt

, (22)

which does not converge to an asymptotic or equilibrium dis-
tribution (see Fig.1). This observation is the starting point for
our following discussion.

III. DRIFT EFFECT ON GEOMETRIC BROWNIAN
MOTION

The result from the previous Section leads us to investi-
gate whether a suitable nonlinear drift term can generate an
asymptotic equilibrium density for a constant G(t) = G0. We
thus now consider the stochastic differential equation

dx
dt

= h(x)+G0xξ (t), (23)

where the drift term h(x) is for the moment left unspeci-
fied. As before, we can associate the following Fokker-Planck
equation, governing the evolution of the density W (x, t)

∂W
∂ t

=− ∂

∂x
(hW )+G2

0
∂

∂x

{
x2α ∂

∂x

[
x2(1−α)W

]}
. (24)

The asymptotic solution of this Fokker-Planck equation,
Was(x) = limt→∞ W (x, t), fulfills the equation

0 =−(hWas)+G2
0x2α d

dx

[
x2(1−α)Was

]
. (25)
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Introducing Θ(x) = x2(1−α)Was(x), we have the simpler equa-
tion

dΘ(x)
dx

=
h(x)
G2

0x2 Θ(x), (26)

whose solution is

Θ(x) = exp
(∫ h(x)

G2
0x2 dx

)
. (27)

Expressed in terms of the stationary PDF Was(x) we have

Was(x) =
K

x2(1−α)
exp
(∫ h(x)

G2
0x2 dx

)
, (28)

where we introduced a normalization constant K. Interest-
ingly, this expression is reminiscent of the Pope-Ching result
(for α = 1/2), stating a relationship between the PDF of any
stationary process and the expectations of time derivatives of
the state of the system [43]. More precisely, this result indi-
cates that both the expectations of the time derivative squared
and of the second time derivative define the PDF shape (see
Eq.(7) in Ref.[43]). Interestingly, this result has been used
to better understand turbulent flows data and has been thor-
oughly discussed in Ref.[44].

The case of a linear drift term h(x) = H0x leads back to
the geometric Brownian motion already studied in Section II,
for which we have already seen that there is no asymptotic
solution. If h(x) = H0x, Eq.(28) immediately gives

Was(x) = Kx−2(1−α)+H0/G2
0 , (29)

and it is readily seen that the integral
∫

∞

0 Was(x)dx cannot con-
verge. In fact, we know that

∫
∞

1 x−kdx is convergent for k > 1,
and that

∫ 1
0 x−kdx is convergent for k < 1, therefore it is im-

possible to have values of 2(1−α)−H0/G2
0 that render the

integral
∫

∞

0 Was(x)dx convergent for x → 0 and x → ∞ at the
same time.

It is therefore of interest to investigate whether different
nonlinear forcing terms are able to generate a normalizable
asymptotic density and consider

h(x) =−H0xn, (30)

where n is a real number. In case x can be considered as the
spatial coordinate of a particle, the drift term corresponds to
the ratio of the force and the friction coefficient, with the force
being the gradient of a potential. For the case of stock option
prices or the turbulent cascade mentioned in the Introduction,
the terms correspond to empirical nonlinearities derived from
mapping to experimental or numerical data. The stochastic
differential equation is now given by

dx
dt

=−H0xn +G0xξ (t) . (31)

In this case, Eq.(28) yields

Was(x) =
K

x2(1−α)
exp
(
−H0

G2
0

xn−1

n−1

)
, (32)

where n ̸= 1. In order to have a normalized asymptotic density,
the inverse of the constant K must be given by the integral

1
K

=
∫ +∞

0

1
x2(1−α)

exp
(
−H0

G2
0

xn−1

n−1

)
dx, (33)

the convergence of which must be carefully inspected. Since
the integrand consists of the product of a algebraic and an ex-
ponential function, there arise two sets of conditions that can
ensure convergence of the integral on the right hand side of
Eq. (33):
(i) the term x−2(1−α) is convergent for x → 0 when 2(1−α)<
1, or α > 1/2. In this case the exponential term must ensure
the convergence for x → ∞, which is the case if H0 > 0 and
n− 1 > 0. Indeed, in this case, exp

(
−H0

G2
0

xn−1

n−1

)
→ 0 when

x → ∞. Finally, the integral in Eq.(33) is convergent if

α >
1
2
, H0 > 0, and n−1 > 0; (34)

(ii) The term x−2(1−α) ensures the convergence for x → ∞ if
2(1−α) > 1, or α < 1/2. So, the exponential must handle
the convergence for x → 0. This is possible if H0 < 0 and
n− 1 < 0. Indeed, in this case, exp

(
−H0

G2
0

xn−1

n−1

)
→ 0 when

x → 0. Hence, the integral in Eq.(33) is convergent also if

α <
1
2
, H0 < 0, and n−1 < 0. (35)

Within these two complementary regions of convergence we
have the conditions that

G2
0

n−1
H0

> 0, and
2α −1
n−1

> 0 . (36)

An important finding is that we have found non-linear drift
terms that are in fact able to generate an asymptotic equi-
librium density even when G(t) = G0. It is interesting to
notice that, however, for α = 1/2, the often invoked Fisk-
Stratonovich case, the convergence condition cannot be ful-
filled, and therefore we cannot use the Fisk Stratonovich inter-
pretation of the stochastic calculus for Eq. (29) if the asymp-
totic density must remain normalisable.

We will next try to obtain an explicit expression for the in-
tegral Eq. (33). To this aim, we introduce the substitution

t =
H0

G2
0

xn−1

n−1
⇔ x =

(
n−1
H0

G2
0

) 1
n−1

t
1

n−1 , (37)

which leads to

1
K

=
1

|n−1|

(
n−1
H0

G2
0

) 2α−1
n−1 ∫ +∞

0
t

2α−1
n−1 −1e−tdt. (38)

Here, we have included the term |n−1| for the following rea-
son: if n − 1 > 0, when x → 0, we have t → 0, and when
x → ∞, we have t → ∞. Conversely, if n−1 < 0, when x → 0,
we have t → ∞, and when x → ∞, we have t → 0. Hence, the
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FIG. 2. Example of asymptotic distributions in the anti-Itô-side re-
gion defined by Eq.(34). We implemented Eq.(41) with the parame-
ters H0 = 3/2 and G0 = 1.
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FIG. 3. Example of asymptotic distributions in the Itô-side region
defined by Eq.(35). We implemented Eq.(41) with the parameters
H0 =−3/2 and G0 = 1.

order of integration changes depending on the sign of n− 1.
The integral in Eq. (38) is of the form of the Gamma function,
so that by using its definition [45–47]

Γ(z) =
∫ +∞

0
tz−1e−tdt, (39)

we finally obtain from Eq.(38) the result

1
K

=
1

|n−1|

(
n−1
H0

G2
0

) 2α−1
n−1

Γ

(
2α −1
n−1

)
. (40)

Although we have shown that the integral is convergent in
both the anti-Itô-side an Itô-side regions defined by Eqs.(34)

and (35), it is also important to verify that the solutions of the
corresponding stochastic differential equations do not present
blow-up or explosion phenomena. This point is proved in the
Appendix B, where we also briefly introduce the concept of
blow-up in finite time for ordinary and stochastic equations.

Anyway, the asymptotic density reads as

Was(x) =
|n−1|(

n−1
H0

G2
0

) 2α−1
n−1

Γ
( 2α−1

n−1

) exp
(
−H0

G2
0

xn−1

n−1

)
x2(1−α)

, (41)

which is valid when the conditions in Eq.(36) are fulfilled. In
Figs.2 and 3 we show the shape of the asymptotic density for
different values of the parameters in the anti-Itô-side and Itô-
side regions, defined by Eqs.(34) and (35), respectively. We
note that the densities are singular for x = 0 in the anti-Itô-
side region while they are regular everywhere for the Itô-side
region.

The next step consists in studying whether the asymptotic
function also has a meaning if the normalization is not pos-
sible, e.g. in the Fisk-Stratonovich case, α = 1/2. Since the
concept of infinite ergodicity has only recently been brought
into physics [36–38], before studying the previous problem
for the case of geometric Brownian motion, we study it for a
simpler example from statistical mechanics that will allow us
to better introduce the concept of infinite ergodicity.

IV. INFINITE ERGODIC THEORY IN STATISTICAL
MECHANICS

In order to introduce the concept of infinite ergodicity into
our discussion, in this Section we consider a simpler statistical
mechanics system, following Refs.[36, 38]. Let us consider a
particle of mass m undergoing a one-dimensional overdamped
stochastic motion under the effect of a potential energy V (x).
The Langevin equation reads as

dx
dt

=− 1
mγ

dV
dx

+

√
kBT
mγ

ξ (t), (42)

where γ is the friction coefficient for unit mass, kB is the Boltz-
mann constant, T is the temperature, and ξ (t) is the noise with
the same properties as given above; note, that in this case the
noise is simply additive and not multiplicative. The Fokker-
Planck or Smoluchowski equation for the density W (x, t) is
given by [48, 49]

∂W
∂ t

=
∂

∂x

(
1

mγ

dV
dx

W +
kBT
mγ

∂W
∂x

)
. (43)

As before, we search for the equilibrium distribution Was(x)
through the equation

0 =
1

mγ

dV
dx

Was +
kBT
mγ

dWas

dx
, (44)

which is solved by the Boltzmann distribution

Was(x) = Ke−
1

kBT V (x)
, (45)
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FIG. 4. Three examples of potential energy involving infinite ergodicity: (i) non-confining on the left, limx→−∞ V (x) = 0 and limx→+∞ V (x) =
+∞; (ii) non-confining on the right, limx→−∞ V (x) = +∞ and limx→+∞ V (x) = 0; (iii) non-confining on both the left and the right,
limx→−∞ V (x) = 0 and limx→+∞ V (x) = 0.

where 1/K is the classical partition function. This density
makes sense only if the partition function

∫
exp
(
− 1

kBT V
)

dx
converges in the region of interest. Typically, problems of
non-convergence often emerge when non-confining potentials
are used. We try here to give a physical meaning to the ob-
tained asymptotic density even when it is not normalizable.
If V (x) = 0, of course, the partition function is not conver-
gent but the general solution of the Fokker-Planck equation
(which then reduces to the heat equation) is known. It can
be obtained through an Ornstein-Uhlenbeck process with a
quadratic potential energy V (x) = 1

2 kx2 where k → 0 [50–52],
or more simply by invoking the Gaussian propagator for the
free diffusion [23–26]. Anyway, the result is

W (x, t) =
√

mγ

4πkBTt
exp
[
− mγ

4kBTt
(x−µ0)

2
]
, (46)

with the initial density W (x,0) = δ (x − µ0). We can now
imagine that for long times, in a case with a non-convergent
partition function, the PDF evolution is given by a combina-
tion of Eqs.(45) and (46)

W (x, t) ∼
t→∞

√
mγ

4πkBTt
e−

1
kBT V (x)e−

mγ

4kBTt (x−µ0)
2
, (47)

or rather

W (x, t) ∼
t→∞

√
mγ

4πkBTt
e−

1
kBT V (x)

, (48)

where we have used the property limt→∞ e−
mγ

4kBTt (x−µ0)
2
= 1.

Let us also consider that V (x) → 0 for x → +∞ and/or x →
−∞ in correspondence with the non-confining regions of the
potential energy. In these regions we have a diffusive behavior
of the system since the drift is negligible. The explored phase
space is therefore infinite. In order to verify the conjecture
in Eq.(48) we have to demonstrate that the same expression
is the solution of the Fokker-Planck equation for long times.
From Eq.(48) the left hand side of Eq.(43) is obtained as

∂W (x, t)
∂ t

∼
t→∞

−
√

mγ

16πkBTt3 e−
1

kBT V (x)
. (49)

Moreover, it is verified that the right hand side of Eq.(43) is
exactly zero when calculated with Eq.(48). This indeed proves
what is sought, since the term ∂W (x,t)

∂ t goes to zero as t−3/2,
which is much faster than t−1/2 (the leading term when t →
∞), and is therefore negligible for long times, where we search
for the solution. The remarkable point is that, from Eq.(48),
we can write

lim
t→∞

√
4πkBTt

mγ
W (x, t) = e−

1
kBT V (x)

, (50)

a result giving an important role to the Boltzmann exponential
also for the case with divergent partition function.

Furthermore, we can define an observable O(x) and intro-
duce its ensemble average as

⟨O(x)⟩(t) =
∫ +∞

−∞

O(x)W (x, t)dx. (51)

From Eq.(50), we can write

lim
t→∞

√
4πkBTt

mγ
⟨O(x)⟩(t) =

∫ +∞

−∞

O(x)e−
1

kBT V (x)dx, (52)

which represents the infinite ergodicity property and, again,
restores a role for the Boltzmann exponential factor also
for the case with a divergent PDF. It means that the non-
confining potential generates an infinite phase space (whence
the term infinity ergodicity) explored by a drift-diffusion pro-
cess, whose asymptotic properties are described by Eq.(52).
It is important to remark that the asymptotic behavior stated
in Eq.(52) is correct only if the improper integral in the right
hand side is convergent. Of course, several potential energies
lead to the divergence of this integral and therefore the prop-
erty is not valid in these cases.

Then, for completeness, we discuss the convergence of the
integral in Eq.(52) for some forms of potential energy. To
begin we suppose that O(x) = V (x) and we consider three
cases:

(i) The potential energy is non-confining on the left:
limx→−∞ V (x) = 0 and limx→+∞ V (x) = +∞. In this case the
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convergence of the integral in Eq.(52) is handled by V (x) for

x →−∞, and by e−
1

kBT V (x) for x →+∞, see Fig.4 (i).
(ii) The potential energy is non-confining on the right:

limx→−∞ V (x) = +∞ and limx→+∞ V (x) = 0. In this case the

convergence of the integral in Eq.(52) is handled by e−
1

kBT V (x)

for x →−∞, and by V (x) for x →+∞, see Fig.4 (ii).
(iii) The potential energy is non-confining on both the left

and the right: limx→−∞ V (x) = 0 and limx→+∞ V (x) = 0. In
this case the convergence of the integral in Eq.(52) is handled
by V (x) for both x →−∞ and x →+∞, see Fig.4 (iii).

The same discussion remains valid if we consider the force
as observable, namely O(x) = −dV (x)/dx. If, as an exam-
ple, we consider a potential energy non-confining on the right
(with limx→−∞ V (x) = +∞ and limx→+∞ V (x) = 0), we can
write

lim
t→∞

√
4πkBTt

mγ

〈
−dV

dx

〉
=
∫ +∞

−∞

−dV
dx

e−
1

kBT V dx

= kBT
∫ +∞

−∞

d
dx

(
e−

1
kBT V

)
dx

= kBT
[

e−
1

kBT V (+∞)− e−
1

kBT V (−∞)
]
= kBT, (53)

which is a constant, independent from the shape of the poten-
tial. If we divide Eq.(53) by the characteristic thermal length√

KBT/m/γ , we get

lim
t→∞

√
4πγt

〈
−dV

dx

〉
= γ
√

kBT m, (54)

which has the physical units of force. For further details con-
cerning the infinite ergodic concept we refer to Refs.[36–38].

V. INFINITE ERGODICITY IN GEOMETRIC BROWNIAN
MOTION

By invoking the infinite ergodicity concept discussed in the
previous Section, we now try to give significance to the non-
normalized asymptotic solutions for the case α = 1/2 (Fisk-
Stratonovich interpretation) in the equation

dx
dt

=−H0xn +G0xξ (t). (55)

We still consider the relationship G2
0

n−1
H0

> 0 to be valid,
through the hypotheses n−1 < 0 and H0 < 0. These assump-
tions prevent us from having blow-up or explosion phenom-
ena, as discussed in the Appendix B. Hence, from Eq.(32),
the non-normalized asymptotic density takes the form

Was(x)∼
1
x

exp
(
−H0

G2
0

xn−1

n−1

)
. (56)

We remark that the exponential term approaches 1 for x → ∞

because of the assumptions n−1 < 0 and H0 < 0, exactly like
the Boltzmann exponential of the previous Section in the non-
confining regions. From the previously developed theory of

geometric Brownian motion, we know that without drift we
have the exact solution of the Fokker-Planck equation given
by Eq.(22) (with H0 = 0). In fact, with α = 1/2 and H0 = 0
we get

W (x, t) =

exp

[
−
(

log x
µ0

)2

4G2
0t

]
2xG0

√
πt

, (57)

corresponding to the initial condition W (x,0) = δ (x−µ0). In
analogy with the treatment of the overdamped Langevin equa-
tion in the previous section, we can here assume a solution for
long times of the process with H0 ̸= 0 and α = 1/2 as a combi-
nation of Eqs.(56) and (57). We therefore have for long times

W (x, t) ∼
t→∞

exp

[
−
(

log x
µ0

)2

4G2
0t

]
2xG0

√
πt

exp
(
−H0

G2
0

xn−1

n−1

)
, (58)

or, equivalently,

W (x, t) ∼
t→∞

1
2xG0

√
πt

exp
(
−H0

G2
0

xn−1

n−1

)
, (59)

where we have used the limiting property

limt→∞ exp
[
−
(

log x
µ0

)2
/(4G2

0t)
]

= 1. To verify this

conjecture we have to establish that Eq.(59) actually is
the solution for long times of the following Fokker-Planck
equation

∂W
∂ t

= H0
∂

∂x
(xnW )+G2

0
∂

∂x

[
x

∂

∂x
(xW )

]
. (60)

By substituting Eq.(59) into Eq.(60), we see that all the terms
behaving as t−1/2 (the leading terms) cancel each other out
and only one negligible term remains of order t−3/2. This
term is again negligible as it tends to zero much faster than
the others and therefore is not relevant for long times. Now,
from Eq.(59) we obtain the important expression

lim
t→∞

2G0
√

πtW (x, t) =
1
x

exp
(
−H0

G2
0

xn−1

n−1

)
. (61)

Here, the right hand side is the so-called invariant density (see
Fig.5). Also in this case we can define an arbitrary observ-
able O(x) and introduce its expectation value (as an ensemble
average) as

⟨O(x)⟩(t) =
∫ +∞

0
O(x)W (x, t)dx, (62)

where we considered the integration interval (0,+∞) to be
consistent with the geometric Brownian motion phase space.
Asymptotically, we get

lim
t→∞

2G0
√

πt ⟨O(x)⟩(t) =
∫ +∞

0

O(x)
x

exp
(
−H0

G2
0

xn−1

n−1

)
dx.

(63)
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FIG. 5. Invariant density defined in Eq.(61) for the geometric Brow-
nian motion with nonlinear drift. We used the parameters H0=-1,
G0=1 and a variable exponent n.

We now give an application of Eq.(63) with an observable
defined as the power O(x) = xs (where s is a real number). For
this we simply rewrite the infinite ergodicity expression as

lim
t→∞

2G0
√

πt ⟨xs⟩(t) =
∫ +∞

0
xs−1 exp

(
−H0

G2
0

xn−1

n−1

)
dx, (64)

where the integral converges if s/(n− 1) > 0, provided that
G2

0(n−1)/H0 > 0. This is true since the integral has the same
form discussed in Eq.(33). So, we have the closed-form ex-
pression

lim
t→∞

2G0
√

πt ⟨xs⟩(t) = 1
|n−1|

(
n−1
H0

G2
0

) s
n−1

Γ

(
s

n−1

)
,

(65)
coming from Eq.(40). An interesting special case corresponds
to s = n−1 and yields

lim
t→∞

2G0
√

πt
〈
xn−1〉(t) = sgn(n−1)

H0
G2

0 =
1

|H0|
G2

0, (66)

where sgn(z) is the signum function extracting the sign of the
real number z, and where we considered that n− 1 < 0 and
H0 < 0. We note that the result in Eq.(66) is independent of n,
i.e. independent of the shape of the forcing term in Eq.(55).
This result can be put in analogy with the asymptotic property
of the average value of the force obtained in Eq.(54). Indeed,
if we rewrite the stochastic differential equation in Eq.(55) in
a form to render the space-dependent friction term on the left-
hand side explicit, we have

1
x

dx
dt

=−H0xn−1 +G0ξ (t), (67)

we can identify the observable xn−1 exactly as the force acting
on the system.

VI. A FURTHER GENERALIZATION

We finally consider the generalization of the geometric
Brownian motion given in Eq.(31), where the multiplicative
noise term is now given by a nonlinear power with exponent
m, as stated in the Introduction in Eq.(4),

dx
dt

=−H0xn +G0xm
ξ (t). (68)

The stochastic force-part of the equation, i.e. dx/dt =
G0xmξ (t), was considered in detail already in the context of
the infinite ergodicity concept in Ref.[38], using a slightly dif-
ferent notation. Several applications of this model to turbu-
lence or ecosystems were mentioned in that paper. Our model
represents a generalization of this model by combining it with
a nonlinear drift term. The stochastic problem in Eq.(68) is
associated with the Fokker-Planck equation

∂W
∂ t

= H0
∂

∂x
(xnW )+G2

0
∂

∂x

{
x2mα ∂

∂x

[
x2m(1−α)W

]}
.

(69)
For now, we first only assume that m ̸= 1 in order to not re-
consider the case already studied and search for an asymptotic
solution Was(x) for the Fokker-Planck equation

0 = H0xnWas +G2
0x2mα ∂

∂x

[
x2m(1−α)Was

]
. (70)

With the same technique used to solve Eq.(25), we find

Was(x) =
K

x2m(1−α)
exp
(
−H0

G2
0

xn−2m+1

n−2m+1

)
, (71)

for which we have to require that n − 2m + 1 ̸= 0. As be-
fore, Was is normalizable with finite K when the integral over
(0,+∞) is finite:

1
K

=
∫ +∞

0

1
x2m(1−α)

exp
(
−H0

G2
0

xn−2m+1

n−2m+1

)
dx. (72)

The analysis follows that performed for Eq.(33), and general-
izes it for finite m ̸= 1:

(i) the term x−2m(1−α) is convergent for x → 0 when 2m(1−
α) < 1. The exponential term ensures the convergence for
x → ∞ if a > 0 and n−2m+1 > 0. Finally, Eq.(72) is conver-
gent if

2m(1−α)< 1, H0 > 0, and n−2m+1 > 0; (73)

(ii) the term x−2m(1−α) ensures the convergence for x → ∞

if 2m(1−α) > 1. The exponential term provides the conver-
gence for x → 0 if a < 0 and n−2m+1 < 0. Hence, Eq.(72)
is convergent also if

2m(1−α)> 1, H0 < 0, and n−2m+1 < 0 . (74)

The calculation of the integral in Eq.(72) can be done by
the same method used before, and we get

1
K

=
Γ
( 2mα−2m+1

n−2m+1

)
|n−2m+1|

(
n−2m+1

H0
G2

0

) 2mα−2m+1
n−2m+1

. (75)
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FIG. 6. Example of asymptotic distributions in the region defined by
Eq.(73). We implemented Eq.(76) with the parameters H0 = 3/2 and
G0 = 1.

Therefore, the asymptotic density reads as

Was(x) =
|n−2m+1|exp

(
−H0

G2
0

xn−2m+1

n−2m+1

)
(

n−2m+1
H0

G2
0

) 2mα−2m+1
n−2m+1

Γ
( 2mα−2m+1

n−2m+1

)
x2m(1−α)

,

(76)
which is correct for

G2
0

n−2m+1
H0

> 0, and
2mα −2m+1

n−2m+1
> 0, (77)

coming form Eqs.(73) and (74), and generalizing Eq.(36). In
Figs.6 and 7 we show the shape of the asymptotic density for
different values of the parameters in the two regions, defined
by Eqs.(73) and (74), respectively. We see that in the first re-
gion we have a singularity for x = 0, whereas in the second
region the density is regular everywhere. Moreover, we re-
mark that in both regions identified by Eqs.(73) and (74) the
criterion for the absence of blow-up or explosions, proved in
the Appendix B, is perfectly fulfilled.

To obtain the infinite ergodic property for this system, we
need to know the general solution of Eq.(68) without the forc-
ing term, i.e. for H0 = 0, for m ̸= 1,

dx
dt

= G0xm
ξ (t). (78)

This problem has been investigated in detail in Ref.[37], and
the solution has been found by showing a connection with the
so-called Bessel process [53, 54]. With our notation, we can
say that the solution of Eq.(69) with H0 = 0, rewritten here as

∂W
∂ t

= G2
0

∂

∂x

{
x2mα ∂

∂x

[
x2m(1−α)W

]}
, (79)

0 1 2 3

0

0.5

1

1.5

FIG. 7. Example of asymptotic distributions in the Itô-side region
defined by Eq.(74). We implemented Eq.(76) with the parameters
H0 =−3/2 and G0 = 1.

is given by [37]

W (x, t) =
µ

1
2 (1−2mα)

0 x
1
2 (1−4m+2mα)

2G2
0(1−m)t

(80)

×exp

[
−

µ
2(1−m)
0 + x2(1−m)

4G2
0(1−m)2t

]
I 1−2mα

2(m−1)

(
µ

1−m
0 x1−m

2G2
0(1−m)2t

)
,

for x ≥ 0 (with reflecting boundary condition at x = 0), and
for the initial condition W (x,0) = δ (x− µ0). Here Iν(z) is
the modified Bessel function of the first kind (of order ν and
argument z) [45–47]. Importantly, this solution is valid when
0 ≤ m < 1 and 2mα −2m+1 > 0, and represents a time evo-
lution that does not have a stationary PDF. For α = 1/2 (Fisk-
Stratonovich interpretation), we can use the relation [45–47]

I− 1
2
(z) =

√
2

πz
cosh(z), (81)

and obtain the particular solution

W (x, t) =
1

G0
√

πtxm
cosh

(
µ

1−m
0 x1−m

2G2
0(1−m)2t

)
(82)

×exp

[
−

µ
2(1−m)
0 + x2(1−m)

4G2
0(1−m)2t

]
.

This expression can be rewritten as

W (x, t) =
1

2G0
√

πtxm
exp

[
−
(
x1−m −µ

1−m
0

)2

4G2
0(1−m)2t

]
(83)

+
1

2G0
√

πtxm
exp

[
−
(
x1−m +µ

1−m
0

)2

4G2
0(1−m)2t

]
.
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From the point of view of the physical interpretation, this form
shows the superposition of an incident density (the first line)
generated by the initial condition at x = µ0, and a reflected
density (the second line) generated by the reflecting boundary
condition at x = 0. Moreover, if m = 0, incident and reflected
densities are Gaussian functions, as to be expected with addi-
tive noise.

As always, the Stratonovich interpretation is closer to the
physical understanding that can be attributed to the evolution
of a stochastic system. In this case, the other interpretations
with α ̸= 1/2 are able to break the symmetry between inci-
dent and reflected densities, as mathematically described by
the Bessel function in Eq.(80). Both Eqs.(80) and (82) can be
proved by direct substitution in Eq.(79). By means of these
solutions, we can study the asymptotic behavior, for large val-
ues of t, of the equation dx/dt = G0xmξ (t). To do this, we use
the property [45–47]

Iν(z) ∼
z→0

(
1
2

z
)ν 1

Γ(ν +1)
, (84)

and we obtain from Eq.(80)

W (x, t) ∼
t→∞

[2(1−m)](1−2α) m
1−m

(G2
0t)

2mα−2m+1
2(1−m) Γ

[
2mα−2m+1

2(1−m)

]
x2m(1−α)

. (85)

In the particular case with α = 1/2, we use the Gamma func-
tion value Γ(1/2) =

√
π [45–47], and we obtain from Eq.(82)

or Eq.(83) the simpler asymptotic behavior

W (x, t) ∼
t→∞

1
G0

√
πtxm

. (86)

Summing up, on the one hand, we can say that the process
with drift term, see Eq.(68), exhibits an equilibrium asymp-
totic solution when Eq.(73) or Eq.(74) is satisfied. On the
other hand, for the equation without forcing term, see Eq.(78),
there is no equilibrium and we know the asymptotic evolution
when 0 ≤ m < 1 and 2mα −2m+1 > 0. The idea of the infi-
nite ergodicity is to give meaning to the equilibrium solution
Was(x) of Eq.(68) even when it cannot be normalized. Hence,
we consider the conditions 0 ≤ m < 1 and 2mα −2m+1 > 0,
under which we know the asymptotic solution of Eq.(78), and
we add the assumptions H0 < 0 and n− 2m+ 1 < 0, in such
a way that Was(x) it is not normalizable. These conditions
also ensure the absence of blow-up phenomena, as discussed
in Appendix B. When this set of conditions is satisfied, we can
try to merge Eqs.(76) and (85) in order to get the asymptotic
behavior. This is facilitated by the fact that in both formu-
lae there is the same power x2m(1−α) in the denominator. We
therefore propose to consider

W (x, t) ∼
t→∞

[2(1−m)](1−2α) m
1−m exp

(
− a

G2
0

xn−2m+1

n−2m+1

)
(G2

0t)
2mα−2m+1

2(1−m) Γ

[
2mα−2m+1

2(1−m)

]
x2m(1−α)

. (87)

If α = 1/2, we can merge Eqs.(76) and (86) and have

W (x, t) ∼
t→∞

exp
(
−H0

G2
0

xn−2m+1

n−2m+1

)
G0

√
πtxm

. (88)
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FIG. 8. Invariant density defined in Eqs.(89) and (90) for the gener-
alized geometric Brownian motion with nonlinear drift. We used the
parameters H0=-1, G0=1, variable exponents n and m, and variable
parameter α .

These proposals should represent the asymptotic behavior of
Eq.(68) when 0 ≤ m < 1, 2mα − 2m+ 1 > 0, H0 < 0, and
n−2m+1 < 0. The verification by direct substitution into the
Fokker-Planck equation proceeds as before. So, Eq.(87) can
be rewritten as

lim
t→∞

Γ

[
2mα−2m+1

2(1−m)

]
(G2

0t)
2mα−2m+1

2(1−m) W (x, t)

[2(1−m)](1−2α) m
1−m

=
exp
(
−H0

G2
0

xn−2m+1

n−2m+1

)
x2m(1−α)

, (89)

and Eq.(88) for α = 1/2 as

lim
t→∞

G0
√

πtW (x, t) =
exp
(
−H0

G2
0

xn−2m+1

n−2m+1

)
xm . (90)

These results represent the asymptotic evolution of the density
W (x, t), solving Eq.(69) for large values of t, in the case where
there is no equilibrium PDF, i.e. they represent the generaliza-
tion of Eq.(61), obtained previously for the case of geometric
Brownian motion. In particular, Eq.(90) reduces to Eq.(61)
when m = 1. The right hand sides of Eqs.(89) and (90) are
therefore the so-called invariant densities of the system (see
Fig.8).

In an analogous fashion we can introduce an observable
O(x) with its ensemble average defined in Eq.(62). From pre-
vious asymptotic results, we easily obtain

lim
t→∞

Γ

[
2mα−2m+1

2(1−m)

]
(G2

0t)
2mα−2m+1

2(1−m)

[2(1−m)](1−2α) m
1−m

⟨O(x)⟩(t)

=
∫ +∞

0

exp
(
−H0

G2
0

xn−2m+1

n−2m+1

)
x2m(1−α)

O(x)dx, (91)
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for arbitrary values of α , and

lim
t→∞

G0
√

πt ⟨O(x)⟩(t) =
∫ +∞

0

exp
(
−H0

G2
0

xn−2m+1

n−2m+1

)
xm O(x)dx,

(92)

for α = 1/2. Both results are valid when 0 ≤ m < 1, 2mα −
2m+ 1 > 0, H0 < 0, and n− 2m+ 1 < 0. These two results
again give important significance to asymptotic distributions
even when the latter cannot be normalized and therefore rep-
resent a further example of infinite ergodic theory. They are
valid only when the form of the observable O(x) renders the
integral appearing in Eqs.(91) and (92) convergent.

VII. CONCLUSIONS

We have studied the stochastic process of geometric Brown-
ian motion and some of its generalizations as given by Eq.(68)
for general values of the drift exponent n, the diffusion expo-
nent m, and the discretization parameter 0 ≤ α ≤ 1. The cor-
responding Fokker-Planck equation is readily written down,
following established procedures. The study of the asymp-
totic probability distributions of the Fokker-Planck equation
reveals that the normalizability of the PDF at large times is
tied to general conditions on the exponents m,n, and α . We
establish the conditions on the exponents n,m and on the dis-
cretization parameter α for which this is the case. Our - sur-
prising - main finding for the case of the standard geomet-
ric Brownian noise with m = 1 is that the presence of a drift
term in the stochastic equation allows to produce normaliz-
able stationary PDFs provided α ̸= 1/2. If α = 1/2 (Fisk-
Stratonovich case), the concept of infinite ergodicity allows
to derive a well-defined invariant density, defined on the right
hand side of Eq.(61). In the generalizations for m ̸= 1, our
results link to the findings by Barkai and collaborators, no-
tably those of Ref.[37]. In this case, we are able to find an
invariant density for α = 1/2 (Fisk-Stratonovich case), see
the right hand side of Eq.(90), but also another invariant den-
sity for an arbitrary stochastic interpretation, see Eq.(89). In
conclusion, we can say that infinite ergodic theory provides
interesting results not only for classical statistical mechanics
with additive noise, but also for more complex stochastic pro-
cesses with multiplicative noise such as geometric Brownian
motion or its generalizations. More specifically, the obtained
results allows us to exactly determine the asymptotic behavior
of physical observables in complex drift-diffusion driven sys-
tems even though we cannot find the general solution of the
associated Fokker-Planck equation.

Appendix A: Probability density for the time-varying geometric
Brownian motion

We prove here that the generalized log-normal distribution,
given in Eq.(21), is the solution of the Fokker-Planck equation
stated in Eq.(7) or Eq.(8). To this aim, we first calculate the

partial derivative of the density with respect to time. Straight-
forward calculation leads to

∂W (x, t)
∂ t

=
W (x, t)

σ4

{
G2 (

µ
2 −σ

2)+G2 log2 x (A1)

−2µG2 logx−
[
H +(2α −1)G2](µ − logx)σ

2} ,
where we have used Eqs.(19) and (20) for the values of µ and
σ2. In order to use the Fokker-Planck equation in the form of
Eq.(7), we also need the following partial derivative

∂ [xW (x, t)]
∂x

=
W (x, t)

σ2 (µ − logx) . (A2)

We need now to calculate ∂ 2
[
x2W (x, t)

]
/∂x2 and we proceed

in the following way

∂ 2
[
x2W (x, t)

]
∂x2 =

∂ [xW (x, t)]
∂x

+
∂

∂x

[
x

∂ [xW (x, t)]
∂x

]
. (A3)

The last term of Eq.(A3) can be developed as

∂

∂x

[
x

∂ [xW (x, t)]
∂x

]
=

∂

∂x

[
xW (x, t)

σ2 (µ − logx)
]

(A4)

=
µW
σ4 (µ − logx)− 1

σ2

[
W
σ2 (µ − logx) logx+W

]
.

We can now combine Eqs.(A3) and (A4) and we eventually
get

∂ 2
[
x2W (x, t)

]
∂x2 =

W (x, t)
σ4

(
µ

2 −σ
2 +µσ

2 (A5)

+ log2 x−σ
2 logx−2µ logx

)
.

By means of Eqs.(A2) and (A5), we can then obtain the right
hand side of the Fokker-Planck equation in Eq.(7)

−
(
H +2αG2) ∂

∂x
(xW )+G2 ∂ 2

∂x2

(
x2W

)
(A6)

=
W (x, t)

σ4

{
G2 (

µ
2 −σ

2)+G2 log2 x

−2µG2 logx−
[
H +(2α −1)G2](µ − logx)σ

2} ,
which perfectly corresponds to the left hand side calculated in
Eq.(A1). This finally proves the log-normal distribution for
the time-varying geometric Brownian motion.

Appendix B: On blow-up or explosion phenomena

Blow-up or explosion phenomena are observed when solu-
tions of a differential equation (ordinary or stochastic) tend to
infinity as time approaches a finite value (explosion time). As
a simple example, we can consider the ordinary differential
equation dx

dt =−H0xn, with n real, x(0) = x0 > 0. Its integra-
tion, through the method of separation of variables, provides

x(t) =
[
x1−n

0 +(n−1)H0t
] 1

1−n . (B1)
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We see that the solution reaches infinity in finite time if n > 1
and H0 < 0. Then, we cannot have blow-up phenomena if
H0 > 0 (stability), or if n < 1 (sub-exponential growth). More
in general, it is possible to prove that given dx

dt = h(x), x(0) =
x0, h(x)> 0 for x≥ x0, then x(t) blows up at time T if and only
if
∫ +∞

x0
h(x)−1dx converges to T [55, 56]. When this integral is

divergent, we cannot observe explosion phenomena (Osgood
criterion) [55].

In the case of a one-dimensional stochastic differential
equation of the form dx

dt = h(x)+ g(x)ξ (t), with x(0) = x0 ∈
(ℓ,r) the so-called Feller test for explosions solves the prob-
lem [57–59]. In this case, the explosion time is defined
as T = inf{t ≥ 0 : x(t) ̸∈ (ℓ,r)}. In general, introducing the
Feller function

v(x) =
∫ x

x0

∫ y

x0

exp
(
−2
∫ y

z

h(u)
g2(u)

du
)

dz
g2(z)

dy, (B2)

we have that the probability Pr{T = ∞} = 1 if and only if
v(ℓ+) = v(r−) = ∞ (i.e. the corresponding integrals diverge).
The Feller test for explosions gives a precise description of
the blow-up phenomena in finite time in terms of h(x), g(x)
and x0. It has been pointed out that Feller test is equivalent to
the Osgood criterion for g(x) = constant [60]. Applying the
Feller test to our equation

dx
dt

=−H0xn +G0xm
ξ (t), (B3)

we obtain that we cannot have blow-up phenomena for H0 >
0. In addition, when H0 < 0, we have explosions in finite
time if and only if n > 2m− 1 and n > 1 (or, equivalently, if
and only if n > max{2m−1,1}) [61, 62]. The same result
holds on if h(x) and g(x) behave like powers at infinity (i.e.,
h(x)∼ xn, g(x)∼ xm as x → ∞).

It is important to underline that the Feller test and our spe-
cific application are valid within the Itô interpretation of the
stochastic calculus. We prove here that the test for explosions
for Eq.(B3) is independent of the stochastic interpretation. If
we have a stochastic equation dx

dt = hα(x)+ gα(x)ξ (t), inter-
preted through the stochastic calculus with arbitrary parame-
ter α , we have the Fokker-Planck equation

∂W
∂ t

=− ∂

∂x

[(
hα +2αgα

∂gα

∂x

)
W
]
+

∂ 2

∂x2

(
g2

αW
)
. (B4)

We can consider a different stochastic equation dx
dt = h0(x)+

g0(x)ξ (t), interpreted through the Itô calculus, and we get

∂W
∂ t

=− ∂

∂x
(h0W )+

∂ 2

∂x2

(
g2

0W
)
. (B5)

The two problems are formally equivalent if the two Fokker-
Planck equations coincide, i.e. when

g0(x) = gα(x), (B6)

h0(x) = hα(x)+2αgα(x)
∂gα(x)

∂x
. (B7)

These rules allow the transition from an arbitrary stochastic
interpretation to an Itô interpretation (the term added to hα

to get h0 is sometimes called Wong-Zakai correction, as de-
scribed in Chapter 3 of Ref.[63]). By using this result, we can
state that the equation dx

dt =−H0xn +G0xmξ (t), within the ar-
bitrary stochastic calculus with parameter α , is equivalent to
the equation

dx
dt

=−H0xn +2mαG2
0x2m−1 +G0xm

ξ (t), (B8)

interpreted through the Itô calculus. We can discuss two
cases: (i) if n > 2m − 1, the term −H0xn is dominant over
2mαG2

0x2m−1 and we have blow up phenomena if and only if
H0 < 0, n > 2m− 1, and n > 1; (ii) if n < 2m− 1, the term
2mαG2

0x2m−1 is dominant over −H0xn and therefore the con-
dition to have explosions is 2m−1 > max{2m−1,1}, which
can never be satisfied. To conclude, Eq.(B3) exhibits blow-
up phenomena if and only if H0 < 0, n > 2m− 1, and n > 1,
regardless of the stochastic interpretation adopted. This result
precludes explosion problems in all applications shown in this
article.
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