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h i g h l i g h t s g r a p h i c a l a b s t r a c t

• MonEco is a health monitoring ecosystem 
that employs eCardio, CareUp, and UpNEA.

• eCardio is an application available for iOS 
devices that predicts cardiovascular risk.

• CareUp is a smartwatch for blood pressure 
estimation and fitness tracking.

• UpNEA is a smart glove for sleep moni-
toring, detecting sleep disruptive breath-
ing events.

• MonEco transforms the doctor-patient re-
lationship by monitoring user’s illnesses.
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Objectives: the present manuscript introduces a health monitoring ecosystem called MonEco, to monitor 
and predict respiratory and cardiovascular disorders.
Material and methods: the system comprehends a tablet application called eCardio and two smart devices 
named CareUp and UpNEA. eCardio is an application available for iOS devices that predicts cardiovascular 
risk based on user’ data and habits. CareUp is a smartwatch for blood pressure estimation and fitness 
tracking. UpNEA is a smart glove for sleep monitoring, detecting sleep disruptive breathing events.
Results: MonEco smart devices embed novel algorithms and top-notch home health care monitoring 
technologies. The user can access data collected via a web application hosted by a remote server (AeneA), 
allowing clinicians to follow up on a patient’s health.
Conclusion: MonEco wants to inspire and disclose the architecture of a connected health monitoring 
ecosystem.
© 2022 AGBM. Published by Elsevier Masson SAS. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The rise of well-being or home automation-oriented connected 
objects will renew the relationship with our daily environment, 
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passing most objects from a passive mode to that of active, con-
nected, and intelligent terminals. In all Western countries, it is 
possible to observe that the progress of medicine and the develop-
ment of new technologies allow life expectancy to increase [1,2]. 
The population also expresses its desire to maintain its autonomy 
and be kept at home in the event of loss of autonomy [3–6].

In this context, it is possible to note the need for solutions to 
satisfy the desire to continue living at home while retaining their 
autonomy. Even if many products have been placed on the market, 
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Fig. 1. Moneco: a monitoring ecosystem.
it is still not easy for a physician to follow the patient’s physiolog-
ical activity outside the clinic.

The exponential growth of connected objects [7] and their de-
mocratization allow the general public to self-monitor by measur-
ing physiological parameters. These data can then be transmitted 
to the attending physician. The doctor-patient relationship is being 
transformed since the patient is starting to play a crucial role in 
his health, notably improving his lifestyle or monitoring illnesses. 
Also, the exchange of data between several health systems is gain-
ing importance. A consequence of this is the implementation and 
use of standard protocols well established in the hospital system 
(such as DICOM or HL7 protocols) and taking place also in the field 
of home support and more generally in personal connected health 
objects (such as in Bluetooth and ANT+).

The present paper aims to integrate the different proposed de-
vices into a unique ecosystem to monitor users’ health daily. The 
main property of this ecosystem is the interoperability of all of 
its products. All the connected devices had access to writing on 
the same shared database, allowing the user to access all his data 
from the same application.

1.1. Description of MonEco

The present manuscript proposes MonEco: a health monitoring 
solution that allows the user to measure its physiological param-
eters and exchange this information with a physician. In this way, 
the doctor can directly analyze the impact of treatment on the 
patient, check if it is well adapted to his pathology, and prevent 
certain risks of incompatibility or adverse effects.

The MonEco ecosystem, as shown in Fig. 1, is based on different 
e-health care solutions:

• A web application, where each user could visualize the infor-
mation collected by his smart devices; the website recalls all 
user’s information from a dedicated SQL database. This infor-
mation can be shared with a third user, typically a physician, 
to investigate the possibility of an eventual cure or follow the 
treatment.

• eCardio: a cardiovascular disease risk prediction platform 
based on the Framingham and SCORE studies [8]. This plat-
form is available in two formats: a web application (integrated 
into the user web dashboard) and an electronic stand installed 
in some pharmacies that applied to the initial experimenta-
tion.
2

• CareUp: a smartwatch with health-care functionalities [9]. The 
smartwatch can estimate blood pressure (BP), oxygen desatu-
ration (SpO2), and heart rate from photoplethysmogram (PPG) 
signals; sleep stages are instead detected from accelerometers 
data. The smartwatch allows the user to input his medical in-
formation, follow treatment, and eventual physician meetings. 
Finally, an alert button is implemented to send a rescue mes-
sage (SMS alert) to some specific contacts predefined by the 
user.

• UpNEA: a connected glove that monitors the user’s sleep [10]. 
The smart glove acquires PPG, SpO2 and 3-axis accelerometer 
data for this task. It sends them to a mobile application that 
redirects this information to a remote server (AeneA) for signal 
processing.

• AeneA: the remote server collects data sent from the con-
nected devices and then performs the signal processing 
task on acquired records storing results in a dedicated SQL 
database. AeneA also hosts a web application that can ac-
cess the SQL database to allow the user to visualize his health 
tracking results.

The authors of the present manuscript developed and conceived 
CareUp and UpNEA. The smartwatch technology and performances 
were discussed in [9]. The UpNEA architecture instead was pro-
posed in [10]. The sleep monitoring algorithms embedded in Ae-
neA were introduced in two papers: [11] for sleep apnea-related 
methods and [12] for breathing rate estimation processes.

2. Proposed system and methods

2.1. eCardio: a cardiovascular disease risk forecasting application

eCardio is a cardiovascular disease (CVD) risk prediction plat-
form [8]. This platform is available in two versions: one in the 
online user dashboard and another embedded in a floor standing 
tablet. The two versions work the same way and share the same 
code and user interface.

When a new session is started, the application visualizes a se-
ries of questions about his habits and physiological parameters. 
The list of inputs introduced by the user is presented in Table 1. 
Once all this information is collected, it is recorded in the AeneA 
SQL database. Finally, a report containing the ten-year CVD risk 
prediction is sent to the user by email. The client can repeat the 
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Fig. 2. eCardio floor standing tablet, installed in a pharmacy.
Table 1
Table of eCardio entries.

eCardio user collected data

Sex, age, weight, height, ethnicity, nationality, total cholesterol, HDL choles-
terol, systolic blood pressure, anti-hypertension, diabetes, chronic kidney dis-
ease, rheumatoid arthritis, atrial fibrillation, smoke, precedents of cardiovascu-
lar diseases, family history involving people with CVD.

test over a certain period to track the effects of his habits upon his 
health.

A prototype of the floor standing tablet is depicted in Fig. 2. It 
can be installed in pharmacies, medical clinics, hospitals, or com-
panies. The additional functionality of this system is to provide a 
statistic about the population that used it. For example, an IT com-
pany with eCardio installed could get the information that 30% of 
its male employees suffer from cholesterol. This averaged informa-
tion can drive the company to create a prevention (or treatment) 
program. A big issue in this example concerns privacy require-
ments for employees’ data. Data should be kept inaccessible to 
third-party users as health insurance partners, protecting personal 
data from being sold for commercial purposes.

Several models of cardiovascular risk, described in the ANAES 
report [13], have been proposed. For example, the Procam model 
[14] assesses mortality and the occurrence of a heart attack. How-
ever, the two most conventionally used models are D’Agostino cor-
responding to the latest statistics from Framingham and SCORE.

The main feature of eCardio is cardiovascular risk forecast-
ing. This probability is computed using the Framingham [15], and 
SCORE [16] algorithms. Also, the heart age calculator published 
by the United Kingdom National Health Service (NHS) was imple-
mented. The equations for these risk functions are based on the 
Cox statistical model.

2.1.1. Framingham heart study
The Framingham Heart Study [17,18,15] is a long-term research 

project that began in 1948 in Framingham, a town in eastern Mas-
sachusetts, USA. The project aimed to identify risk factors of CVD. 
The study tracked the effects of smoking, diet, and exercise on 
3

heart diseases. Its findings further emphasized the need to pre-
vent, detect, and treat risk factors in their earliest stages. The 
study was carried out in collaboration between the National Heart, 
Lung, and Blood Institute of the National Institutes of Health (NIH) 
and the Boston University School of Medicine. It was designed to 
track health information on persons who initially did not show 
signs of heart disease. Two-thirds of Framingham’s adult popula-
tion (more than 5200 residents), ranging from 30 to 62 years, were 
included in the original study group. Every two years, these peo-
ple answered detailed questions about their lifestyle. Throughout 
the study, researchers kept track of which participants experienced 
heart disease and which did not. It was possible to study the rela-
tions between disease and collected data in this way. In 1971, 5120 
recruits (first generation cohort) were added to the study. From 
the 1990s, the study also included new persons (second-generation 
cohort) [18] and finally, in 2001, a third-generation cohort [15]
was added. The Framingham algorithm embedded in eCardio, was 
transposed from the work in [15].

2.1.2. Systematic coronary risk evaluation
The Systematic Coronary Risk Evaluation (SCORE) [16] project 

assembled a pool of datasets from 12 European cohort studies, 
mainly carried out in general population settings. This project was 
supported by the European Society of Cardiology (ESC) through the 
European Association of Preventive Cardiology (EAPC). There were 
205178 persons (88080 women and 117098 men) involved in the 
project, and a ten-year risk of fatal CVD was calculated for high-
risk and low-risk regions of Europe. The risk charts are based on 
gender, age, total cholesterol, systolic blood pressure, and smok-
ing status, with relative risk chart, qualifiers, and instructions. The 
SCORE algorithm embedded in eCardio, was transposed from the 
work in [16].

2.1.3. NHS heart age tool
The NHS Heart Age tool [19] is an implementation of the JBS3 

Cardiovascular Risk Assessment [20] and is the product of a col-
laboration among the National Health Service (United Kingdom), 
Public Health England, University College London, and the British 
Heart Foundation. This JBS3 cardiovascular risk assessment tool has 
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Fig. 3. CareUp performing blood pressure estimation.
already been used for many years in Great Britain [21] to esti-
mate the patient’s 10-year risk of developing CVD, and to identify 
high-risk people for primary prevention. This tool can be applied 
to all individuals except those with established CVD, familial hy-
percholesterolemia or other inherited dyslipidaemias, chronic renal 
dysfunction, or type 1 or 2 diabetes mellitus [20]. The heart age 
tool embedded in eCardio, was transposed from the source code 
made available online in [22].

Among the others, the choice of these CVD risk tools was based 
on the geographic area the eCardio product could have been used: 
the USA and Europe. The ten-year temporal period accounted for 
all three selected CVD risk predictors.

2.2. CareUp: a smart watch for estimating blood pressure

Raised blood pressure (BP) is the leading cause of death and 
disability worldwide [23]. Increased pressure in the arteries is 
common, leading to hypertensive heart disease and CVD. Therefore, 
accurate BP measurement is vital in preventing and treating such 
disorders, especially in hypertensive patients. In the USA, about 
30% of the population suffers from hypertension and less than 50%
of them, monitor their BP [24].

The most common technique in medicine for estimating blood 
pressure involves using a sphygmomanometer; after that, a non-
invasive blood pressure measurement is possible by hearing the 
Korotkoff sounds (K-sound) [25]. This method is not automatic and 
requires a person performing the measurement, such as a doctor 
or a nurse. Automatic devices continue to use a cuff that wraps 
around the arm: They estimate the BP by detecting pressure oscil-
lations during cuff deflation using a built-in pressure sensor.

The present manuscript unveils a cuff-less method for BP es-
timation that requires two PPG signals as input. The algorithm is 
embedded in the CareUp smartwatch [9] and is based on the time 
delay the blood volume (pulse) takes to travel from the heart to 
peripheral organs. This time delay is called pulse transit time (PTT) 
[26–28] and is inversely related to BP [29].

The PTT can be estimated using two PPGs: one obtained close 
to the heart and one obtained at a distal place. CareUp is made up 
of two pulse oximeters: one on the back and one on the front. The 
acquisition of two PPGs is initiated by placing the index finger on 
the front oximeter. Fig. 3 depicts the BP estimation procedure. The 
PTT is then calculated by filtering and cross-correlating the signals.

BP is affected by a variety of factors, including vasomotor tones, 
neural control, and HR [30,31]. As a result, the BP estimation 
model in CareUp employs two variables: the heart rate (HR) esti-
mated from one of the two PPG signals and the PTT. Manlises et al. 
initially implemented the model in [32] and adopted a linear re-
gression analysis to produce an estimated systolic and diastolic BP 
as output.

This approach seems to be dependent on temporal trials, 
as well as on motion activities [33,34]. For this reason, CareUp 
4

requires a specific calibration to tune the center of the model’s 
constants according to the user’s physiological characteristics.

2.3. UpNEA: a smart glove for sleep monitoring

Sleep is a physiological process that has a variety of effects on 
daily life and is essential for maintaining one’s health and well-
being throughout one’s lifetime [35]. The USA National Institutes 
of Health acknowledges that chronic sleep deprivation and circa-
dian disruption are new aspects of contemporary urban lifestyles 
and are linked to decreased public safety and higher disease risk 
in all age groups [36]. In order to improve the prevention, diag-
nosis, and treatment of such disturbances, the Congress and the 
Department of Health and Human Services in the USA have des-
ignated sleep and circadian disturbance disorders as high-priority 
targets for basic and clinical scientific investigation [37].

Sleep quality is primarily influenced by a person’s habits and 
physio-pathological state. As a result, monitoring vital signs while 
sleeping can aid in preventing, diagnosing, and treating sleep dis-
orders.

The clinically acceptable sleep stages are determined by read-
ing the recorded electroencephalogram (EEG) based on the R&K 
criteria. These criteria were standardized in 1968 by Rechtschaffen 
and Kales [38] and further developed by the American Academy of 
Sleep Medicine in 2007 (AASM 2007) [39].

The gold standard for identifying any sleep disorder is poly-
somnography (PSG). Various electrophysiological signals, including 
EEG, electromyogram, electrooculogram, electrocardiogram (ECG), 
airflow, SpO2, and PPG, are recorded throughout the night. Because 
acquiring and analyzing these signals require human expertise and 
specialized equipment, it is primarily done in medical clinics. Due 
to the uncomfortable and expensive nature of the diagnostic pro-
cess, sleep disorders are frequently not adequately diagnosed.

Polygraphy is a less restrictive examination conducted at home 
for the most straightforward cases to diagnose. Usually, it requires 
using a nasal cannula to detect the nasal pressure airflow, which 
could interfere with natural sleep. However, it does not record EEG 
and thus is not helpful for sleep staging.

For the easiest cases to diagnose, a less stringent examination 
called polygraphy is performed at home. To detect the nasal pres-
sure airflow, it typically requires using a nasal cannula, which is 
uncomfortable to wear and frequently disrupts restful sleep. How-
ever, because it does not record EEG, it is ineffective for sleep 
staging.

To investigate the presence of HR abnormalities during sleep, 
the golden standard methods are the 24-h Holter monitor or the 
30-day event recorder [40], employing ECG electrodes adhered to 
the person’s chest. In recent years, wearable solutions for long-
term HR monitoring have implemented wrist-wearable PPG sen-
sors to measure HR in free-living conditions continuously [41].
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Fig. 4. The UpNEA device and its prototype.
In MonEco, the authors proposed the integration of a smart 
glove called UpNEA as a less invasive alternative to the PSG and 
polygraphy. This solution has already been presented by the au-
thors in [10] and integrated into the present ecosystem. The device 
and its prototype, interfacing with the mobile app, are shown in 
Fig. 4. The solution aims to keep track of two vital parameters: 
respiration and heartbeat, using PPG and SpO2 sensors. Further-
more, the proposed system incorporates some previously validated 
algorithms for detecting heart rate and breathing rhythm irregu-
larities.

UpNEA acquires PPG, SpO2 and 3-axis accelerometer signals. 
For signal processing, it sends them to a mobile application that 
stores this information into a remote bucket in AeneA. The smart 
glove implements a zero data loss encoding method, avoiding sig-
nals corruption but compressing the transmitted information.

In particular UpNEA is able to perform the following overnight 
tasks:

• heart rate estimation,
• tachycardia and bradycardia detection,
• atrial fibrillation and premature ventricular contraction detec-

tion,
• estimation of breathing rate,
• identification and classification of apnea and hypopnea, and
• overnight segmentation in sleep stages.

The time difference between two successive pulses was used 
to calculate the beat time duration. To detect and handle ectopic 
pulses, the method in [42,43] was implemented. The methodol-
ogy proposed by Bonomi et al. in [44] was included to detect 
episodes of bradycardia and tachycardia. AF and PVC are detected 
using Rademeyer’s method [45], which was embedded in a wire-
less device designed to monitor psychiatric patients’ heart. The 
sleep stages detector based on accelerometer data was integrated 
as described in [10].

In previous works, the authors published a method to detect 
and classify sleep apnea/hypopnea syndrome from PPG signals 
[11] and compared the performances of different algorithms for 
BR estimation in [12]. These methods have been integrated into 
a sleep monitoring platform called UpNEA, published in [10]. In 
the present manuscript, the authors want to integrate UpNEA into 
an ecosystem of smart devices called MonEco, comprehensive of a 
blood pressure monitor device (CareUp, [9]) and a heart risk pre-
dictor app (eCardio, [8]).

2.3.1. Methods for apnea and hypopnea detection and classification
In contrast to hypopnea, which is marked by abnormally low 

respiratory flow, sleep apnea refers to the cessation of breathing 
while asleep [46]. Both conditions can be obstructive or central: 
obstructive when breathing effort is maintained despite an airway 
obstruction that interrupts airflow; central when neither breathing 
5

effort nor airflow is present. More than 15% of the U.S.A. popula-
tion suffers from sleep apnea, which increases the risk of heart at-
tack, stroke, and mortality, as well as daytime sleepiness, injuries, 
hypertension, cognitive impairment, and mortality [37,47–49]. PSG 
or polygraphy is the gold standard tool for diagnosing these distur-
bances, but numerous noninvasive techniques have been developed 
in recent years [50].

As demonstrated in [51] during tilt table tests, the pulse rate 
time series, which is derived from PPG, serves as a surrogate 
for the heart rate time series and, consequently, the pulse rate 
variability (PRV) with regard to the heart rate variability (HRV). 
HRV represents variations in heart rate related to autonomic ner-
vous system control: the vagal tone is represented by the high-
frequency components of HRV, which range in frequency between 
0.15 and 0.4 Hz. Low-frequency (LF) components, on the other 
hand, exhibit the activation of both the parasympathetic and sym-
pathetic nervous systems (from 0.04 to 0.15 Hz). The PRV and the 
ratio of LF to HF, which is known as the sympathovagal balance 
[52], have both been used to distinguish between different sleep 
breathing disorders [53,11].

The designed and published new methods for detecting and 
classifying sleep apnea and hypopnea [11]. In summary, the de-
tection and classification methods are based on a decrease in am-
plitude fluctuation (DAP) of the PPG signal, which is usually associ-
ated with a sleep-disordered breathing event, as shown in [54–59].

PRV-based features were extracted from 65 seconds PPG tem-
poral windows, centered on the DAP, to differentiate between 
sleep-disordered breathing event types to account for sympatho-
vagal arousals. Finally, a Fine Gaussian Support Vector Machines 
(SVM) classifier with a Gaussian kernel was used to distinguish 
between apneic or hypopneic, obstructive, or central DAP events.

2.3.2. Derive respiratory rate from PPG
Breathing rate (BR) is an essential physiological indicator to 

diagnose various chronic diseases such as pneumonia and, even-
tually, cardiac arrest [60]. Capnography is the gold standard mea-
surement technique for BR, but it requires cumbersome equipment 
that is uncomfortable for long-term monitoring. To reduce the dis-
comfort, recent publications have explored how to derive the res-
piration signal from the ECG and PPG signals [61–63]. Respiration 
activity modulates both ECG and PPG signals [64]. Respiratory si-
nus arrhythmia is the term for the condition where the heart rate 
rises during inspiration and falls during expiration [65,66]. Due to 
ventricular filling, the decreased stroke volume in cardiac output 
causes respiration-induced amplitude variation in the PPG signal 
[67,68]. The amplitude, frequency, and baseline wander modula-
tions of ECG and PPG signals are used to estimate BR indirectly 
[62,69,70].

Khreis et al. in [63], implemented the embedded algorithm for 
breathing rate estimation.
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Fig. 5. MonEco web application showing the eCardio report.
The authors chose the best respiration rate estimation method 
in a comparative study published in [12]. Several techniques 
were used for comparison, including empirical mode decompo-
sition (EMD), EMD combined with principal component analysis, 
wavelets analysis, respiratory-induced intensity variation analy-
sis, respiratory-induced amplitude variation analysis, respiratory-
induced frequency variation analysis, and data fusion’s Kalman 
Smoother method.

2.4. AeneA web application

A dedicated internet web page hosted by AeneA allows the user 
to access his data.

In Fig. 5, the web application shows the user the eCardio report 
based on his daily habits and physiological data.

The customer can also navigate, for example, through the 
recorded nights and select the one to display. The server im-
ports data from the SQL database and displays them using the 
Highcharts JavaScript charting engine from Highsoft. Fig. 6 shows 
a generic overnight plot with no clinical significance. The chart 
is made up of a zoomable time series, a range selector bar at 
the bottom, and a legend. The range selector only shows the 
overnight sleep stages, and a legend is an active tool that allows 
to show/hide information on the plot. HR, SpO2, BR signals, apnea 
and hypopnea detections, and tachycardia and bradycardia events 
are depicted in colored bands on the chart. Sleep stages are rep-
resented in various blue tonalities in the background. When the 
mouse pointer passes over the yellow bands, each SDBE detection 
is labeled as apneic or hypopneic, central or obstructive. To avoid 
overexpression, the red bands of tachycardia and bradycardia have 
been removed from the figure. Finally, overnight statistics are pro-
vided below the graph.
6

3. System validation

3.1. eCardio validation

Table 2 presents the main differences between the Framingham 
model and the SCORE index. The table references the work pub-
lished in [71].

The main risk factors currently identified cannot be modified 
for age, sex and inheritance but can be modified for hypertension, 
cholesterol, tobacco, diabetes, and lifestyle (diet and physical ac-
tivities). Other indicators such as risk factors, such as menopause 
in women, metabolic syndrome (including the body mass index), 
physical inactivity, and unfavorable socio-economic conditions are 
also recognized. Nevertheless, they have not been integrated into 
the conventionally used risk models, either because they have not 
been taken into account in the studies or because they prove to be 
non-significant for the performance of the risk model.

The accuracy of these models is analyzed by comparing the pre-
dicted risk with the reality observed in large numbers of patients 
followed for several years. Under these conditions, the Framing-
ham model underestimates the risk in high-risk populations and 
overestimates the risk in low-risk populations [74]. This last point 
is particularly marked in the countries of southern Europe like in 
Spain [75] and in France, where corrections are necessary, com-
pared to the original Framingham model. The work of Laurier in 
1994 [76], Vergnaud in 2008 [77] (3440 men aged 45 to 60), and 
Empana in 2003 [78] (9750 men followed for five years) converge 
to show an overestimation of risk according to Framingham by a 
factor of 2 to 2.3 for the French population.

The value of the Score index (for low-risk countries) is 7 to 10 
times lower than the Framingham index. It is because only one 
part is reduced by all the events considered in Framingham. On 
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Fig. 6. MonEco web application plotting overnight sleep monitoring. For interpretation of the colors in the figure, the reader is referred to the web version of this article.

Table 2
Comparison table between the Framingham and SCORE study.

Model Framingham SCORE

Promoter American: NIH [72] European: ESC [73]
Program Extensive permanent research 

program, since 1948.
Group of studies was carried out 
in 12 European countries in 2003.

Population 8491 participants followed over 12 
years, with 1174 cardiovascular 
events.

12 national cohorts totaling more 
than 200000 patients with 7934 
deaths.

Type of risk Composite morbidity and mortality: 
coronary, cerebral events, lower 
limbs arteritis, and heart failure.

Cardiovascular mortality only.

Reference risk Patients of the same age whose risk 
factors would be ideal: Total 
cholesterol 1.8 g/l, HDL-cholesterol 
0.45 g/l, SBP 125 mmHg, tobacco and 
diabetes-free.

High/Low risk High risk if >20%
Intermediate between 10 and 20%
Low risk if <10%

High risk if >5%

Remarks The risk is lower for a population in 
Western Europe. For France, the risk 
must be divided by approximately 2.

Diabetes is not considered in the 
equations because these patients 
are considered a priori at high 
risk (it is necessary to multiply 
the SCORE index by two at least).
the other hand, it could be since the Framingham index practically 
overestimates the occurrence of events in France by a factor of 2 
compared to what is observed in the USA [71].

The National Institute for Health and Care Excellence (NICE, UK) 
guidance (2010) does not recommend any particular risk calculator 
[79]: the Framingham risk equation may overestimate risk in UK 
populations as much as 5% for UK men [80].
7

3.2. CareUp validation

The validation was performed on 44 subjects in a clinical con-
text, in the Institut Coeur Paris Centre Turin (ICPC) in Paris. Patient 
characteristics were heterogeneous: males and females with an 
age of 67 ± 13 years, with European, Caucasian and African skin 
color; some of them were in health status, while others had car-



R. Lazazzera and G. Carrault IRBM 44 (2023) 100736
Table 3
Results comparison for SBP and DBP 
estimation on 126 measures from 44 
subjects, taken in the Institut Coeur 
Paris Centre Turin (ICPC) in Paris. 
The acquisitions were performed us-
ing a sphygmomanometer as a refer-
ence device and CareUp.

CareUp

SBP DBP

ēdev −1.52 0.39
σ dev

e 9.45 4.93
pdev 0.6338 0.7249

Table 4
Table showing the results comparison for SBP and 
DBP pressure estimation on 78 measurements from 
44 subjects, acquired in the ICPC clinic in Paris. 
The acquisitions were performed using a sphygmo-
manometer as a reference device, Magnien® and 
CareUp.

Magnien CareUp

SBP DBP SBP DBP

ēdev −3.44 −0.94 −1.97 0.31
σ dev

e 15.08 12.00 10.56 3.57
pdev 0.2328 0.8928 0.6952 0.7725

diac arrhythmia, coronary occlusion, or a pacemaker implant. Each 
acquisition consisted of different measurements performed with 
different devices: the reference device was a sphygmomanome-
ter mechanically inflated using a manual pump, and the com-
parison devices were CareUp and two oscillometry-based devices 
already available on the market: Thuasne® and Magnien®. A total 
of 126 measurements were taken using the sphygmomanometer 
and CareUp, with a mean of three acquisitions per patient; of the 
126 measures, 78 were also performed using Magnien® and 76 
also using Thuasne®. A professional conducted acquisitions and all 
devices were always worn on the same wrist. The reader can find 
more information about the trial in [9].

The mean and standard deviation of the errors (calculated as 
the measurement difference between the reference and the device) 
were computed, and the Wilcoxon rank-sum test was conducted.

As a reference for the reader, the AAMI standard for non-
automated sphygmomanometers authorizes a mean error differ-
ence of less than five mmHg and an error standard deviation 
within 8 mmHg [81]. The Wilcoxon rank-sum test compares 
whether or not two independent samples come from identical con-
tinuous distributions with equal medians.

The comparison on 126 measures between the sphygmo-
manometer and CareUp is reported in Table 3. Table 4, on the 
other hand, reports the results for the comparison, on 78 mea-
surements, between the reference, CareUp, and Magnien®. Finally, 
Table 5 presents a comparison of the sphygmomanometer, CareUp, 
and Thuasne®, on 76 measures. The mean error, standard devia-
tion error, and p-value of the Wilcoxon rank sum test performed 
on the device acquisitions are shown in these tables.

The results demonstrate the method’s robustness to a variety 
of physiological characteristics and pathologies. They also prove 
that there is no statistically significant difference in SBP measure-
ment between market-available devices and CareUp. Furthermore, 
the smartwatch outperformed the other devices in DBP estima-
tion. Based on the pdev -values, the Wilcoxon tests confirmed that 
the measures taken with the reference and those taken with the 
CareUp smartwatch share the same median: the CareUp data dis-
tribution was the closest to the reference. Finally, thanks to several 
experiments, it is possible to claim that the CareUp measurements 
met AAMI standards.
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Table 5
Results comparison for SBP and DBP pressure esti-
mation on 76 measures from 44 subjects, taken in 
the ICPC clinic in Paris. The acquisitions were per-
formed using a sphygmomanometer as a reference 
device, Thuasne® and CareUp.

Thuasne CareUp

SBP DBP SBP DBP

ēdev −3.86 −5.42 −2.08 0.17
σ dev

e 15.34 16.16 11.67 4.45
pdev 0.0397 0.0296 0.6409 0.9222

Table 6
Total number of sleep disordered breathing events, per category, in 
the database.

CA CH OA OH MA

Number of events 765 689 4984 14,140 750
Percentage of events 3.6% 3.2% 23.4% 66.3% 3.5%

Table 7
Apnea and hypopnea detection results.

CA CH OA OH

Se [%] 86.6 73.3 86.4 76.2
Sp [%] 55.3 57.4 57.2 68.2
Acc [%] 70.9 65.4 71.8 72.2

3.3. UpNEA validation

3.3.1. Methods for apnea and hypopnea detection and classification
The methods were tested on 96 overnight signals from patients 

with sleep apnea/hypopnea syndrome and no collateral morbidity 
at the UZ Leuven hospital. Each record included a PPG and a SpO2
signal sampled at 500 Hz, and the apnea-hypopnea index (AHI) 
was calculated using the AASM 2012 rules [82]s. In the UZ Leuven 
hospital dataset, the average AHI is 31.3, and 39 percent of the sub-
jects had an AHI greater than 30; 53 percent had an AHI between 
5 and 30, and the remaining 8 percent had an AHI less or equal 
to 5. The start and end times of central apnea (CA), central hypop-
nea (CH), obstructive apnea (OA), and obstructive hypopnea (OH) 
are all annotated. The total number of annotations in the database 
per sleep-disruptive breathing event (SDBE) category is shown in 
Table 6.

For overnight sleep apnea/hypopnea detection, each PPG record-
ing was divided into one-minute segments. Then, 3-fold cross-
validation (CV) was performed: two-thirds of the patients in the 
database trained the detector parameters and one-third tested the 
trained detector at each fold. The 3-fold CV was performed on each 
patient separately, with no re-substitution. Because PPG features 
can be patient-specific, it was decided that each patient should be 
included in either the detection test set or the detection training 
set to ensure proper generalization to new subjects.

The authors published the algorithms for apnea and hypopnea 
detection in [11] and embedded them in UpNEA [10]. Those meth-
ods had a 75.1 percent accuracy (Acc) for detecting apneic/hypop-
neic events in one-minute segments, with 76.9 percent sensitivity 
(Se) and 73.2 percent specificity (Sp). The detection Se, Sp, and 
Acc values of the different sleep-disordered breathing events are 
reported in Table 7. To build the table, a criterion was adopted 
to compute the metrics: e.g., considering central apnea detection, 
a sleep-disruptive breathing event was considered FP when it did 
not correspond to a central apnea annotation, even if other apnea 
types were present.

Furthermore, those algorithms were tested on patients with a 
low AHI index (AHI ≤ 5), and their results are shown in Table 8.
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Table 8
Apnea/Hypopnea Detection results on patients with AHI 
≤ 5.

Event Type Se [%] Sp [%] Acc [%]

All 79.9 75.8 76.1
Central Apnea 100 72.0 72.2
Central Hypopnea 83.6 72.4 72.6
Obstructive Apnea 88.9 63.6 63.8
Obstructive Hypopnea 76.8 74.2 74.3

Table 9
Respiratory events classification performances for Fine Gaus-
sian SVM.

TPr [%] FPr [%] Acc [%] AUC

C-O
C 95 10

93 0.97
O 90 5

CA-CH
CA 86 19

84 0.91
CH 82 14

OA-OHA
OA 85 20

83 0.89
OHA 81 14

When we compare the apnea and hypopnea detector results 
from the comprehensive database to those from patients with low 
AHI, we see no significant difference, confirming the detector’s ro-
bustness. Finally, those methods produced comparable results to 
those found in the literature when tested on the same database, 
[83–85].

In order to classify SDBEs in CA, OA, CH, and OH, 37 features 
were extracted from the PPG and SpO2 signals corresponding to 
the SDBE time frame. Because of the heterogeneous distribution of 
SDBE types among patients, a dataset containing labeled extracted 
features was created without implementing a Leave One Subject 
Out (LOSO) procedure. A subsequent step involved balancing data 
so that the same amount of information represented each class. 
The dimensionality problem was then addressed by implementing 
a feature selection algorithm. A 10-fold CV was then used to train 
and test the Fine Gaussian Support Vector Machine model.

Additionally, in [11], authors also published the classification 
method designed on the detected DAP events to discriminate be-
tween central and obstructive, apneic and hypopneic events. The 
classification was performed with a Fine Gaussian SVM classifier 
and yielded 92.6 percent Acc in distinguishing central from ob-
structive apnea, 83.7 percent in distinguishing central apnea from 
central hypopnea, and 82.7 percent in distinguishing obstructive 
apnea from obstructive hypopnea. Table 9 displays the True Posi-
tive (TPr = Se) and False Positive (FPr = 1 − Sp) rates, as well as 
the Acc and ROC area under the curve (AUC) obtained with the 
classification. In comparison, no other work on the same database 
was done to classify the SDBE subtypes.

It should be noted that these results were obtained using sig-
nals acquired by devices available at the UZ Leuven clinic rather 
than from the proposed UpNEA device. To simulate the UpNEA ac-
quisition, the database signals were downsampled at 100 Hz before 
processing. Due to cost and time constraints, launching a clinical 
protocol for the presented device was not possible. Nonetheless, 
because the proposed platform transmits lossless data by design, 
the authors conclude that hardware validation is unnecessary.

3.3.2. Derive respiratory rate from PPG
The public CAPNOBASE database [86], which contains 42 sub-

jects (29 children and 13 adults) with simultaneous ECG and PPG 
recordings, was used to validate different respiratory rate estima-
tion algorithms. For each subject, eight minutes of high-quality 
data were collected during elective surgery or routine anesthesia. 
The capnography waveforms were manually labeled by the study’s 
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Table 10
Results comparison in [bpm], of methods tested on the same CAPNOBASE 
database.

Khreis 
(2019)

Pimentel 
(2016)

Karlen 
(2013)

Flemming 
(2007)

Shelly 
(2006)

Nilsson 
(2000)

32 s
Median 0,50 1,50 1,20 1,40 4,50 10,50
IQR 0,90 3,00 2,90 3,30 9,70 7,80
Q1 0,20 0,30 0,50 0,50 0,80 4,90
Q3 1,10 3,30 3,40 3,80 10,50 12,70

64 s
Median 0,20 1,90 0,80 1,10 2,20 10,20
IQR 0,80 3,10 2,40 3,10 8,10 7,60
Q1 0,10 0,30 0,30 0,40 0,20 4,80
Q3 0,90 3,40 2,70 3,50 8,30 12,40

authors, and the annotations of BR were used as reference; meth-
ods comparison was performed by segmenting the PPG signal in 
32 s and 64 s windows.

Khreis developed the PPG breathing rate estimation algorithm 
[63], integrated into the proposed sleep monitoring solution [10]. 
By segmenting the signal in 32 s windows, the absolute median 
error was 0.5 breath per minute (0.2–1.1 interquartile range 25th—
75th) and 0.2 breath per minute (0.1–0.9) for the 64 s windowing. 
These results outperformed others proposed by Pimentel in 2016 
[87], Karlen in 2013 [69], Flemming in 2007 [88], Shelly in 2006 
[89], and Nilson in 2000 [90].

For an exhaustive comparison of the breathing rate estimation 
algorithms, the reader can find more information in [12]. In the 
present manuscript, Table 10 reports the performances of meth-
ods tested on the same CAPNOBASE database and proposed by the 
following authors: Khreis in [63], Pimentel in [91], Karlen [92], 
Flemming [88], Shelly [89] and Nilson [90]. The Table shows the 
absolute errors expressed as the median, mean, interquartile range 
(IQR), 25th (Q1), and 75th (Q3) percentile. These values are ob-
tained by evaluating breathing segments from 0-0.5 Hz.

Finally, the best performing algorithm was implemented by 
Khreis et al. in [63], that tracks the respiration signal, using the 
Kalman smoother, to fuse modulation signals with the highest res-
piratory quality indices.

3.3.3. UpNEA performances
Finally, UpNEA was employed in [10] to monitor four nights of 

sleep on a 30 years old healthy male subject not suspected to have 
apnea or hypopnea syndrome. The subject voluntarily wore the 
UpNEA smart glove for four nights and reported no sleep discom-
fort while wearing the acquisition device. The apnea and hypopnea 
detection and classification analysis was performed by segment-
ing the entire night recording into one-minute segments and run-
ning the algorithm through the remote server AeneA. Even though 
even a completely healthy person could have some apneic/hypop-
neic episodes, it was supposed that no apneas or hypopneas were 
present for testing purposes. The tests results showed a detec-
tion specificity of 96.2%. The specificity value obtained on the four 
nights’ recordings were most likely due to the absence of desatu-
ration in correspondence to the detected DAP event. In conclusion, 
the authors proposed this test as support for a proof-of-concept of 
UpNEA.

4. Discussion

4.1. eCardio

The awareness of the importance of risk factors has already 
led to a significant reduction in myocardial infarcts and mortal-
ity linked to a heart attacks in Europe and the United States. For 
example, in Ontario (USA), the 35% drop in heart attack mortality 
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observed between 1994 and 2005 is explained half by the effect 
of therapeutics and half by preventive measures against the main 
risk factors [93].

In order to maintain good cardiovascular health, the ESC recom-
mends [94] to control all the main risk factors: no tobacco, healthy 
food, at least half an hour of physical activity per day, body mass 
index (BMI) < 25, BP < 140/90 mmHg, Total cholesterol < 5 mmol 
(1.9 g/l), LDL-cholesterol < 3 mmol/l (1.15 g/l) and blood sugar < 6 
mmol/l (1.1 g/l).

eCardio aims to make its user aware of their cardiovascular 
risk. Different factors can play a role in lowering the risks: new 
treatments, sports, and alimentary habits changes can influence 
the overall risk report. For this reason, the eCardio questionnaire, 
if performed with a certain regularity (e.g., every three or six 
months), can allow the user to assess if his new habits or treat-
ment affected his cardiovascular risk.

4.2. CareUp

The smartwatch’s BP estimation performance was validated at 
the Institut Coeur Paris Centre Turin (ICPC) using a sphygmo-
manometer on 44 subjects. During the validation, the CareUp 
measures were compared to those of two existing oscillometry-
based devices on the market: Thuasne® and Magnien®. The CareUp 
results were comparable to oscillometry-based devices measure-
ments in terms of accuracy; additionally, they met the American 
Association for the Advancement of Medical Instrumentation stan-
dard for non-automated sphygmomanometers.

In this way, CareUp becomes an easy-to-use, wearable device 
for monitoring blood pressure in real-time by incorporating the BP 
estimation task into a smartwatch. The user can register HR, SpO2
and BP at different times in a day, and all those values will be 
registered into the AeneA SQL database to be available for the user 
upon request. During sleep, CareUp can also detect sleep stages 
from accelerometer data, using the same algorithm embedded in 
UpNEA.

4.3. UpNEA

UpNEA is a proof-of-concept system for non-invasive sleep 
monitoring. This platform’s strength is its flexibility and scalability, 
and it is aimed at individuals and clinics that perform polysomnog-
raphy. The zero data loss encoding method built into the system’s 
hardware enables it to communicate and transfer data without de-
grading signal quality. Different studies published in the literature 
put the algorithms integrated into the smart glove to the test. Con-
tinued validation of the proposed sleep monitoring platform as a 
medical solution complementary to polysomnography will be of 
great interest.

5. Conclusion

The manuscript proposes an ecosystem that integrates differ-
ent connected devices. The authors developed and tested them 
in separate works. MonEco aims to transform the doctor-patient 
relationship, letting the patient become a player in his health, 
particularly in improving his lifestyle or monitoring illnesses. The 
proposed system presents a smartwatch for blood pressure es-
timation (CareUp, [9]), a smart glove for sleep monitoring (Up-
NEA, [10]) and a cardiovascular risk prediction platform (eCardio, 
[8]). Performances of blood pressure estimation performed by the 
smartwatch have been evaluated in a clinical study and are com-
parable to those reported by commercially available devices [9]. 
The presented sleep monitoring activity provides sleep apnea and 
hypopnea detection and classification tasks, heart rate variability 
assessment, and sleep stages recognition [10]. All these methods 
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have been validated on annotated clinical datasets showing the 
feasibility of the solution [11,12]. The authors are convinced that 
similar ecosystems of health monitoring devices will continue to 
spread in the future; for this reason, the present paper wants to 
inspire and suggest new ideas about this future technology chal-
lenge.
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