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Abstract 

The interaction of a new heterocyclic Schiff base bearing pyridine and pyrimidine cycles, 

with human serum albumin (HSA) using molecular docking and molecular dynamics simulation 

methods was examined. Molecular docking studies showed that the ligand was bonded to the IB 

domain of the protein. It was found that there was one hydrogen bond interaction between HSA 

and the ligand. The standard Gibbs free energy for binding of the ligand to HSA was calculated 

as -9.63 kcal.mol-1. The results of the molecular dynamics simulation showed that the root mean 

square deviation (RMSD) of the non-liganded HSA and the HSA ligand complex reached 

equilibration after 1000 ps. The study of the radius of gyration revealed that there was a 

D
ow

nl
oa

de
d 

by
 [

A
us

tr
al

ia
n 

C
at

ho
lic

 U
ni

ve
rs

it
y]

 a
t 0

0:
49

 2
0 

A
ug

us
t 2

01
7 



ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT 2 

conformational change when the HSA ligand complex was formed. Finally, analyzing the RMS 

(RMSF) suggested that the structure of the ligand binding site remained 

approximately rigid during the simulation. 

Keywords  

Human serum albumin, molecular docking, molecular dynamics simulation, Schiff base ligand. 
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1. Introduction 

Schiff bases fascinate a large number of chemists and biochemists due to their easy 

formation, high stability, their pharmacological properties and, notably, their 

anticancer activity [1-4]. Most Schiff base ligands show biological activities, such as 

antibacterial [5], anticancer [6, 7], anti-

[10], antiparasitic [11], antiviral [12] and anti-HIV [13]. 

The knowledge about interaction mechanisms of a drug with plasma proteins as a 

biomacromolecule is required to understand the drug`s pharmacodynamics and 

pharmacokinetics [14]. Due to the function of plasma proteins as drug carriers, there 

are a large number of literatures about their binding to drugs [15, 16]. The interaction 

of plasma proteins with a drug has effects on the drug absorption, distribution and 

elimination in the circulatory system [17], and can prevent their rapid elimination 

from the blood stream [18]. Human serum albumin (HSA) is the most abundant 

plasma protein; it also is known as the dominant transporter plasma protein for 

endogenous and exogenous ligands (fatty acids, hormones and some drugs) [19]. The 

accommodation of a wide range of lipophilic molecules in HSA is possible as a result 

of its flexible structure [20]. The HSA-binding of a drug can increase its solubility in 

plasma, decrease its toxicity, protect it from oxidation, prolong its in vivo half-life as 

well as increase the pharmaceutical effect of the drug [21]. 

Recently, Ozedmir et. al. synthesized a new, heterocyclic Schiff base bearing pyridine 

and pyrimidine cycles (Figure 1) [22]. Aware of the therapeutic activity of Schiff 
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bases and in an attempt to obtain more insight into their biological activity, the HSA-

binding of the mentioned compound has been investigated. The computational 

molecular docking method was used to evaluate the binding behaviour of the Schiff 

base ligand to HSA, quantitatively. In addition, to find out the behaviour of the Schiff 

base-HSA complex, a powerful computational method, molecular dynamics (MD) 

simulation has been used. 

2. Methods 

2.1. Molecular docking procedure 

In this work, a docking study was carried out to indicate the HSA-binding site for the 

Schiff base compound. The 3D structures of the compound were generated using 

GaussView 5.0 software [23] and its geometry was optimized using Gaussian 03 [24] 

software by the B3LYP (Becke, three-parameter, Lee-Yang-Parr) method [25] at the 

level of 6-31g** [26]. The crystal structure of HSA (PDB ID: 1AO6) was taken from 

the Brookhaven Protein Data Bank (http://www.rcsb.org/pdb). The R-value and 

resolution of this file were 0.218 and 0.25 Å, respectively. It was prepared in pH=7.5. 

Water molecules of the protein pdb file were removed and missing hydrogen atoms 

and Gasteiger charges were added. Flexible-ligand docking was performed by 

AutoDock 4.2 molecular-docking program (http://autodock.scripps.edu) using the 

implemented empirical free energy function and the Lamarckian Genetic Algorithm 

[34]. The Gasteiger charges were added to prepare the macromolecule input file for 

docking and the Auto Grid was used to calculate the grids. A blind docking with 126 

lattice points along the X, Y, and Z axes was performed to find the active site of the 
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ligands with the HSA. After determination of the active site, the dimensions of the 

grid map were selected as 60 points on a side with a grid point spacing of 0.375 Å, to 

allow the ligand to rotate freely. 200 docking runs with 25,000,000 energy evaluations 

for each run were performed. 

2.2. Molecular Dynamics Simulation 

The lowest binding free energy conformation of the complex was considered as the 

initial conformation for the MD studies. All MD studies were carried out using the 

GROMACS 4.5.6 (University of Groningen, Netherlands) package [27,28] and the 

29,30]. The Dundee PRODRG2.5 server was used to 

generate the topology parameters of the ligands [31]. The partial atomic charges of the 

ligand were calculated using Gaussian 03 [24] at the level of B3LYP/6-31G** 

[25,26]. The complex was located in a cubic box with periodic boundary conditions. 

The box volume was 11.36381 × 11.36381 × 11.36381 nm3 and the minimum distance 

between the protein surface and the box was 1.0 nm. The box contents

extended simple point charges (SPC), water molecules [32], and the solvated systems, 

were neutralized by adding 15 sodium ions (Na+). Energy minimization was done 

through using the steepest descent method. Then, the system was equilibrated for 100 

ps at the temperature of 300 K. Finally, a 20 ns MD simulation was carried out at 1 

bar and 300 K. A Berendsen thermostat [33] at 300 K, the particle mesh Ewald (PME) 

method [34,35] for long range electrostatics, and a 9 Å cut off for van der Walls 

interactions and Coulomb interactions were used. The equation of motions was 

integrated by the leap-frog algorithm with 2 fs time steps. The atomic coordinates 
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-bond 

constraint was used to keep the ligand from drifting in the MD. 

3. Results and Discussion 

3.1. Molecular docking study 

HSA is the most abundant protein in human blood plasma and consists of 585 amino 

acids; it has three -helical domains (I, II and III), each containing two subdomains (A 

and B) [36]. HSA transports drugs, hormones, fatty acids, and other compounds, and 

maintains osmotic pressure, among other functions [37,38]. Previous crystal structure 

studies have shown that most ligands are bound to binding site in subdomains IIA or 

IIIA [39 43]. Also, the D-shaped cavity in subdomain IB is the binding site of some 

compounds [44 46]. In this work, the selected Schiff base ligand was docked to the 

crystal structure of HSA. The obtained results from molecular docking showed that 

the ligand binds to the IB subdomain of HSA. The standard Gibbs free energy for 

binding of the ligand to HSA was -9.63 kcal.mol-1. The results indicated that the Arg 

(117) amino acid residue is involved in the hydrogen bond interaction in the HSA-

ligand system. The results of the docking are presented in Fig. 2. The other amino acid 

residues shown in Fig. 2 (lower right) are involved in hydrophobic interactions with 

the Schiff base ligand. Thus it can be concluded that the interaction of ligand with 

HSA is not mainly hydrophobic and that the carbonyl groups in the structure of the 

 

3.2. Analysis of MD trajectories 
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The beginning structure for the MD analyses was selected from the conformation with 

lowest docking energies. The trajectories were analyzed in terms of root mean square 

 (RMSF) 

using the GROMACS routines. 

3.2.1. Root mean square deviation of the trajectory of the HSA backbone 

The stabilities of the trajectories for HSA and the HSA-ligand were examined using 

the RMSD of the backbone of HSA (Figure 3). A glance at the analysis in Fig. 3 

shows that the RMSD of the two systems reached 

0.027 and 0.017 nm for HSA and HSA-ligand, respectively at about 300 and 1000 ps, 

respectively. This means that both systems were equilibrated well and the RMSDs had 

only low s around their mean values. 

3.2.2.  Radius of gyration 

The Rg for both systems were also determined and plotted against simulation time to 

study the protein compactness (Figure 4) showed that both systems stabilized after 

about 500 and 4000 ps for HSA and HSA-ligand, respectively. It can be clearly seen 

that the Rg was larger upon binding of the ligand, suggesting a more compact 

structure before the binding of Schiff base ligand to HSA. This indicates that the 

environment of the HSA changed during its interaction with the Schiff base ligand.  

3.2.3.  

The mobility of the HSA residues was evaluated by analysis of the RMSF of the C 

atoms of HSA in the presence of the Schiff base ligand (figure is not shown). The 

es of the the 
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HSA ligand complex. The obtained results clearly indicate that the residues at the 

binding site had only small in their interactions with the ligand. Also, the 

structure of the ligand binding site remained approximately rigid during simulation. In 

addition, the RMSFs of the atomic positions of the Schiff base ligand were calculated 

to examine its conformational variations (Figure 5). The results indicated that the 

ligand atoms showed limited 30 nm). Hence, it can be concluded that 

the interactions of HSA and the Schiff base ligand were stable during the simulation 

time. 

4. Conclusions 

Interaction of a new heterocyclic Schiff base bearing pyridine and pyrimidine cycles 

with HSA was examined since HSA plays a major role in transporting ligands to 

target places. The molecular docking studies indicated that the Schiff base ligand 

binds to the IB domain of HSA with one hydrogen bonding interaction. Therefore, it 

can be concluded that the interaction of this Schiff base ligand with HSA is not mainly 

hydrophobic. The standard Gibbs free energy for binding of ligand to the HSA was 

calculated to be -9.63 kcal.mol-1. The MD study, in particular, made an important 

contribution toward understanding the effect of the binding of this ligand on the 

conformational changes of HSA and the stability of HSA ligand complex system in 

aqueous solution. The MD simulation studies revealed that the RMSD of the HSA and 

HSA-ligand systems reached equilibrium and oscillated around the average value after 

300 and 1000 ps simulation time, respectively. Analysis of Rg indicated that the 

ligand changed the conformation of the HSA during MD simulation. The similarity of 
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the  HSA and the HSA ligand complex suggested 

that the structure of the ligand-binding site remained approximately rigid during the 

simulation. 
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Figure captions: 

 Figure 1. Optimized chemical structure of the Schiff base ligand containing (1) pyridine, (2) 

pyrimidine and (3) phenyl rings. 

 

Figure 1.  

Figure 2. The docking pose of the HSA-ligand complex. 

  

Figure 2.  
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Figure 3. Time dependence of RMSD. RMSD values of the backbones for non-liganded HSA 

and HSA ligand complex during 20,000-ps MD simulation using the GROMACS package and 

 

 

Figure 3.  

Figure 4. Time dependence of Rg. Rg values for non-liganded HSA and HSA ligand complex 

during 20,000-ps MD simulation using GROMACS package and the GROMOS96 43a1 force 
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Figure 5. Atomic fluctuations for the Schiff base ligand during 20,000-ps MD simulation using 
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