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Purpose - We present a lightened 3D finite element model for coupled electromagnetic thermal simula-
tion of the induction thermography non-destructive testing technique to reduce the computation time.
Design/methodology/approach - The time harmonic electromagnetic problem is expressed in A��

formulation and lightened by using the Surface Impedance Boundary Condition (SIBC) applied to both
the massive induction coil surface and the surface of conductor workpiece including open cracks. The ex-
ternal circuit is taken into account by using the impressed voltage or the impressed current formulation.
The thermal di↵usion in the workpiece is solved using surface electromagnetic power density as thermal
source.
Findings - The accuracy and the usefulness of the method for the design of the induction thermography
NDT technique have been shown with acceptable deviation compared with a full FEM model. It is also
observed that at high frequency, when the ratio between the local radius of the conductor and the skin
depth is high, a very good accuracy can be obtained with the SIBC methods. At lower frequency, the
e↵ect of the curvature of the surface becomes significant. In this case, the use of the Mitzner’s impedance
can help to correct the error.
Originality/value - The SIBC can be used for both massive coil and workpieces with open cracks to
alleviate 3D finite element models of the coupled electrothermal model. The implementation in matrix
form of the coupled electrothermal formulation is given in details. The comparisons with reference ana-
lytical solution and full 3D finite element model show the accuracy and performance of the method. In
the test case presented, the computation time is 6.6 times lower than the classical model.
Keywords: Impedance boundary condition, massive coil, induction thermography

1 Introduction

Induction thermography can be applied to the Non-Destructive Testing (NDT) of various kind of conduc-
tor workpiece such as metal and carbon fiber reinforced polymers. Using the induction heating principle,
the piece is heated up to a few dozen degrees above the ambient temperature. The presence of defects
deviates the eddy-current and the heat flow. This leads to abnormal temperature distribution on the
surface of the piece which can be revealed on thermal images measured by a thermal camera. This
technique turns out to be very e�cient for open crack detection.
The simulation tools for the design of the NDT technique must be able to deal with massive coils of
complex shape, strong skin and proximity e↵ect. The classical full finite element model with impressed
external circuit constraints, such as current and voltage, is well adapted for the modeling of complex
shape coil. However, this model is very time consuming due to the necessity of fine mesh in the skin
depth layer. It is actually true since one is usually working at high frequency with high conductive
materials making the coil and the workpiece [1] [2].
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Figure 1: A studied domain comprising a massive coil and a workpiece with open crack flaw. The voltage
can be impressed on the contours �s

1 and �s

2.

We present, in this paper, an accurate lightened 3D finite element model for the coupled electromagnetic
thermal simulation of the induction heating process using the Surface Impedance Boundary Condition
(SIBC). This boundary condition is applied to both the massive induction coil and the conductor work-
piece with open cracks. The finite element model takes into account the external electrical circuit by
means of voltage (or current) constrained formulation. The latter allows for accurate computation of the
coil impedance which is necessary for setting frequency and power factor. The implementation in A� �

formulation will be given in details. To couple with thermal problem, the surface electromagnetic power
density is used as thermal heat flux density.
The paper is organized as follows. In the section 2, the finite element A � � formulations with SIBC
and external circuit constraints are presented. The formulations are then validated on a simple test case
by an exact analytical solution. In the section 3, the coupling with thermal problem is then introduced.
Finally, an application in Induction Thermography simulation is presented in the section 4.

2 Weak formulation of SIBC method

2.1 The use of surface impedance

A general configuration of an induction thermography testing is shown in the Fig. 1. When using finite
element with SIBC, the volume of the conductor has to be excluded from the finite element resolution,
only the surface meshes are required. If all conductors are replaced by their surface, the Maxwell’s
equation to be solved is curlH = 0 in the remaining nonconducting domains and can be written in term
of magnetic vector potential as:

curl(
1

µ
curlA) = 0 (1)

where the condition A = 0|� is applied on the boundary � of the surrounding air box. By applying the
weighted residual method to the equation (1) with the test functions (wei + gradw

ni) where w
ei and

w
ni are respectively the edge and nodal shape function and by using Green’s formulae, we obtain the

weak formulation of the electromagnetic problem:
Z

⌦
curlw

ei
1

µ
curlAdv �

Z

�c

(wei + gradw
ni)(n⇥H)ds = 0, 8wei , 8wni (2)
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where n is the outward normal vector of �c = �c1 [ �c2 as shown in the Fig. 1 and A discretized by
edge element. On the surface of the conductors �c, one applies the SIBC [3]:

n⇥H|�c = n⇥ 1

µ
curlA|�c =

1

Zc

(n⇥E)⇥ n|�c (3)

where Zc is the surface impedance which depends on the conductor properties. In the literature, two
expressions of the surface impedance Zc known respectively as Leontovich, Mitzner approximation [6]
can be given as:

Z
Leontovich

c
=

1 + j

��
with � =

r
2

!�µ
(4)

Z
Mitzner

c
= Z

Leontovich

c

✓
1 +

1� j

4
�

✓
1

rHt

� 1

rEt

◆◆
(5)

where ! = 2⇡f is the angular frequency, j the imaginary unit, � the electrical conductivity and � the
skin depth. In the expression of Mitzner’s impedance, rHt and rEt are the local radii of curvature of the
surface. The Mitzner’s impedance is an improvement of Leontovich’s one that can be used to correct
the e↵ect of the curvature of the conductor. Another surface impedance expression known as Rytov’s
impedance involving partial derivative of the tangential component of H is not considered in this paper.
By noting that E = �j!(A + grad�) where � is the primitive function in time of the electric scalar
potential, the weak formulation (2) can rewritten using the SIBC as:

Z

⌦
curlw

ei
1

µ
curlAdv +

Z

�c

(wei + gradw
ni)

1

Zc

(n⇥ jw(A+ grad�))⇥ nds = 0 (6)

2.2 Impressing voltage V of external circuit

A voltage V can be impressed between the two contours �s

1 and �s

2 of the coil end (cf Fig.1) on which
the potential is considered constant. The function � can be approximated as [4]:

� =
X

�c\(�s
1[�s

2)

w
nj�

f

j
+

X

�s
1[�s

2

w
nj�

i

j
(7)

where ”f” and ”i” stand for free and impressed, �i

j
= 0 on �s

1 and �
i

j
= V/jw on �s

2.
To improve the convergence, one can decompose � in dynamic term and static term as below:

� =
X

�c\(�s
1[�s

2)

w
nj�

fdynamic

j
+

X

�c2\(�
s
1[�s

2)

w
nj�

fstatic
j

+
X

�s
1[�s

2

w
nj�

i

j
(8)

where �
fstatic
j

are obtained by solving an electrokinetic problem on the coil domain with impressed

potentials �i

j
. The potentials �

fdymanic

j
is to be solved together with A in the final dynamic eddy current

problem. One can write (8) as:

� = �
fdynamic + �

static = �
fdynamic + ↵�

i (9)

with ↵ computed for all nodes of the coil surface. The function ↵ is equal to 1 on �s

2 and equal to 0 on
�s

1. By applying vector calculus identity Y (X ⇥ n) = X(n ⇥ Y ) to (6), the final weak formulation of
SIBC method reads:
Z

⌦
curlw

ei
1

µ
curlAdv +

Z

�c

(n⇥w
ei)

1

Zc

(n⇥ jwA)ds+

Z

�c

(n⇥w
ei)

1

Zc

(n⇥ jwgrad�
fdynamic)ds

= �
Z

�c

(n⇥w
ei)

1

Zc

(n⇥ jwgrad↵�
i)ds (10)

Z

�c

(n⇥ gradw
ni)

1

Zc

(n⇥ jwA)ds+

Z

�c

(n⇥ gradw
ni)

1

Zc

(n⇥ jwgrad�
fdynamic)ds

= �
Z

�c

(n⇥ gradw
ni)

1

Zc

(n⇥ jwgrad↵�
i)ds (11)
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2.3 Impressing current I of external circuit

For the classical full finite element model, the current passing through the coil can be given by [5]:

I =

Z

⌦coil

grad↵Jdv (12)

where ⌦coil is the coil volumic domain. In the SIBC method, the current can be computed as:

I =

Z

�c2

grad↵Kds (13)

where K = n⇥H is surface current. By using (3), one has:

I =

Z

�c2

grad↵
1

Zc

(n⇥ jw(A+ grad�))⇥ nds

=

Z

�c2

(n⇥ grad↵)
1

Zc

(n⇥ jw(A+ grad�))ds (14)

where � is defined as in (9). In the impressed I formulation, �i becomes unknown and the equation (14)
has to be added in the equation system (10) and (11).

2.4 Matrix formulation

The matrix form of the discreteA�� formulation with a voltage V impressed as external circuit condition
reads:

(Rt
M

1/µ
ff

R+
j!

Zc

MeeS )A+
j!

Zc

MeeSGS�S
= �jw

Zc

MeeSGS↵S�
i (15)

j!

Zc

G
t

S
MeeSA+

j!

Zc

G
t

S
MeeSGS�S

= �jw

Zc

G
t

S
MeeSGS↵S�

i (16)

where R, G are respectively the discrete counterparts of curl, and grad operators and t denotes the
transpose operator. The subscript S means ”defined on the surface mesh of the conductors”. The matrix
form of the discrete A� � formulation with a voltage I impressed reads:

(Rt
M

1/µ
ff

R+
j!

Zc

MeeS )A+
j!

Zc

MeeSGS�S
+

jw

Zc

MeeSGS↵S�
i = 0 (17)

j!

Zc

G
t

S
MeeSA+

j!

Zc

G
t

S
MeeSGS�S

+
jw

Zc

G
t

S
MeeSGS↵S�

i = 0 (18)

jw

Zc

↵
t

S
G

t

S
MeeSA+

jw

Zc

↵
t

S
G

t

S
MeeSGS�S

+
jw

Zc

↵
t

S
G

t

S
MeeSGS↵S�

i = I (19)

The coe�cients, denoted m
1/µ
ff

and meeS , of the matrix M
1/µ
ff

and MeeS are computed as:

m
1/µ
ff

=

Z

⌦

1

µ
w

fiw
fjdv (20)

meeS =

Z

�c

(n⇥w
ei)(n⇥w

ej )ds =

Z

�c

w
ei
S
w

ej

S
ds (21)

w
f is the facet shape function and w

e the edge shape function.

2.5 A validation of electromagnetic model

The numerical models presented in the previous sections are validated by means of a simple test case for
which exact analytical solution is available in [7]. We consider the case of a long cylindrical conductor
carrying a alternative current and compute the current density distribution in its body. The description
of this test case is given in the Fig. 2. Three models are compared :

• Exact analytical solution (Reference)
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Figure 2: Cylindrical conductor carrying an alternative current. The SIBC can be applied on its surface
as shown in the figure. Numerical entries are rc = 5mm, � = 60MS/m (copper), I = 100A.
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Figure 3: Comparison of the real and imaginary parts of current in the conductor in function of the
radius. Case with fr = 50kHz. The ratio skin depth over the radius rc/� = 17.2.

• SIBC finite element with impressed current with Leontovich’s impedance (SIBC-ZLeontovich

c
)

• SIBC finite element with impressed current with Mitzner’s impedance (SIBC-ZMitzner

c
)

Note that for methods using SIBC in which only the current density on the surface of the conductor is
computed, the current distribution in the body is computed by J(r) = JSe

�(1+j) r�rc
� where JS is the

current density on the surface and rc the conductor radius. The Figs. 3 and 4 give the comparisons at
various frequencies. The results given by the impressed voltage formulation are identical as the impressed
current formulation and are not shown here for better visibility of the figures.
It can be observed that at high frequency (when the ratio between the radius of the conductor and the
skin depth is high) very good accuracy can be obtained with the SIBC methods. At lower frequency,
the e↵ect of the curvature of the surface seems become significant. In this case, the use of the Mitzner’s
impedance can help to correct the error.
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Figure 4: Comparison of the real and imaginary parts of current in the conductor in function of the
radius. Case with fr = 5kHz. The ratio the radius over the skin depth rc/� = 5.4.

3 Thermal Problem

In the thermal problem, only the workpiece domain ⌦c is considered and on its boundary �c1 , a Neumann
type boundary condition is applied. The thermal problem is defined by the heat transfer equation:

⇢Cp

@T

@t
+ div(��gradT ) = PS (22)

with the convection type boundary condition:

��
@T

@n
= h(T |�c1

� T1) (23)

where T1 is the ambient temperature. The parameter h takes into account the natural convection and
the radiation on the surface of the workpiece for small variation of temperature [2]. PS is the surface
power density (W/m

2), Cp the specific heat, ⇢ the specific mass of the material and � the thermal
conductivity. The surface power density (flux type thermal source) is computed as:

PS =
�

2
�ES

cES (24)

where cES is complex conjugate of the electric field ES computed on the surface of the workpiece. The
time derivative of the temperature is approximated for each time step k by (Tk+1 � Tk) /�t with �t

small enough (�t is generally chosen far lower than the thermal time constant �t ⌧ ⌧ = ⇢Cp/h) and Tk

is the temperature rise at the time step k with respect to the initial temperature. The weak formulation
of the thermal problem reads:
Z

⌦c

w
ni⇢Cp

Tk+1

�t
dv +

Z

⌦c

gradw
ni�gradTk+1dv +

Z

�c1

w
ni
S
hTk+1ds =

Z

�c1

w
ni
S
PSds+

Z

⌦c

w
ni⇢Cp

Tk

�t
dv

(25)

which is written in matrix form as:
⇣
M

[⇢Cp/�t]
nn

+G
t
M

[�]
ee
G+M

[h]
nnS

⌘
T k+1 = M

[PS ]
nS

+M
[⇢Cp/�t]
nn

T k (26)
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The coe�cients of the matrix M
[⇢Cp/�t]
nn

, M[�]
ee
, M[h]

nnS
, M[PS ]

nS
and M

[⇢Cp/�t]
nn

can be calculated as below
:

m
[⇢Cp/�t]
nn

=

Z

⌦c

⇢Cp

�t
w

niw
njdv (27)

m
[�]
ee

=

Z

⌦c

w
ei�w

ejdv (28)

m
[h]
nnS

=

Z

�c1

hw
ni
S
w

nj

S
ds (29)

m
[PS ]
nS

=

Z

�c1

w
ni
S
PSds (30)

4 Application to induction thermography simulation

In this section, the electromagnetic thermal model developed in the previous sections is applied to
simulate an induction thermography NDT test case. The configuration is shown in the Fig. 5. The
workpiece has four thin open cracks. An AC 10V voltage of 10kHz is impressed between the ends of
the coil. The workpiece is heated during 1 second. The temperature evolution is observed on the upper
surface of the workpiece. Numerical entry data are given in the Table. 1. Two following methods are
compared:

• The classical full finite element method (Full-FEM)

• The SIBC finite element with impressed voltage with Leontovich’s impedance (SIBC-FEM)

The ratio thickness over skindepth in the workpiece and the coil is equal to 28 and 7.7, respectively.
In Fig. 6, the distribution of induced power density is compared between full-FEM and SIBC-FEM
models. The evolution of eddy-current over the x-line and the y-line on the surface of the workpiece (cf.
Fig. 5) is also compared as shown in Fig. 7. The x-line is chosen to pass the cracks’ tips where a high
variation of eddy-current can be observed. The module of the magnetic flux density in the middle of the
air-gap right above the x- and y-lines is compared in Fig. 8. These comparisons show good accordance
of local quantities.
It is nothing that the presented model is limited to linear cases. In the literature, to deal with nonlinear
behavior of the magnetic permeability in full FEM while keeping the use of time harmonic model in order
to reduce computation time, one can use the e↵ective permeability or equivalent reluctivity approaches
[8]. The same idea can also be applied to determine the dependency of surface impedance on the
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Table 1: Numerical data for simulation.

Coil (Copper)
Electrical conductivity 60 MS/m

Relative permeability 1 �
Impressed voltage 10 V

Frequency 10 kHz

Cross-section 5⇥ 5 mm⇥mm

Skin-depth (at 10kHz) 0.65 mm

Workpiece (Structural steel)
Electrical conductivity 4 MS/m

Relative permeability 200 �
Thickness 5 mm

Skin-depth (at 10kHz) 0.18 mm

Specific heat capacity 475 J.kg
�1

.K
�1

Thermal conductivity 45 W.m
�1

.K
�1

Specific mass 7800 kg.m
�3

Cracks
Size 0.5⇥ 7 mm⇥mm

Thickness 5 mm

Table 2: Comparison between Full-FEM and SIBC-FEM system.

Full-FEM SIBC-FEM
Total number of elements 768238 472818
Total number of elements in
the workpiece and the coil 295420 0
Total number of edge unknowns 1505300 964135
Total number of node unknowns 166443 36487
Matrix assembly time (s) 86 31
Matrix resolution time (s) 3374 508

peak value of magnetic field [9] [10]. In both cases, although high harmonic components are neglected,
calculation results for induced power were satisfactory. The approaches can thus be applied to NDT
computation.
The Table. 2 gives comparisons between the Full-FEM system and the SIBC-FEM system. Note that
the resolution time for thermal problem for the two model is practically identical. The resolution time
in the Table. 2 is given for the electromagnetic problem.
The Figs. 9 and 10 show the temperature distribution at the end of the heating phase (t = 1s) obtained
with Full-FEM and SIBC-FEM models, respectively. A good accordance can be observed. The relative
deviation is given in the Fig. 11 which is computed as:

�T =
T

SIBC�FEM

t=1s � T
Full�FEM

t=1s

max(TFull�FEM

t=1s )
⇥ 100 (31)

In the present test case, the deviation is not higher than 7%.

5 Conclusion

The SIBC can be used to alleviate 3D finite element models for problem with presence of massive coils
and workpieces with open cracks. In the present test case, the computation time is 6.6 times lower
than the classical model. The accuracy and the usefulness of the method for the design of the induction
thermography NDT technique have been shown with acceptable deviation compared with a full FEM
model.
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Figure 6: Comparison of induced power density (Full-FEM: left, SIBC-FEM: right).
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Figure 7: Eddy-current over x- and y- lines.
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Figure 9: Temperature distribution on the surface of the workpiece at t = 1s computed with Full-FEM
model.

Figure 10: Temperature distribution on the surface of the workpiece at t = 1s computed with SIBC-FEM
model.
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Figure 11: Relative deviation (in %) between the two models.
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