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Abstract: In this paper, methods of kinematic synthesis and analysis of the RoboMech class parallel
manipulator (PM) with two grippers (end effectors) are presented. This PM is formed by connecting
two output objects (grippers) with a base using two passive and one negative closing kinematic
chains (CKCs). A PM with two end effectors can be used for reloading operations of stamped
products between two adjacent main technologies in a cold stamping line. Passive CKCs represent
two serial manipulators with two degrees of freedom, and negative CKC is a three-joined link with
three negative degrees of freedom. A negative CKC imposes three geometric constraints on the
movements of the two output objects. Geometric parameters of the negative CKC are determined on
the basis of the problems of the Chebyshev and least-square approximations. Problems of positions
and analogues of velocities and accelerations of the PM with two end effectors have been solved.

Keywords: parallel manipulator; RoboMech; kinematic synthesis and analysis; Chebyshev and
least-square approximations

1. Introduction

There are technological processes in industry where it is necessary to perform several
operations simultaneously or sequentially, for example, in stamping production, in load-
ing and unloading operations. For the simultaneous or sequential execution of several
operations, it is advisable to use manipulation robots with many end effectors.

In this paper, a PM with two end effectors is synthesized that can be used to perform
reloading operations from one technological equipment to another. This PM with two
end effectors replaces two industrial serial robots in the existing production line of cold
stamping and it belongs to the RoboMech class PM. The PM, simultaneously setting the
laws of motions of the end effectors and actuators, is called the RoboMech class PM [1].
Setting the laws of motion of the actuators monotonously and uniformly but not defining
by solving the inverse kinematics problem simplifies the control system and improves
dynamics. Replacing two industrial robots with one RoboMech class PM with two end
effectors simplifies the control system and increases the productivity and reliability of the
technological line.

Since in the RoboMech class PMs simultaneously set the laws of motion of the end ef-
fectors and actuators, they work with certain structural schemes and geometric parameters
of their links. The existing methods of kinematic analysis and synthesis of mechanisms
and manipulators are based on the derivation of loop-closure equations and their study:
in kinematic analysis, using known constant geometric parameters of links and variable
generalized coordinates, variable parameters characterizing the relative movements of
elements of kinematic pairs are determined, and in kinematic synthesis (dimensional or
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parametric synthesis) for the given positions of the input and output links, constant ge-
ometric parameters of the links are determined. Loop-closure equations are derived on
the base of vector and matrix methods [2–10], and the theory of screws [11–13], which
are leads to polynomials of higher degrees. Then, examining the resulting polynomials
using computers, depending on the assigned tasks, the kinematic analysis or synthesis
is performed. McCarthy in his papers [14,15] shows the close relationship between the
kinematics, synthesis, polynomials, and computations in the 21st century. In the considered
approach of kinematic analysis and synthesis of mechanisms and manipulators, it is rather
difficult to obtain the polynomials; moreover, with the complication of the structures of
mechanisms and manipulators, the formation of polynomials becomes more complicated
and their degree increases. Performance analysis and applications of the PMs and robots
are also presented in [16–21].

In this paper, kinematic synthesis of the PM with two end effectors is carried out
on the basis of a modular approach [22,23], according to which PMs, regardless of their
complexity, are formed by connecting the output objects (end effectors) with a base using
closing kinematic chains (CKCs), which are structural modules. CKCs can be active,
passive, and negative, which have positive, zero, and negative DOFs, respectively. The
active and negative CKCs impose geometric constraints on the motions of the output
objects, and passive CKCs do not impose geometric constraints. The representation of PMs
from separate structural modules simplifies the methods of their investigation.

2. Kinematic Synthesis of the PM with Two Grippers

A PM with two end effectors can be used in a cold stamping technological line for
reloading operations between two hydraulic presses [24].

Figure 1 shows a structural scheme of the PM with two end effectors in two positions.

Figure 1. PM with two end effectors in two positions: (a) the first position (b) the second position.

In the first position (Figure 1a), the first gripper P1 in position P1,1 takes the workpiece
after processing in the first hydraulic press for delivery to the store. At this time, the second
gripper P2 in position P2,1 takes the previous workpiece processed in the first hydraulic
press for delivery to the second hydraulic press for further processing.

In the second position (Figure 1b), the first gripper P1 in position P1,N delivers the
workpiece to the store and the second gripper P2 in position P2,N delivers the previous
workpiece to the second hydraulic press. The cycle is then repeated.

The considered positioning PM with two end effectors is formed by connecting two
output objects (grippers P1 and P2) with a base using two passive and one negative CKC
in the following sequence. First, the grippers P1 and P2 are connected to the base using
passive CKCs ABC and DEF with revolute kinematic pairs, respectively, which have two
degrees of freedom. Since passive CKCs ABC and DEF have two degrees of freedom, they
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can reproduce the given laws of motion of the output points P1 and P2. Then, to form a
single movable PM with two end effectors, we connect the links BC and EF of the passive
CKCs ABC and DEF with the base using a negative CKC GHI with three negative degrees
of freedom. Figure 2 shows a block structure of the formed PM with two end effectors.

Figure 2. Block structure of the PM with two end effectors.

According to the block structure (Figure 2), the parametric synthesis of the PM with
two end effectors (Figure 3) consists of the parametric synthesis of two passive CKCs—ABC
and DEF—and one negative CKC—GHI. The parameters of the synthesis of two pas-
sive CKCs—ABC and DEF—are XA, ZA, lAB, lBC and XD, ZD, lDE, lEF, respectively, where
XA, ZA and XD, ZD are the coordinates of the fixed joints A and D in the absolute co-
ordinate system OXYZ; lAB, lBC, lDE, lEF are the length of the links AB, BC, DE, EF. Let
denote these parameters by the vectors p1 and p2, where p1 = [XA, ZA, lAB, lBC]

T and
p2 = [XD, ZD, lDE, lEF]

T .

Figure 3. PM with two end effectors in the first position.

Since the passive CKCs do not impose geometric constraints on the movements of the
output points C and F, the vectors of the synthesis parameters p1 and p2 are varied by the
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generator of LPτ sequence [25] to satisfy the constraints of the negative CKC IDH. In this
case, the following conditions should be fulfilled:

|lAB − lBC| ≤ ρ1min, lAB + lBC ≥ ρ1max, (1)

|lDE − lEF| ≤ ρ2min, lDE + lEF ≥ ρ2max, (2)

where:
ρ1min = min

XP1 ,YP1

∣∣lAP1i

∣∣, ρ1max = max
XP1 ,YP1

∣∣lAP1i

∣∣, (3)

ρ2min = min
XP2 ,YP2

∣∣lDP2i

∣∣, ρ2max = max
XP2 ,YP2

∣∣lDP2i

∣∣. (4)

The variable distances lAP1i and lCP2i in the Expressions (1)–(4) are determined by the
equations:

lAP1i =
[(

XP1i − XA
)2

+
(
YP1i −YA

)2
] 1

2 ,(i = 1, 2, . . . , N), (5)

lDP2i =
[(

XP2i − XD
)2

+
(
YP2i −YD

)2
] 1

2 . (6)

Let us consider the parametric synthesis of the negative CKC GHI with three negative
degrees of freedom, determined by the Chebyshev formula [26]:

W = 3n− 2p5 = 3 · 1− 2 · 3 = −3, (7)

where n is number of links, p5 is the kinematic pairs of the fifth class.
To do this, we preliminarily determine the positions of links 2 and 4 of the passive

CKCs ABC and DEF by the equations:

ϕ2i = tg−1 ZP1i − ZBi

XP1i − XBi

, (8)

ϕ4i = tg−1 ZP2i − ZEi

XP2i − XEi

, (9)

where: [
XBi
ZBi

]
=

[
XA
ZA

]
+ lAB

[
cos ϕ1i
sin ϕ1i

]
, (10)[

XEi
ZEi

]
=

[
XD
ZD

]
+ lDE

[
cos ϕ3i
sin ϕ3i

]
, (11)

ϕ1i = ϕAP1i − cos−1
l2
AB + l2

AP1i
− l2

BC

2lABl
AP1i

, (12)

ϕ3i = ϕDP2i + cos−1
l2
DE + l2

DP2i
− l2

EF

2lDElDP2i

, (13)

ϕAP1i= tg−1 ZP1i − ZA

XP1i − XA
, (14)

ϕDP2i = tg−1 ZP2i − ZD

XP2i − XD
. (15)

Let us attach the coordinate systems Bx2z2 and Ex4z4 with the links BC and EF
of the passive CKCs ABC and DEF, where the axes Bx2 and Ex4 are directed along the
links BC and EF, respectively (Figure 3). Then, the synthesis parameters of the negative
CKC GHI are x(2)G , z(2)G , x(4)H , z(4)H , lGH , XI , ZI , lGI , lHI where x(2)G , z(2)G , x(4)H , z(4)H , XI , ZI are the
coordinates of the joints G, H, I in the coordinate systems Bx2z2, Dx4z4, OXYZ, respectively;
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lGH , lGI , lHI are the lengths of the sides GH, GI, HI of the link GHI. Let us denote these
synthesis parameters through the vector p3 = [x(2)G , z(2)G , x(4)H , z(4)H , lGH , XI , ZI , lGI , lHI ].

Since the three-joined link GHI imposes three geometric constraints on the movements
of the links of two passive CKCs ABC and DEF, we derive three functions of weighted
differences:

∆q1i = (x(2)Hi − x(2)G )
2
+ (z(2)Hi − z(2)G )

2
− l2

HG, (16)

∆q2i = (XGi − XI)
2 + (ZGi − ZI)

2 − l2
GI , (17)

∆q3i = (XHi − XI)
2 + (ZHi − ZI)

2 − l2
HI , (18)

where x(2)Hi and z(2)Hi are the coordinates of the joint H in the local coordinate system Bx2z2;
ZGi, XGi and XHi, ZHi are the coordinates of the joints G and H in the absolute coordinate
system OXYZ, which are determined by the equations:[

x(2)Hi
z(2)Hi

]
=

[
cos ϕ2i sin ϕ2i
− sin ϕ2i cos ϕ2i

]
·
[

XHi − XBi
ZHi − ZBi

]
, (19)

[
XGi
ZGi

]
=

[
XBi
ZBi

]
+

[
cos ϕ2i − sin ϕ2i
sin ϕ2i cos ϕ2i

]
·
[

x(2)G
z(2)G

]
, (20)

[
XHi
ZHi

]
=

[
XEi
ZEi

]
+

[
cos ϕ4i − sin ϕ4i
sin ϕ4i cos ϕ4i

]
·
[

x(4)H
z(4)H

]
, (21)

where: [
XBi
ZBi

]
=

[
XA
ZA

]
+ lAB

[
cos ϕ1i
sin ϕ1i

]
, (22)[

XEi
ZEi

]
=

[
XD
ZD

]
+ lDE

[
cos ϕ3i
sin ϕ3i

]
. (23)

The geometric meanings of Functions (16)–(18) are the deviations of the coordinates
of the joints H and G from circles with radiuses lHG, lGI , lHI in the relative motion of the
plane Ex4z4 and in the absolute motion of link 5.

After replacing the synthesis parameters of the form:[
p1
p2

]
=

[
x(2)G
y(2)G

]
,
[

p4
p5

]
=

[
x(4)H
y(4)H

]
,

p3 =
1
2
(x(2)

2

G + z(2)
2

G + x(4)
2

H + z(4)
2

H − l(2)GH),[
p6
p7

]
=

[
XI
ZI

]
, p8 =

1
2
(x(2)

2

G + z(2)
2

G + X2
I + Z2

I − l2
GI),

p9 =
1
2
(x(4)

2

H + z(4)
2

H + X2
I + Z2

I − l2
HI) (24)

Functions (16)–(18) are expressed linearly in the following vectors of synthesis param-
eters p(1)

3 = [p1, p2, p3]
T , p(2)

3 = [p4, p5, p3]
T , p(3)

3 = [p6, p7, p8]
T , p(4)

3 = [p1, p2, p8]
T ,

p(5)
3 = [p6, p7, p9]

T , p(6)
3 = [p4, p5, p9]

T as:

∆q(k)1i = 2(g(k)T

1i · p
(k)
3 − g(k)0i ), k = 1, 2, (25)

∆q(k)2i = 2(g(k)T

2i · p
(k)
3 − g(k)0i ), k = 3, 4, (26)

∆q(k)3i = 2(g(k)T

3i · p
(k)
3 − g(k)0i ), k = 5, 6, (27)
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where:

g(1)
1i = −

Γ−1(ϕ2i)
0
0

0 0 1

 ·
 XEi − XBi

ZEi − ZBi
1

−
Γ(ϕ4i − ϕ2i)

0
0

0 0 1

 ·
 p4

p5
0

, (28)

g(2)
1i =

Γ−1(ϕ4i)
0
0

0 0 1

 ·
 XEi − XBi

ZEi − ZBi
1

−
Γ−1(ϕ4i − ϕ2i)

0
0

0 0 0

 ·
 p1

p2
0

, (29)

g(1)0i = −1
2
[(XEi − XBi)

2 + (ZEi − ZBi)
2] + [XEi − XBi, ZEi − ZBi] · Γ(ϕ4i) ·

[
p4
p5

]
, (30)

g(2)0i = −1
2
[(XEi − XBi)

2 + (ZEi − ZBi)
2]− [XEi − XBi, ZEi − ZBi] · Γ(ϕ2i) ·

[
p1
p2

]
, (31)

g(3)
2i = −

 XBi
ZBi
1

−
Γ(ϕ2i)

0
0

0 0 1

 ·
 p1

p2
0

, (32)

g(4)
2i =

Γ−1(ϕ2i)
0
0

0 0 1

 ·
 XBi

ZBi
1

−
Γ(ϕ2i)

0
0

0 0 1

 ·
 p6

p7
0

, (33)

g(3)0i = −1
2
[XBi

2 + ZBi
2] + [XBi, ZBi] · Γ(ϕ2i) ·

[
p1
p2

]
, (34)

g(4)0i = −1
2
[XBi

2 + ZBi
2]− [XBi, ZBi] ·

[
p6
p7

]
, (35)

g(5)
3i = −

 XEi
ZEi
1

−
Γ(ϕ4i)

0
0

0 0 1

 ·
 p4

p5
0

, (36)

g(6)
3i =

Γ−1(ϕ4i)
0
0

0 0 1

 ·
 XEi

ZEi
1

+

Γ(ϕ4i)
0
0

0 0 1

 ·
 p6

p7
0

. (37)

g(5)0i = −1
2
[XEi

2 + ZEi
2] + [XEi, ZEi] · Γ(ϕ4i) ·

[
p4
p5

]
, (38)

g(6)0i = −1
2
[XEi

2 + ZEi
2]− [XEi, ZEi] ·

[
p6
p7

]
. (39)

Furthermore, the synthesis parameters of the negative CKC GHI are determined on
the basis of the problems of Chebyshev and least-square approximations [16,17].

3. Kinematic Analysis of the PM with Two Grippers

In the kinematic analysis of the PM with two end effectors (Figure 4) for the given
geometric parameters of the links and the input angle ϕ1i, it is necessary to determine
the positions and analogues of the velocities and accelerations of the links, including the
output points C and F.

The considered PM with two end effectors has the structural formula:

I(1)→ II(2, 5),→ II(3, 4), (40)

i.e., it contains two dyads II(2, 5) and II(3, 4).
According to the structural Formula (40), first, a kinematic analysis of the dyad II(2, 5)

is carried out, and then of the dyad II(3, 4).
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Figure 4. PM with two end effectors.

3.1. Kinematic Analysis of the PM with Two Grippers

Let us derive a vector BGI loop-closure equation:

lBGe2i − lIGe5i + l(IB)ie(IB)i = 0, (41)

where:

l(IB)i = [(XBi − XI)
2 +(ZBi − ZI)

2
] 1

2 , (42)

ϕ(IB)i = tg−1 ZBi − ZI
XBi − XI

, (43)[
XBi
ZBi

]
=

[
XA
ZA

]
+ lAB

[
cos ϕ1i
sin ϕ1i

]
. (44)

Transfer lBGe2i to the right side of Equation (41) and square both sides. As a result, we
obtain:

ϕ5i = ϕ(IB)i + cos−1
l2
(IB)i + l2

IG − l2
BG

2l
(IB)ilIG

. (45)

Next, we define: [
XGi
ZGi

]
=

[
XI
ZI

]
+ lIG

[
cos ϕ5i
sin ϕ5i

]
, (46)

ϕ2i = tg−1 ZGi − ZBi
XGi − XBi

. (47)

To solve the problem of the positions of the dyad II (3.4), we derive a vector DEH
loop-closure equation:

lDEe3i + lEHe4i − l(DH)ie(DH)i = 0, (48)

where:

l(DH)i =
[
(XHi − XD)

2 + (ZHi − ZD)
2
] 1

2 , (49)

ϕ(DH)i = tg−1 ZHi − ZD
XHi − XD

, (50)

[
XHi
ZHi

]
=

[
XI
ZI

]
+

[
cos ϕ5i − sin ϕ5i
sin ϕ5i cos ϕ5i

]
·
[

x(5)G
y(5)G

]
. (51)
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Transfer lEHe4i to the right side of Equation (48) and square both sides. As a result,
we obtain:

ϕ3i = ϕ(DH)i + cos−1
l2
DE + l2

(DH)i − l2
EH

2lDE · l(DH)i
. (52)

Next, we define: [
XEi
ZEi

]
=

[
XD
ZD

]
+ lDE

[
cos ϕ3i
sin ϕ3i

]
, (53)

ϕ4i = tg−1 ZHi − ZEi
XHi − XEi

. (54)

Coordinates of the output points C and F in the absolute coordinate system OXYZ are
determined by the equations:[

XCi
ZCi

]
=

[
XBi
ZBi

]
+

[
cos ϕ2i − sin ϕ2i
sin ϕ2i cos ϕ2i

]
·
[

x(2)C
y(2)C

]
, (55)

[
XFi
ZFi

]
=

[
XEi
ZEi

]
+

[
cos ϕ4i − sin ϕ4i
sin ϕ4i cos ϕ4i

]
·
[

x(4)F
y(4)F

]
. (56)

3.2. Analogues of Velocities and Accelerations

To determine the analogues of the angular velocities of the PM with two end effectors,
we derive the vector ABGI and IHED loop-closure equations:

lABe1i + lBGe2i − lIGe5i − lAIeAI = 0 (57)

and
lIHe(IH)i − lEHe4i − lDEe3i − lIDeID = 0 (58)

and project them on the axes OX and OZ of the absolute coordinate system OXYZ

lAB cos ϕ1i + lBG cos ϕ2i − lIG cos ϕ5i − lAI cos ϕAI = 0
lAB sin ϕ1i + lBG sin ϕ2i − lIG sin ϕ5i − lAI sin ϕAI = 0

}
(59)

and
lIHcos(ϕ5i + α5)− lEH cos ϕ4i − lDE cos ϕ3i − lID cos ϕID = 0
lIHsin(ϕ5i + α5)− lEH sin ϕ4i − lDE sin ϕ3i − lID sin ϕID = 0

}
(60)

differentiate the systems of Equations (59) and (60) with respect to the generalized coordi-
nate ϕ1i

−lAB sin ϕ1i − lBG sin ϕ2i · ϕ′2i + lIG sin ϕ5i · ϕ′5i = 0
lAB cos ϕ1i + lBG cos ϕ2i · ϕ′2i − lIG cos ϕ5i · ϕ′5i = 0

}
(61)

and
−lIHsin(ϕ5i + α5) · ϕ′5i + lEH sin ϕ4i · ϕ′4i + lDE sin ϕ3i · ϕ′3i = 0
lIHcos(ϕ5i + α5) · ϕ′5i − lEH cos ϕ4i · ϕ′4i − lDE cos ϕ3i · ϕ′3i = 0

}
(62)

From the system of Equation (61), we determine the analogues of the angular velocities
ϕ′2i and ϕ′5i

A−1
1 · u1 = b1 (63)

where:

A1 =

[
ZBi − ZGi ZGi − ZI
XGi − XBi XI − XGi

]
,

u1 =

[
ϕ′2i
ϕ′5i

]
, b1 =

[
ZBi − ZA
XA − XBi

]
.
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Substituting the obtained values of the angular velocity analogue ϕ′5i into the system
of Equation (62), from this system, we determine the angular velocities analogues ϕ′3i and
ϕ′4i

A−1
2 · u2 = b2, (64)

where:

A2 =

[
ZEi − ZD ZHi − ZEi
XD − XEi XEi − XHi

]
,

u2 =

[
ϕ′3i
ϕ′4i

]
, b2 =

[ (
ZHi − ZI) · ϕ′5i
(XI − XHi) · ϕ′5i

]
.

Projections of the linear velocities analogues of the output points C and F on the axis
of the absolute coordinate system OXYZ are determined by differentiating Equations (55)
and (56) with respect to the generalized coordinate ϕ1i[

uX
Ci

uZ
Ci

]
=

[
uX

Bi
uZ

Bi

]
+

[
− sin ϕ2i − cos ϕ2i
cos ϕ2i − sin ϕ2i

]
·
[

x(2)C
y(2)C

]
· ϕ′2i, (65)

[
uX

Fi
uZ

Fi

]
=

[
uX

Ei
uZ

Ei

]
+

[
− sin ϕ4i − cos ϕ4i
cos ϕ4i − sin ϕ4i

]
·
[

x(4)F
y(4)F

]
· ϕ′4i, (66)

where the projections of the linear velocity analogues of the joints B and E are determined
by differentiating Equations (44) and (53) with respect to the generalized coordinate ϕ1i[

uX
Bi

uZ
Bi

]
= lAB

[
− sin ϕ1i
cos ϕ1i

]
, (67)

[
uX

Ei
uZ

Ei

]
= lDE

[
− sin ϕ3i
cos ϕ3i

]
· ϕ′3i. (68)

To determine the angular acceleration analogues of the links, we differentiate the
systems of Equations (61) and (62) with respect to the generalized coordinate ϕ1i

−lAB cos ϕ1i − lBG cos ϕ2i · ϕ
′2
2i − lBG sin ϕ2i · ϕ

′′
2i+

lIG cos ϕ5i · ϕ
′2
5i + lIG sin ϕ5i · ϕ

′′
5i = 0

−lAB sin ϕ1i − lBG sin ϕ2i · ϕ
′2
2i + lBG cos ϕ2i · ϕ

′′
2i+

lIG sin ϕ5i · ϕ
′2
5i − lIG cos ϕ5i · ϕ

′′
5i = 0

 (69)

and
−lIHcos(ϕ5i + α5)·ϕ

′2
5i − lIHsin(ϕ5i + α5)·ϕ′′5i + lEH cos ϕ4i·ϕ

′2
4i

+lEH sin ϕ4i·ϕ
′′
4i + lDE cos ϕ3i·ϕ

′2
3i + lDE sin ϕ3i·ϕ

′′
3i = 0

−lIHsin(ϕ5i + α5)·ϕ
′2
5i + lIHcos(ϕ5i + α5)·ϕ′′5i + lEH sin ϕ4i·ϕ

′2
4i

−lEH cos ϕ4i·ϕ
′′
4i + lDE sin ϕ3i·ϕ

′2
3i − lDE cos ϕ3i·ϕ

′′
3i = 0


(70)

From the systems of Equation (69), we determine the angular accelerations analogues
ϕ
′′
2i and ϕ

′′
5i

A−1
1 ·w1 = b3, (71)

where:

w1 =

[
ϕ
′′
2i

ϕ
′′
5i

]
, b3 =

[
(XBi − XA) + (XGi − XBi) · ϕ

′2
2i + (XI − XGi) · ϕ

′2
5i

(ZBi − ZA) + (ZGi − ZA) · ϕ
′2
2i + (ZI − ZGi) · ϕ

′2
5i

]
.
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Substituting the obtained values of the angular velocity analogues ϕ
′′
2i and ϕ

′′
5i into the

system of Equation (70), from this system, we determine the angular velocities analogues
ϕ
′′
3i and ϕ

′′
4i

A−1
2 ·w2 = b4, (72)

where:

w2 =

[
ϕ
′′
3i

ϕ
′′
4i

]
,b4 =

[
(XHi − XI) · ϕ

′2
5i + (XEi − XHi) · ϕ

′2
4i + (XD − XEi) · ϕ

′2
3i

(ZHi − ZI) · ϕ
′2
5i + (ZEi − ZHi) · ϕ

′2
4i + (ZD − ZEi) · ϕ

′2
3i

]
. (73)

Projections of the linear velocities analogues of the output points C and F on the axis
of the absolute coordinate system OXYZ are determined by differentiating Equations (65)
and (66) with respect to the generalized coordinate ϕ1i[

wX
Ci

wZ
Ci

]
=

[
wX

Bi
wZ

Bi

]
+

[
− cos ϕ2i sin ϕ2i
− sin ϕ2i − cos ϕ2i

]
·
[

x(2)C
z(2)C

]
· ϕ′22i +

[
− sin ϕ2i − cos ϕ2i
cos ϕ2i − sin ϕ2i

]
·
[

x(2)C
z(2)C

]
· ϕ′′2i, (74)

[
wX

Fi
wZ

Fi

]
=

[
wX

Ei
wZ

Ei

]
+

[
− cos ϕ4i sin ϕ4i
− sin ϕ4i − cos ϕ4i

]
·
[

x(4)F
z(4)F

]
· ϕ′24i +

[
− sin ϕ4i − cos ϕ4i
cos ϕ4i − sin ϕ4i

]
·
[

x(2)F
z(2)F

]
· ϕ′′4i, (75)

where the projections of the linear velocity analogues of the joints B and E are determined
by differentiating Equations (67) and (68) with respect to the generalized coordinate ϕ1i[

wX
Bi

wZ
Bi

]
= lAB

[
− cos ϕ1i
− sin ϕ1i

]
, (76)

[
wX

Ei
wZ

Ei

]
= lDE

[
− cos ϕ3i
− sin ϕ3i

]
· ϕ′23i +

[
− sin ϕ3i
cos ϕ3i

]
· ϕ′′3i. (77)

4. Numerical Results

Table 1 shows N = 11 positions of the grippers P1 and P2 of the PM with two end
effectors.

Table 1. Positions of the grippers P1 and P2.

i 1 2 3 4 5 6 7 8 9 10 11

XP1,i ,
mm

0 4.6 9.2 13.8 18.40 23.0 27.60 32.20 36.80 41.40 46.3882

YP1,i ,
mm

0 −6.2512 −11.0478 −14.8398 −17.8092 −20.1433 −21.8922 −23.1166 −23.8528 −24.1065 −23.8384

XP2,i , mm 46.3882 53.5938 59.8359 65.3367 70.4344 75.0223 79.1896 82.9453 86.4738 89.6476 92.7766
YP2,i , mm −23.8384 −24.0439 −23.2688 −21.8398 −19.8480 −17.4431 −14.6785 −11.6242 −8.1590 −4.4228 0

Tables 2–4 show the obtained values of the synthesis parameters of the two passive
CKCs ABC, DEF and negative CKC GHI, respectively.

Table 2. Synthesis parameters of the CKC ABC.

XA, mm ZA, mm lAB, mm lBC, mm

14.04 −57.11 46.5309 43.0

Table 3. Synthesis parameters of the CKC DEF.

XD, mm ZD, mm lDE, mm lEF, mm

78.74 −57.11 46.5309 43.0
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Table 4. Synthesis parameters of the CKC GHI.

x(2)G , mm y(2)G , mm x(4)H , mm y(4)H , mm lGH , mm XI , mm ZI , mm lGI , mm lHI , mm

6.6072 9.9607 −6.6072 −9.9607 45.0 46.39 57.11 50.0 50.0

3D CAD model of the synthesized PM with two grippers is shown in Figure 5.

Figure 5. 3D CAD model of the PM with two grippers.

Table 5 shows the obtained values of the coordinates XP1,i , YP1,i , XP2,i , YP2,i and projec-
tions of analogues of linear velocities uX

P1,i
, uZ

P1,i
, uX

P2,i
, uZ

P2,i
and linear accelerations wX

P1,i
, wZ

P1,i
,

wX
P2,i

, wZ
P2,i

of the grippers of the PM with two end effectors.

Table 5. Positions and analogues of linear velocities and accelerations of the grippers.

i 1 2 3 4 5 6 7 8 9 10 11

XP1,i , mm 0 4.6 9.2 13.8 18.40 23.0 27.60 32.20 36.80 41.40 46.3882

ZP1,i , mm 0 −6.2512 −11.0478 −14.8398 −17.8092 −20.1433 −21.8922 −23.1166 −23.8528 −24.1065 −23.8384

XP2,i , mm 46.3882 53.5938 59.8359 65.3367 70.4344 75.0223 79.1896 82.9453 86.4738 89.6476 92.7766

ZP2,i , mm −23.8384 −24.0439 −23.2688 −21.8398 −19.8480 −17.4431 −14.6785 −11.6242 −8.1590 −4.4228 0

uX
P1,i

, mm 0.8440 0.5204 0.2432 −0.026 −0.276 −0.495 −0.693 −0.8729 −1.036 −1.184 −1.325

uZ
P1,i

, mm 0.9830 0.9627 0.9489 0.9362 0.9236 0.9110 0.8977 0.8829 0.8662 0.8465 0.8211

uX
P2,i

, mm 1.0733 1.0380 1.0173 0.9998 0.9845 0.9710 0.9583 0.9459 0.9335 0.9212 0.9094

uZ
P2,i

, mm −0.1071 −0.0733 −0.0650 −0.0515 −0.0399 −0.0294 −0.0189 −0.0075 0.0062 0.0240 0.0515

wX
P1,i

, mm −0.1096 −0.1066 −0.0868 −0.1056 −0.1964 −0.3570 −0.5768 −0.8396 −1.1265 −1.4157 −1.6956

wZ
P1,i

, mm −0.8688 −0.2504 −0.0283 0.0221 −0.0380 −0.1620 −0.3271 −0.5223 −0.7421 −0.9843 −1.2642

wX
P2,i

, mm −0.1116 −0.0885 −0.0968 −0.1112 −0.1353 −0.1676 −0.2100 −0.2661 −0.3420 −0.4486 −0.6182

wZ
P2,i

, mm 0.6401 0.4710 0.3803 0.3069 0.2416 0.1771 0.1038 0.01319 −0.1059 −0.2713 −0.5320

Positions and modules of the velocities and acceleration analogues of the synthesized
PM grippers P1 and P2 are also presented with the graphical plots in Figures 6–8.
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Figure 6. Graphics of the grippers P1 and P2 positions.

Figure 7. Graphics of the grippers P1 and P2 linear velocities analogues.
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Figure 8. Graphics of the grippers P1 and P2 linear accelerations analogues.

5. Conclusions

Kinematic synthesis and analysis of the PM with two end effectors have been carried
out. In the kinematic synthesis according to the given laws of motions (or positions) of two
end effectors, the structural scheme, and geometric parameters of links of the synthesized
PM are determined. The structural scheme of this PM is formed by connecting two output
objects (end effectors) and a base using three CKCs: two passive and one negative CKC.
Passive and negative CKCs are structural modules from which the PM is formed. Passive
CKCs are two movable serial manipulators, and the negative CKCs is a three-jointed link.
Serial manipulators (passive CKCs) do not impose geometric constraints on the movement
of the output objects, and the three-jointed link (negative CKC) imposes three geometric
constraints. Therefore, the geometric parameters of the links of the negative CKCs are
determined, and the geometric parameters of the links of the passive CKCs are varied
depending on the imposed geometric constraints of the negative CKC. Kinematic synthesis
of the negative CKC was carried out on the basis of the Chebyshev and least-square
approximations. Since the structure of the synthesized PM consists of two dyads, the
position analysis is solved analytically. Analogues of angular velocities and accelerations
are determined from two systems of linear equations obtained by differentiating the loop-
closure equations with respect to the generalized coordinate.
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