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Abstract

In this work damping properties of bending viscoelastic thin struc-
tures are enhanced by topology optimization. Homogeneous linear vis-
coelastic plates are optimized and compared when modeled by either
the Kirchhoff-Love or Reissner-Mindlin plate theories as well as by
the bulk 3D viscoelastic constitutive equations. Mechanical equations
are numerically solved by the finite element method and designs are
represented by the level-set approach. High performance computing
techniques allow to solve the transient viscoelastic problem for very
thin 3D meshes, enabling a wider range of applications. The con-
sidered isotropic material is characterized by a generalized Maxwell
model accounting for the viscoelasticity of both Young modulus and
Poisson’s ratio. Numerical results show considerable design differences
according to the chosen mechanical model, and highlights a counter-
intuitive section shrinking phenomenon discussed at length. The final
numerical example extends the problem to an actual shoe sole appli-
cation, performing its damping optimization in an industrial context.
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1 Introduction

Viscoelastic damping structures are widely used for vibration and noise reduc-
tion applications. They are commonly made of elastomers, or polymers within
their glass transition, exhibiting both elastic and viscous characteristics when
deforming. Thanks to the material viscosity, part of the mechanical energy
is absorbed and dissipated as heat, providing good damping capabilities. The
polymer viscoelastic properties, displaying several relaxation times well rep-
resented by rheological models such as the generalized Maxwell model, offer
a large range of applications [1]. The current paper focuses on finding the
optimal design of 2D and 3D thin structures at infinitesimal strain, in order
to maximize their damping capacities. The problem is extended to an actual
industrial application, the design of shoe soles [2]. For instance, high damp-
ing may be privileged for walking, while the contrary might be preferred for
sport application where bouncing properties are favored [3]. Such an industrial
application demands optimization within volume and compliance constraint.
Moreover, the conception of such structures is typically performed in a decor-
related manner, identifying the optimal design and material independently.
In that respect, the current paper will focus on the necessary first milestone
of defining the theoretical and numerical framework to calculate the optimal
designs for a given linear viscoelastic polymer.

The optimal material distribution is reached using topology optimization
methods. This shape optimization technique improves the distribution of mate-
rial within a defined domain while supporting topological changes. These
methods are extensively used within the elastic framework [4–6], and, in par-
ticular, topology optimization for transient response problems is a well-known
topic [7–9]. The application of these techniques to the viscoelastic framework
is a rather recent issue but has been tackled, nonetheless, through the use of
various optimization techniques. Three main optimization categories have been
employed, density-based, evolutionary and boundary variation methods. In
the scope of transient response optimization of viscoelastic structures, density-
based techniques are the most widely used. For instance, Andreassen and
Jensen [10] maximized the attenuation of propagating waves by performing the
topology optimization of periodic microstructures. The topology optimization
of unconstrained layer damping (UCLD), conducted by Elsabbagh and Baz
[11], aimed at optimizing the distribution of the viscoelastic treatment. More
particularly, the popular solid isotropic material with penalization (SIMP)
method has also been used in a several contributions. Kang et al. [12] optimized
the distribution of damping material in damping layers for shell structures
under harmonic excitations. Chen and Liu [13] employed the SIMP method to
maximize the modal loss factor by carrying out the microstructural topology
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optimization of viscoelastic structures. Fang et al. [14] performed the topol-
ogy optimization of plates with constrained layer damping (CLD) treatments
in order to maximize the modal loss factor. Furthermore, evolutionary meth-
ods have been applied in a viscoelastic framework, such as the Bidirectional
Evolutionary Structural Optimization method [15] and the Evolutionary Struc-
tural Optimization (ESO) method [16]. Lastly, boundary variation methods
applied in viscoelasticity are also present in the literature. Ansari et al. [17]
followed a level-set approach to find the optimal distribution of CLD patches
onto the surface of plate structures. Delgado and Hamdaoui [18] employed the
level-set method to perform the structural optimization of multilayered and
homogeneous viscoelastic structures. In a more recent paper [19], the authors
went further on the optimization of homogeneous viscoelastic 2D plates using
Hadamards boundary variation method. The damping of simple viscoelastic
structures is maximized by simultaneously optimizing the thickness profile and
the geometry, while considering the frequency dependence of Poisson’s ratio.

The present contribution is in direct continuation, extending the shape
optimization to topology optimization and advancing the mechanical model
from the simple Kirchhoff-Love plate assumption to the Reissner-Mindlin the-
ory and 3D general model. Level-set based topology optimizations have been
performed in 2D and 3D. Model comparisons, performed in elasticity and vis-
coelasticty, show considerable design differences between 2D and 3D models
with the creation of complex inner microstructures in 3D. Moreover, the results
highlight a section shrinking phenomenon, also observed in other works [20–23],
but exacerbated in the case of bending thin structures and leading to counter-
intuitive designs. Therefore, a model analysis has been carried out, motivated
by these surprising results, in order to compare the Kirchhoff-Love model, the
Reissner-Mindlin theory and the general 3D model. While plate model com-
parison is a classical topic [24, 25], even in the scope of shape optimization
[22, 26, 27], a better understanding of this critical shrinking phenomenon is
proposed going progressively from 2D to 3D models.

This paper is organized as follows. Section 2 writes the problem setting
for the damping optimization of thin structures. The viscoelastic plate models
are presented and the optimization problem is detailed before providing the
sensitivity analysis of the chosen objective function with respect to the design
variables. Section 3 details the numerical implementation, the adaptation of
the level-set method in a viscoelastic framework as well as the high perfor-
mance computing techniques employed for the 3D simulations. The optimal
designs have been estimated using finite elements methods. A model analysis
is proposed in section 4, plate theories are first considered then compared to
the general 3D linear viscoelastic model. Finally, an actual application to the
damping of a shoe sole within industrial test constraints is provided in section
5 proving the robustness of the proposed algorithm.
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2 Problem setting for damping topology
optimization

The problem of interest is the free vibration of linear viscoelastic thin struc-
tures such as plates. Three models are studied and compared in this work, the
Kirchhoff-Love and Reissner-Mindlin plate theories as well as a more general
3D model.

2.1 Viscoelastic plate models

The constitutive isotropic material is modeled by a classical generalized
Maxwell model consisting in elementary Maxwell branches in parallel and an
elastic branch for the long-term elasticity. The Young modulus, E, and Pois-
son’s ratio, ν, are assumed to be associated to the same relaxation time, as
represented in Figure 1 where n is the number of viscoelastic branches. Unlike
in the current study, Poisson’s ratio is often assumed constant, which is not
strictly correct for polymers. Moreover, in the context of shape optimiza-
tion, this assumption can lead to suboptimal results and inaccuracies for some
materials [19].

Fig. 1 Generalized Maxwell rheological scheme.

The working domain is the midsurface Ω of the 3D plate defined by

Ω3D =
{

(x1, x2, x3) ∈ R3 | x1 ∈ (0, L) , x2 ∈
(
−W

2
,
W

2

)
, x3 ∈

(
−h
2
,
h

2

)}
.

(1)
The length of the plate is denoted L, the widthW and the thickness h. Dirichlet
conditions are applied on the clamped part ΓD, at x1 = 0, and stress-free
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Neumann conditions are applied on the remaining boundaries ΓN (Figure 2).
In this paper, we focus on the out-of-plane displacement U(x1, x2, t) and we

Fig. 2 Slender cantilever plate representation.

work in the frequency domain, assuming the displacement is harmonic such
that

U(x1, x2, t) = u(x1, x2)eiωt, (2)

where ω is the pulsation of the system. Infinitesimal strain is also considered.
The state equation in the case of the Kirchhoff-Love theory has been detailed
in [19], leading to a complex polynomial eigenproblem.

In the following, we recall the procedure for the Reissner-Mindlin theory
[28]. As opposed to the Kirchhoff-Love theory, the normals to the plate do not
necessarily remain orthogonal to the mid-plane, accounting for transverse shear
effects. This thick plate model assumes the displacement varies linearly and
the transverse shear is constant across the plate thickness. For a displacement
U = (U,Θ1,Θ2), where Θ1 and Θ2 denote respectively the rotations of the
midsurface normal to the x1 and x2 axes, the linear plane strain tensor ε(U)
is expressed as a 5-component vector

ε =


ε11

ε22

2ε12

2ε13

2ε23

 =



−x3
∂Θ1

∂x1

−x3
∂Θ2

∂x2

−x3

(
∂Θ1

∂x2
+
∂Θ2

∂x1

)
∂U

∂x1
−Θ1

∂U

∂x2
−Θ2


. (3)



Springer Nature 2021 LATEX template

6 Damping optimization of viscoelastic thin structures, application and analysis

For the vibration problem, the displacement U = (U,Θ1,Θ2) is assumed
harmonic, given by: U(x1, x2, t) = u(x1, x2)eiωt

Θ1(x1, x2, t) = θx(x1, x2)eiωt

Θ2(x1, x2, t) = θy(x1, x2)eiωt.
(4)

As the shear stress profile in the thickness direction is known to be parabolic,
assuming a constant shear strain is inaccurate. Consequently, a shear correc-
tion factor k is usually applied. The bending plane stress tensor is expressed
as:

σ(x1, x2, x3, t) = C0ε(U)(x1, x2, x3, t)−
∫ t

−∞

∂R

∂τ
(t− τ)ε(U)(x1, x2, x3, τ)dτ,

(5)
where the first term represents the instantaneous response by

C0ε(U)(x1, x2, x3, t) =



c11 c12 0 0 0

c12 c22 0 0 0

0 0 c33 0 0 0

0 0 0 k c44 0

0 0 0 0 k c55





ε11

ε22

2ε12

2ε13

2ε23


with 

c11 = c22 = E∞
1−ν2

∞
+

n∑
j=1

Ej
1−ν2

j
,

c12 = ν∞
E∞

1−ν2
∞

+
n∑
j=1

νj
Ej

1−ν2
j
,

c33 = c44 = c55 = E∞
2(1+ν∞) +

n∑
j=1

Ej
2(1+νj)

.

The second term writes:

∫ t

−∞

∂R

∂τ
(t−τ)ε(U)(x1, x2, x3, τ)dτ =

∫ t

−∞



r11 r12 0 0 0

r12 r22 0 0 0

0 0 r33 0 0

0 0 0 k r44 0

0 0 0 0 k r55





ε11

ε22

γ12

γ13

γ23


dτ
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with 

r11 = r22 =
n∑
j=1

Ej
(1−ν2

j )τj
e
τ−t
τj ,

r12 =
n∑
j=1

νjEj
(1−ν2

j )τj
e
τ−t
τj ,

r33 = r44 = r55 =
n∑
j=1

Ej
2(1+νj)τj

e
τ−t
τj ,

which becomes in the frequency domain

∫ t

−∞

∂R

∂τ
(t−τ)ε(U)(x1, x2, x3, τ)dτ =



r̃11 r̃12 0 0 0

r̃12 r̃22 0 0 0

0 0 r̃33 0 0

0 0 0 k r̃44 0

0 0 0 0 k r̃55





−x3
∂θ1

∂x1

−x3
∂θ2

∂x2

−x3(
∂θ1

∂x2
+
∂θ2

∂x1
)

∂u

∂x1
− θx

∂u

∂x2
− θy


eiωt

with 

r̃11 = r̃22 =
n∑
j=1

Ej
(1+iωτj)(1−ν2

j )
,

r̃12 =
n∑
j=1

νj
Ej

(1+iωτj)(1−ν2
j )
,

r̃33 = r̃44 = r̃55 =
n∑
j=1

Ej
2(1+iωτj)(1+νj)

.

The set of kinematically admissible displacements is defined by

U0 =

{
(u, θ1, θ2) ∈

(
H1(Ω)

)3 | u∣∣ΓD = 0, θ
1
∣∣ΓD = 0, θ

2
∣∣ΓD = 0

}
. (6)

The principle of virtual power gives:
Find U = (U,Θ1,Θ2) ∈ U0 such that∫

Ω3D

ρ
∂2U

∂t2
Û dx+

∫
Ω3D

ρx2
3

(
∂2Θ1

∂t2
Θ̂1 +

∂2Θ2

∂t2
Θ̂2

)
dx+

∫
Ω3D

σ·ε(Û) dx = 0 ∀Û ∈ U0.

(7)
The expressions of σ and ε(û) are then plugged in (7), and after explicit
integration with respect to x3, one obtains the spatial equation:



Springer Nature 2021 LATEX template

8 Damping optimization of viscoelastic thin structures, application and analysis

∀û ∈ U0,

− ω2ρh

∫
Ω
uû dx− ω2ρ

h3

12

∫
Ω
θxθ̂x + θy θ̂y dx+

h3

12

∫
Ω

(
(c11 − r̃11)

(
∂θx
∂x1

∂θ̂x
∂x1

+
∂θy
∂x2

∂θ̂y
∂x2

)

+ (c12 − r̃12)

(
∂θy
∂x2

∂θ̂x
∂x1

+
∂θx
∂x1

∂θ̂y
∂x2

)
+ (c33 − r̃33)

(
∂θx
∂x2

+
∂θy
∂x1

)(
∂θ̂x
∂x2

+
∂θ̂y
∂x1

))
dx

+ kh

∫
Ω

(c33 − r̃33)

((
∂u

∂x1
− θx

)(
∂û

∂x1
− θ̂x

)
+

(
∂u

∂x2
− θy

)(
∂û

∂x2
− θ̂y

))
dx = 0.

(8)

Similarly to the the Kirchhoff-Love plate model, with u = (u, θ1, θ2), the
equation can be rewritten as a complex polynomial eigenproblem in the form
of

n+2∑
j=0

ωjaj(u, û) = 0 ∀û ∈ U0. (9)

The pulsation ω denotes the complex eigenvalue of the vibration problem,
corresponding to the first mode of vibration, and aj are complex symmetric
bilinear forms independent of ω but dependent on the material parameters.
This result naturally extends to 3D where the eigenproblem have the same
form. Appendix A explicitly gives the expression of such bilinear forms for all
three studied models. Eigenvalues are also assumed simple, otherwise the differ-
entiability is lost. However, various methods to deal with multiple eigenvalues
exist [29, 30].

2.2 Optimization problem

The first problem is the topology optimization of a vibrating viscoelastic struc-
ture, presented in Figure 3. The objective of the study is to maximize the
vibration damping of a plate clamped at one edge, denoted ΓD1, and stress-
free at the remaining boundaries. In this example, the initial plate contains
holes and the shape Ω is optimized in a domain denoted D.

Several objective functions allowing to characterize structural damping are
reported in the literature, and compared in [19] within the framework of shape
optimization. The modal loss factor [15, 31], logarithmic decrement [32] and
decay rate [33, 34] are possible cost functions. The modal loss factor presents
numerical instabilities in some cases and the decay rate is less interesting
from an optimization point of view. Therefore, the selected quantity is the
logarithmic decrement:

J (Ω) = − Im(ω)

Re(ω)
(10)

where the complex pulsation ω is obtained by solving the eigenproblem (9).
Furthermore, anticipating on later shoe sole optimization applications, a

vertical load g is distributed along the width of the plate and a stiffness con-
straint is added. This constraint is based on the compliance, measured by the
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Fig. 3 Example of initialization of the plate topology optimization problem.

elastic strain energy as

C =

∫
Ω

gug dx.

Note that the compliance is a global criterion, depending explicitly on the
vertical displacement ug, solution of a 3-point bending test, the plate being
clamped at both ends. Since this problem is quasistatic, the displacement is
determined by solving an elastic problem where the material parameters are

chosen either instantaneous, E0 = E∞ +
n∑
i=1

Ei and ν0, or at equilibrium, E∞

and ν∞. In the following, rheological parameters at equilibrium were chosen.
The equation of such problem for the Reissner-Mindlin theory is given by:
Find ug = (ug, θ1, θ2) ∈ U1 such that∫

Ω

h3

12
Dbκ(ug) · κ(ûg) dx+

∫
Ω

hkDsγ(ug) · γ(ûg) dx =

∫
Ω

gûg dx ∀ûg ∈ U1

(11)
with

U1 =

{
(ug, θ1, θ2) ∈

(
H1(Ω)

)3 | u
g
∣∣ΓD1

= 0, θ
1
∣∣ΓD1

= 0, θ
2
∣∣ΓD1

= 0

}
, (12)

where κ represents the bending strains and γ the shear strains, given by

κ =


− ∂θ1

∂x1

− ∂θ2

∂x2

−
(
∂θ1

∂x2
+
∂θ2

∂x1

)

 γ =


∂ug
∂x1
− θ1

∂ug
∂x2
− θ2

 , (13)
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and where

Db =
E∞

1− ν2
∞

 1 ν∞ 0
ν∞ 1 0
0 0 1−ν∞

2

 Ds =
E∞

2(1 + ν∞)

[
1 0
0 1

]
.

During the optimization, ΓD1 and ΓD2 are fixed and the remaining stress-
free boundary ΓN is subjected to optimization. Additionally, the material is
fixed at the clamped boundaries and next to the application of the load, in a
domain denoted Ωt (Figure 3), to ensure boundary conditions are not altered
during optimization. The constraint on the compliance, as well as the volume
constraint, will be enforced by the augmented Lagrangian method. At each
iteration, two problems are solved: a complex eigenproblem corresponding to
the free-vibration of a viscoelastic plate, providing the eigenpair (ω, u) and
the logarithmic decrement, and a quasistatic elastic problem, providing the
vertical displacement ug for a 3-point bending test and the compliance. The
optimization problems finally writes:

inf
Ω∈Vad

J (Ω) such that C(Ω) ≤ Cl, (14)

with

J (Ω) = − Im(ω(Ω))

Re(ω(Ω))
and C(Ω) =

∫
Ω

gug(x1, x2) dx, (15)

where ω is the first pulsation, and Cl the compliance upper bound. The set of
admissible shapes reads:

Vad = {Ω ∈ D | (ΓD1
∪ ΓD2

) ⊂ ∂Ω,Ωt ⊂ Ω} .

2.3 Sensitivity analysis

Numerical resolution using a gradient method requires the computation of the
shape derivative of the cost function. We work within the framework of Murat-
Simon [35] following the spirit of Hadamard’s method, see also [4, 36]. Given
a reference domain Ω, we consider the perturbed domain

Ωθ = (Id+ θ)Ω with θ ∈W 1,∞(R2,R2).

Where θ can be considered as a (bounded and Lipschitz) vector field advecting
the reference domain. The map (Id + θ) is a bijection of R2 for any θ small
enough in the norm of W 1,∞(R2,R2).

Definition 1 The shape derivative of a functional F (Ωθ) at Ω is the Fréchet deriva-
tive of the mapping θ 7→ F ((Id + θ)Ω) at θ = 0 which can be expressed as
follows:

F ((Id+ θ)Ω) = F (Ω) +DΩF (Ω)θ + o(θ) with lim
θ→0

|o(θ)|
‖θ‖W 1,∞

= 0
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for all θ ∈ W 1,∞(R2,R2), where DΩF (Ω) is a continuous linear form on
W 1,∞(R2,R2) called the shape derivative of F .

We recall a classical result on the shape derivatives, see [4] for a proof.

Lemma 1 Given f ∈W 1,1(R2), consider the functional

F (Ω) =

∫
Ω
f(x)dx.

Then F is shape differentiable at Ω and its shape derivative is

DΩF (Ω)θ =

∫
Ω

div
(
θ(x)f(x)

)
dx =

∫
∂Ω

f(x)θ(x).n(x)ds.

Of course, this result is also applicable to 3D domains. The transient problem,
for which the dependence on the shape Ω has been highlighted, reads:

n+2∑
j=0

ωjaj(Ω, u, û) = 0 ∀û ∈ U0, (16)

where the complex symmetric bilinear forms are also written

aj(Ω, u, û) =

∫
Ω

gj(u, û)dx ∀j ∈ [[0, n+ 2]].

Proposition 1 For any θ ∈ W 1,∞(R2,R2) such that θ = 0 on ΓD1, Ωt ⊂ Ω, and
(ω, u) ∈ C× U0 solution of (16), the shape derivative of J (Ω) is given by

DΩJ (Ω)θ =−
∫

ΓN

Re(ω) Im
(
f(ω, u)

)
− Im(ω) Re

(
f(ω, u)

)
Re(ω)2

θ · nds (17)

where f(ω, u) is defined by

f(ω, u) = −

n+2∑
j=0

ωjgj(u, u)

n+2∑
j=1

jωj−1aj(Ω, u, u)

. (18)

See [19] for a proof. Note that, although the expression of aj changes depending
on the chosen model, they remain bilinear symmetric forms. Consequently,
this proposition is applicable to either Kirchhoff-Love, Reissner-Mindlin or 3D
models.

We also need to compute the shape derivative of the compliance, a classical
result in topology optimization obtained using Lemma 1 and the self-adjoint
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property of the problem. For ug = (ug, θ1, θ2) solution of (11), the shape
derivative writes

DΩC(Ω)θ = −
∫

ΓN

(
h3

12
Dbκ(ug) · κ(ug) + hkDsγ(ug) · γ(ug)

)
θ · nds. (19)

Following the same method, the shape derivative of the volume, given by

V (Ω) =

∫
Ω

h dx, is expressed as

DΩV (Ω)θ =

∫
ΓN

hθ · nds. (20)

Note that there is no need to solve any adjoint problem because we work
with functionals based on eigenvalues and the compliance.

3 Numerical implementation

Algorithms developed in this work are all implemented in FreeFem++ [37], an
open-source PDE solver evaluating mechanical models by the finite element
method. The optimization of Kirchhoff-Love plates, in particular, involves the
resolution of a fourth-order problem set in a subspace of H2(Ω), thus requir-
ing conforming finite elements to be C1. In this case, we chose non-conforming
Morley elements, well-known to converge for fourth-order plate bending prob-
lems [38, 39]. Classical P1 triangular and P1 tetrahedral elements are used for
the Reissner-Mindlin and 3D models respectively. Polynomial eigenproblems
are solved using SLEPc solvers [40], interfaced with FreeFem++ [41, 42].

In order to minimize the objective function, we rely on a gradient descent
algorithm and the level-set method. The numerical implementation, detailed
for the 3D model, is easily adaptable to 2D plate models. Moreover, high
performance computing techniques, for the 3D viscoelastic framework, are
explained.

3.1 The level-set method in a viscoelastic framework

The level-set method, introduced by Osher and Sethian [43] and adapted to
shape optimization in [44, 45], allows to numerically track the boundaries of
the shape, representing Ω3D ⊂ R3 by a level-set function φ : D 7→ R defined as

φ(x) < 0 if x ∈ Ω3D

φ(x) = 0 if x ∈ ∂Ω3D

φ(x) > 0 if x ∈ D\Ω3D,

(21)

where D is the working domain. The shape is deformed by advecting φ along a
velocity field, usually oriented along the outward normal vector n, by solving
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the advection equation

∂φ

∂t
+ v(t, x)n(t, x).∇φ = 0. (22)

The normal velocity is denoted v(t, x) and n is taken as

n(t, x) =
∇φ(x)

|∇φ(x)|+ η0
,

where the small parameter η0 has been added to avoid division by zero. The
normal velocity is naturally chosen to be the integrand of the shape derivative
of the cost function (17). In Freefem++, the advection of the level-set func-
tion is performed by the advect package, based on [46], solving the advection
equation by the method of characteristics.

Additionally, a redistancing procedure of φ is implemented to ensure an
accurate localization of ∂Ω3D, preventing large slopes close to the boundaries,
and avoiding numerical instabilities due to small slopes. In FreeFem++, the
redistancing of the level-set function is performed by a built-in fast marching
algorithm. This procedure is applied every 10 iterations.

Constrained optimization problem

Geometric constraint are simply enforced by projection, using the expression:

Pad(φ) = min
(
φc, φ

)
, (23)

where φc represents the non-optimizable domain, such as Ωt in Figure 3, using
simple algebraic functions. An augmented Lagrangian is employed to enforce
the volume constraint as well as the compliance inequality constraint [47].
Although projection methods could be used for the volume constraint, the
numerical cost is higher and the constraint is forced to be verified at each
iteration, which, unlike the augmented Lagrangian method, may prevent early
topological changes during the optimization.

The problem becomes:

inf
Ω∈Vad

sup
µ1≥0
µ2≥0

L(Ω, µ), (24)

with

L(Ω, µ1, µ2) =− Im(ω(Ω))

Re(ω(Ω))

+
1

2c1

((
PR+

(µ1 + c1(C(Ω)− Cl))
)2 − µ2

1

)
+ µ2(V (Ω)− Vl) +

c2
2

(V (Ω)− Vl)2

(25)
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where µ1 ∈ R and c1 ∈ R+ are, respectively, the Lagrange multiplier and the
penalization parameter for the compliance constraint, and µ2 ∈ R and c2 ∈ R+

for the volume constraint. The target volume is also denoted Vl. In this work,
a constant volume constraint is applied, therefore Vl = V0 with V0 the initial
volume of the structure.

Extension and regularization procedure

The shape derivative of L(Ω) is constructed from the linear combination of the
shape derivative of the cost function (17), the compliance and the volume:

DΩL(Ω)θ =

∫
∂ΩN

(
−

Re(ω) Im
(
f(ω, u)

)
− Im(ω) Re

(
f(ω, u)

)
Re(ω)2

− PR+

(
µ1 + c1 (C(Ω)− Cl)

)(
σ(ug) · ε(ug)

)
+
(
µ2 + c2 (V (Ω)− Vl)

))
θ · nds,

(26)

where

f(ω, u) = −

n+2∑
j=0

ωjgj(u, u)

n+2∑
j=1

jωj−1aj(Ω, u, u)

.

To ensure smooth boundaries of the deformed shape, the shape derivative,
initially defined on ∂Ω3D, is regularized and extended on the whole working
domain D. This classical procedure is described in chapter 5 of [5]. More
precisely, we rely on a regularization by the H1 inner product:∫

Ω

(η2∇θ · ∇θ̂ + θ · θ̂)dx = −DΩL(Ω)θ̂ ∀θ̂ ∈ H1(Ω), (27)

which implies that the velocity field is solution of the system:

−η2∆θ + θ = 0 dans D

θ = 0 sur ∂ΩD1
∪ ∂ΩD2

η2 ∂θ

∂n
=

(
Re(ω) Im

(
f(ω, u)

)
− Im(ω) Re

(
f(ω, u)

)
Re(ω)2

+ PR+

(
µ1 + c1 (C(Ω)− Cl)

)(
σ(ug) · ε(ug)

)
−
(
µ2 + c2 (V (Ω)− Vl)

))
n

sur ∂ΩN .

(28)
where η is the regularization parameter, usually of the order of a mesh size.
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Ersatz material approximation

In the classical level-set method, mechanics equations are solved on a fixed
mesh, in the entire working domain D. The void D\Ω3D is replaced by a weak
“ersatz” material, usually characterized by a very small stiffness. In elasticity,
one chooses typically Ee ≈ 10−5E where E is the Young Modulus of the consti-
tutive material. In the same vein, in linear viscoelasticity, Ee∞ and (Eej )j∈[[1,n]]

are set to
Eej = Ee∞ = 10−5E∞ ∀j ∈ [[1, n]]. (29)

For simplicity purpose, Poisson’s ratio and relaxation times are chosen to
remain the same as the constitutive polymer. This work being focused on eigen-
values optimization, special care should be taken to ensure that the density is
considerably smaller than the stiffness of the material [7], such that

ρ

ρe
<
Ej
Eej
∀j ∈ [[1, n]] ∪ {∞}. (30)

This allows to avoid numerical instabilities and potential spurious modes since,
in elasticity for instance, the smaller eigenvalues are of the order of the ratio E

ρ .
The ersatz approach presents clear advantages, for no remeshing is needed

and all calculations can be performed on the same mesh. This does not
come without drawbacks. First, the computational cost is higher as the state
equations are solved on D, which is larger than Ω3D. Second, it is necessary to
define intermediate densities in the mesh elements containing ∂Ω3D. Various
numerical solutions exist. One may consider using XFEM [48] or CutFEM [49]
to cut, eliminate or enrich elements in order to precisely capture the boundaries
of the shape. Another solution would be to remesh the whole domain D using
a body-fitted mesh, with the MMG package [50] for instance. In the present
study, we decide to define intermediate values for the viscoelastic modules, ED∞
and (EDj )j∈[[1,n]], as P0 function defined on D by the expression:

EDj (Ω) = fv(Ω)Ej + (1− fv(Ω))Ee ∀j ∈ [[1, n]] ∪ {∞}, (31)

where fv(Ω) is the volume fraction of the mesh element that is inside the
shape. Similarly, a density ρD is defined on D as a P0 function such that:

ρD(Ω) = fv(Ω)ρ+ (1− fv(Ω))ρe, (32)

where ρe = 10−10ρ denotes the ersatz density.

3.2 High performance computing

Mesh convergence studies performed on simple 3D bending elastic plates
showed that a surprisingly large amount of elements in the structure thick-
ness is required to achieve acceptable results. Consequently, the studied 3D
shapes are represented by very thin meshes, making the use of parallel comput-
ing unavoidable. In this section, we detail the combined usage of FreeFem++,
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OpenMPI, PETSc and SLEPc libraries applied to a damping optimization
problem in linear viscoelasticity [42].

Each iteration of the optimization algorithm possesses the following
structure:

1. Solve a complex polynomial eigenproblem in linear viscoelasticity
2. Solve a 3-point bending problem in linear elasticity
3. Update the optimization quantities (Lagrange multipliers, objective func-

tions, ...)
4. Solve the shape gradient extension and regularization problem
5. Advection of the level-set function
6. Impose non-optimizable domain by projection
7. Apply a redistancing procedure (every 10 iterations)

Solving both state equations (step 1 and 2) is largely the most costly part
of this algorithm. The advection of the level-set function and shape gradient
extension problem are surprisingly inexpensive to compute. The algorithm is
fully parallelized in FreeFEM++, except for the advection and redistancing
procedure of the level-set (step 5 and 7) which are not yet compatible with par-
allel computing. The FreeFEM++ software comes with built-in OpenMPI and
PETSc packages, allowing the concurrent use of FreeFEM++ and OpenMPI
tools, as well as PETSc solvers and preconditioners. We compared various tech-
niques and give, in the following, the most effective solver and preconditioner
combinations for the present optimization problem.

A conjugate gradient solver and the GAMG preconditioner [51] are chosen
to solve scalar problems, such as the extension of the shape gradient, with an
algebraic multigrid method. The linear elastic bending problem is solved by
the iterative solver GMRES [52] and the GAMG preconditioner, using an alge-
braic multigrid method with smoothing. Complex polynomial eigenproblems
are solved with the TOAR (Two-level Orthogonal Arnoldi) solver from SLEPc,
usable for an arbitrary polynomial degree, which build an Arnoldi factoriza-
tion of the linearized problem. The associated linear problem is then solved
by a direct solver from the library MUMPS (MUltifrontal Massively Paral-
lel Solver) [53, 54], as using iterative solvers makes the procedure less robust.
Using the symmetry of the eigenproblem, the Cholesky solver provides consid-
erable computation time gains compared to the more general LU solver. Most
iterative solvers require a domain decomposition, performed in FreeFem++
through the use of SCOTCH [55, 56] and METIS [57].

All numerical optimizations are performed on a cluster of 136 Intel Xeon
Gold 6230 20-Core CPU, clocked at a frequency of 2.1 Ghz. The parallel com-
puting of the complex polynomial eigenproblem is now of interest. Figure 4
represents the evolution of the speedup ratio and parallel efficiency, measures
of scalability of the parallel system, with respect to the number of processors.
For ts the computational time in sequential and tp(np) the computational time
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in parallel with np processors, the speedup ratio is defined by

Ac(np) =
ts

tp(np)
,

and the parallel efficiency by

Ef (np) =
Ac(np)

np
.

Fig. 4 Speedup ratio and parallel efficiency with respect to the number of cores, for a numer-
ical test performed on the Cholesky cluster of Ecole Polytechnique on a mesh possessing
2 155 887 degrees of freedom.

As expected, the parallel efficiency decreases and the speedup ratio
increases when the number of processor increases. It is important to note that
no plateau has been reached, even with 400 processors, demonstrating good
scaling in comparison to the elastic bending problem which requires less pro-
cessors, usually between 40 and 80, before reaching a plateau. However, in
term of computational cost, the resolution of the elastic problem is much faster
than the viscoelastic eigenproblem. For the sake of computational efficiency,
tests have been performed for a polymer modeled with a single relaxation
time, meaning the degree of the polynomial is 3. The computational cost of the
viscoelastic problem naturally increases with the degree. Increasing the accu-
racy of the rheological model means using larger relaxation time spectrums,
resulting in polynomial eigenproblems of higher degrees, increasing drastically
the computational duration. As a result, the usage of parallel computing is
particularly relevant in such cases.
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4 Model analysis

4.1 Optimal designs considering 2D models

This section is dedicated to the numerical results for the topology optimization
of viscoelastic plates under free vibration. The objective is to maximize the
structural damping of a structure with compliance and volume constraints.
The plate of interest is represented in Figure 3, with an aspect ratio of L

W =
2, and is included in a 2D working domain D, discretized by a 100 × 100
structured mesh. The thickness is chosen constant h = 3 mm and the vertical
load g = 100 N. All numerical results are obtained for a constant volume
constraint Vl = V0. For the sake of simplicity, in all viscoelastic examples, the
constitutive polymer is characterized by a single relaxation time τ1. Although
theoretical and numerical results presented in this article are fully applicable
to larger relaxation time spectrums. The material density is ρ = 1000 kg.m−3

and rheological parameters are E∞ = 18 MPa, E1 = 30 MPa, τ1 = 0.002 s,
ν∞ = 0.499, ν1 = 0.498. Note that the relaxation time value has been chosen
to scale well with the structure free vibration period.

Damping optimization of viscoelastic plates

A Kirchhoff-Love plate is first considered. The objective is to maximize the
structural damping while keeping the same volume and increasing the bending
stiffness by 15% (Cl = 0.85C0). The optimization results of problem (24)
are given in Figure 5a, showing the evolution of the design, and Figure 5b,
comparing the vibration behavior of the initial and optimized plates. We also

(a) (b)
Fig. 5 (a) Design evolution of the viscoelastic plate during the optimization process and (b)
free vibration amplitudes of the initial and optimized structures for a generalized Maxwell
material.

verify the convergence of the Lagrangian, and so the algorithm, in Figure 6a.
In Figure 5a, one notices a material accumulation at the clamped boundary
of the free vibration test, ΓD1, but also a structural reinforcement close to the
application of the load, at the center of the plate. Concerning weak sections
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appear between the load and the right clamped boundary ΓD2. This design is
counter-intuitive as the compliance has been decrease by 15%, as shown by the
compliance convergence plotted in Figure 6b. The optimal design, although
seemingly weak, displays much better damping performances than the initial
design for a relative gain of 35%.

(a) (b)
Fig. 6 (a) Convergence curve of the Lagrangian of the damping optimization problem of
a 2D viscoelastic plate and (b) the evolution of the compliance during the optimization
process.

Other examples were studied for various compliance constraints. While con-
siderably different, numerical results showed the same tendencies. The design
is reinforced at the clamped boundaries and near the application of the load
but also presents weak spots at the same location.

Topology optimization results are usually highly dependent on the initial-
ization. In this problem in particular, only the number of “weak branches”
changes. The number of weak spots increases with the initial number of holes
but does not seem to alter the damping performances of the structure.

In order to better understand the section shrinking phenomenon high-
lighted by the previous example, several numerical tests are performed in linear
elasticity, with various plate models and optimization parameters.

Stiffness optimization of elastic bending plates

Classical compliance minimization problems are now studied for elastic bend-
ing plates. The material parameters are chosen arbitrarily as E = 18 MPa
and ν = 0.499, which could represent a polymer network well above its glass
transition. Figure 7a illustrates the initial plate, simply clamped at one edge
ΓD1 and submitted to a vertical load g at the free opposite end. The same
geometric constraint, denoted Ωe, is enforced, fixing the material close to the
boundary conditions, represented in yellow in Figure 7a. Optimization design
for the Kirchhoff-Love model is shown Figure 7b, where the shrinking phe-
nomenon can still be noticed, at the free end of the plate, thus discarding the
effects of the viscoelastic model.
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A potential source of error is the approximation made by using a thin plate
theory. The problem is now solved with Reissner-Mindlin assumptions. We
recall that this thick plate model assumes the displacement varies linearly and
the transverse shear is constant across the plate thickness. The final design,
shown in Figure 7c, is very close to the result obtained for the Kirchhoff-
Love model, displaying the same shrinking phenomenon. Therefore, neglecting
the transverse shear effects is not responsible for the appearance of counter-
intuitive weak sections.

(a) (b) (c)
Fig. 7 (a) Initial design and optimal designs for the bending compliance minimization of
(b) a Kirchhoff-Love plate and (c) a Reissner-Mindlin elastic plate.

Thin areas present transverse shear concentrations but, in view of the
section thinness, one could expect much higher stress concentration. Another
possible explanation would be the chosen cost function, or, in the viscoelas-
tic case, the chosen constraint. The compliance is a global quantity, explicitly
dependent on the displacement. As weak spots, acting as pivots, are close to
the application of the load, only a slight increase in displacement is observed,
leading to a small increase in compliance. However, increasing the width of the
fixed band of material at the free end of plate has no effect on the phenomenon,
although weak spots now remain further from the application of the load.

Several other possibilities have to be mentioned:

• Plate theories may be insufficient to accurately represent the bending
stiffness of a thin structure. This does not seem to be limited to the
Kirchhoff-Love model as the richer Reissner-Mindlin model also presents the
same section shrinking phenomenon.

• As expected, the first derivative of the rotation
∂θ1

∂x1
drastically increases

near the singularities. In fact, if we consider the thin branches as cantilevers,

we know that
∂θ1

∂x1
∝ 1

I
, with I the quadratic moment of area. For the

Kirchhoff-Love model for instance, as θ1 ≈
∂u

∂x1
, the displacement field u is

a lot smoother than
∂θ1

∂x1
. The compliance being explicitly dependent on the
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displacement, the impact of the weak spots on the final performances may
have been smoothed.

• Finally, we recall that the compliance is a global criterion. Consequently, it
is possible to see locally low stiffness areas, as long as the global stiffness of
the structure is not undermined.

More general but similar optimization problems are frequently investigated
in the literature, notably in 2D, with different boundary conditions [20–23].
Although less pronounced, the same section shrinking phenomenon can be
observed.

Hence, the singularities either come from plate models or cost function lim-
itations. This naturally leads to the extension to 3D optimization algorithms
in order to better understand the phenomenon.

4.2 Extension to 3D

Two problems are of interest, the compliance minimization of an elastic plate
and the damping maximization of a viscoelastic plate under free vibration,
both 3D equivalent of the 2D optimization problems studied in the previous
section. The 3D viscoelastic damping optimization is an important step toward
potential 3D applications, whereas the classical 3D elastic optimization mainly
aims at completing the study of the section shrinking phenomenon. The elastic
and viscoelastic materials involved remain the same. The aspect ratio of the
plate is also unchanged, but the working domain is now discretized by a 3D
structured mesh using P1 tetrahedral elements.

Stiffness optimization of a bending elastic plate in 3D

In this example, the mesh is particularly fine, with a size of 250 × 250 × 25,
corresponding to 4 914 078 degrees of freedom. The initial design, described
by the initial level-set function, is given as a half-cut in Figure 8. Various final
designs, but displaying analogous performances, were obtained for different
initializations. As observations are also similar, we decide to show the numer-
ical results for an initial structure chosen arbitrarily. Boundary conditions as
well as geometric constraints are simply the 3D equivalent of the previous
2D elastic plate optimization. The topology optimization is carried out on 80
cores, with a domain decomposed in 80 sub-domains. In this case, the compu-
tational time is 8 hours. Figure 9 shows the evolution of the compliance and
volume throughout the optimization. The minimization of the objective func-
tion as well as the enforcement of the volume constraint can then be verified.
The final design, represented in Figure 10, shows reinforcement at the clamped
boundary. Weak spots are still present, although more robust than 2D opti-
mized plates due to a complex inner pattern, as revealed by Figure 11, which
are multiple cantilevers oriented in the thickness of the plate, increasing the
bending stiffness of the structure.
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Fig. 8 Initialization of the topology optimization of a 3D bending elastic plate using the
level-set method.

(a) (b)
Fig. 9 Evolution of (a) the compliance and (b) volume during the compliance minimization
of an elastic 3D bending plate.

(a) (b)
Fig. 10 (a) Final design of the 3D elastic bending plate and (b) zoom in of the connection
between the plate and the non-optimizable domain.
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Fig. 11 Cuts of the optimized 3D elastic plate for various cutting planes.

The obtained 3D optimal design possesses an interesting and complex
topology, not accessible with 2D models. The appearance of short vertical
cantilevers is a remarkable result, considering the compliance is a classical
objective function. Therefore, 3D optimization techniques seem required for
compliance minimization problems of bending thin structures.

Damping optimization of a 3D viscoelastic plate

As solving complex polynomial eigenproblems is costly, the chosen mesh is
coarser than the previous example, with a size of 200×200×20, corresponding
to 2 545 263 degrees of freedom. The same initial design is used to perform the
topology optimization of a 3D viscoelastic plate. The objective is to maximize
the structural damping while keeping the same volume and enforcing a compli-
ance constraint. In this example, the constraint is Cl = 0.85C0, similar to the
2D viscoelastic case. The optimization is performed on 400 cores, with a mesh
decomposed in 400 sub-domains. The computations now last approximately 12
hours, and most of this duration is dedicated to the resolution of viscoelastic
eigenproblems. The final design, represented in Figure 12a, shows reinforce-
ments at the clamped boundary ∂ΩD1 and near the application of the load.
Weak spots are also present, due to the compliance constraint, but are more
robust. The optimized design shows the same tendencies as its 2D equivalent,
except an inner structure is now present, illustrated in Figure 13, increasing
the bending stiffness and allowing to enforce the compliance constraint. The
vibration behavior of the optimized plate is compared to the initialization in
Figure 12b. The use of 3D optimization techniques enables to reach better per-
forming structures as the relative structural damping gain is 73%, considerably
higher than the 35% gain obtained in 2D.
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(a) (b)
Fig. 12 (a) Optimized plate and (b) vibration behavior comparison of the initial and final
designs for the damping maximization of a 3D viscoelastic plate.

Fig. 13 Cuts of the optimal design of a viscoelastic plate under free vibration for several
perpendicular planes.

The optimal design shows important damping gains, partly due to inner
topological details only obtainable through 3D modelization. From an applica-
tion point of view, the structure remains unsatisfactory as the design is locally
weak where sections are thin. Several numerical techniques exist to prevent
such phenomenon. One simple solution, for instance, is to use a minimum
thickness constraint [58, 59]. However, in this article, the application of inter-
est is the running shoe sole, and, as detailed in the next section, changing the
optimization problem according to industrial needs has been enough to avoid
the apparition of weak spots.
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5 Extension to actual shoe sole application

We now consider a less academic application of topology optimization to the
design of a shoe sole. It is important to note that this example is focused on
an optimization with respect to classical industrial tests, not in real conditions
of use. Three mechanical tests are usually performed:

• Free vibration tests, where the shoe sole is clamped at one end and submitted
to an initial displacement at the opposite end. Either high damping or high
bouncing properties are desired. In this article, we focus on the damping
maximization.

• A 3-point bending test, such as the Bennewart test, reproduces a typical
load applied on the sole by a customer, also commonly used as a fatigue
test. This criterion is taken into account as a compliance constraint.

• A torsion test, for specific sport applications, can also be considered.
Although easily addressable by adding an optimization constraint, like the
compliance constraint, this mechanical test will be set aside for the sake of
simplicity.

5.1 Damping optimization problem

Optimized plates obtained in the previous section are reinforced near the
clamped boundary related to the free vibration problem, ∂ΩD1. This inevitably
weakens the opposite end of the structure, thus drastically decreasing the struc-
tural damping for a plate clamped at ∂ΩD2. From an industrial point of view,
the structure is expected to possess good performances regardless of the cho-
sen clamped boundary. Therefore, a second vibration problem is considered.
The objective function becomes the sum of two logarithmic decrements:

J (Ω) = − Im(ωD1)(Ω)

Re(ωD1)(Ω)
− Im(ωD2)(Ω)

Re(ωD2)(Ω)
(33)

where ωD1 and ωD2 are the pulsations corresponding to the vibration tests for
a structure clamped at ∂ΩD1 and ∂ΩD2 respectively. For the sake of readability,
the 3D shape Ω3D is simply denoted Ω. The volume and compliance constraints
are still enforced by an augmented Lagrangian method. The problem now
reads:

inf
Ω∈Wad

sup
µ1≥0
µ2≥0

L(Ω, µ), (34)

where

L(Ω, µ1, µ2) =− Im(ωD1)(Ω)

Re(ωD1)(Ω)
− Im(ωD2)(Ω)

Re(ωD2)(Ω)

+
1

2c1

((
PR+

(µ1 + c1(C(Ω)− Cl))
)2 − µ2

1

)
+ µ2(V (Ω)− Vl) +

c2
2

(V (Ω)− Vl)2

(35)
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and
Wad = {Ω ∈ D | (∂ΩD1

∪ ∂ΩD2
) ⊂ ∂Ω,Ωt ⊂ Ω} .

Initial conditions are shown in Figure 14a, for a 3D plate, and adapted to the
running shoe sole in Figure 14b. Note that, in the latter case, the working
domain D has a sole-like design, fixing the global shape of the structure.

Fig. 14 Boundary conditions and geometric constraints of (a) the 3D viscoelastic plate and
(b) the viscoelastic shoe sole optimization problems.

5.2 Numerical examples

The introduction of a second vibration test induces a second viscoelastic
eigenproblem. For each optimization iteration, one must solve two complex
polynomial eigenproblems and an elastic 3-point bending problem. The com-
putational cost of the optimization considerably increases as a result. Two
examples are presented in this section. The enriched objective function is first
minimized for a simple 3D viscoelastic plate, then the optimization problem
is solved for a typical shoe sole.

3D viscoelastic plate optimization

The topology optimization of a 3D plate is performed in a working domain
discretized by the same 200× 200× 20 structured mesh. The introduction of a
second eigenproblem brings the computational cost to 20 hours, for 400 cores



Springer Nature 2021 LATEX template

Damping optimization of viscoelastic thin structures, application and analysis 27

and sub-domains. In this example, the compliance constraint is chosen as Cl =
0.7C0. Keeping the same level-set initialization (Figure 8), the optimal design
is given in Figure 15. Various cuts are also provided in Figure 16. Similarly to

Fig. 15 Final design of the damping maximization problem of a viscoelastic plate under
free vibration for two clamped boundary configurations.

Fig. 16 Inside design of the optimized 3D viscoelastic plate for different cutting planes.

the results obtained in the previous section, thinner sections appear, although
much more robust, as highlighted by the blue cut, due to the proximity to
a clamped boundary. A complex inner microstructure can also be noticed, as
shown by the red cut, allowing to satisfy the compliance constraint. Figure
17 compares the vibration behavior of the final and initial design, for both
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vibration problem. Since the structure has several planes of symmetry, relative
gains are similar in both cases, approximately 6.2%, for a total of 12.4%,
which is much lower than previous examples. This is due to the fact that both
vibration problems are acting in opposition. The optimal design is simply a
trade-off, ensuring damping gains for both clamped configurations. Besides,
the chosen compliance constraint is rather strong in this example, reducing
the gains even more. We verify in Figure 18 that the compliance and volume
constraints have been enforced.

(a) (b)
Fig. 17 Vibration behavior comparison of the initial and optimal designs for (a) ∂ΩD1 and
(b) ∂ΩD2 as clamped boundary.

(a) (b)
Fig. 18 Evolution of (a) the compliance and (b) volume during the topology optimization
of a viscoelastic plate under free vibration.

Taking into account two vibration problems allows to obtain more balanced
designs, satisfying industrial needs while avoiding the apparition of very thin
sections, which are not acceptable for future applications. This new enriched
optimization problem also comes with a performance decrease, as expected
when optimizing a structure with respect to two opposite vibration problems.
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Optimization of a running shoe sole

The same topology optimization is performed on a new unstructured mesh,
created with the software Gmsh [60], from a CAD made on CATIA V5 [61].
The mesh has 1 334 484 degrees of freedom and the computational duration is
15 hours, for 400 cores and sub-domains. The compliance constraint is chosen
as Cl = 0.75C0. A new level-set initialization is used, representing the initial
design shown in Figure 19.

Fig. 19 Shoe sole design corresponding to the initial level-set function.

Different views and cuts of the optimal design are presented in Figure 20 and
21. The optimized shoe sole displays the same tendencies, the structure is
reinforced at the free ends, at the middle and shows a complex inner structure,
see the red cut. Similarly to the previous example, the thinner sections are
robust, as highlighted by the blue cut.

Unlike plate topology optimizations, neither the initial nor final designs
present any planes of symmetry. As a result, structural damping gains are not
the same for both vibration problems, 8% and 9% for a structure clamped at
∂ΩD1 and ∂ΩD2 respectively, for a total relative gain of 17%, see Figure 22.
The optimal design shows better damping performances and, as illustrated
Figure 23, an increased bending stiffness, while maintaining the same volume.

Finally, let us mention that the optimized shoe sole, although better per-
forming according to industrial criterions, presents holes in areas where the
user applies the maximum vertical load. Therefore, the results also highlight
that typical industrial tests are insufficient to adequately perform the damping
optimization of a shoe sole under normal operating conditions.
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Fig. 20 Various views of the optimized sports shoe sole for the damping maximization of
the structure.

Fig. 21 Inside final design of the optimized viscoelastic shoe sole for different cutting planes.

(a) (b)
Fig. 22 Free vibration behavior comparison between the initial and optimized shoe soles
with (a) ∂ΩD1 and (b) ∂ΩD2 as clamped boundary.
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(a) (b)
Fig. 23 (a) Compliance and (b) volume evolution during the topology optimization of a
viscoelastic shoe sole.

6 Conclusion

The theoretical topology optimization problem has been written for the case of
viscoelastic thin structures under free vibration within volume and compliance
constraints. The material is represented by a linear generalized Maxwell model
accounting for both Young modulus and Poisson’s ratio viscoelasticity. The
constitutive equations are written either with the Kirchhoff-Love model, the
Reissner-Mindlin theory or the general 3D linear viscoelasticity framework.
The optimization algorithms have been developed using a level-set approach
within a classic finite element analysis. Simple 2D representations have been
chosen for the plate models while high performance computing techniques have
been required for running 3D vibration simulations.

Albeit the structural damping has been successfully enhanced, the final
optimization designs have shown consistently section shrinking phenomena for
every model due to the chosen global criterion of compliance optimization.
However, it was observed that 3D modeling, as opposed to the plate models,
creates inner microstructure designs such as cantilevers, making the design
more mechanically acceptable.

Finally, the 3D damping optimization problem has been extended to a shoe
sole design within industrial test constraints. Results proved the algorithm
robustness but also revealed the discrepancy between the industrial bending
test usually considered and the walking or running application.
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Appendix A Expression of the bilinear forms

The displacement u represents the vertical displacement in 2D and u =
(u1, u2, u3) in 3D. For n ∈ N∗+ and (ω, u) ∈ C × U0, the complex polynomial
eigenproblem reads:

n+2∑
j=0

ωjaj(u, û) = 0 ∀û ∈ U0.

We denote for the Kirchhoff-Love theory
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∂2u

∂x2
1

∂2û
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for the Reissner-Mindlin theory
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∂θ1

∂x1

∂θ̂x
∂x1

+
∂θ2

∂x2

∂θ̂y
∂x2

ψ(u, û) =
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and for the 3D linear viscoelastic model
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∂û2

∂x3
+
∂û3
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Symmetric bilinear forms are given by

a0(u, û) =

∫
Ω
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In the above, the coefficients pj and qj,k are defined through the expansions
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