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Figure 1: Archive collected over 200 tasks (100 situations with either the right-hand or with both hands), using MTMB-MAP-
Elites on a humanoid robot fault-recovery set of tasks. Each situation corresponds to the posture of the humanoid robot, a
fault happening in its leg likely to make it fall, and the orientation and distance of a wall within arm’s reach. The goal is to
find as many different successful contact positions on the wall as possible. Each pair of boxes shows the collected successful
commands for one situation, separated into two tasks: using only the right-hand (in blue) and using both hands (in blue and
orange). We show different solutions and corresponding snapshots of the final posture of the robot using only the right-hand

(on the left) and using both hands (on the right).

ABSTRACT

We propose Multi-Task Multi-Behavior MAP-Elites, a variant of
MAP-Elites that finds a large number of high-quality solutions for
a large set of tasks (optimization problems from a given family). It
combines the original MAP-Elites for the search for diversity and
Multi-Task MAP-Elites for leveraging similarity between tasks. It
performs better than three baselines on a humanoid fault-recovery
set of tasks, solving more tasks and finding twice as many solutions
per solved task.
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1 INTRODUCTION

Many problems involve searching for diverse solutions to a set of
tasks. For instance, in grasping, one can be interested in finding
various grasps for different objects to choose the most appropriate
one when the object is partially obstructed (e.g., in a heap). Here, a
task corresponds to a specific object to be grasped.

On the one hand, MAP-Elites [6] creates an archive of diverse
and high-performing solutions for a specific task (defined by the
fitness function). On the other hand, Multi-Task MAP-Elites [7]
leverages the similarity between the tasks to find one high-quality
solution for each task.

In this paper, we present a novel method called Multi-Task Multi-
Behavior MAP-Elites (MTMB-MAP-Elites) that combines the fea-
tures of both MAP-Elites [6] and Multi-Task MAP-Elites [7]. Given
a set of tasks, it builds an archive containing diverse solutions for
each task.

In this particular work, we are interested in building an archive
of reflexes for a humanoid robot. The goal is to use a wall to make
the robot regain its balance after detecting a fault in its leg that has
a high chance of making it fall. A task corresponds to discovering
successful contact positions for a specific situation (posture of the
robot, a fault occurring in its leg, and orientation of a wall within
arm’s reach). The command corresponds to the target contact posi-
tions (with one or two hands) which are set as high-weighted tasks
in a whole-body controller. This is useful because humanoid robots
are susceptible to faults due to their complex structure and bipedal
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stance. For instance, a single mechanical failure can make them
fall [2, 9].

A previous work, D-Reflex [1], addresses this problem by build-
ing an archive using a grid search in simulation. They only consid-
ered the use of the right-hand, while our approach aims to gener-
alize to also using both hands on walls in any orientation around
the robot. This prevents us from using a grid search which would
require, using the same parameters, nearly 200, 000 simulations per
situation due to the quadratic increase in the number of possible
contact positions when using both hands.

In this paper, we evaluate the performance of MTMB-MAP-Elites
to find diverse solutions on the fault-recovery set of tasks using the
Talos humanoid robot in simulation and compare it to three base-
lines: a random search, a grid search, and MAP-Elites [6] applied
on each task.

2 PROBLEM FORMULATION

Given a set of tasks T1., € 7, the goal is to find for each task T;
as many different solutions (s{ )j<m, as possible where m; is the
number of different solutions found for the task T;.

The task space 7~ defines a command space C, a fitness function
fitness : T xC — R, abehavior space 8, and a transition function
F : T x C — B. We also hypothesize that the fitness function is
bounded by fiuax € R so that we know if a command c is optimal
for a given task T.

More formally, the problem formulation is the following:

maximize 3,7 m; .
s.t. Vi,Vj < my, fitness(T;, c{) = fmax (1)
st.ViVk # j,F(Ti.c)) # F(Ti,ck)

3 ALGORITHM

To solve this problem we propose MTMB-MAP-Elites a combina-
tion of MAP-Elites [6] and Multi-Task MAP-Elites [7]. The main
difference is that we do not search for the best solution in each task
but for the greatest number of diverse solutions in each task. We
hypothesize that the different tasks have enough similarity between
them to share some solutions which justifies solving them together
to save time and computation compared to using MAP-Elites [6]
for each task individually.

For clarity, in the remainder of the paper we call elite a command
¢ that has been evaluated and stored in the archive, and solution
an optimal elite, e.g., an elite with maximal fitness fpqx.

The algorithm is the following:

(1) Initialization:

(a) select a budget B of evaluations (depending on the avail-
able time and computational resources);

(b) select nrandom tasks Ty., € 7 (n should be largely inferior
to B);

(c) initialize the archive using random commands on ran-
domly selected tasks until we got enough elites (as a rule
of thumb we choose to stop when the algorithm has found
n elites);

(2) Core algorithm repeated B — bjn;; times where bjp;; is the
number of initial evaluations:
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(a) select the command ¢ by randomly picking two tasks T;
and T; with elites, select at random an elite from each one
¢j and cj, and perform traditional cross-over and mutation
operators;

(b) select the task Ty at random;

(c) evaluate the command ¢ by collecting the behavior by =
F (T, c) and the corresponding fitness f = fitness(Tg, c);

(d) update the archive: if the behavior by was not present we
add it to the task Ty, and if it was already present and the
new fitness f is greater than the previous one, we replace
the old elite with the new one.

4 EXPERIMENT

We evaluate MTMB-MAP-Elites on a set of fault-recovery tasks
for the humanoid robot Talos in simulation. The humanoid robot
detects an unknown fault occurring in its leg (a combination of
amputated, passive, or locked joints) which will most often induce a
fall. It knows (using its onboard sensors) that there is a wall within
arm’s reach as well as its orientation and distance. The goal is to find
successful contact positions on the wall using either the right-hand
or both hands.

Task Space. We define the task space 7~ as the set of different
situations corresponding to the current posture of the robot, the
configuration of the wall (distance and orientation to the robot),
and the fault occurring in the robot’s leg.

To sample the tasks Ti.,, we randomly select:

o target Cartesian positions for the left and right hands (which
after 4s will put the robot in a reachable posture);

o configurations of the wall (distance and orientation);

e faults (a combination of passive, locked, or amputated joints
on the six joints of the right leg).

We preemptively run the situations in simulation, reject those
where the robot makes contact with the wall before the fault occurs,
and sample new ones.

Command Space. The command corresponds to the target con-
tact positions on the wall. The robot is controlled using a whole-
body controller [3] which solves at high frequency (e.g., 500Hz) a
quadratic programming optimization representing the set of tasks
and constraints using the model of the undamaged robot. Our target
contact positions are set as high-weighted tasks in the optimization
and can be seen as high-level commands.

We explicitly promote diversity by duplicating each situation in
two: one task for using the right-hand and one task for using both
hands. We set C = X X Z X X X Z where X = [Xmin, Xmax| and
Z = [Zmin, Zmax] are set to broadly represent reachable contact
positions on the wall. For the tasks using only the right-hand, only
the first two dimensions are relevant.

Behavior Space. The behavior space 8 is defined as the Cartesian
reached contact positions of the hands on the wall (in 2D when
using right-hand and in 4D when using both hands). We make
a difference between the target contact position and the reached
contact position because we found out empirically that due to the
mismatch between the known undamaged model of the robot and
the current damaged robot, the reached contact position can be far
(e.g., several centimeters) from the target contact position.
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To differentiate behaviors, we set squares of side 20cm and pick
as behavior b = ¥ (T, ¢) the index of the square (or squares when
both hands are used) containing the reached contact positions. As
the set of possible behaviors is large and a lot of them are not
realizable (for reachable or auto-collision reasons for example) we
initialize an empty map and append new behaviors as they are
discovered.

Fitness Function. The fitness corresponds to the time before the
simulation stops due to an auto-collision, a fall (unplanned contact
between the robot and the floor or the wall), or the timeout of 10s
(fmax = 10s). This timeout has been selected as a good threshold
between reducing simulation time and reducing the number of
unstable solutions (when the robot does not fall before the timeout
but would have fallen after); an early experiment has shown that by
increasing the timeout to 15s, we only detect one unstable solution
among 310 solutions.

4.1 Evaluation

We sample 100 situations and duplicate each one in two tasks (the
right-hand and both hands), which gives us n = 200 tasks. We set a
budget of B = 25,000 simulations, stopping the initialization when
the archive had gathered 200 elites.

To our knowledge, there exists no method in the literature to
solve this particular problem. As we want a diverse set of solutions
we cannot compare to black-box optimizations such as CMA-ES[5].

We compare against three naive baselines with the same evalua-
tions budget B = 25, 000:

e Random Search, e.g., selecting the command using a uniform
distribution in C.

o Grid Search, e.g., always selecting the same commands evenly
panning the command space C for each task (to have the
same number of evaluations per task (e.g., % =125) we use a
5x 5 grid for the right-hand and a 5 X 2 grid for both hands);

o Task-Wise MAP-Elites, e.g., running MAP-Elites [6] on each
task with a budget of 125 simulations.

Grid-search and Task-Wise MAP-Elites are inherently sequential
on each task. To facilitate a more accurate comparison with our
approach, we have randomized the sequence in which the various
tasks are evaluated.

We performed 25 replications and evaluate:

o the percentage of solved tasks (e.g., tasks with at least one
solution);
e the number of solutions per solved task.

4.2 Result

Figure 2 presents the evaluation of MTMB-MAP-Elites against the
three baselines over 25 replications. Figure 1 presents an example
of a collected archive using MTMB-MAP-Elites with snapshots of
the final postures of the robot for the solutions of two tasks.
MTMB-MAP-Elites outperforms all baselines, solving in average
67.8% + 3.7% tasks against 47.0% + 2.8% for Random Search, 57.9% +
4.3% for Grid Search, and 47.1% + 2.6% for Task-Wise MAP-Elites.
More importantly for our goal to build a diverse dataset, MTMB-
MAP-Elites finds an average 10.2 + 0.8 solutions per solved task
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against 4.9+0.4 for Random Search, 3.4+0.3 for Grid Search, 4.9+0.4
for Task-Wise MAP-Elites.

Our hypothesis is that with a budget of 125 evaluations per
task, Task-Wise MAP-Elites does not have the time to become
efficient. In the first step, it only performs a random search and
then has to quickly exploit the few elites it has founds leading
to early exploitation and performances similar to using a random
search.

Grid Search covers the command space uniformly, enabling it to
tackle almost as many tasks as our method. However, this approach
also considerably diminishes its ability to uncover diverse solutions.
By merging commands from two different elites, MTMB-MAP-
Elites indirectly samples from a distribution that better represents
the subspace of possible solutions, thus saving time by discarding
regions where there are low chances to discover a solution.

5 CONCLUSION

Our method, Multi-Task Multi-Behavior MAP-Elites, demonstrates
superior performance over three baselines, solving significantly
more tasks (+20.8% than Random Search, +9.9% than Grid-Search,
and +20.7% than Task-Wise MAP-Elites) and finding twice as many
solutions per solved task on a set of fault-recovery tasks using a
humanoid robot in simulation.

In the next step, we will leverage the capabilities of Multi-Task
Multi-Behavior MAP-Elites to construct a dataset of diverse solu-
tions, using privileged knowledge (the nature of the fault). This
dataset will then be used to train a machine learning-based policy
for selecting robust contact positions with one or two hands to
prevent falling.

This presents an alternative to Reinforcement Learning [4, 8]
that often lacks sufficient exploration. Initial experiments on our
fault-recovery set of tasks show that PPO [8] often falls down to
using only one hand because using both hands requires overcoming
the deceptive low fitness of the self-collision between the two arms.
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