
HAL Id: hal-04086471
https://hal.science/hal-04086471

Submitted on 2 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design methods for Diagnosing and Locating Entangled
Technical Debt in DevOps frameworks

Jose Bonet Faus, Pascal Le Masson, Ugo Pelissier, Nafissa Jibet, Antoine
Bordas, Sébastien Pajot

To cite this version:
Jose Bonet Faus, Pascal Le Masson, Ugo Pelissier, Nafissa Jibet, Antoine Bordas, et al.. Design
methods for Diagnosing and Locating Entangled Technical Debt in DevOps frameworks. 24th Inter-
national Conference on Engineering Design (ICED23), the Design Society, Jul 2023, Bordeaux, France.
�10.1017/pds.2023.127�. �hal-04086471�

https://hal.science/hal-04086471
https://hal.archives-ouvertes.fr

Cite this article: Bonet Faus, J., Le Masson, P., Pelissier, U., Jibet, N., Bordas, A., Pajot, S. (2023) ‘Design Methods
for Diagnosing and Locating Entangled Technical Debt in DevOps Frameworks’, in Proceedings of the International
Conference on Engineering Design (ICED23), Bordeaux, France, 24-28 July 2023. DOI:10.1017/pds.2023.127

ICED23 1267

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED23
24-28 JULY 2023, BORDEAUX, FRANCE

ICED

DESIGN METHODS FOR DIAGNOSING AND LOCATING
ENTANGLED TECHNICAL DEBT IN DEVOPS FRAMEWORKS

Bonet Faus, José (1);
Le Masson, Pascal (1);
Pelissier, Ugo (1);
Jibet, Nafissa (1);
Bordas, Antoine (1);
Pajot, Sébastien (2)

1: Mines de Paris;
2: Ubisoft

ABSTRACT
In the IT landscape, DevOps is the preferred approach for developing and maintaining rapidly evolving
systems that require continuous improvements. Yet, DevOps frameworks do not entirely prevent the
accumulation of Technical Debt (TD), and under certain circumstances DevOps can even contribute to
generating TD. This paper focuses on a specific type of TD, Entangled Technical Debt (ETD), that
corresponds to the implicit complexification of a system’s design and the appearance of unintentional
couplings in its architecture over time. Our work seeks to inform methods for Diagnosing and Locating
ETD in DevOps frameworks. Through a research partnership with Ubisoft’s IT branch, an experimental
case-study was conducted. It takes the form of an assessment of 6 innovative IT projects and a
subsequent in-depth architecture analysis of an individual IT system, which enabled the characterization
of the mechanisms linking DevOps to ETD. This allowed us to develop and test practical methods for
diagnosing and locating ETD in IT systems.

Keywords: Technical Debt, DevOps, Design theory, Systems Engineering (SE), Innovation

Contact:
Bonet Faus, Jose
Ubisoft
France
pbonetfaus@gmail.com

https://doi.org/10.1017/pds.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.127

1 INTRODUCTION

1.1 IT design challenges

The adoption of digital technology by organizations to improve efficiency and innovation has become a
mandatory practice across most industrial sectors. IT branches are at the helm of this transition, tasked
with providing and maintaining quality working tools for all users. The systems they develop must oper-
ate in rapidly evolving environments and require frequent improvements: designing in IT is synonymous
with designing over legacy infrastructure on which new features need to be continuously implemented.
Thus, IT projects rarely start from scratch and frequently deal with the adaptation of old systems to ever-
changing landscapes. This brings forth a particular set of design challenges, and the current standard to
tackle these challenges is the adoption of iterative and incremental frameworks, such as DevOps.

1.2 DevOps frameworks

DevOps is a burgeoning field and as such an established academic definition is hard to come by. As a
term, it comes from the combination of the words “Development” and “Operations”. Zhu et al. (2016)
suggested defining DevOps as “a set of practices intended to reduce the time between committing
a change to a system and the change being placed into normal production, while ensuring high
quality”. To the best of our understanding DevOps is a method that combines organizational best prac-
tices and engineering best practices with the aim of improving the two main aspects of IT projects.
On one hand, “development” through the use of Lean management (Ohno, 2019) and Agile Software
Development (Beck et al., 2001) that aim at quickly responding to a user’s need; therefore making
DevOps a user-oriented approach. On the other hand, “operations” through the use of Continuous Inte-
gration / Continuous Delivery (Shahin et al., 2017) and Infrastructure as Code (Rahman et al., 2019)
to address the fact that the developed features need to be incorporated into complex existing systems.
However, some omnipresent factors in IT innovation such as continuous release frameworks that create
strict deadlines and time pressure (Colomo-Palacios et al., 2020), can prevent an ideal implementation
of DevOps practices. In the context of this paper, a system in a DevOps framework refers to a system
that was originally developed with DevOps practices and continues to evolve in an environment that
uses them.

1.3 Technical debt in DevOps frameworks

Technical Debt (TD) refers to a collection of design choices and implementation constructs amassed
during the development phase which set up a technical context that induces future costs. It is a well
known design challenge in IT, but the related academic body of work is still nascent.

1.4 Content overview

This paper strives to study this link and demonstrate that the adoption of a DevOps framework can
contribute to an accumulation of a particular kind of TD known as Entangled Technical Debt (ETD).
The contents of the paper were developed through a research partnership with Ubisoft’s IT branch. In
our brief literature review we will provide a definition of ETD and the reasoning behind its association
with DevOps frameworks. Subsequently, we will state the Research Questions that we wish to address.
Then we will explain our theoretical model and the associated methods developed for diagnosing and
locating ETD in systems. Next, we will describe the empirical material in which said methods were
deployed and present the results showing how they apply to the analysis of real use-cases in corporate
IT systems. At last, we will discuss the paper’s contributions, limits and future perspectives.

2 LITERATURE REVIEW

2.1 De�ning technical debt

TD originated in the world of software development and is strongly anchored in it. Nonetheless, at
its root, TD has all the makings of a design issue. TD comes from a metaphor inspired by financial
debt (Cunningham, 1992). The debt metaphor only exists in order to foster awareness and encourage
communication on said design problems. From a formal standpoint, TD refers to a collection of design
choices and implementation constructs amassed during the development phase which set up a

1268 ICED23

https://doi.org/10.1017/pds.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.127

technical context that induces future costs. These costs can be interpreted as an interest rate. In IT,
said rates take the form of a difficulty in making future changes, and they lead to adverse side-effects
such as additional development time for refactoring or increasingly frequent bugs. In any case, the
inevitable nature of the factors that contribute to TD accumulation leads us to believe that designing in
IT is designing with TD.

2.2 Types of technical debt

The proposed definition for TD encompasses a broad spectrum of situations, and over the years, there
has been an effort to establish TD classification systems. Li et al. (2015) published a comprehensive
literature review and proposed a TD classification tree, consisting of 10 TD types. Fowler (2009) pro-
posed a “Technical Debt Quadrant”, in which he breaks down TD along two axes: reckless / prudent
and deliberate / inadvertent. McConnell (2007) distinguishes unintentional and intentional debt, which
in turn is broken up as tactical (reactive) versus strategic (proactive) debt. From these classification
efforts, a series of individual TD types have been defined. In particular, two specific TD types raised
our interest, since their characterizations resonated well with DevOps principles. Martini et al. (2014)
give a detailed definition of Architectural Technical Debt (ATD) which refers to major design deci-
sions (e.g., choices regarding structure, frameworks, technologies, languages, etc.) in software-intensive
systems that, while being suitable or even optimal when made, entail a lack of changeability and evolv-
ability that can significantly hinder progress in the future. Liodden (2020) defines Bit Rot Technical
Debt (BRTD) as a debt that slowly happens over time. Components or systems devolve into unnec-
essary complexity through lots of incremental changes, resulting in tightly coupled architectures that
require large parts of an organization to work as a unit in order to implement new features, significantly
hindering changeability. The link between DevOps and BRTD is straight forward: DevOps frameworks
favor a continuous succession of small incremental changes that can generate BRTD. The link between
DevOps and ATD lies in the fact that DevOps frameworks are highly user-focused. They look to get
closer to end-users and better understand their needs. In order to deliver on said needs, system function-
alities need to be altered, and these functional changes can have profound architectural consequences.
The adoption of a DevOps framework doesn’t necessarily entail architectural instability, however there
are no elements in DevOps that guarantee the integrity of non user-related design traits. Nothing war-
rants the perennity of a changeable and evolvable internal architecture, because it is not a user-related
deliverable. For the sake of convenience, we have chosen to define a specific kind of Technical Debt that
encompasses all elements of the aforementioned ATD and BRTD linked to DevOps. It has been named
Entangled Technical Debt (ETD), and it is defined as an implicit complexification of a system’s
architecture and an unintentionally coupled design, caused by a highly iterative and user-focused
framework. This is the kind of TD that we will touch upon in the work that follows.

2.3 Need

In large scale DevOps frameworks, comprehending the mechanisms behind ETD accumulation is key
to re-establishing IT systems as assets that create value for organizations. However, ETD is inherently
difficult to grasp: diagnosing it and comprehending its effects is a challenging task. In order to provide
structure, we propose to envision ETD as a collection of interdependencies between the functional needs
and technical solutions of a system, which allows us to think of it as an architecture design issue. In the
field of Design Science, theories such as Axiomatic Design (Suh and Suh, 1990, 2001), Modularity
(Baldwin et al., 2009; Clark and Baldwin, 2005) and Design Structure Matrices (DSMs) (Browning,
2001), study architecture of complex systems, which is of particular relevance when dealing with ETD.
These theories have allowed researchers to carry out stochastic studies with the aim of predicting how
change propagates in complex existing architectures (Clarkson et al., 2004; Sarica and Luo, 2019; Dong
et al., 2016; James et al., 2011; D’Amelio et al., 2011). Nevertheless, most of this work is based upon the
assumption that we, as designers, are able to dissect, analyse and build models for existing systems. But,
unlike the well-documented systems brought forth in the aforementioned papers, some intricate systems
are unknown or unknowable. In DevOps frameworks, such systems can experience a progressive accu-
mulation of ETD over time, but since the understanding of their architecture is incomplete, architectural
couplings cannot be diagnosed and located. It is in this context that Axiomatic Design comes in handy:
we will present a method that shows it can be used as an efficient learning tool, fit to handle an implicit

ICED23 1269

https://doi.org/10.1017/pds.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.127

and opaque design issue such as ETD. The core concept is to use the principles of axiomatic design
but choose not to dissect a system and treat it as a black box, as opposed to decomposing it and listing
explicit interdepencies.

2.4 Research questions

For black box systems in DevOps frameworks, the research questions that we want to inform are:
• RQ 1: To what extent can Axiomatic Design Theory help us diagnose ETD and estimate its impact

on the architecture of a modified system ?
• RQ 2: To what degree can Axiomatic Design Theory help us locate and quantify ETD in the

architecture of a modified system ?

3 MATERIALS & METHODS

3.1 Methodology choice

In order to answer the RQs, a theoretical model for diagnosing and locating ETD in systems using
a black box approach to Axiomatic Design Theory was required; along with an adapted experimental
protocol in which to test said model. Our research partnership with Ubisoft’s IT branch (that has adopted
a DevOps framework) provided a suitable environment to address the RQs.

3.2 Theoretical framework: modeling & analyzing ETD

3.2.1 Axiomatic Design Theory & ETD

As mentioned in subsection 2.3, Axiomatic Design Theory (Suh and Suh, 1990, 2001) provides a for-
mal design framework for our black box analysis of ETD in a given system. This engineering design
theory was developed in MIT’s department of mechanical engineering by professor N.P Suh in the
1990’s. According to the principles of Axiomatic Design Theory, any technical system responds to a
series of customer expectations that can be translated into Functional Requirements (FRs), FRs are
then fulfilled by a series of Design Parameters (DPs). The correlation between FRs and DPs is sys-
tematically studied through Design Matrices, where FRs are represented as rows and DPs as columns.
Crosses in Design Matrices indicate the presence of couplings between FRs and DPs. As previously
stated, ETD represents an implicit complexification of a system’s architecture and an unintentionally
coupled design. Therefore, in Axiomatic Design, ETD can be understood as non-diagonal cells in design
matrices. Consequently, design matrices provide a practical graphical representation for ETD.

3.2.2 Axiomatic Design Theory & DevOps frameworks

Figure 1. Introducing an innovation into an existing system, can be modeled by the inclusion of a new

FR / DP (Row / Column) pair to the system's Design Matrix.

Axiomatic Design Theory provides a suitable model for understanding how new features are imple-
mented in a DevOps framework. In this environment, introducing a new feature into a complex system
can be modeled by adding a new row (FR) and its corresponding column (DP) to an existing design
matrix, as Figure 1 shows. However, new features might interact with existing ones through underlying

1270 ICED23

https://doi.org/10.1017/pds.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.127

couplings. If these couplings do in fact exist, introducing a new FR / DP pair into a system can prop-
agate change and disrupt pre-existing FR / DP pairs, which is a well studied phenomenon (Clarkson
et al., 2004; James et al., 2011). Figure 2 illustrates this in an Axiomatic Design framework.

Figure 2. Coupling propagation in decoupled (Left) and coupled (Right) design matrices.

Two possible innovation scenarios are shown: On Figure 2 (Left) an FR / DP pair (pink cells) with
1 coupling (orange cell) is introduced into a decoupled system. The red arrows represent how this
new coupling (orange cell) propagates through the matrix, showing that FR 2, and consequently DP
2, are affected by it. The diagonality of the matrix prevents further propagation. In contrast, Figure 2
(Right) shows the same FR / DP pair (pink cells) with 1 coupling (orange cell) being introduced into
a coupled system. The red arrows show how this new coupling (orange cell) propagates through the
matrix, by interacting with underlying couplings (yellow cells) that amplify its effects, resulting in a
great disturbance of the system. At first the orange cell indicates that the new DP interacts with FR2.
Then, the matrix indicates that FR 2 interacts with DP 2 and DP3. DP 3 interacts with FR 3, which in
turn interacts with DP1. At last, DP 1 interacts with FR 1. In conclusion, by following the red arrows, 3
of the 4 existing FR / DP pairs (red cells) are called upon. This example showcases how design matrices
can be used as a means of understanding the propagation of couplings in systems. It also clarifies that
the impact of introducing a new FR / DP pair depends on the architecture of the pre-existing system: it’s
in fact the existence of underlying couplings that enables the propagation of new disruptive couplings.

3.2.3 A black box approach to Axiomatic Design Theory & ETD

Figure 3. In Axiomatic Design, approaching an unknown system as a black box corresponds to having

a series of matrix cells filled with question marks (gray cells), into which we input a new FR / DP pair

(purple arrows). The new FR / DP pair has unknown couplings (white cells) since we do not know how

they will interact with unclear existing FRs / DPs. Through a coupling propagation mechanism such as

the one depicted in Figure 2, a series of FR / DP pairs that are impacted by the change, are called

upon (red cells). This partial set of existing FR / DP pairs that were previously unclear, are the outputs

of our black box system.

IT teams rarely possess a complete picture of the system they are designing over. Innovating in such
an environment consists in adding new FR / DP pairs to a partially unknown Design Matrix, where
some FR / DP pairs are well documented but others are opaque. This incurs a significant risk, since
anticipating how new FR / DP pairs might interact with unknown existing pairs is very challenging.

ICED23 1271

https://doi.org/10.1017/pds.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.127

To work within these limitations, a complex system and its Design Matrix can be seen as a black box,
where all contents are assumed to be unknown. Then, systems are viewed only in terms of inputs and
outputs. As Figure 3 shows, our black box system is represented by an opaque Design Matrix, filled
with question marks. The input is a newly introduced FR / DP pair and the outputs are the pre-existing
FR / DP pairs that have interacted with it through the propagation of couplings described in Figure 2.

3.2.4 Iterative black box Axiomatic Design as a tool to locate ETD

Real IT systems, with a history of functional expansion and complexification can have crowded design
matrices, which are the result of an unclear accumulation of FR / DP pairs. Shedding light on them
head-on can be an overwhelming task for teams, as architecture can become exponentially intricate
with each DevOps cycle. Therefore a probing strategy to elucidate key elements of these unknown
design matrices, based on empirical findings from real Ubisoft IT systems, was conceived. It is named
iterative black box Axiomatic Design, and is illustrated in Figure 4.

Figure 4. Illustration of the iterative black box Axiomatic Design process.

The starting point is an unknown system, on which we introduce a new FR / DP pair, seen as the input
of the black box system, highlighted in pink (Figure 4 - Iteration 1 - Step 1). The introduction of the
new FR / DP pair kick-starts the coupling propagation mechanism explained in Figure 2, and calls upon
pre-existing FR / DP pairs that have been impacted by the change, represented as outputs in red (Figure
4 - Iteration 1 - Step 2). It is at this point that the apparent opacity of the system can be overcome,
since this method puts FRs at the center. FRs are user-related by nature and therefore easier to express
by users, whenever a new FR conflicts with an existing one users will notify it. This process builds a list
of pre-existing FRs which can then be attributed to DPs with the help of system architects and technical
experts. Once these pre-existing FR / DP pairs become known, it is possible to determine how they
interact with the rest of known FR / DP pairs. This is represented by question mark cells in the matrix
becoming clear. If there is no coupling they are blank white cells, if there is an unwanted coupling
they are highlighted in yellow (Figure 4 - Iteration 1 - Step 3). This process can then be iterated to

1272 ICED23

https://doi.org/10.1017/pds.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.127

uncover more FR / DP pairs. For the next iteration, shown in Figure 4 -Iteration 2, the outputs from the
previous iteration are taken as inputs, and the same 3 step procedure is followed. The final step of the
third iteration (Figure 4, Iteration 3) shows the result of the total accumulated knowledge from every
iteration of this process: a clearer, but partial, Design Matrix, with a series of well defined FR / DP pairs
and explicit couplings. As stated, knowledge of the system remains partial, since it is only possible to
gain information about FR / DP pairs if they interact with each other through coupling propagation.
Therefore, some FR / DP pairs are still opaque, as evidenced by the remaining question marks in Figure
4, Iteration 3, Step 3.

3.2.5 A complementary tool: the ETD diagnosis chart

The model described in the previous subsection is accurate but time-consuming for teams to imple-
ment on a wide range of systems. Moreover, technical documentation available at Ubisoft does not
take the form of explicit FRs and DPs. Therefore, a complementary approach adapted to our corporate
environment needed to be developed, which is showcased in Figure 5.

Figure 5. ETD diagnosis chart. The placement of the pink rectangle indicates the functional validation

cost and the technical development cost of an ideal (�in vitro�) version of a use-case, with no ETD. Red

vectors indicate complexification along both axes after the effects of ETD have been taken into

account and depict the real (�in vivo�) cost of a use-case.

Here, FR / DP were reworded into functional validation / technical development and were assessed
through a “cost” lens. Added cost is merely a symptom of ETD but it has the advantage of being well
documented and it brings a sense of urgency, which eased communication with corporate management
structures. To break down both axes: Technical development cost, reflects the cost of a successful
implementation of the new DPs related to the use-case at hand (→ Analogy: number of new lines of
code that need to be written). Functional validation cost corresponds to the validation effort that needs
to be carried out in order to adequately test the new FRs related to the use-case at hand (→ Analogy:
number of tests that the new feature needs to pass). Figure 5 also provides an assessment of a project’s
potential complexification, which is the “added” cost caused by ETD, broken down using the same
two axes. Technical complexification can be understood as the number of pre-existing DPs that are
impacted by the implementation of the use-case at hand (→ Analogy: number of legacy lines of code
that require refactoring). Functional complexification corresponds to the number pre-existing FRs that
are impacted by the implementation of the use-case at hand (→ Analogy: number of new tests pre-
existing features need to pass). In a nutshell, Figure 5 conveys the fact that a use-case has an “in vitro”
cost, and an “in vivo” cost, that has been amplified by the existence of couplings in architecture. The
additional cost often takes the form of refactoring efforts, and is a characteristic symptom of ETD in
systems.

ICED23 1273

https://doi.org/10.1017/pds.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.127

3.3 Empirical material

The empirical material consists of 6 ongoing innovative IT projects from Ubisoft’s IT portfolio, that we
will refer to as use-cases. All of the studied use-cases revolved around a common theme: decentralized
data storage. One of these 6 decentralized storage use-cases was selected, it consisted in adding a new
FR / DP pair to an existing IT system, that we will refer to as the Production Data Sharing tool (PDS tool)
for confidentiality purposes. It is a system that allows the mutualization of game assets between different
developer machines. The PDS tool adequately met the needs of developers, but following the Covid-19
crisis a new Work from Home FR arose. To tackle this new FR, the introduction of a new DP into the
PDS tool, in the form of a peer to peer network based on IPFS (Benet, 2014), was explored. From a
quantitative standpoint, the empirical material consists of an archive review (12 documents reviewed,
83 pages of written documents, 195 minutes of audiovisual documents) and meetings & workshops (25
experts consulted, 179 pages of meeting notes and 106 hours spent on dedicated interviews). The job
descriptions of the consulted experts comprise, IT directors, IT Project managers, Storage Architects,
DevOps engineers, Blockchain Technical Leads, Business Analysts and Design engineering Professors.

4 RESULTS

4.1 Diagnosing ETD

Using the use-case ETD diagnosis chart, six decentralized storage use-cases from Ubisoft’s IT portfolio
were assessed. Figure 6 shows their placement on the chart along with their complexification vectors,

Figure 6. Left: ETD diagnosis chart for decentralized storage use-cases. Right: use-case coordinates

on a qualitative scale of 1 to 10

These results allow us to draw conclusions regarding DevOps’s ability to handle exploratory use-cases
with ETD symptoms. In traditional waterfall approaches, business teams set a functional validation tar-
get and then development teams carry out the technical work required, meaning the two axes of Figure
5, technical development and functional validation are purposely decorrelated. In contrast, DevOps
fosters incremental projects, amplifying feedback loops between functional validation and technical
development. This is of particular interest for use-cases with a high cost need, which need to be broken
down into short, incremental steps. If said intermediate steps are not clearly defined, good practices,
such as adequate release and test schedules, are lost in spite of DevOps’ focus on systematic feedback
integration. The need to establish intermediate steps is explicit for highly exploratory use-cases, with a
high ideal cost, such as the ones circled in blue in Figure 6. However, certain use-cases possess a man-
ageable ideal cost but a greatly augmented real cost, which can trump teams into believing that a DevOps
approach might suffice, which is the case of the decentralized PDS tool use-case, sitting in the center of
Figure 6. When the effects of ETD are taken into account and cost augments, it becomes apparent that
this use-case needs to be broken down into shorter steps. DevOps frameworks without a dedicated ETD
management approach fail to provide a healthy environment to manage such use-cases. Consequently, a
complementary method to understand ETD, accurately assess its effects, and break use-cases down into
incremental steps is required. Hence the need for Iterative black box Axiomatic Design.

1274 ICED23

https://doi.org/10.1017/pds.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.127

4.2 Locating ETD

Iterative black box Axiomatic Design was tested on the Decentralized PDS tool. In this use-case, new
features that allow for adequate Work from Home conditions were introduced into the system. Figure 7
shows the PDS tool Design Matrix, indicating that the new FR / DP pair brings 4 new couplings (orange
cells) to a design matrix which already possessed 6 couplings (yellow cells). Through this analysis ETD
in the PDS tool has been clearly located. Among the 10 couplings shown in Figure 7, one focuses
on ensuring corporate cybersecurity standards when using IPFS. For this coupling, deemed critical,
a strategy built around the configuration, deployment and maintenance of user permissions and node
identities was put in motion by linking actors and facilitating the collaboration of Ubisoft’s IT teams.

Figure 7. PDS tool design matrix.

5 DISCUSSION

5.1 Paper contributions

This paper provides a formal design framework for the analysis of ETD in systems, it brings forth a
graphical representation in the form of design matrices, and a means to understand how ETD propagates
and amplifies the cost of new features. To complement this theoretical study, an ETD diagnosis method
was developed. Use-cases are assessed by being placed on the ETD diagnosis chart, which shows their
inherent cost and also takes into account the complexification caused by ETD, which amplifies said
cost. In order to locate ETD in specific systems, the Iterative black box Axiomatic Design method was
proposed, progressively uncovering FRs and DPs of a system and identifying their couplings. In doing
so, it allows teams to pinpoint critical couplings. This knowledge can then contribute to establishing a
prioritization guide for subsequent evolutions, by naturally breaking down ambitious exploratory use-
cases into incremental steps, therefore generating innovation trajectories that suit DevOps frameworks.

5.2 Future work & paper limits

The use-cases treated in Figure 6 can be split into two categories, which provides us with a glimpse into
future interesting perspectives. On one hand, use-cases with a low cost and low complexification level,
with clear deliverables (green circle in Figure 6). On the other hand, costly exploratory use-cases which
possess deliverables that are more difficult to define, and present a greater complexification potential
(blue circle in Figure 6). This separation allows us to define a DevOps compatibility zone. It is the zone
inside which use-cases can be considered as individual incremental steps of an innovation trajectory,
fit to be handled by a DevOps framework. In this zone complexification is contained, and ETD does
not cause a propagation of couplings that can make a use-case cross the compatibility threshold. The
existence of such a zone is hinted at, but its characteristics or its borders are not precisely defined.
Digging deeper into these concepts will constitute a natural progression to this paper. Furthermore, the
result of an iterative black box Axiomatic Design analysis is a partial Design Matrix. The information
is partial on two different fronts: the Design Matrix locates couplings but does not provide information
regarding their nature or a quantification of their complexity. The Design Matrix does not showcase an
exhaustive set of FR / DP pairs, so it is possible that FR / DP pairs exist in a silo, untouched by the
coupling propagation mechanism, and invisible to iterative black box Axiomatic Design. Building on
the contents of this paper to develop a method that enables an accurate quantification of a coupling’s
complexity, or that maps architectural silos inside a system, is the logical continuation of our work.

ICED23 1275

https://doi.org/10.1017/pds.2023.127 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.127

REFERENCES

Baldwin, C.Y., Woodard, C.J. et al. (2009), “The architecture of platforms: A unified view”, Platforms, markets
and innovation, Vol. 32, pp. 19–44, http://doi.org/10.4337/9781849803311.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J., Highsmith,
J., Hunt, A., Jeffries, R. et al. (2001), “Manifesto for agile software development”, Available at: http://
agilemanifesto.org/.

Benet, J. (2014), “Ipfs-content addressed, versioned, p2p file system”, arXiv preprint arXiv:1407.3561, http://doi.
org/10.48550/arXiv.1407.3561.

Browning, T.R. (2001), “Applying the design structure matrix to system decomposition and integration problems:
a review and new directions”, IEEE Transactions on Engineering management, Vol. 48 No. 3, pp. 292–306,
http://doi.org/10.1109/17.946528.

Clark, K.B. and Baldwin, C.Y. (2005), “Designs and design architecture: The missing link between’knowledge’and
the’economy”’, http://doi.org/10.2139/ssrn.664043.

Clarkson, P.J., Simons, C. and Eckert, C. (2004), “Predicting change propagation in complex design”, J. Mech.
Des., Vol. 126 No. 5, pp. 788–797, http://doi.org/10.1115/1.1765117.

Colomo-Palacios, R. et al. (2020), “Continuous practices and technical debt: a systematic literature review”, in:
2020 20th International Conference on Computational Science and Its Applications (ICCSA), IEEE, pp. 40–
44, http://doi.org/10.1109/iccsa50381.2020.00018.

Cunningham, W. (1992), “The wycash portfolio management system”, ACM SIGPLAN OOPS Messenger, Vol. 4
No. 2, pp. 29–30, http://doi.org/10.1145/157710.157715.

D’Amelio, V., Chmarra, M.K. and Tomiyama, T. (2011), “Early design interference detection based on
qualitative physics”, Research in Engineering Design, Vol. 22, pp. 223–243, http://doi.org/10.1007/
s00163-011-0108-7.

Dong, A., Sarkar, S., Moullec, M.L. and Jankovic, M. (2016), “Eigenvector rotation as an estimation of architec-
tural change”, in: International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference, Vol. 50190, American Society of Mechanical Engineers, p. V007T06A014,
http://doi.org/10.1115/detc2016-59114.

Fowler, M. (2009), “Technical debt quadrant”, Martin Fowler, pp. 14–0.
James, D., Sinha, K. and de Weck, O. (2011), “Technology insertion in turbofan engine and assessment of

architectural complexity”, in: DSM 2011: Proceedings of the 13th International DSM Conference.
Li, Z., Avgeriou, P. and Liang, P. (2015), “A systematic mapping study on technical debt and its management”,

Journal of Systems and Software, Vol. 101, pp. 193–220, http://doi.org/10.1016/j.jss.2014.12.027.
Liodden, D. (2020), “3 main types of technical debt and how to manage them”, in: annual CTO summit, FirstMark.
Martini, A., Bosch, J. and Chaudron, M. (2014), “Architecture technical debt: Understanding causes and a qualita-

tive model”, in: 2014 40th EUROMICRO Conference on Software Engineering and Advanced Applications,
IEEE, pp. 85–92, http://doi.org/10.1109/seaa.2014.65.

McConnell, S. (2007), “Technical debt”, Software Best Practices, Nov.
Ohno, T. (2019), Toyota production system: beyond large-scale production, Productivity press, http://doi.org/10.

4324/9780429273018.
Rahman, A., Mahdavi-Hezaveh, R. and Williams, L. (2019), “A systematic mapping study of infrastructure as

code research”, Information and Software Technology, Vol. 108, pp. 65–77, http://doi.org/10.1016/j.infsof.
2018.12.004.

Sarica, S. and Luo, J. (2019), “An infinite regress model of design change propagation in complex systems”, IEEE
systems journal, Vol. 13 No. 4, pp. 3610–3618, http://doi.org/10.1109/jsyst.2019.2899988.

Shahin, M., Babar, M.A. and Zhu, L. (2017), “Continuous integration, delivery and deployment: a systematic
review on approaches, tools, challenges and practices”, IEEE Access, Vol. 5, pp. 3909–3943, http://doi.org/
10.1109/ACCESS.2017.2685629.

Suh, N.P. and Suh, N.P. (2001), Axiomatic design: advances and applications, Vol. 4, Oxford university press
New York.

Suh, N.P. and Suh, P.N. (1990), The principles of design, 6, Oxford University Press on Demand.
Zhu, L., Bass, L. and Champlin-Scharff, G. (2016), “Devops and its practices”, IEEE Software, Vol. 33 No. 3,

pp. 32–34, http://doi.org/10.1109/ms.2016.81.

1276 ICED23

https://doi.org/10.1017/pds.2023.127 Published online by Cambridge University Press

http://doi.org/10.4337/9781849803311
http://agilemanifesto.org/
http://agilemanifesto.org/
http://doi.org/10.48550/arXiv.1407.3561
http://doi.org/10.48550/arXiv.1407.3561
http://doi.org/10.1109/17.946528
http://doi.org/10.2139/ssrn.664043
http://doi.org/10.1115/1.1765117
http://doi.org/10.1109/iccsa50381.2020.00018
http://doi.org/10.1145/157710.157715
http://doi.org/10.1007/s00163-011-0108-7
http://doi.org/10.1007/s00163-011-0108-7
http://doi.org/10.1115/detc2016-59114
http://doi.org/10.1016/j.jss.2014.12.027
http://doi.org/10.1109/seaa.2014.65
http://doi.org/10.4324/9780429273018
http://doi.org/10.4324/9780429273018
http://doi.org/10.1016/j.infsof.2018.12.004
http://doi.org/10.1016/j.infsof.2018.12.004
http://doi.org/10.1109/jsyst.2019.2899988
http://doi.org/10.1109/ACCESS.2017.2685629
http://doi.org/10.1109/ACCESS.2017.2685629
http://doi.org/10.1109/ms.2016.81
https://doi.org/10.1017/pds.2023.127

	pds.2023.0127.0
	pds.2023.0127

