
HAL Id: hal-04086455
https://hal.science/hal-04086455v1

Submitted on 2 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards a holistic approach for AI trustworthiness
assessment based upon aids for multi-criteria

aggregation
Juliette Mattioli, Henri Sohier, Agnès Delaborde, Gabriel Pedroza, Kahina

Amokrane, Afef Awadid, Zakaria Chihani, Souhaiel Khalfaoui

To cite this version:
Juliette Mattioli, Henri Sohier, Agnès Delaborde, Gabriel Pedroza, Kahina Amokrane, et al.. Towards
a holistic approach for AI trustworthiness assessment based upon aids for multi-criteria aggregation.
SafeAI 2023 - The AAAI’s Workshop on Artificial Intelligence Safety, AAAI, Feb 2023, Washington,
D.C., United States. �hal-04086455�

https://hal.science/hal-04086455v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Towards a holistic approach for AI trustworthiness
assessment based upon aids for multi-criteria aggregation⋆

Juliette MATTIOLI1, Henri SOHIER2, Agnès DELABORDE3,2, Gabriel PEDROZA4,
Kahina AMOKRANE-FERKA2, Afef AWADID2, Zakaria CHIHANI4 and
Souhaiel KHALFAOUI5,2

1Thales, France
2IRT SystemX, France
3Laboratoire National de métrologie et d’Essais LNE, France
4Université Paris-Saclay, CEA, List, France
5Valéo, France

Abstract
The assessment of AI-based systems trustworthiness is a challenging process given the complexity of the subject which
involves qualitative and quantifiable concepts, a wide heterogeneity and granularity of attributes, and in some cases even the
non-commensurability of the latter. Evaluating trustworthiness of AI-enabled systems is in particular decisive in safety-critical
domains where AIs are expected to mostly operate autonomously. To overcome these issues, the Confiance.ai program [1]
proposes an innovative solution based upon a multi-criteria decision analysis. The approach encompasses several phases:
structuring trustworthiness as a set of well-defined attributes, the exploration of attributes to determine related performance
metrics (or indicators), the selection of assessment methods or control points, and structuring a multi-criteria aggregation
method to estimate a global evaluation of trust. The approach is illustrated by applying some performance metrics to a
data-driven AI context whereas the focus on aggregation methods is left as a near-term perspective of Confiance.ai milestones.
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1. Introduction
Without an accompanying assessment of trustworthiness
from the early stages of development, the deployment of
an Artificial Intelligence (AI) component within a safety-
critical systems such as in avionics, mobility, healthcare
and defense becomes risky.

1.1. Trustworthiness definition
Trust is the willingness of one party to perform certain
actions that are important to stakeholders (AI scientist,
safety engineer, certification auditor, end-user, etc.) re-
gardless of the other partys ability to monitor or control
[2]. Trust is defined [3] as "the degree to which a user or
other stakeholder has confidence that a product or system
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will behave as intended". But, the trust literature distin-
guishes trustworthiness (the ability, benevolence, and
integrity of a trustee) from trust (the intention to accept
vulnerability to a trustee based on positive expectations
of his or her actions) [4]. Trustworthiness is represented
as an objective aspect of trust estimated based on evi-
dences or observations; whereas trust includes subjective
aspects of a cognitive entity’s opinion such as a human.
We consider the following definition: trustworthiness
(ISO/IEC DIS 30145-2) is the "ability to meet stakeholders’
expectations in a verifiable way". Moreover, [5] identified
nine characteristics that define AI system trustworthi-
ness: accuracy, reliability, resiliency, objectivity, security,
explainability, safety, accountability, and privacy.

1.2. Trustworthiness attributes
Trustworthiness is a complex concept which can be bro-
ken down into different attributes. In 1977, a FAA (Fed-
eral Aviation Administration) panel dedicated to how to
certify aircraft as airworthy, explicitly linked the notion
of trustworthiness to accounting. Then, security and de-
pendability became key system attributes [6] to assess
the trustworthiness of a computer-based system: Avizie-
nis et al. [7] used dependability to represent the overall
quality measure of a system based on four sub-attributes
including security, safety, reliability, and maintainability.
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Figure 1: Evolution of the number of publications on Google
Scholar between 1950 and 2019

To depict dynamic system security metrics, Pendleton et
al. [8] presented a cyber-security metric framework based
on the interactions between attackers and defenders. By
taking into account a variety of probabilistic and/or an-
alytical models to undertake a quantitative evaluation,
Ramos et al. [9] primarily examined model-based net-
work security indicators. Gol Mohammadi et al. [10] pro-
posed a first list of software trustworthiness attributes.
Fig. 1 shows the evolution of the number of publications
on different attributes. [11] explores the potential bene-
fits and challenges of quantifying AI risk by discussing
how such an assessment could improve AI regulation.

These attributes must be mapped onto the AI processes
and life-cycle, keeping track of their relations with the
different stakeholders. Indeed, the definition of trustwor-
thiness is up to individual interpretation and preference.
For instance, to feel confident in the handling of safety-
critical data, end-users can be concerned with usability.

1.3. Trustworthiness management
Trustworthiness does not only emerge from the product
itself, but also from the process (how the product was
made), the tools and infrastructure (with what), the peo-
ple (by whom) as well as the governance (who decides).
Trustworthiness can also be considered from a quality
point of view or a risk point of view. In the former, the
chances to meet the stakeholder expectations are maxi-
mized (by good practices and clear metrics). In the latter,
the chances not to meet the stakeholder expectations
are minimized (by identifying and mitigating potential
issues). Thus, all trustworthiness attributes can generally
be considered from a quality or risk point of view. Qual-
ity is at the center of the SQuaRE (Systems and software
Quality Requirements and Evaluation) series of standards
ISO/IEC 25000:2014 and AI quality is more specifically
considered in ISO/IEC DIS 25059 (under development).

The principles of risk management are explained in ISO
31000:2018 and AI risk is more specifically considered in
ISO/IEC FDIS 23894 (under development).

1.4. AI heterogeneity
Trustworthiness assessment should be adapted to the dif-
ferent natures of AI systems. AI can follow three major
paradigms: 1) Data-driven AI, which includes statistical
and connexionist AI suitable for pattern matching and
recognition, classification and forecasting problems; 2)
Knowledge-based AI (also called Symbolic AI) relies on
knowledge representations such as ontologies and con-
ceptual graphs. Real world information is transformed
into something understandable and usable by machines
so that decisions can follow an organized path of plan-
ning, solution searching and optimization; and 3) Hybrid
AI which is more than a combination of symbolic AI and
machine learning approaches by encompassing any syn-
ergistic combinations of various AI techniques, which
could be enhanced by a priori knowledge (such as math-
ematics, physics or geometry).

Not only should trustworthiness assessment be
adapted to these paradigms, but also to the various AI
functions such as anomaly detection (on images or time
series), forecasting, decision making under uncertainty,
planing and scheduling problems, optimization under
constraints, etc. Trustworthiness assessment is field de-
pendant (mobility, healthcare, finance, etc). Thus, an
adaptation effort is highly requested.

1.5. Can trustworthiness be measured?
The quantification of AI-based system trustworthiness
has become a hot topic [12]. From a strict metrologi-
cal point of view, measurement is relative to a physical
property which can be compared to a reference quantity
of the same kind. Following this definition, trustwor-
thiness cannot be “measured”. However, each attribute
related to trustworthiness can be represented on a scale
(e.g., number scale, nominal scale, ordinals scale) [1]. A
trustworthiness metric can be defined as objective, math-
ematical measure of the AI-based component/system that
is sensitive to differences in safety critical characteristics.
It provides a quantitative measure of an attribute which
the body of solution exhibit. For example, estimating
the trustworthiness of a system can rely on performance
and/or quality scoring (e.g., for reliability: Fleiss Kappa
score, goodness-of-fit tests, or for accuracy: precision,
recall, F-score, etc). However, trustworthiness is not only
based on objective attributes – for example, usability
and interpretability are linked to human judgment; trust-
worthiness assessment should then also include rigorous
methodological processes to manage subjectivity.



Figure 2: The unified approach based on MCDA

2. Unified approach to support
trustworthiness assessment

Multi-Criteria Decision Aiding (MCDA) is a generic
term for a collection of systematic approaches developed
specifically to help one or several Decision Makers (DM)
to assess or compare some alternatives on the basis of
several criteria [13]. The difficulty is that the decision cri-
teria are frequently numerous, dependent and sometime
conflicting. For example, effectiveness may be conflict-
ing with robustness, explainability, or affordability. The
viewpoints are quantified through attributes (see §2.1).

First, to assess AI trustworthiness, the choice of the rel-
evant attributes is not easy, since the selection pertains to
the context of application, which is modeled according to
several elements (Operational Design Domain, intended
domain of use, nature and roles of the stakeholders, etc.)
The attributes can be quantitative (typically numerical
values either derived from a measure or providing a com-
prehensive and statistical overview of a phenomenon) or
qualitative (based on the detailed analysis and interpreta-
tion of a limited number of samples). Then once the list
of relevant attributes has been defined, the aggregation
of several attributes remains complex due to commensu-
rability issues: indeed, this is equivalent with combining
“oranges and apples”, none of the attributes having the
same unit. In addition, one aims at making trade-offs
and arbitration between the attributes. This means that
the value of each attribute should be transformed into a
scale common to all attributes and representing the pref-
erences of a stakeholder, and that the values of the scales
for the different criteria should be aggregated. These ele-
ments constitute the main steps for solving the problem
using an MCDA approach.

Aggregation functions are often used to compare al-
ternatives evaluated on multiple conflicting criteria by
synthesizing their performances into overall utility val-
ues [14]. Such functions must be sufficiently expressive
to fit the DM’s preferences, allowing for instance the
determination of the preferred alternative or to make
compromises among the criteria - improving a criterion
implies that one shall deteriorate on another one. MCDA
provides a tool to specify the good compromises [13].

Our approach is based on the following steps (see fig.2):
1. Step 1: Structuring attributes in a semantic tree;
2. Step 2: Identification of numerical evaluations;
3. Step 3: Adapting attributes for commensurability;
4. Step 4: Definition of an aggregation methodol-

ogy to capture operational trade-offs and evaluate
higher-level attributes.

2.1. Step 1: Semantic tree
Based on different sources (norms, standards, scientific
communications, industrial and institutional reports,
Confiance.ai reports, etc.), the characterization and evalu-
ation of trust attributes focus on defining and structuring
the attributes that constitute trust in the context of AI-
based safety critical systems [15] going beyond a risk
analysis as proposed in [16, 17].

Our problem of assessing Trustworthiness is decom-
posed in several sub-problems by introducing a hierar-
chy of an important number of specific criteria. This
structuring phase aims to construct a tree representing a
hierarchy of points of view in which the root represents
the overall evaluation, and the leaves are the elementary
attributes. In order to produce such a hierarchy, one shall
succeed in grouping the criteria according to a classifica-
tion that makes sense for the stakeholders. At the end of
this step, one shall obtain the relevant criteria together
with their organization in a tree. This first step has been
captured in the mind-map of Fig.3.

The attributes are currently grouped according to the
capabilities they characterize: technology, ethics, inter-
action and trust intermediaries (such as certification).

Technology is system-centric, it refers to the ability
to verify that the AI-based component has valid and ro-
bust intrinsic properties such as accuracy, robustness,
safety and security. Thus, AI-based systems should gen-
erate accurate output as consistent as possible with the
ground truth. Additionally, AI systems should be ro-
bust to changes, specifically in complex, dynamic and
uncertain real environments. Moreover, AI programs
or systems must not harm any human being under any
circumstances that prioritize user safety. In addition,
the autonomy of trustworthy AI should always be un-
der user’s control. In other words, it has always been



Figure 3: A first mindmap to structure the problem of AI-based system trustworthiness assessment

the human right to give the AI system decision-making
authority or to revoke that authority at any time.

From interaction’s perspective, trustworthy AI
should possess the properties of usability, explainabil-
ity and interpretability. Specifically, AI-based systems
should not cease operation at inappropriate times (e.g. at
times when the lack of output could lead to safety risks),
and these programs or systems should be easy to use for
people with different backgrounds. Trustworthy AI solu-
tions should allow explanation and analysis by humans
to reduce potential risks and harms and empower human
users. In addition, trustworthy AI should be transparent
so people can better understand its mechanism.

Ethics, strongly linked in Europe to the notion of fun-
damental rights, is notably put forward in the work of the
AI HLEG (High-Level Expert Group on Artificial Intelli-
gence) of the European Commission [18]. A system must,
for example, be law-abiding, fair, accountable, environ-
mentally friendly and compliant with the user privacy.
Specifically, AI systems should operate in accordance
with all relevant laws and regulations, as well as with the
ethical principles of human society.

As some notions (e.g. explainability) concern several
dimensions (ethics vs. interaction), Confiance.ai pro-
gram made an arbitrary choice to be consistent with the
methodology. Finally, the attributes for trusted ecosys-
tem intermediaries focus on the relationships to third-
parties, in particular quality assurance, audit and cer-
tification activities. All these properties apply to the
AI-based component and the system that embeds AI, but
they also apply to the quality of the data used for train-
ing connectionist AI and/or to the quality of knowledge

representation and reasoning used in symbolic AI.

2.2. Step 2: Numerical evaluations
All nodes return a numerical evaluation. Specific Key Per-
formance Indicators (KPI), metrics or evaluation methods
are used to qualify the leaves of the tree according to the
use cases. For example, data quality is a problem that
has been studied for several decades now [19]. However,
primarily the focus has been on the data in operational
databases and data warehouses. Now, Data-driven AI
is generating renewed interest in data quality, but there
is yet no consensus on what comprises the data quality
characteristics. Thus, [20] were among the first argu-
ing that limiting quality to the level of accuracy is not
enough, highlighting that the level of quality for given
data can depend on its purpose. Its principles require an
assessment of the various quality attributes as presented
in §3.2, mainly in fig.6. Standards are currently being de-
veloped to define data quality attributes for ML (Machine
Learning): ISO/IEC CD 5259-1 (terminology and princi-
ples) and ISO/IEC CD 5259-2 (data quality measures).

2.3. Step 3: Commensurability
Aggregating different attributes for a global assessment
requires that they are commensurate. This implies that
one shall be able to compare any numerical evaluation
of an attribute with any numerical evaluation of any
other attribute. In order to make the assessment "com-
parable," sound methods for normalization (to make the
comparison between variables comparable) have to be



applied to single variables in order to first make them
comparable, that is, transforming the various scales of
variables into one unique scale. The numerical evalua-
tion of the attributes is thus encoded in the [0, 1] interval
where the value 0 corresponds to the total absence of the
property beneath a trustworthiness criterion, and value 1
corresponds to the complete satisfaction of the criterion.
The normalized indicators could be aggregated using spe-
cific formulas (e.g. min/max, arithmetic mean, weighted
sum, etc.). If one attribute is more "important" than an-
other with respect to stakeholder preference, the former
is assigned a stronger weight than the latter within the
aggregation procedure.

2.4. Step 4: Aggregation and trade-off
The global assessment would be made on the basis
of several trustworthiness attributes denoted by 𝑁 =
{1, ..., 𝑛}. The proposed approach provides a tool to
identify best compromises from the stakeholder point of
view. Each attribute 𝑖 ∈ 𝑁 is quantified by a KPI – also
called metric or Figure of Merit – represented by the set of
its possible values 𝑋𝑖. The alternatives are characterized
by a value on each attribute and can be fully described
by elements of 𝑋 = 𝑋1 × ... × 𝑋𝑛. An alternative 𝑥
can thus be represented by a vector (𝑥1, ..., 𝑥𝑛) ∈ 𝑋 .

Figure 4: Radar chart is useful for comparing two systems
which embed different AI approaches.

Radar chart is a visual method for comprehensive eval-
uation, particularly useful for holistic and overall assess-
ment through multivariate data. However, this represen-
tation does not allow understanding the interactions and
dependencies between attributes.

The goal of MCDA is to define a numerical represen-
tation of the preferences of the stakeholders, expressed
as a function 𝑢 : 𝑋 → [0, 1]. The function will be
used to compare each alternative or assess each alterna-
tive’s level of satisfaction in order to provide the over-
all level of satisfaction for each. As mentioned before,
the scale [0, 1] can be interpreted as a degree of satis-
faction. It is classical to write u in a decomposed way
: 𝑢(𝑥) = 𝐹 (𝑢1(𝑥1), ..., 𝑢𝑛(𝑥𝑛)), for all 𝑥 ∈ 𝑋 , where
𝑢𝑖 : 𝑋𝑖 → [0, 1] is a utility function (also called value
functions) and 𝐹 : [0, 1]𝑛 → [0, 1] is called the aggre-

gation function where 𝐹 (0, ..., 0) = 0, 𝐹 (1, ..., 1) = 1,
and 𝐹 (𝑥1, ..., 𝑥𝑛) ≤ 𝐹 (𝑦1, ..., 𝑦𝑛) if 𝑥𝑖 ≤ 𝑦𝑖, ∀𝑖. More-
over, the utility function normalizes the metrics and pro-
vides a measure of satisfaction for a single metric. The
aggregation function takes a normalized score as input
and returns an aggregate score. We recommend using the
MACBETH approach [21, 22] to develop utility functions
for resolving past difficulties related to interval scale con-
struction and compatibility issues in a way that fully
satisfies stakeholders. and mathematically significant.

The most widely used aggregation function is the
weighted sum. It assumes the independence among the
criteria. This is a major limitation as criteria often inter-
act. We need to use other type of aggregation function
such as the Choquet integral [23, 24], which is an exten-
sion of the weighted sum that is capable of measuring the
influence of the importance of the individual criteria and
the importance of the interrelationships among criteria.

Today, this step is work in progress.

3. Focus on Data-driven AI
In real-world industrial settings, the data-driven AI model
is only a small part of the overall system and significant
additional engineering and system functionalities are re-
quired to ensure that the model can operate in a reliable,
predictable and scalable way with proper engineering of
data and model pipelines, monitoring and logging, etc.
While the necessity and usefulness of reasoning about
trust assessment is obvious, obtaining trustworthiness
scores remains a challenging task. To illustrate such
issues, as stated previously, some aspects linked to trust-
worthiness are highly subjective or context dependent.
For example, the notion of “data quality” (resp. “robust-
ness”, “explainability”) requires having a knowledge of
all induced attributes including those that are system
dependent such as data availability, data portability, data
precision, etc. (resp. adaptability, durability, resilience,
etc.). The subjectivity or vagueness of the attribute def-
initions does not always represent a major hindrance
to use them in operational settings, because skills and
knowledge of AI and safety engineers may be enough
to determine what may be appropriate thresholds and
scores.

3.1. Classification performance
Classification is a prediction type used to give the out-
put variable in the form of categories with similar at-
tributes. Some of the popular metrics for the assessment
of classification are Accuracy, Precision, Recall, F1 Score...
Confusion Matrix is a core element that can be used to
visualize the performance of the ML classification model,
but it is a tool rather than a metric. By nature, it is a table



Figure 5: Performance metrics for classification problems

with two dimensions showing actual values and predicted
values. Each row of the confusion matrix represents the
instances in a predicted class and each column represents
the instances in an actual class. Each cell in the confusion
matrix represents an evaluation factor. For example, for
a binary classification of "positive" and "negative":
∙ True Positive (𝑇𝑃 ) signifies how many positive class
samples your model predicted correctly.
∙ True Negative (𝑇𝑁 ) signifies how many negative class
samples your model predicted correctly.
∙ False Positive (𝐹𝑃 ) signifies how many positive class
samples your model predicted incorrectly.
∙ False Negative (𝐹𝑁 ) signifies how many negative class
samples your model predicted incorrectly.

A precision score (see fig. 5) close or equal to 1 will
signify that your model did not miss any true positives,
and is able to classify well between correct and incorrect
labeling of observed data. Recall is the proportion of
actual positives that the model has correctly identified as
such out of all positives. Specificity is the proportion of
actual negatives that the model has correctly identified
as such out of all negatives. A high F1 score symbolizes
a high precision as well as high recall. It presents a good
balance between precision and recall and gives good re-
sults on imbalanced classification problems. The ROC
Curve is a plot which shows the performance of a binary
classifier as function of its cut-off threshold. It essen-
tially shows the 𝑇𝑃 rate against the 𝐹𝑃 rate for various
threshold values. Selecting the most suitable evaluation
metric strongly depends on the way how the stakeholder
defines the criticality of the application.

3.2. Data quality
Data quality is at the center of the standard ISO/IEC
25012:2008. The standard distinguishes between “nher-
ent data quality” and “system-dependent data quality”.
The former is intrinsic to the data and does not depend
on the application (e.g. correctness). The later is appli-
cation specific (e.g. accuracy). Data quality can also be
considered for a complete data set (e.g. completeness) or
for a unique value (e.g. currentness). For example, some
data quality characteristics are described in fig. 6.

Traditionally, metrics for data accuracy are based
on the rate of correct data items over an entire data set,
using a 1 for an accurate data item, and a 0 otherwise:

𝑑𝑎𝑡𝑎_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑︀𝑁

𝑖=1 𝛼(𝑑𝑖)/𝑁 where 𝑁 is the num-
ber of data elements in the dataset, and 𝛼(𝑑𝑖) is 1 if data
element 𝑑𝑖 is correct, and 0 otherwise.

The assessment of the data timeliness attribute [25]
indicates whether the data was submitted in due time,
respecting the data gathering deadline:

𝑑𝑎𝑡𝑎_𝑡𝑖𝑚𝑒𝑙𝑖𝑛𝑒𝑠𝑠=𝑚𝑎𝑥

(︂
1− age of the data value

shelf life

)︂𝑠

where “age of the data value” represents the time differ-
ence between the occurrence (i.e., when the data value
was created) and the assessment of timeliness of the data
value; “shelf life” is defined as the maximum length of
time the values of the considered attribute remain up-to-
date, which can be determined through expert knowledge.
Thus, a higher value of the parameter shelf life implies a
higher value of the metric for timeliness, and vice versa.
The exponent 𝑠 > 0, which has to be determined based
on expert estimations, influences the sensitivity of the
metric to the ratio (age of the data value / shelf life).

The data completeness metric could be based
on the Ge and Helfert’s ratio [26], and defined as:
𝑑𝑎𝑡𝑎_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =

∑︀𝑁
𝑖=1 𝛾(𝑑𝑖)/𝑁 where 𝛾(𝑑𝑖) is

0 if 𝑑𝑖 is a missing data, and 1 otherwise.
Data correctness could be defined as:

𝑑𝑎𝑡𝑎_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 = 1/(1 + 𝑑(𝜔, 𝜔𝑚)) where 𝜔
is the data value to be assessed, 𝜔𝑚s the corresponding
real value and 𝑑 is a domain-specific distance measure
such as the Euclidean distance or the Hamming distance.
A larger difference between 𝜔 and 𝜔𝑚 s represented by a
larger value of the distance function, which in turn leads
to a larger denominator and thus a smaller metric value.

3.3. Robustness
The IEEE glossary of software engineering [27] defines
robustness as “The degree to which a system or component
can function correctly in the presence of invalid inputs or
stressful environmental conditions”. Related terms are thus
error and fault tolerance, the first one regarding error in
data inputs whereas the second at component level. In
the present context, the robustness of an AI-enabled sys-
tem essentially depends and is focused on the ML or DL
(Deep Learning) components and the phase in the devel-
opment cycle where the training model is designed and
tested (i.e. the phase involving ML/DL algorithms, train-
ing and testing data sets). As it has been highlighted in
[28], ML/DL models exhibit counter-intuitive properties
like (1) the misclassification of (adversarial) perturbations
that are statistically indistinguishable from the ones in
the training data set (e.g. identically distributed noises)
and (2) the misclassification of data subsets representing
a semantic unit/object in the presence of minor pertur-
bations that break data regularity whereas still being
readable by humans (e.g. small square in stop signal).



Characteristic Definition
Accuracy The degree to which the data has attributes that correctly represent the true value of the

intended attribute of a concept or event in a specific context of use.
Completeness The degree to which subject data associated with an entity has values for all expected attributes

and related entity instances in a specific context of use.
Consistency The degree to which data has attributes that are free from contradiction and are coherent with

other data in a specific context of use.
Correctness Degree to which the data is free from errors.
Currentness The degree to which data has attributes that are of the right age in a specific context of use.

Representativeness Degree to which the data is representative of the statistical population.

Figure 6: Some data quality characteristics defined in ISO/IEC 25012:2008

Overall, a definition allowing to test the robustness of a
model 𝑀 is the measure of the impact of the minimum
adversarial perturbation across many samples 𝑥. In ad-
dition, robustness can (should) be tested at two levels of
possible perturbations as follows [29]:
Local robustness is satisfied by a single data input 𝑥 ∈
𝐷 of a model 𝑀 and a given perturbation 𝑥′ within a
neighborhood 𝛿 iff 𝑀(𝑥) is identical to 𝑀(𝑥′), in other
words: ∀𝑥′, 𝑑(𝑥, 𝑥′) ≤ 𝛿 ⇒ 𝑀(𝑥) = 𝑀(𝑥′)
Global robustness is satisfied by the set of data 𝐷 of
a model 𝑀 , considering possible 𝛿 perturbations 𝑥′ for
all inputs 𝑥 ∈ 𝐷, and exhibiting smooth convergence
of 𝑀(𝑥′) towards 𝑀(𝑥) during classification, in other
words: ∀𝑥, 𝑥′∈𝐷, 𝑑(𝑥, 𝑥′)≤𝛿 ⇒ 𝑀(𝑥) → 𝑀(𝑥′).
If the model outputs 𝑀(𝐷) conform a dense set allowing
a distance metrics 𝑠(.), the convergence can be validated
for a given 𝜀 > 0 satisfying 𝑠(𝑀(𝑥),𝑀(𝑥′)) < 𝜀. In
practice, such post-condition could be difficult or un-
feasible to verify depending upon the nature of 𝑀(𝐷).
Further means are thus needed to understand how per-
turbations impact misclassification.

3.4. Explainability
Explainability is by far one of the most rich and complex
to assess feature in recent research concerning ML/DL
topics. Several reasons justify such fact, in particular
because explainability aims to provide answer as to why
ML/DL algorithms succeed or fail, which is rather a chal-
lenge given their heuristic nature and intricacy. Explain-
ability is also a high-level demand in several domains
aiming to transfer safety-critical human-based tasks to
autonomous systems, e.g. for accountability purposes,
a basic explainability requirement for a self-driving ve-
hicle being to sufficiently characterize the contribution
of the ML/DL network branches during pedestrian/ob-
stacle detection. Last, yet not the least, explaining the
behavior of ML/DL models can be tihgtly coupled to
solve apparent conflicts/inconsistencies between certain
attributes/features. To illustrate this point, we recall the
counter-intuitive properties of a ML/DL model referred in
[28] which are rather related to robustness, e.g. misclassi-
fication of statistically indistinguishable points, misclassi-

fication of the same points after adding new training data
and updating model parameters, etc. Such apparently
inconsistent outcomes make designers raise questions
about ML/DL models’ foundations and call for methods to
characterize them. Thus, explainability is a term used to
encapsulate and refer to all previous needs and aims and
is therefore a qualitative attribute of AI-based systems.
That said, there are no unified methods or scales to eval-
uate explainability. Recent surveys, as the one offered by
[30], suggest that explainability can be decomposed by
the methods used to evaluate it. A brief description of
the main families found in literature is provided below.

Visualization methods pursue the characterization
of a ML/DL network by visual observation of the levels of
activation/deactivation according to the input data and
their influence in the classification performance, sensi-
tivity, and other functional/structural properties. Repre-
sentative instances in this family are:
Back-propagation helps to observe relevance of data in
terms of the activation/deactivation gradients observed
at different layers in the network during training, e.g.
Activation Maximization [31], Deconvolution [32], Layer-
wise Relevance Propagation [33].
Perturbation-based methods provide means to observe
and compare its impact in the network w.r.t. non-
perturbed input, e.g. Occlusion Sensitivity [32], Repre-
sentation Erasure [34], Meaningful Perturbation [35].

Distillation methods aim to represent (distill) the
knowledge encoded in the ML/DL network after train-
ing via a more human-readable format suitable for both
user interpretation and logic/machine reasoning. Some
representative instances in this family are:
Local Approximation methods mimic the input/output
behavior of the target ML/DL model on smaller data sets,
and using approximation functions, e.g. linear functions.
Local Approximation methods are based upon the hy-
pothesis that the ML/DL behavior can be better and more
easily characterized on local areas rather than over the
entire data set, e.g. LIME [36], Anchors [37].
Model Translation methods aim to mimic input/output
behavior of the target ML/DL model however considering
the whole data set over a symbolic model, e.g. Graph-
based [38], Rule-based [39].



Intrinsic methods search to integrate the means for
explainability as part of the design of the ML/DL model.
The explainability of ML/DL networks should be intrinsic
and thus input/output behavior should be explicitly justi-
fied by the ML/DL model itself. Representative instances
in this family are:
Attention Mechanisms rely upon contextual vector and
attention mechanisms used to learn a conditional distri-
bution over data inputs which provide an interpretation
on the behavior of the weights of the operations of ac-
tivation and deactivation, e.g. Single Modal Weighting
[40], Multimodal Interaction [41].
Joint Training consists in introducing an additional task
in the ML/DL model, asides the original one, in charge
of providing direct or indirect explanations for the main
task behavior, e.g. Text Explanation [42], Explanation
Association [43].

Being a qualitative feature, explainability in turn re-
quires criteria to evaluate the quality of explanations.
This presupposes a non-negligible intervention of hu-
mans in the assessment process. Some methods proposed
to evaluate explanations can be found in [30].

4. Conclusion and perspective
This paper presented the method used in Confiance.ai
to tackle the issue of trustworthiness assessment, in the
context of safety-critical AI-based systems. Trustworthi-
ness is a complex notion, combining subjective concepts,
heterogeneity of granularity in the attributes composing
it, and non-commensurability of the different attributes.
The approach consists in defining the different attributes
constituting the notion of trustworthiness, an exploration
of each attribute to determine related KPIs or assessment
methods, and the definition of an aggregation method-
ology based on a MCDA approach. Some of such KPI
examples were illustrated in data-driven AI context. The
work envisions the creation of a methodological frame-
work for the assessment of trustworthiness that leverages
expert knowledge (for example in the definition of thresh-
olds), a modeling of the environment of the application
(e.g. influence of the Operational Design Domain on the
selection of attributes), and usability in an engineering
process (each atomic attribute is linked to a method or
metric), covering other AI paradigm in order to go be-
yond ML.
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