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Abstract

Proving correctness of distributed or concurrent algorithms is a mind-challenging
and complex process. Slight errors in the reasoning are difficult to find, calling
for computer-checked proof systems. In order to build computer-checked proofs
with usual tools, such as Coq or TLA+, having sequential specifications of all
base objects that are used as building blocks in a given algorithm is a requisite
to provide a modular proof built by composition. Alas, many concurrent objects
do not have a sequential specification.

This article describes a systematic method to transform any task, a spec-
ification method that captures concurrent one-shot distributed problems, into
a sequential specification involving two calls, set and get. This transformation
allows system designers to compose proofs, thus providing a framework for mod-
ular computer-checked proofs of algorithms designed using tasks and sequential
objects as building blocks.

Moir & Anderson implementation of renaming using splitters is an iconic
example of such algorithms designed by composition, although the actual algo-
rithm is not modular. Moir & Anderson algorithm is adaptive and non-blocking,
and, being the assembly of wait-free concurrent objects, the splitters, it resists
testing, because of the cost of covering all its states and transitions even with
a small input set. Using the get/set transformation, a modular description of
the algorithm can be obtained. A proof of the modular algorithm has been
conducted in TLA+ and verified with TLAPS, the TLA+ Proof System. As far
as we know, this is the first time this algorithm is mechanically verified.

Keywords: Formal methods · Verification · Concurrent algorithms · Renaming
· Splitter · Linearizability · Distributed tasks · TLA+.

1. Introduction

Context. Fault-tolerant distributed and concurrent algorithms are extensively
used in critical systems that require strict guarantees of correctness [25]; conse-
quently, verifying such algorithms is becoming more important nowadays. Yet,

1A preliminary version of the paper was published in [9, 23].
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proving distributed and concurrent algorithms is a difficult and error-prone task,
due to the complex interleavings that may occur in an execution. Therefore,
it is crucial to develop frameworks that help assessing the correctness of such
systems.

A major breakthrough in the direction of systematic proofs of concurrent
algorithms is the notion of atomic or linearizable objects [21]: a linearizable
object behaves as if it is accessed sequentially, even in presence of concurrent
invocations, the canonical example being the atomic register. Atomicity lets us
model a concurrent algorithm as a transition system in which each transition
corresponds to an atomic step performed by a process on a base object. Human
beings naturally reason on sequences of events happening one after the other;
concurrency and interleavings seem to be more difficult to deal with.

However, it is well understood now that several natural one-shot base objects
used in concurrent algorithms cannot be expressed as sequential objects [8, 17,
35] providing a single operation. Such objects are inherently concurrent and
any attempt to describe them as sequential objects providing a single operation
is incomplete. One-shot means that each process can invoke the object at most
once.

An iconic example is the splitter abstraction [33], which is the basis of the
classical Moir & Anderson renaming algorithm [33]. Intuitively, a splitter is a
concurrent one-shot problem that splits calling processes as follows: whenever
p processes access a splitter, at most one process obtains stop, at most p − 1
obtain right and at most p−1 obtain down. Moir & Anderson used their splitter
abstraction to solve the well-known renaming concurrent one-shot distributed
problem [4] in which processes are required to pick new distinct names from a
given space. Moir & Anderson renaming algorithm uses splitters arranged in a
half grid to scatter processes and provide new names to processes. It is worth
to mention that, since its introduction almost thirty years ago, the renaming
problem has become a paradigm for studying symmetry-breaking in concurrent
systems (see, for example, [1, 7]).

A second example is the exchanger object provided in Java, which has
been used for implementing efficient linearizable elimination stacks [17, 38, 40].
Roughly speaking, an exchanger is a meeting point where pairs of processes can
exchange values, with the constraint that an exchange can happen only if the
two processes run concurrently.

Splitters and exchangers are instances of one-shot concurrent objects known
in the literature as tasks. Tasks have played a fundamental role in understand-
ing the computability power of several models, providing a topological view of
concurrent and distributed computing [19]. Intuitively, a task is an object pro-
viding a single one-shot operation (namely, each process invokes the operation
at most once), formally specified through an input domain, an output domain
and an input/output relation describing the valid output configurations when
a set of processes run concurrently, starting from a given input configuration.
Tasks can be equivalently specified by mappings between topological objects:
an input simplicial complex (i.e., a discretization of a continuous topological
space) modeling all possible input assignments, an output simplicial complex
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modeling all possible output assignments, and a carrier map relating inputs and
outputs.

Contributions. On the theoretical side, our main contribution is a generic trans-
formation of any task T (with a single operation) into a sequential object S
providing two operations, set and get. The behavior of S “mimics” the one of
T by splitting each invocation of a process to T into two invocations to S , first
set and then get. Intuitively, the set operation records the processes that are
participating to the execution of the task. A process actually calls the task and
obtains a return value by invoking get. Each of the operations is atomic; how-
ever, set and get invocations of a given process may be interleaved with similar
invocations from other processes.

We show that these two operations are sufficient for any task, no matter how
complicated it may be; since a task is a mapping between simplicial complexes,
it can specify very complex concurrent behaviors, sometimes with obscure asso-
ciated operational semantics.

A main benefit of our transformation is that one can replace an object solving
a task T by its associated sequential object S , and reason as if all steps happen
sequentially. This allows us to obtain simpler models of concurrent algorithms
using solutions to tasks and sequential objects as building blocks, leading to
modular correctness proofs.

On the practical side, our main contribution is an application of our trans-
formation to obtain a simple transition system of Moir & Anderson renaming
algorithm, which helps to reason about it. Our model is used to derive a full
and modular TLA+ proof of the algorithm, the first available mechanized formal
proof of it. The proof uses a combination of model-checking and formal proofs
to verify correctness and completeness

Organization. Section 2 introduces TLA+ specification language and its associ-
ated tools. In Sections 3 to 5, we explain the ideas in Moir & Anderson renaming
algorithm that motivated our general transformation. More precisely, Section 3
describes Moir & Anderson algorithm and its expected properties, Section 4
presents a rewording of Moir & Anderson algorithm with sequential objects,
and Section 5 details its formal proof with TLA+. Section 6 presents the formal
foundations for tasks and sequential objects, and Section 7 describes the general
transformation of any task into a sequential object with two operations, as was
illustrated with Moir & Anderson algorithm. Lastly, we examine related work
in Section 8.

2. TLA+ Specification Language & Tools

2.1. Language
TLA+ [27] is a formal specification language based on untyped Zermelo-

Fraenkel set theory for specifying data structures, and on the temporal logic
of actions (TLA) for specifying dynamic behaviors. TLA+ allows specifying
symbolic transition systems with variables and actions. An action is a transition
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predicate between a state and a successor state. It is an arbitrary first-order
predicate with quantifiers, set and arithmetic operators, and functions. In an
action, x denotes the value of a variable x in the origin state, and x ′ denotes
its value in the next state. Expressions rely on standard first-order logic, set
operators, and several arithmetic modules. Functions are primitive objects in
TLA+. The application of function f to an expression e is written as f [e].
The set of functions whose domain is X and whose co-domain is a subset of
Y is written as [X → Y ]. The expression domain f is the domain of the
function f . The expression [x ∈ X 7→ e] denotes the function with domain X
that maps any x ∈ X to the expression e (which can include x ). The notation
[f except ![e1] = e2] is a function which is equal to the function f except at
point e1, where its value is e2. A specification of a system is usually a disjunction
of actions. Stuttering is enabled in all states, and fairness, usually expressed
as a conjunction of weak or strong fairness on actions, or more generally as an
LTL property, ensures progress, i.e. that some continuously or infinitely often
enabled actions do occur.

2.2. Tools
The TLA+ toolbox contains the TLC model checker, the TLAPS proof as-

sistant, and various tools such as a translator for the PlusCal Algorithm Lan-
guage [28] into a TLA+ specification, and a pretty-printer that converts a textual
TLA+ specification into a LATEX file.

PlusCal. Pluscal is an algorithm language that looks like a programming lan-
guage (assignment, loop, conditional) augmented with constructs for describing
concurrency and non-determinism. PlusCal is actually more expressive than a
traditional programming language as its expressions are any TLA+ expressions.

TLC. TLC, the TLA+ Model Checker, is an enumerative explicit-state model-
checker that can check safety and liveness properties. Its parallel implementa-
tion achieves a close to linear speedup for checking safety properties. To verify
a TLA+ specification, TLC requires all constants (e.g. number of processes) to
be instantiated.

TLA+ Proof System. TLAPS, the TLA+ Proof System, is a proof assistant for
writing and checking TLA+ proofs [10]. TLA+ proofs are written in a hierar-
chical and declarative style with steps and substeps. A proof manager trans-
lates these steps in proof obligations, checks the trivial ones and uses backend
provers for the other ones. These backend provers include SMT provers (CVC3
is supplied, and Z3, CVC4, VeriT and Yices are supported), a TLA+ theory in
Isabelle, Zenon (an automated theorem prover for first-order logic based on the
tableau method), or LS4 (to prove Propositional Temporal Logic).
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3. Verifying Moir & Anderson Renaming

We consider a concurrent system with n asynchronous processes, meaning
that each process can experience arbitrarily long delays during an execution.
Moreover, processes may crash at any time, i.e., permanently stopping taking
steps. Before crashing, a crashed process follows its local algorithm (i.e. we
do not consider malicious Byzantine failures). Each process is associated with
a unique id ∈ N. The processes can access base objects like simple atomic
read/write registers, or more complex objects.

The original Moir & Anderson renaming algorithm [33] is designed and ex-
plained with splitters. Their seminal work first introduces the splitter algorithm
based on atomic read/write registers and discusses its properties. Then, they
describe a renaming algorithm that uses a grid of splitters. The actual imple-
mentation inlines splitters into the code of the renaming algorithm, and their
proof is performed on the resulting program that uses solely read/write registers
as base objects.

3.1. The Splitter Abstraction
A splitter [33] is a one-shot concurrent task in which each process starts with

its unique id ∈ N and has to return a value satisfying the following properties:

1. Validity. The returned value is right, down, or stop.
2. Splitting. If p ≥ 1 processes participate in an execution of the splitter, then

at most p − 1 processes obtain the value right, at most p − 1 processes
obtain the value down, at most one process obtains the value stop.

3. Termination. Every non-crashed process returns a value.

Notice that if a process runs solo, i.e., p = 1, it must obtain stop, since the
splitting property holds for any p ≥ 1.

Figure 1 contains the simple and elegant splitter implementation based on
atomic read/write registers from [33]. We refer the reader to [33] for a detailed
correctness proof of the algorithm. The fact that the implementation is based
on atomic registers allows us to obtain a transition system of it in which each
transition corresponds to an atomic operation on an object. The benefit of this
modelization is that every execution of the implementation is simply described as
a sequence of steps, as concurrent and distributed systems are usually modeled
(see, for example, [20, 37])).

3.2. Verifying the Splitter Algorithm
Our TLA+ model of the splitter algorithm in Figure 1 and its TLAPS proof

are available online (Splitter register in [24]). The correctness properties of
the splitter are defined as follows:

Validity:
∀p ∈ Proc,2(dirp ∈ {⊥, stop, down, right}) (1)
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Shared atomic read/write registers:
Y = false ∧X = ⊥

Local (possibly non-atomic) variable per process:
dir = ⊥

operation splitter():
(01) X ← id;
(02) if Y then dir ← right
(03) else
(04) Y ← true
(05) if X = id then dir ← stop
(06) else dir ← down
(07) end if
(08) end if
(09) return dir
end operation

Figure 1: Implementation of a Splitter [33].

Splitting:

2

 ∀p, q ∈ Proc, dirp = stop ∧ dirq = stop ⇒ p = q
∧ ∃p ∈ Proc, dirp ̸= right
∧ ∃p ∈ Proc, dirp ̸= down

 (2)

Termination:

∀p ∈ Proc,2(p enters the splitter and does not crash
⇒ 3(dirp ∈ {stop, down, right})) (3)

Although the splitter implementation is very short and simple, its TLA+

proof is long and rather complex — particularly when considering that it uses
a boolean register and a plain register only —. Another difficulty with the
splitter (and more generally with concurrent algorithms) is that the reachable
state space is a significant part of the possible valuations of the variables. This
defeats explicit model-checking approaches even for a small number of processes.

3.3. The Renaming Algorithm of Moir & Anderson
M -renaming is a one-shot coordination task [4] in which each process starts

with its unique id ∈ N, and processes are required to return an output name
satisfying the following properties:

1. Validity. The output name of a process belongs to [0, . . . ,M − 1].
2. Uniqueness. No two processes obtain the same output name.
3. Termination. Every non-crashed process returns an output name.
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Figure 2: Renaming using Splitters.

Moir and Anderson propose in [33] a read/write renaming algorithm designed
using the splitter abstraction. The algorithm is conceptually simple: for up to
n processes, a set of n(n + 1)/2 splitters are placed in a half-grid, each with
a unique name, as shown in Figure 2 for n = 5. Each process starts invoking
the splitter at the top-left corner, following the directions obtained at each
splitter. When a splitter invocation returns stop, the process returns the name
associated with the splitter. When a process reaches the diagonal, the process
gets the name associated with this position.

Although Moir & Anderson renaming algorithm is easily described in a mod-
ular way, the actual algorithm is not modular as each splitter in the conceptual
grid is replaced by an independent copy of the splitter implementation. Fig-
ure 3 depicts the algorithm where each splitter in the grid is inlined. This lack
of modularity provokes the correctness proof in [33] to deal with all possible in-
terleavings that can occur, considering all read/write splitter implementations
in the grid, throwing away the correctness proof of the splitter implementation.

3.4. A First Attempt to Verify Moir & Anderson Algorithm
The renaming algorithm has been specified in TLA+, using PlusCal. The

steps have been chosen such that there is at most one read or write of a shared
register at each step. This leads to six atomic transitions. Even if the principle
and the algorithm are quite simple (13 lines, 2 matrices of shared registers, 2
conditionals and 1 loop), the proof of the uniqueness of the new names is not
trivial. The TLA+ model and the TLAPS proofs can be found in [24].

Moir & Anderson renaming algorithm must verify:

Validity:

∀p ∈ Proc,2(namep ∈ {⊥, 0, 1, . . . ,
1

2
n(n + 1)− 1}) (4)
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initially ∀d , r ∈ {0, 1, . . . ,n − 1},Y [d ][r ] = false ∧X [d ][r ] = ⊥
operation rename():
(01) stop ← false
(02) d , r ← 0, 0
(03) while d + r < n − 1 ∧ ¬stop do
(04) X [d ][r ]← id
(05) if Y [d ][r ] then r ← r + 1 %% Right
(06) else
(07) Y [d ][r ]← true
(08) if X [d ][r ] = id then stop ← true %% Stop
(09) else d ← d + 1 %% Down
(10) end if
(11) end if
(12) end while
(13) return 1

2
(r + d)(r + d + 1) + d

end operation

Figure 3: Moir and Anderson Renaming Algorithm [33]. This is actually a slight variation
of the original algorithm: it uses here the Cantor pairing function to compute the returned
name, to make the algorithm be adaptive.

Uniqueness:

∀p, q ∈ Proc, p ̸= q ,2(namep ̸= ⊥∧nameq ̸= ⊥ ⇒ namep ̸= nameq) (5)

Termination:

∀p ∈ Proc,2(p enters the renaming and does not crash
⇒ 3(namep ̸= ⊥))

(6)

To get an idea of the degree of interleaving in Moir & Anderson algorithm,
we have model-checked both a splitter and the renaming algorithm with TLC,
the TLA+ model checker (Table 1). Observe that model-checking was quickly
overwhelmed. Checking with four or five processes is insufficient to get confi-
dence in the correctness of the algorithm. Scaling from four to five processes
took an unreasonable amount of time (going from less than one minute to more
than two days) and resources (16 GB memory and up to 110 GB disk space
were required).

In the original paper, the correctness proof is given “on paper” and takes
4 pages and 12 invariants. Half of these invariants are considered trivial, and
no proofs are given. Proving these trivial invariants mechanically was already
challenging because of the intricate behavior of the splitters, and it was clear
that a complete proof would require too much effort.

4. Towards a Modular Moir & Anderson Renaming

In the light of the simple splitter-based conceptual description of Moir &
Anderson algorithm, we would like to have a transition system describing the
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Model-checking of a Splitter
n distinct states depth time
2 98 11
3 1389 16
4 17164 21
5 193115 26 2 s
6 2041458 31 15 s
7 20675305 36 1 min 50 s
8 203055896 41 12 min 24 s
9 1948989879 46 16 h 08 min

Model-checking of M&A Renaming
n distinct states depth time
2 142 14
3 21260 33 1 s
4 6381732 58 56 s
5 5183748425 90 51 h 19 min

Table 1: Model-Checking of a Splitter with registers (top) and of the Renaming Algorithm
with registers (bottom). n is the number of processes, distinct states are the number of
distinct states found by TLC, and depth (or diameter) is the length of the longest execution
(ignoring stuttering loops). Times are wall-clock time. Experiments were conducted on a 32
core 2,1 GHz computer with 16 GB of memory space.

algorithm based on splitters as building blocks, in which each step corresponds
to a splitter invocation. Such a description would be very beneficial as it would
allow us to obtain a modular correctness proof showing that the algorithm
is correct as long as the building blocks are splitters, hence the correctness
is independent of any particular splitter implementation, hiding the intricate
behavior inside a splitter implementation.

4.1. Specifying a Splitter as a Sequential Object
As it is formally proved in Section 7, it is impossible to obtain such a transi-

tion system. The obstacle is that a splitter is inherently concurrent and cannot
be specified as a sequential object with a single operation. The intuition of the
impossibility is the following. By contradiction, suppose that there is a sequen-
tial object corresponding to a splitter. Since the object is sequential, in every
execution, the object behaves as if it is accessed sequentially (even in presence of
concurrent invocation). Then, there is always a process that invokes the splitter
object first, which, as noted above, must obtain stop. The rest of the processes
can obtain either down or right, without any restriction (the value obtained by
the first process precludes that all obtain right or all down). However, such an
object is allowing strictly fewer behaviors: in the original splitter definition it
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State: Sets Participants,Stop,Down,Right , all initialized to ∅

Function set(id)
Pre-condition: id /∈ Participants
Post-condition: Participants ′ ← Participants ∪ {id}
Output: void

endFunction

Function get(id)
Pre-condition: id ∈ Participants ∧ id /∈ Stop,Down,Right
Post-condition:

D ← ∅
if |Stop| = 0 then D ← D ∪ {stop}
if |Down| < |Participants| − 1 then D ← D ∪ {down}
if |Right | < |Participants| − 1 then D ← D ∪ {right}
Let dec be any value in D
if dec = stop then Stop ← Stop ∪ {id}
if dec = down then Down ← Down ∪ {id}
if dec = right then Right ← Right ∪ {id}

Output: dec
endFunction

Figure 4: A get/set Sequential Specification of the Splitter.

is perfectly possible that all processes run concurrently and half of them obtain
right and the other half obtain down, while none obtains stop.

One can circumvent the impossibility described above by splitting the single
method provided by a splitter into two atomic operations of a sequential object.
Figure 4 presents a sequential specification of a splitter with two operations, set
and get, using a standard pre/post-condition specification style. Each process
invoking the splitter, first invokes set and then get (always in that order). The
idea is that the set operation first records in the state of the object the processes
that are participating in the splitter, so far, and then the get operation non-
deterministically produces an output to a process, considering the rules of the
splitter. Once we have this sequential specification, we can replace each splitter
in the original Moir & Anderson splitter-based algorithm with two consecutive
calls to an instance of this sequential object, hence obtaining a transition system.

4.2. Verifying get/set Sequential Splitters
A sequential specification of a splitter in the TLA+ module using a get/set

scheme is given in Figure 5. Each of the operations is divided in an enabling
condition (setenabled/getenabled) and a construction of the new state (set/get).
The set operation is enabled if the process is not already in the splitter and
registers that the process is entering the splitter. The get operation corresponds
to a process receiving a direction. The pre-condition of the get operation ensures
that the answer is valid with regard to the specification of the splitter and
equation (2).
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module Splitter
constant Proc the calling processes
None ≜ “none”
Right ≜ “right”
Stop ≜ “stop”
Down ≜ “down”
Direction ≜ {None, Right , Stop, Down}
Type ≜ [participants : subset Proc,

stop : subset Proc, down : subset Proc, right : subset Proc]

new ≜ [participants 7→ {}, stop 7→ {}, down 7→ {}, right 7→ {}]

setenabled(s, pid) ≜ s /∈ s.participants set not already called
set(s, pid) ≜ [s except !.participants = s.participants ∪ {pid}]

getenabled(s, pid , ans) ≜
∧ pid ∈ s.participants ∧ pid /∈ (s.stop ∪ s.right ∪ s.down) set done and get not done
∧ ∨ ans = Stop ∧ s.stop = {} valid answers
∨ ans = Right ∧ (s.right ∪ {pid}) ̸= s.participants
∨ ans = Down ∧ (s.down ∪ {pid}) ̸= s.participants

get(s, pid , ans) ≜ case
ans = Stop → [s except !.stop = {pid}]

2 ans = Right → [s except !.right = s.right ∪ {pid}]
2 ans = Down → [s except !.down = s.down ∪ {pid}]

Figure 5: The TLA+get/set Specification of a Splitter

For a variable spl and a process p ∈ Proc, a well-formed usage of the module
is a sequence of two TLA+ actions: setenabled(spl , p) ∧ spl ′ = set(spl , p), then
∃dir ∈ {Stop,Down,Right} : getenabled(spl , p, dir) ∧ spl ′ = get(spl , p, dir).

To be useful, this version of the splitter needs to be correct and complete.
The correctness is the validity, splitting and termination properties in (1), (2)
and (3). The completeness means that any correct output can be delivered by
the splitter with set/get. Indeed, the goal of this version of the splitter is to
be used as a black box in Moir & Anderson renaming algorithm. The proof
of the renaming algorithm will be done with the black box version, and the
implementation will use a particular implementation of the splitter, for instance
the one in Figure 1. If the black box version is not complete, the proof may
omit some pathological cases.

The correctness proof is done assuming that the splitter is well-used, i.e.
that set is called before get and the enabling conditions of each operation are
true. The proof of termination (3) is trivial: there is no loop and whatever were
the values given to previous processes, a process can always get at least one
valid value and thus cannot be blocked in the enabling condition getenabled.
The proofs of validity (1) and splitting (2) have been conducted with TLAPS
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for any number of processes (file Splitter correct proof.tla in [24]).
Completeness of this specification has also been considered. It must be

shown that all correct combinations of output values are possible. The pred-
icate CorrectDirection(Proc, direction) states that direction is a valid output
array satisfying (1) and (2), and dir is the received values of the processes.
Completeness is expressed as (where EFP is the CTL (computational tree logic)
temporal operator stating that there exists a branch where P is eventually true):

Completeness ≜ ∀direction ∈ [Proc → Direction] :
CorrectDirection(Proc, direction) =⇒ EF(dir = direction)

TLA+ is based on LTL (linear temporal logic) and this CTL formula with the
existential branching operator E is not checkable. However, the negation of EFP
is AG¬P , and when P is a state predicate, this corresponds to the LTL invariant
2¬P . Thus, completeness can be verified in the following way. First, TLC is
used to enumerate all the valid arrays of direction. Then, each of them is stated
as unreachable (2¬(. . .)), and this property is checked with TLC. A counter-
example proves that the state is actually reachable. Optimizations based on
symmetry have been introduced. As Proc set is unordered and process identifiers
are not used to select a direction, checking the reachability of a direction array
ensures that all its permutations are reachable. The completeness of the set/get
splitter has been verified up to 10 processes (255877 distinct states to check for
reachability, reduced to 119 with permutations, 1 h 42 min on a modern quad
core laptop).

5. Proving Moir & Anderson Renaming with Sequential Splitters

Using the sequential specification of a splitter in Section 4, we can easily
obtain a modular description of the original Moir & Anderson splitter-based al-
gorithm: each splitter object is replaced with an equivalent sequential version of
it, and every process accessing a splitter object asynchronously invokes first set
and then get, which returns a direction to the process. The resulting algorithm
does not rely on any particular splitter implementation, and uses only atomic
objects, which allows us to obtain a transition system of it. This is the algo-
rithm that is verified in TLA+. The equivalence between the concurrent splitter
specification and the sequential set/get specification implies that our proof also
proves the original Moir & Anderson splitter-based algorithm.

The PlusCal version of the renaming problem using set/get splitters is given
in Figure 6. The translated TLA+ had to be slightly tweaked because the provers
have difficulties handling except with multi-dimensional arrays, whereas the
equivalent form that defines an array is fine2.

2The construct [x except ![e1] = e2] is a shortcut for [i ∈ domain x 7→ if i =
e1 then e2 else x [i ]]. For multi-dimensional arrays, provers work better with the latter.
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The full proof has been conducted with TLAPS and is available online [24].
The line numbers below refer to the file Renaming.tla that holds the algorithm
and its proof.

5.1. Proof Sketch of the Validity Property
The correctness property (4) constrains the name to be in the space {0, 1, . . . ,

1
2n(n+1)−1}. An auxiliary invariant that bounds d+r is defined : ∀p ∈ Proc :
2(0 ≤ d [p]+r [p] ≤ n−1) (I5 property, line 171). It is easily proved by induction
considering the condition at line 14 in Figure 6 (lines 294–311). With I5, the
Validity property is proved with an arithmetic argument (lines 2044–2104).

5.2. Proof Sketch of the Uniqueness Property
Overall Picture. The correctness property (5) states that all the processes get
distinct names (Uniqueness property in the TLA+ module – line 2027). This
uniqueness is guaranteed if all the processes end with different coordinates
(I12 property – line 1955, whose proof (lines 1957–1979) is used to prove the
Uniqueness property (lines 2030–2040)). A process ends either on the diagonal
(condition d + r < n − 1 violated, line 14 in Figure 6) or if it gets Stop in
a splitter that is not on the diagonal (lines 15–17 in Figure 6). Consider two
different processes that get a name (line 28):

• both processes stop in a splitter that is not on the diagonal: as at most one
process can stop in a splitter, they stop in different splitters and do not
have the same coordinates (StopDifferentProcessesDifferentCoordi-
nates property – defined line 429 and proved lines 353–434);

• one process stops in a splitter that is not on the diagonal, and the other
one stops on the diagonal: they trivially do not have the same coordinates
(StopAndDoneDiffCoord property – defined line 566 and proved lines 438–
574);

• both processes stop on the diagonal: this is not trivial and is explained
in the following (IDDX property – defined line 1851 and proved lines 577–
1906).

Number of Participants in a Splitter. To prove this last case, the key inductive
invariant is that (NbParticipants property – line 588):

∀i , j ∈ Coord : Cardinality(splitters[j ][i ].participants) = 0
∨ Cardinality(splitters[j ][i ].participants) ≤ n − (i + j )

The first disjunction handles the case where the coordinates are outside the
half-grid (i + j ≥ n), and the second one handles the case where the coordinates
are inside the half-grid (i + j < n).

A simple induction using that processes enter a splitter (i , j ) either from the
splitter on top (i − 1, j ) or from the splitter on left (i , j − 1), and that not all
processes can go down or right, gives that there is at most n − (i − 1+ j )− 1+
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1 module renaming
2 extends Naturals
3 constant n – number of processes

4 instance Splitter with Proc ← 1 . . n
5 Coord ≜ 0 . . n − 1 – coordinate in the grid

7 --algorithm renaming
8 variables spl = [i ∈ Coord 7→ [j ∈ Coord 7→ new ]] ; – shared variables

9 fair process proc ∈ 1 . . n
10 variables d = 0, r = 0, name = 0 ; – local variables of each process

11 begin
12 l0: await setenabled(spl [d ][r ], self ) ;
13 spl [d ][r ] := set(spl [d ][r ], self ) ;
14 l1: if (d + r < n − 1) then
15 l2: either await getenabled(spl [d ][r ], self , Stop) ;
16 spl [d ][r ] := get(spl [d ][r ], self , Stop) ;
17 goto l8 ;
18 or await getenabled(spl [d ][r ], self , Right) ;
19 spl [d ][r ] := get(spl [d ][r ], self , Right) ;
20 r := r + 1 ;
21 goto l0 ;
22 or await getenabled(spl [d ][r ], self , Down) ;
23 spl [d ][r ] := get(spl [d ][r ], self , Down) ;
24 d := d + 1 ;
25 goto l0 ;
26 end either
27 end if ;
28 l8: name := ((r + d) ∗ (r + d + 1)÷ 2) + d ;
29 end process
30 end algorithm
31

Figure 6: Renaming Algorithm in PlusCal using set/get Splitters
.
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Figure 7: Intuition behind the Proof of Moir & Anderson Algorithm

n− (i + j − 1)− 1, i.e. 2 ∗ (n− (i + j )) processes in the splitter (i , j ). This basic
induction fails. As an example, consider the splitter (1, 1). To receive n − 2
processes from the splitter (0, 1), there must be at least n − 1 processes in the
splitter (0, 1). It means that there is at most 1 process in the splitter (1, 0).
This process, alone, stops in this splitter and no process comes from the splitter
(1, 0) to the splitter (1, 1).

Since a simple induction fails, another invariant is needed (NbParticipantsBis
property – line 795):

∀i , j ∈ Coord : Cardinality({p ∈ ProcSet : d [p] ≥ j ∧ r [p] ≥ i}) = 0
∨ Cardinality({p ∈ ProcSet : d [p] ≥ j ∧ r [p] ≥ i}) ≤ n − (i + j )

This invariant considers the triangle below and to the right of (i , j ), i.e. the
triangle with coordinates (i , j ), (n−1− i , j ) and (i ,n−1− j ). In the following,
we refer to this triangle as the (i , j ) triangle.

The proof is done by proving that the property is preserved by all the tran-
sitions. For the (i , j ) triangle, the two non-trivial cases are when a process in a
splitter in column i −1 moves right, or a process in a splitter in line j −1 moves
down. In both cases, the number of processes in the (i , j ) triangle increases.
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These two cases are symmetric, and only the first one is discussed.
The intuition behind the proof is shown in Figure 7.

• The induction hypothesis gives that in the (i − 1, j ) triangle (purple in
Figure 7), there are less than n − i − j + 1 processes.

• The fact that self can move right ensures that there is at least another
process in the splitters including or below the one of self (orange in Fig-
ure 7). This property (2InColumnWhenRight property – line 1380) is
proved thanks to another invariant that states that if at one point there is
a participant in a splitter, there will always be (at least) a process in the
column of the splitter (AlwaysOneInColumn property – line 1248). This
last one is proved thanks to the correctness of the splitter: not all pro-
cesses can go right (EnableRightExistsOtherNotRight – line 199 in the
Splitter.tla file).

This means that before self moves, there is at most n− i− j +1−2 processes
in the (i , j ) triangle (blue in the figure 7). So after the transition, there are at
most n − i − j + 1 − 2 + 1 = n − i − j processes in the (i , j ) triangle. This
concludes the proof.

Metrics of the Proof.. The first version was 3000 lines, and after cleaning (fac-
torization into lemma and removing steps not needed by TLAPS), it consists
in 2000 lines of TLAPS for the renaming, and 200 lines for the splitter, with a
total of 70 lemmas and theorems, and 963 proof steps.

The splitter proofs are composed of 93 proof obligations. Among them, 43
are obvious and discharged by tlapm (the TLA+ proof manager). The other 50
are proved by SMT (we use CVC3, VeriT and Z3).

The renaming proof is composed of 1541 proof obligations. Among them,
914 are trivial and proved by tlapm. Among the 627 left, 108 are proved by
Zenon (an automated theorem prover), 35 are proved by LS4 (temporal logic),
475 are proved by SMT and 9 are proved by Isabelle (properties on sets).

To check the proof, TLAPS takes 10 minutes on a quad core modern laptop.

5.3. Proof Sketch of the Termination Property
The third correctness property is termination (6): every non-crashed process

eventually gets a name. To do this, we show by induction that, for each process,
(d , r) lexicographically increases until either the sum reaches n, or the process
receives a Stop and terminates. Assume a process is at l0 (Figure 6, lines 12–
13), that its current value of (d , r) is (i , j ) and that (d , r) has lexicographically
increased until that point, meaning that it is the first time it reaches (i , j ).
At l0, setenabled is true as the process has not previously called set on the
splitter (i , j ). The process reaches l1 (line 14). At l1, the process can go to
l8 and terminate (QED), or continue to l2. At l2 (lines 15–27), getenabled is
true as the process has previously called setenabled on this splitter, the process
has not previously called get on this splitter (first occurrence of (i , j )), and
at least one of the choices {Stop,Right ,Down} is enabled (the specification of
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Concurrent splitter
correctness (TLAPS)
completeness (TLC )

Splitter with set/get
correctness (TLAPS)
completeness (TLC )


⇒

concurrent splitter
≈

set/get splitter

Renaming with set/get split.
correctness (TLAPS)
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⇒

Renaming with
conc. splitters
correctness

termination (paper) termination (paper)

Figure 8: Summary of the Approach. For each property, the verification method is given
(mechanized proof with TLAPS, model-checking with TLC, proof on paper).

a splitter (Figure 5) guarantees that the three sets stop, down and right are
disjoint, thus at least one choice is enabled). If the process gets Stop, it goes to
l8 and terminates (QED); if it gets Down or Right, d or r increases, thus (d , r)
becomes (i +1, j ) or (i , j +1), and so lexicographically increases. The condition
in l1 eventually becomes false, and the process reaches l8 (QED).

TLAPS does not support checking liveness properties, and this proof has
not been mechanically verified.

5.4. Back to the Original Algorithm
The last step to prove the original Moir & Anderson algorithm of Figure 3

consists in putting back the concurrent splitters implemented with registers in
place of the linearizable splitters with set/get. Both versions of the splitter have
been proved equivalent by proving that they satisfy the same correctness prop-
erties (properties (1), (2), and (3)) and are both complete3. For the concurrent
splitter, the proof of the validity (1) and splitting (2) properties has been done
in TLAPS (file Splitter register.tla in [24]). It consists in 8 lemmas and
theorems that prove 17 elementary properties with 30 proof steps. The proof
of termination (3) is trivial as it is straight-line code. The proof of complete-
ness has been done by model-checking like for the linearizable splitter, up to 7
processes (Section 4.2).

Regarding termination of the renaming algorithm with concurrent split-
ters (6), a similar argument to 5.3 shows that, for each process, (d , r) lexi-
cographically increases until either the sum reaches n, or the process receives a
Stop and terminates.

A summary of our approach to prove the original Moir & Anderson algorithm
is shown in Figure 8.

3Another approach would have been to show a bisimulation between their transition sys-
tems [32]. Note that it requires to exhibit a parameterized bisimulation, as we have to consider
any number of concurrent invocations. We had already proved the properties on the concur-
rent splitter during our initial attempt at proving the renaming algorithm (Section 3) and it
seemed simpler to continue onward.
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6. Tasks and Sequential Objects

In the next two sections, we show that the transformation in Section 4 of the
splitter task into a sequential object with two operations, get and set, is not a
trick but rather a general methodology to deal with tasks without a sequential
specification. Our get/set solution proposed here is reminiscent to the request-
follow-up transformation in [39] that allows to transform a partial method of
a sequential object (e.g. a queue with a blocking dequeue method when the
queue is empty) into two total methods: a total request method registering that
a process wants to obtain an output, and a total follow-up method obtaining
the output value, or false if the conditions for obtaining a value are not yet
satisfied (the process invokes the follow-up method until it gets an output). We
stress that the request-follow-up transformation [39] considers only objects with
a sequential specification and is not shown to be general as it is only used for
queues and stacks.

6.1. Model of Computation in Detail
We consider a standard concurrent system with n asynchronous processes,

denoted p1, . . . , pn , which may crash at any time during an execution of the
system, i.e., stopping taking steps (for more detail see for example [20, 37]).
Before crashing, a crashed process follows its local algorithm (i.e. we do not
consider malicious Byzantine failures). Processes communicate with each other
by invoking operations on shared, concurrent base objects. A base object can
provide Read/Write operations (also called register), more powerful operations,
such as Test&Set, Fetch&Add, Swap or Compare&Swap, or solve a concurrent
distributed problem, for example, Splitter, Renaming or Set Agreement.

Each process follows a local state machines A1, . . . ,An , where Ai specifies
which operations on base objects pi executes in order to return a response when
it invokes a high-level operation (e.g. push or pop operations). Each of these
base-objects operation invocations is a step. An execution is a possibly infinite
sequence of steps and invocations and responses of high-level operations, with
the following properties:

1. Each process first invokes a high-level operation, and only when it has a
corresponding response, it can invoke another high-level operation, i.e.,
executions are well-formed.

2. For any invocation inv(⟨opType, pi , input⟩) of a process pi , the steps of pi
between that invocation and its corresponding response (if there is one),
are steps that are specified by Ai when pi invokes the high-level operation
⟨opType, pi , input⟩.

A high-level operation in an execution is complete if both its invocation and
response appear in the execution. An operation is pending if only its invocation
appears in the execution. A process is non-crashed in an execution if it takes
infinitely many steps.
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6.2. The Linearizability Formalism
A central paradigm for specifying distributed problems is that of a shared

object that processes may access concurrently [20, 37], but the object is defined
in terms of a sequential specification, i.e., an automaton describing the outputs
the object produces when it is accessed sequentially.

A sequential object X is specified by a (not necessarily finite and possibly
non-deterministic) Mealy state machine (Q , Inv ,Res, δ), where Inv is the set
with all possible invocations to the object and Res is the set with all possible
responses from the object. The responses are determined both by its current
state s ∈ Q and the current input in ∈ Inv . If X is in state q and it receives as
input an invocation in ∈ Inv by process p, then, if (q ′, r) ∈ δ(q , in), the meaning
is that X may return the response r to the invocation in by process p, and move
to state q ′. Notice that there may be several possible responses (if the object
is non-deterministic), however, it is convenient to assume that the next state q ′

is uniquely determined by the response r , namely, if (q ′, r), (q ′′, r) ∈ δ(q , in),
then we have q ′ = q ′′. Also, it is convenient to require that the object X is
total, meaning that for any state q , δ(q , in) ̸= ∅, for all in ∈ Inv .

For any sequence of invocations in0, . . . , inm , a sequential execution of X
starting in q0 is

q0, in0, r0, q1, in1, r1, . . . , qm , inm , rm
where q0 is an initial state of X , and (qi+1, ini+1) ∈ δ(qi , ini). However, given
that we require that the object’s response at a state uniquely determines the
new state, we may denote the execution by

in0, r0, in1, r1, . . . , inm , rm ,

because the sequence of states q1, . . . , qm is uniquely determined by q0, and by
the sequences of invocations and responses. Without loss of generality we only
consider sequential automata with a single initial state for each object.

The sequential specification of an object X , SSpec(X ), is the set of all its
sequential executions. Notice that SSpec(X ) is prefix-closed : if an execution is
in SSpec(X ), so is the execution obtained by removing the last invocation and
its response.

Figure 9 presents a sequential specification of the well-known Test&Set ob-
ject, which has been used in a large number of concurrent algorithms (see for
example [20, 37]); the specification is presented in the usual pre/post-condition
specification style. Intuitively, the object is initialized to 0 and the first invoca-
tion obtains 0 (the winner) and the rest obtain 1 (the losers).

Once we have a sequential specification, there are various ways of defining
what it means for an execution to satisfy an object, namely, that it respects
the sequential specification. Linearizability [21] is the standard notion used to
identify correct executions of implementations of sequential objects. Intuitively,
an execution is linearizable if its operations can be ordered sequentially, with-
out reordering non-overlapping operations, so that their responses satisfy the
specification of the implemented object. To formalize this notion we define a
partial order on the completed operations of an execution E : op <E op′ if and
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State: Integer X initialized to 0

Function Test&Set()
Pre-condition: none
Post-condition:

temp ← X
X ′ ← 1

Output:
temp

endFunction

Figure 9: Sequential Specification of Test&Set.

only if res(op) precedes inv(op′) in E . Two operations are concurrent if they
are incomparable by <E . The execution is sequential if <E is a total order.

Definition 1. An execution E is linearizable with respect to X if there is a
sequential execution S of X (i.e., S ∈ SSpec(X )) such that

1. S contains every completed operation of E and might contain some pending
operations. Inputs and outputs of invocations and responses in S agree
with inputs and outputs in E.

2. For every two completed operations op and op′ in E, if op <E op′, then
op appears before op′ in S.

Using the linearizability correctness criteria for sequential objects we can
define the set of valid executions for X , denoted VE (X ). Arguably, the set
VE (X ) contains the behavior one might expect from a building-block (e.g. an
algorithm) that implements X (i.e. all its executions are linearizable w.r.t. X).

VE (X ) =
{
E |E has only invocations and responses and is linearizable w.r.t. X

}
6.3. The Task Formalism
6.3.1. Definition of a Task

A task is the basic distributed equivalent of a function in sequential comput-
ing, defined by a set of inputs to the processes and for each (distributed) input
to the processes, a set of legal (distributed) outputs of the processes, e.g., [19].
In an algorithm designed to solve a task, each process starts with a private input
value and has to eventually decide irrevocably on an output value. A process
pi is initially not aware of the inputs of other processes. Consider an execution
where only a subset of k ≤ n processes participate; the others crash without
taking any steps. A set of pairs σ = {(id1, x1), . . . , (idk , xk )} is used to denote
the input values, or output values, in the execution, where xi denotes the value
of the process with identity idi , either an input value or an output value.

A set σ as above is called a simplex, and if the values are input values, it is
an input simplex, if they are output values, it is an output simplex. The elements
of σ are called vertices. An input vertex v = (idi , xi) represents the initial state
of process idi , while an output vertex represents its decision. The dimension of
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a simplex σ, denoted dim(σ), is |σ| − 1, and it is full if it contains n vertices,
one for each process. A subset of a simplex, which is a simplex as well, is called
a face. Since any number of processes may crash, simplexes of all dimensions
are of interest, for taking into account executions where only processes in the
simplex participate. Therefore, the set of possible input simplexes forms a
complex because its sets are closed under containment. Similarly, the set of
possible output simplexes also form a complex.

More generally, a complex K is made of a set of vertices V (K), and a set of
simplexes (i.e. a set of sets), each simplex being a finite, nonempty subsets of
V (K), satisfying: (1) if v ∈ V (K) then {v} is a simplex of K, and (2) if σ is
a simplex of K, so is every nonempty subset of σ. The dimension of K is the
largest dimension of its simplexes, and K is pure of dimension k if each of its
simplexes is a face of a k -dimensional simplex. In distributed computing, the
simplexes (and complexes) are often chromatic, since each vertex v of a simplex
is labeled with a distinct process identity. The set of processes identities in an
input or output simplex σ is denoted id(σ).

Definition 2 (Task). A task T for n processes is a triple (I,O,∆) where I
and O are pure chromatic (n − 1)-dimensional complexes, and ∆ maps each
simplex σ from I to a subcomplex ∆(σ) of O, satisfying:

1. ∆(σ) is pure of dimension dim(σ),
2. For every τ in ∆(σ) of dimension dim(σ), id(τ) = id(σ),
3. If σ, σ′ are two simplexes in I with σ′ ⊂ σ then ∆(σ′) ⊂ ∆(σ).

A task has only one operation, let us call it task(), which process idi may call
with value xi only if (idi , xi) is a vertex of I. The operation task(xi) may return
yi to the process only if (idi , yi) is a vertex of O. A task is a very compact way of
specifying a distributed problem, and indeed typically it is hard to understand
what exactly is the problem being specified. Intuitively, ∆ specifies, for every
simplex σ ∈ I, the valid outputs ∆(σ) for the processes in id(σ) assuming they
run to completion, and the other processes crash initially, and do not take any
steps.

As with other frameworks for specifying concurrent objects (e.g. linearizabil-
ity for sequential specifications), tasks have their own correctness criteria that
defines the executions satisfying a given task. Let E be an execution where each
process invokes a task ⟨I,O,∆⟩ once. Then, σE is the input simplex defined as
follows: (idi , xi) is in σE iff in E there is an invocation of task(xi) by process
idi . The output simplex τE is defined similarly: (idi , yi) is in τE iff there is a
response yi to a process idi in E . We say that E satisfies (I,O,∆) if for every
prefix E ′ of E , it holds that τE ′ ∈ ∆(σE ′). Note that it might be the case that
dim(τE ′) ≤ dim(σE ′).

The prefix requirement prevents executions that globally seem correct, but
in a prefix a process predicts future invocations. This requirement has been
implicitly considered in the past by stating that an algorithm solves a task if
any of its executions agree with the task specification.
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Using the satisfiability notion of tasks we can now consider the set of valid
executions, VE (T ), for a given task T = (I,O,∆). Arguably, the set VE (T )
contains the behavior one might expect from a building-block (e.g. an algorithm)
that implements T .

VE (T ) =
{
E |E has only invocations and responses and satisfies T

}
6.3.2. The Splitter Task

As an example consider the splitter task [33] defined informally as follows.
Each process invokes splitter with its id as input and outputs stop, down or
right. For every 0 < k ≤ n, it is required that if k processes invoke the splitter
(note necessarily concurrently), at most one process outputs stop, at most k −1
output down and at most k − 1 output right. Formally, the splitter task Tspl =
(Ispl,Ospl,∆spl) is defined as:

1. The vertices of the input complex Ispl are all pairs of the form (idi , idi),
for every ID process idi .

2. Ispl is the complex made of the (n−1)-dimensional simplex {(id1, id1), . . . ,
(idn , idn)} (and all its faces), with all distinct id processes id1, . . . , idn .

3. The vertices of the output complex Ospl are all pairs of the form (idi , stop),
(idi , down) and (idi , right) for every ID process idi .

4. Given a simplex τ = {(id1, y1), . . . , (idm , ym)} with vertices in Ospl and an
integer k , let SP(τ, k) be the splitter predicate that holds only if
(a) all idis are distinct,
(b) |Stop| ≤ 1, |Down| ≤ k − 1 and |Right | ≤ k − 1, where Stop =
{idi |yi = stop}, Down = {idi |yi = down} and Right = {idi |yi =
right}.

5. Ospl contains every (n − 1)-dimensional simplex τ (and all its faces), such
that SP(τ,n) holds.

6. For every (k − 1)-dimensional input simplex σ, ∆spl(σ) contains every
(k − 1)-dimensional output simplex τ (and all its faces) such that id(τ) =
id(σ) and SP(τ, k) holds.

Figure 10 shows a graphic description of the splitter task for three processes
with IDs 1, 2 and 3. Since we have only three processes, the input and output
complexes are of dimension two, namely, they are made of vertices, edges and
triangles. The input complex, shown at the left, consists of a triangle and all
its faces (i.e. vertices and edges); the complex has a single input vertex for a
process because each process starts with its ID in every execution. The output
complex, at the right, contains all possible valid output simplexes, namely, in
each of its simplexes at most one vertex has stop and not all vertices in the
simplex have down/right (hence, for example, the triangle with all right outputs
is not in the complex). The ∆ function maps the input vertex with ID 1 to the
output vertex (1, stop) specifying that if process with ID 1 runs solo, it must
return stop. ∆ maps the input edge with IDs 1 and 2 to the cycle made of
the solid and dashed bold edges of the output complex (formally, a subcomplex
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Figure 10: The Splitter Task for Three Processes.

of the output complex), which specifies that if processes with IDs 1 and 2 run
concurrently, they can obtain the outputs in any of these edges. The input
triangle is mapped to the whole output complex. The rest of ∆ is defined
symmetrically.

6.3.3. The Exchanger Task
A second interesting example is the Java exchanger object which is infor-

mally defined as follows in the Java documentation:

A synchronization point at which threads can pair and swap el-
ements within pairs. Each thread presents some object on entry to
the exchange method, matches with a partner thread, and receives its
partner’s object on return.

Clearly the object is informally specified in terms of concurrent executions,
very much in the style of the task formalism.

Exchangers have been used in [18] to implement a concurrent stack, and the
lack of a sequential specification of exchangers makes the proof in that paper
intricate. They have also been used in a number of concurrent implementations,
e.g. [38, 40]. More precisely, in [40], Shavit and Touitou present the implemen-
tation of pools and stacks with elimination trees, a form of diffracting trees [41]
which achieves high efficiency at high contention levels. A simplified version
of their algorithm is the following. There are two kinds of opposite requests:
enqueue and dequeue for a stack. The structure is constructed from elimination
balancers that are connected to one another to form a balanced binary tree.
Each leaf of the tree holds a standard concurrent stack implementation (e.g.
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with locks). Each internal node of the tree holds a prism and an exchanger.
The prism has an internal state (0 or 1) and two outputs labeled 0 and 1. It
routes a request according to this state: an enqueue request goes on the output
labeled as the internal state, a dequeue request goes on the output labeled as
the inverse of the internal state. The internal state is flipped after each request.
This allows the requests to spread on the tree while ensuring that a dequeue
follows the same path as the most recent enqueue. To speed things up and
to avoid contention of the internal state, two mechanisms are added. First,
two concurrent requests of the same kind are directly routed on both output
without changing the internal state. Secondly, an exchanger is used to pair
opposite requests: when both an enqueue and a dequeue are present, they are
matched, they swap their values and they directly exit the tree without being
further propagated (observe that this version of the exchanger is slightly differ-
ent than the one above as processes exchange opposite requests). The actual
implementation uses an array of prisms to avoid the bottleneck of the root and
first-levels balancers, however this does not change the overall specification of
the algorithm.

Although there is no sequential specification of the exchanger in the literature
(a proof such as the one for Lemma 1 shows that there does not exist such a
specification), one can succinctly define it as a task. Intuitively, for processes to
exchange values, an exchanger matches pairs of processes, with the possibility
that some processes are unmatched (marked as matched with a default value
denoted ⊥). The exchanger task Texc = (Iexc,Oexc,∆exc) is defined as follows.

1. The vertices of the input complex Iexc are all pairs of the form (idi , idi),
for every ID process idi .

2. Iexc is the complex made of the n-dimensional simplex {(id1, id1), . . . ,
(idn , idn)} (and all its faces), with all distinct id processes id1, . . . , idn .

3. The vertices of the output complex Oexc are all pairs (idi , idj ) and (idi ,⊥),
where idi and idj are distinct process IDs.

4. Given a simplex τ = {(id1, y1), . . . , (idm , ym)} with vertices in Oexc, let
EX (τ) be the exchanger predicate that holds only if
(a) all idi ’s are distinct,
(b) idi is matched with a different process or not matched at all:

yi ∈ {id1, . . . , îdi , . . . , idm ,⊥}, where circumflex (̂) denotes omis-
sion,

(c) idi is matched with at most one process, namely, it appears in a
second entry at most once,

(d) matches are consistent, i.e., if yi = idj then yj = idi .
5. Oexc contains every n-dimensional simplex τ = {(id1, y1), . . . , (idn , yn)}

(and all its faces) such that EX (τ) holds.
6. For every (k − 1)-dimensional input simplex σ, ∆exc(σ) contains every

(k − 1)-dimensional output simplex τ (and all its faces) such that id(τ) =
id(σ) and EX (τ) holds.

The exchanger task for three processes with IDs 1, 2 and 3 is depicted in
Figure 11. ∆ maps the input vertex with ID i to the output vertex (i ,⊥)
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Figure 11: The Exchanger Task for Three Processes.

indicating that if process with ID i runs solo, it is unmatched. The edge of the
input complex with IDs i and j are mapped to the subcomplex made of the
two output edges {(i ,⊥), (j ,⊥)} and {(i , j ), (j , i)}, which specifies that if the
two processes run concurrently, they can either be matched or unmatched. The
input triangle is mapped to the whole output complex.

7. Dealing with Tasks without a Sequential Specification

Intuitively, tasks and sequential specifications are inherently different paradigms
for specifying distributed problems: while a task specifies what a set of processes
might output when running concurrently, a sequential specification specifies the
behavior of a concurrent object when accessed sequential (and linearizability
tells when a concurrent execution “behaves” like a sequential execution of the
object).

7.1. Impossibility of Modeling a Task as a Sequential Object with a Single Op-
eration

A natural question is if any task can be modeled as a sequential object with
a single operation, namely, the object defines the same set of valid executions.
A well-known example for which this is possible is the consensus distributed co-
ordination problem that can be equivalently defined as a task or as a sequential
object (see for example [20] where it is defined as an object4 and [19] where it
is defined as a task). Another interesting example is the Test&Set atomic oper-
ation that is typically specified through a sequential object, however it can also
be specified as a task. Figure 12 depicts the Test&Set task for three processes
(the specification in Figure 9 is not one-shot but it can be easily made one-shot

4Sometimes the object is defined with two operations (in the style of the Theorem 2),
however, consensus can be equivalently defined with one operation.
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by adding that restriction in the pre-condition). In general, this is not the case,
as the following result shows.

Lemma 1. Consider the splitter task Tspl = (Ispl,Ospl,∆spl). There is no se-
quential object Xspl with a single operation satisfying:

VE (Tspl) = VE (Xspl).

Proof. Suppose by contradiction that there is such an object Xspl and consider
the following fully concurrent execution for three processes:

E = inv(p1, p1); inv(p2, p2); inv(p3, p3); resp(p1) : down; resp(p2) : down;
resp(p3) : right.

For any prefix E ′ of E , one can verify that τE ′ ∈ ∆spl(σE ′); for example, consider
σE = {(p1, p1), (p2, p2), (p3, p3)}, τE = {(p1, down), (p2, down), (p3, right)} and
τE ∈ ∆spl(σE ). Then, E satisfies Tspl, from which follows that E ∈ VE (Tspl).

Now, our assumption implies that E ∈ VE (Xspl), thus E is linearizable with
respect to Xspl. Without loss of generality suppose that there is a linearization S
of E in which inv(p1, p1); resp(p1) : down is the first linearized operation. Thus,
S is a sequential execution of Xspl, namely, S ∈ SSpec(Xspl). Since SSpec(Xspl)
is prefix-closed and F = inv(p1, p1); resp(p1) : down is a prefix of S , we have
that F ∈ SSpec(Xspl). This is a contradiction because F is indeed an execution
which is linearizable with respect to Xspl (F is a linearization of itself), hence
F ∈ VE (Xspl), but F does not satisfy Tspl (clearly τF /∈ ∆spl(σF )), and thus
F /∈ VE (Tspl), which is a contradiction.

In a very similar way one can prove that the exchanger task defined above
and the following known tasks cannot be specified as sequential objects with a
single operation:
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1. Adaptive renaming [4]. Processes start with distinct inputs names taken
from the space [1, . . . ,N ] and decide distinct outputs names from the
space [1, . . . ,M ], with N >> M . It is required that if k ≤ n processes run
concurrently, the output names belong to [1, . . . , f (k)], for some function
f : 1, . . . ,n → {1, . . . ,N }, i.e., the output space is on function on the
number of participating processes.

2. Set agreement [11]. It is a generalization of the well-known consensus
where processes propose values and have to agree on at most k proposals.

3. Immediate snapshot [5]. It is a task which plays an important role in
distributed computability [19]. A process can write a value to the shared
memory using this operation, and gets back a snapshot of the shared
memory, such that the snapshot occurs immediately after the write.

4. Adopt-commit [6, 14] is a concurrent object which proved to be useful to
simulate round-based protocols for set-agreement and consensus. Given
an input u to the object, the result is an output of the form (commit , v)
or (adopt , v), where commit/adopt is a decision that indicates whether
the process should decide value v immediately or adopt it as its preferred
value in later rounds of the protocol.

5. Conflict detection [3] is a task that has been shown to be equivalent to
the adopt-commit. Roughly, if at least two different values are proposed
concurrently, at least one process outputs true.

7.2. Modeling a Task as a Sequential Object with Two Operations
To circumvent the impossibility result in the previous lemma, we model any

given task T through a sequential object S with two operations, set and get,
that each process access in a specific way: it first invokes set with its input to
the task T (receiving no output) and later invokes get in order to get an output
value from T . Intuitively, decoupling the single operation of T into two (atomic)
operations allows us to model concurrent behaviors that a single (atomic) oper-
ation cannot specify. In what follows, let SSpec(S ) be the set with all sequential
executions of S in which each process invokes at most two operations, first set
and then get, in that order.

Theorem 2. For every task T = (I,O,∆) there is a sequential object S with
two operations, set(idi , xi) and get(idi) : yi , such that there is a bijection α
between VE (T ) and SSpec(S ) satisfying that

1. each invocation or response of process idi is mapped to an operation of
process idi ,

2. each invocation inv (response resp) with input (output) x is mapped to a
completed set (get) operation with input (output) x .

Proof. We define S as follows. The sets of invocation and responses, Inv and
Res, of S contain inv(set, idi , xi) and res(set, idi , xi) : void, respectively, for each
input vertex (idi , xi) ∈ I. Similarly, for each output vertex (idi , yi) ∈ O, Inv
and Res contain inv(get, idi) and res(get, idi) : yi .

27



For every execution E ∈ VE (T ), S has a state sE and the initial state of S
is sξ, where ξ denotes the empty string. We define the transition function δ of
S inductively as:

1. For every execution E ∈ VE (T ) consisting of only one invocation inv(idi , xi)
(i.e. E = inv(idi , xi)), we define

δ(sξ, inv(set, idi , xi)) = {(sE , res(set, idi , xi) : void)}.

2. For every execution E ∈ VE (T ) with the form E = E ′ · e, for some non-
empty E ′ prefix, δ is defined as:
(a) If e = inv(idi , xi), then

δ(sE ′ , inv(set, idi , xi)) = {(sE ′·e , res(set, idi , xi) : void)}.

(b) If e = res(idi) : yi , then

δ(sE ′ , inv(get, idi)) = {(sE ′·e , res(get, idi) : yi)}.

Observe that S is a deterministic automaton whose sequential executions
are precisely the executions in VE (T ) (one can think that S is an automaton
that recognizes the language VE (T )). Moreover, each invocation (idi , xi) in an
execution in VE (T ) induces a transition in S with an invocation to set(idi , xi)
and, similarly, each response (idi , yi) in an execution in VE (T ) induces a tran-
sition in S with an invocation to get(idi) whose response value is yi . Thus,
the desired bijection α in VE (T ) → SSeq(S ) is precisely obtained from the
definition of S .

An implication of Theorem 2 is that if one is analyzing an algorithm that
uses a building-block (subroutine, algorithm, etc.) B that solves a task T , one
can safely replace B with the sequential object S related to T described in
the theorem (each invocation to the operation B is replaced with an (atomic)
invocation to set and then an (atomic) invocation to get), and then analyze
the algorithm considering the atomic operations of S . The advantage of this
transformation is that (1) if all operations in an algorithm are atomic, we can
think that each process takes a step at a time in an execution, hence obtaining
a transition system with atomic events, (2) at all times we have a concrete state
of S in an execution (which is not clear in a task specification) and (3) given
a state of S , an output for a get operation can be easily computed using the
sequential object S (something that is typically complicated for B as it might
be accessed concurrently). The construction used (for simplicity) in the proof
of Theorem 2 might be too coarse to be helpful for performing (1), (2) and (3)
when analyzing an algorithm. Thus, we present below a construction producing
an equivalent sequential automaton modeling the task in a simpler way.

Consider the sequential object in Figure 13 obtained from any given task
T = (I,O,∆), which is described in a classic pre/post-condition form. Intu-
itively, the meaning of a state (σ, τ) is the following: σ contains the processes
that have invoked the task so far (this represents the participating set of the
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current execution) while τ contains the outputs that have been produced so
far. The main invariant of the specification is that τ ∈ ∆(σ). It directly fol-
lows from the properties of the task: when a process invokes set(idi , xi), we
have that τ ∈ ∆(σ ∪ {(idi , xi)}) because ∆(σ) ⊂ ∆(σ ∪ {(idi , xi)}), and when
a process invokes get(idi), it holds that τ ∪ {(idi , yi)} ∈ ∆(σ) because ∆(σ) is
pure of dimension dim(σ) and thus there must exist a simplex in ∆(σ) (prop-
erly) containing τ and with an output for idi . One can formally prove that this
sequential object and the one in the proof Theorem 2 define the same set of
sequential executions.

State: a pair (σ, τ) of input/output simplexes, initialized to (∅, ∅)

Function set(idi , xi)
Pre-condition:

idi ∈ id ∧ idi /∈ id(σ)
Post-condition:

σ′ ← σ ∪ {(idi , xi)}
Output:

void
endFunction

Function get(idi)
Pre-condition:

idi ∈ id ∧ idi /∈ id(τ)
Post-condition:

Let yi be any output value such that τ ∪ {(idi , yi)} ∈ ∆(σ)
τ ′ ← τ ∪ {(idi , yi)}

Output:
yi

endFunction

Figure 13: A Generic Sequential Specification of a Task T = (I,O,∆).

The formal definition of the sequential object in Figure 13 is the following.

1. For every σ ∈ I, and for every τ ∈ O, q(σ,τ) is a state in Q . The initial
state is q(∅,∅).

2. For every input vertex (idi , xi) ∈ I, inv(set, idi , xi) ∈ Inv and res(set, idi , xi) :
void ∈ Res.

3. For each output vertex (idi , yi) ∈ O, inv(get, idi) ∈ Inv and res(get, idi) :
yi ∈ Res.

4. For every state q(σ,τ),
(a) for every (idi , xi) such that idi /∈ id(σ) and σ ∪ {(idi , xi)} ∈ I,

δ(q(σ,τ), inv(set, idi , xi)) = {(q(σ∪{(idi ,xi )},τ), res(set, idi , xi) : void)},

(b) for every (idi , yi) such that idi ∈ id(σ), idi /∈ id(τ) and τ ∪ {(idi , yi)} ∈ ∆(σ),

(q(σ,τ∪{(idi ,yi )}), res(get, idi) : yi) ∈ δ(q(σ,τ), inv(get, idi)).
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Finally, one can obtain simpler and equivalent specifications for specific
tasks, like we did for the splitter in Section 3. Figure 4 presents such a specifica-
tion where σ is represented with the set Participants, τ with the sets Stop,Down
and Right and the splitter predicate in the task is literally expressed in the get
operation. An ad hoc sequential specification of the exchanger is depicted in
Figure 14 (a slight variation gives the exchanger used in [40]).

State: Sets Participants,Matching , both initialized to ∅

Function set(id)
Pre-condition: id /∈ Participants
Post-condition: Participants ′ ← Participants ∪ {id}
Output: void

endFunction

Function get(id)
Pre-condition: id ∈ Participants ∧ {id, ·} /∈ Matching
Post-condition:

Matched ← {id∗|{id∗, ·} ∈ Matching}
Free ← Participants \Matched
if id ∈ Matched then

Let id∗ be the value in Matched such that {id, id∗} ∈ Matched
else

Let id∗ be any value in Free ∪ {⊥}
Matching ′ ← Matching ∪ {{id, id∗}}

Output: id∗

endFunction

Figure 14: An ad hoc Specification of the Exchanger.

7.3. Two Additional Observations
Correctness and Completeness. In the light of the ad hoc sequential specifica-
tions in Figures 4 and 14, consider the following question: how can we know
if a given sequential specification X with get and set operations corresponds
to a task T , namely, it actually models T? That is to say, we consider the
direction opposite to Theorem 2, from sequential objects to tasks. One way to
obtain such a result is to show that there is an isomorphism between X and the
sequential automaton, say ST , obtained from the generic construction of Fig-
ure 13, instantiated with T . A second equivalent approach is to verify that X
is correct, i.e., it satisfies the input/output relation of T , and complete, namely,
it specifies all possible executions in VE (T ). Satisfying these two properties
implies that X and ST are isomorphic.

Formally, X is correct w.r.t.T if, for each of its executions E ∈ SSpec(X ),
τE ∈ ∆(σE ), where σE is the simplex containing an invocation to T for each
(complete) set operation of X in E , with same process and input value, and,
similarly, τE is the simplex containing a response from T for each (complete)
get operation of X in E , with same process output value.
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We say that X is complete w.r.t. T if for each execution of E ∈ VE (T ),
SE ∈ SSpec(X ), where SE is the sequential execution obtained from E by re-
placing each invocation to T in E with a complete set operation of X , with
same process and input value, and each response from T in E with a complete
get operation of X , with same process and output value.

On Adaptiveness. An interesting property of the splitter and Test&Set sequen-
tial objects in Figures 4 and 9 is that they do not take into account the number
of processes in the system, namely, the specification is the same for any number
of processes. This property is known as adaptiveness and can be formalized as
follows in our framework.

Consider an infinite set of processes Π = {p1, p2, . . .}. Consider a distributed
problem that is specified through an infinite family of sequential objects: for ev-
ery finite set S ⊂ Π, let XS be a sequential object for processes in S . The family
of objects is adaptive if for every two sets S ⊂ S ′, SSpec(XS ) = SSpec(XS ′ ,S ),
where SSpec(XS ′ ,S ) is the subset of SSpec(XS ′) with operations of processes
in S .

The notion of adaptiveness for tasks is defined similarly. Consider a dis-
tributed problem that is specified through an infinite family of tasks: for every
finite set S ⊂ Π, let TS = (IS ,OS ,∆S ) be a sequential object for processes
in S . The family of tasks is adaptive if for every two sets S ⊂ S ′, IS ⊂ IS ′ and
for every σ ∈ IS , ∆S (σ) = ∆S ′(σ).

8. Related Work

Linearizability Criteria. Neiger observed for the first time that some fundamen-
tal tasks, like set agreement [11] and immediate snapshot [5], cannot be modeled
as sequential objects [35] (with a single operation). Motivated by the need of
a unified framework for tasks and objects, he proposed set-linearizability [35].
Roughly speaking, a set sequential object is generalization of a sequential object
in which transitions between states involve more than one operation (formally,
a set of operations), meaning that these operations are allowed to occur con-
currently, and their results can be concurrency-dependent. Set linearizability
is the consistency condition for set-sequential objects, where one needs to find
linearizability points (same as in linearizability) and several operations can be
linearized at the same point (different from linearizability).

Later on, it was again observed that for some concurrent objects it is impossi-
ble to provide a sequential specification, and concurrency-aware linearizability
was defined [17]. Set linearizability and concurrency-aware linearizability are
very closely related, both based on the same principle: sets of operations can
occur concurrently. Also, a non-automatic verification technique for reasoning
about concurrency-aware objects is presented in [17].

Recently it was observed in [8] that some natural tasks specify concurrency
dependencies that are beyond the set-linearizability and concurrency-aware for-
malisms, hence that paper proposed interval linearizability. In an interval-
sequential object not only sets of operations can occur concurrently but some
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of these operations might be pending and then overlap operations in the next
transition; thus each operation corresponds to an interval instead of a single
point. Interval linearizability is the related consistency condition in which, for
each operation, one needs to find an interval in which the operation happens.
It is shown in [8] that interval-linearizability is complete for tasks in the sense
that it is possible to specify any task as an interval-sequential object (with a
single operation).

Although interval-sequential specifications can model any task, this approach
does not seem to be useful when one is searching for machine-checked proofs
of concurrent algorithms. The main reason is that by replacing a task with
its equivalent interval-sequential object, we obtain a transition system in which
one still needs to think in concurrent behaviors, which is usually hard to deal
with. In contrast, our proposed get-set transformation allows to “decouple” the
inherent concurrency in tasks in a way that in the resulting transition system
all events are atomic, namely, they happen one after the other.

Mechanized Verification of Distributed Algorithms. Mechanized (or machine-
assisted) verification of distributed and concurrent algorithms is usually done
with model checking or theorem proving or a combination of both. Enumerative
model-checking is the oldest fully automatic method with tools like Spin [22]
or TLC, the TLA+ model checker [27]. To avoid the well-known problem of
state explosion, various optimizations such as symmetry or reduction have been
introduced, and recent work is on going on parameterized model checking, for
instance with MCMT (Model Checking Modulo Theory) [15], Cubicle [12] or
ByMC [26]. Nevertheless, automatic verification of a distributed/concurrent
algorithm is still restricted to small finite instances of the algorithm or imposes
significant constraints on its description, due to the limited expressiveness of
the specification language.

Fully automatic theorem proving is based on a proof decision procedure. For
useful logics, it is often semi-decidable at best and heavily depends on heuristics
to achieve good performance. Recent work on SMT has made a substantial leap
forward checking complex formulae combining first-order reasoning with decision
procedures for theory such as arithmetic, equality, arrays. Nonetheless, the
overall proof of a distributed algorithm is still largely manual and, when seeking
confidence in this proof, an interactive proof assistant is the current approach.
Several examples of verification of complex distributed algorithms exist: Chord
with Alloy [43], Pastry with TLA+ [31, 30], Paxos also with TLA+ [29], snapshot
algorithms in Event-B [2], just to cite a few.

Several wait-free implementations of tasks have been mechanically proven
(e.g. [36, 42, 13]). However, to the best of our knowledge, no non-trivial algo-
rithm built upon concurrent tasks has been mechanically proved. Our intuition
for this situation is that proofs cannot be made modular and compositional when
using bricks which are inherently concurrent if their internal structure must be
visible to take into account this concurrency. Several complex and original al-
gorithms can be found in the literature such as Moir and Anderson renaming
algorithm [33] that we have considered in this paper, stacks implemented with
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elimination trees [40], lock-free queues with elimination [34]. In these papers,
the correctness proofs are intricate as they must consider the algorithm as a
whole, including the tricky part involving wait-free objects, and they have not
been mechanically checked. Our approach which exposes a more simple and
sequential specification (instead of a complex concurrent implementation) seeks
to alleviate this limitation.

9. Final Remarks and Future Work

In this paper, we showed a technique to circumvent the known impossibility
of specifying a task as a sequential object. Our technique consists in modeling
the single operation of the task with two atomic operations, set and get. This
transformation leads to a framework for developing transitional models of con-
current algorithms using tasks and sequential objects as building blocks. As a
proof of concept, we developed the first full and modular TLA+ proof of Moir &
Anderson renaming algorithm [33].

A natural extension of our work is to apply the framework to other con-
current algorithms. Another direction is to extend our techniques to the case
of refined tasks and interval-sequential objects, recently defined in [8]. These
two formalisms are generalization of the task and sequential object formalisms
with strictly more expressiveness; particularly, contrary to the task formalism,
refined tasks are multi-shot, namely, each process may perform several invoca-
tions, possibly infinitely many.

A third direction is to study if the duality between the epistemic logic ap-
proach and the topological approach shown in [16] might be useful in verifying
concurrent algorithms. Generally speaking, it is shown in [16] that a task can be
represented as a Kripke model with an action model, specifying the knowledge
obtained by processes when solving the task. It could be interesting to explore
how this knowledge could be reflected in our set/get construction and if it could
be useful in proving correctness.
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