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On quasi-Frobenius pairs of finite Morley rank

Tuna Altınel, Luis Jaime Corredor and Adrien Deloro

1st May 2023

Abstract

We clarify quasi-Frobenius configurations of finite Morley rank. 1. We remove one as-
sumption in an identification theorem by Zamour while simplifying the proof. 2. We show
that a strongly embedded quasi-Frobenius configuration of odd type, is actually Frobenius.
3. For dihedral configurations, one has dimG = 3dimC. These results rely on an interesting
phenomenon of closure of non-generic matter under taking centralisers.

§ 1. Introduction — § 2. The Key Lemma — § 3. The proofs

1 Introduction
For the hasty reader, our results are the following.

Main results. Let (C < G) be a definable, connected, quasi-Frobenius pair of finite
Morley rank. Suppose that G is U⊥2 with involutions.

• If C is soluble but G is not, then C is a Borel subgroup or (C < G) ' (K× <
PGL2(K)) (Theorem A).

• The index [NG(C) : C] is either 1 or 2, the Prüfer 2-rank is 1, and C = C◦G(i)
for its unique involution (Theorem B).

• If [NG(C) : C)] = 2, then dimG = 3 dimC (Theorem C).

(Theorem A improves work by Zamour.) We also have a question to experts of
finite group theory at the end of the introduction. We now explain and discuss.

Background. The present work uses extremely little from the general theory of
groups of finite Morley rank: the definition, basic computations on the rank (denoted
dim), connected components and the Morley degree deg, the descending chain con-
dition, and some familiarity with semisimple torsion will suffice. In particular there
is a notion of a large set: a definable subset X ⊆ G is generic if dimX = dimG.
Importantly, two generic subsets of a connected group must intersect. [Che05] con-
tains enough background. We add the definition of a Borel subgroup: a definable,
connected, soluble subgroup maximal as such. As always, U⊥2 means: no infinite
elementary abelian 2-groups. So U⊥2 with involutions is our way to say ‘of odd type’.
Recall that in that case, Sylow 2-subgroups are finite extensions of 2-tori, the latter
being Cd2∞ , where C2∞ is the usual Prüfer quasi-cyclic 2-group and for an integer d
called the Prüfer 2-rank of G. Last, if an involution i acts on a definable, connected
subgroup H with C◦H(i) = 1, then i inverts H and H is abelian [BN94, ex. 12 p. 78].
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Quasi-Frobenius pairs. Quasi-Frobenius pairs were introduced and first studied
in [DW20] but they received a proper name only in [Zam22].

Definition. A pair of groups (C < G) is quasi-Frobenius if the following holds:

• C is quasi self-normalising in G, viz. [NG(C) : C] <∞;

• C has trivial intersections with proper conjugates (for short, ‘C is ti’), viz. (∀g ∈
G)(Cg = C ∨ Cg ∩ C = 1).

This extends the classical notion of a Frobenius group (which could more accurately
be called a Frobenius pair), where C is ti with NG(C) = C. The following pairs are
quasi-Frobenius:

• (K× < PGL2(K)) for algebraically closed K;

• (SO2(R) < SO3(R)) for real closed R.
The study of non-Frobenius, quasi-Frobenius pairs therefore lies at the heart of

geometric algebra and should be undertaken seriously, at least under model-theoretic
assumptions. In the present paper we focus on finite Morley rank. A complete study
in the o-minimal case is planned in [DO22]. The analogue definition for finite groups
would replace [NG(C) : C] < ∞ by [NG(C) : C] = 2, which is fully justified by our
Theorem B; this natural condition seems not to have received the attention it deserves.
See the end of the introduction. We return to model theory.

We say that a pair (C < G) is definable, resp. connected, if both G and C are.

Remarks.

• As opposed to the Frobenius case [BN94, Proposition 11.19], there is no ‘auto-
matic definability’ for C in the quasi-Frobenius setting. Eg. let G be an infinite
vector space over Fp, treated as a pure group, and C be a hyperplane. Then C
is not definable but the pair is quasi-Frobenius.

• However, if G is connected and C is definable, then C is connected. Otherwise
C◦ and Č = C \C◦ are two ti subsets; however NG(C◦) = NG(C) = NG(Č), so
by a quick dimension computation, both

⋃
g∈G(C◦)g and

⋃
g∈G Č

g are generic.
Therefore they meet: a contradiction.

State of the art. A strong division line separates two classes of quasi-Frobenius
configurations. A pair (H < G) is strongly embedded if H contains involutions, but
H ∩Hg never does for g /∈ NG(H).

Fact 1 ([DW20, Proposition 1]). Let (C < G) be a definable, connected, quasi-
Frobenius pair of finite Morley rank. Suppose that G is U⊥2 with involutions. Then:

• either [NG(C) : C] = 2, C is abelian, NG(C)\C is a set of involutions inverting
C, the Prüfer 2-rank is 1, and a lot more is known (‘dihedral configuration’);

• or [NG(C) : C] is odd (possibly 1) and (NG(C) < G) is strongly embedded.

Throughout, ‘dihedral’ and ‘strongly embedded’ will always refer to this main
dichotomy. Ideally one would hope strongly embedded configurations to be soluble,
but this seems out of reach. It is however expected that the dihedral case should
come from the algebraic world.
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Conjecture (‘A1 conjecture’ from [DW20]). Let (C < G) be a definable, connected,
quasi-Frobenius pair of finite Morley rank. Suppose that G is U⊥2 with involutions.
Suppose the configuration is dihedral. Then G ' PGL2(K).

This conjecture was devised to remove one of the possible pathologies surviving
[DJ16], namely CiBo2, which stands for ‘Centraliser of an involution is a Borel
subgroup with Weyl group of order 2’. A favourable indication towards A1 was
obtained by Zamour, who however phrased it quite differently from the following.

Fact 2 ([Zam22, Théorème 1.0.6]). Let (C < G) be a definable, connected, quasi-
Frobenius pair of finite Morley rank. Suppose that G is U⊥2 with involutions. Suppose
further that C is soluble but G is not. Last, suppose that the configuration is dihedral.
Then:

• either C is a Borel subgroup;

• or (C < G) ' (K× < PGL2(K)).

The striking analogy between Fact 2 in this form and the series [CJ04; Del07a;
DJ16] suggests that quasi-Frobenius configurations of finite Morley rank behave like
N◦◦ -groups. Zamour has replaced a global smallness assumption by a local, structural
one; he substituted the use of unipotence in [DJ16, Proposition 3] with his classifica-
tion of soluble, quasi-Frobenius pairs (Fact 5 below). Hence ad hoc reasoning on an
elementary Jordan decomposition entirely substitutes Burdges’ version of Bender’s
local analysis. This is demonstrated in the key lemma (§ 2).

Fully exploiting the analogy dictates what to prove next: remove assumptions on
the Weyl group, study strongly embedded configurations, and get dimension estimates
in the non-algebraic case. The first two results rely on the key lemma of § 2, which
brings unity to the present work.

Our first result. Zamour’s proof of Fact 2 can be greatly simplified. Moreover,
we remove an unnecessary assumption.

Theorem A. Let (C < G) be a definable, connected, quasi-Frobenius pair of finite
Morley rank. Suppose that G is U⊥2 with involutions. Suppose further that C is
soluble but G is not. Then the configuration is dihedral and:

• either C is a Borel subgroup (‘CoBo2’);

• or (C < G) ' (K× < PGL2(K)).

‘CoBo’ means ‘theComplement is aBorel subgroup’, by analogy with the classical
pathologies ‘CiBo’ discussed above. Zamour makes claims about a possible inductive
strategy for outright elimination of CoBo2, which we deem bold. He suggests proving
that C is properly contained in a Borel subgroup. But as predicted by [CJ04; Del07b;
DJ16], the group C (if soluble) should be maximal as such, viz. a Borel subgroup. This
has been known since [CJ04] though proved by different methods in different settings.
Zamour’s ‘weaker’ assumption that all Borel subgroups are generic is already known
to contradict N◦◦ -ness [Del07b, Proposition 4.1.35]. In short if Zamour’s purported
strategy worked, it would eliminate CiBo2 by a naive argument and we do not believe
there is a naive one. (We would love to be proved wrong and offer cheese in reward.)
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Our second result. Although quasi-Frobenius pairs are mostly interesting in the
dihedral case via the A1 conjecture, we also radicalise strongly embedded configura-
tions. We prove the following.

Theorem B. Let (C < G) be a definable, connected, quasi-Frobenius pair of finite
Morley rank. Suppose that G is U⊥2 with involutions. Then the index [NG(C) : C] is
either 1 (‘strongly embedded’) or 2 (‘dihedral’). In either case the Prüfer 2-rank is 1
and C = C◦G(i) for its unique involution.

Hence, if G is U⊥2 with involutions, then ‘quasi-Frobenius, strongly embedded’
reduces to ‘Frobenius’.

Remarks.

• We do not claim that Sylow 2-subgroups are connected; they could be as in
SL2(K) in characteristic not 2. A highly pathological Frobenius pair (C < G)
with C ' SL2(K) has been haunting researchers in the topic, and has not yet
vanished.

• We do not exclude the possibility of quasi-Frobenius pairs with no involutions
andNG(C) > C. (One would expect to use [BC09, Theorem 5] to go any further,
which is wide open.)

• Elimination of [DJ16]’s CiBo1, even assuming disjointness of CG(i), is a notouri-
ously challenging open problem. In the quasi-Frobenius setting, things could
even be worse with a non-soluble C.

Our third result. The following is absent from [DW20] and [Zam22].

Theorem C ([Del07b, Corollaire 4.1.31]; [Del08, Corollaire 3.27]). Let (C < G) be
a definable, connected, quasi-Frobenius pair of finite Morley rank. Suppose that G is
U⊥2 with involutions, and the configuration is dihedral. Then dimG = 3 dimC.

Remarks.

• This is of course unambitious compared to the A1 conjecture, which would
immediately imply Theorem C.

• There is no dimension estimate in the strongly embedded case. (See the proof.)

Loose ends. We list issues not resolved by the present work.

1. Definably linear, quasi-Frobenius pairs. Zamour has some unpublished material
in his PhD.

2. Study of quasi-Frobenius pairs if there are no involutions; in particular proving
that N = C. (This did not seem of utmost interest to all three authors.)

3. Solubility in the strongly embedded case. This is likely to be very hard as one
may add strong assumptions such as N◦◦ and still get a hard problem [DJ16].

4. The A1 conjecture. Under exploration by Wiscons and D.

Moreover, Theorem B motivates the following question in finite group theory.

Question. What can be said about quasi-Frobenius pairs where G is finite and [NG(H) :
H] = 2? The question is asked both for soluble and non-soluble G; both with and
without the cfsg; both with and without character theory.
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2 The Key Lemma
The proofs of Theorems A and B rely on a common key lemma, missed in [Zam22,
Théorème 4.5.5].

Notation. Let Γ =
⋃
g∈G C

g be the set of bright elements and ∆ = G \ Γ be the set
of dark elements.

Light matter is generic, viz. Γ ⊆ G is a generic inclusion. Combining this with
genericity of centralisers of decent tori [Che05], we find that every toral element is
bright. In particular, if G is U⊥2 , then any involution lies in a unique conjugate of C.
Dark elements do not give sufficient grip; but dark, strongly real elements will. They
exist by [DW20, Theorem A].

Key Lemma. Let (C < G) be a definable, connected, quasi-Frobenius pair of finite
Morley rank. Suppose that G is U⊥2 with involutions. Let d ∈ G be dark and inverted
by an involution i. Then A = C◦G(d) is dark, abelian and inverted by i. Moreover,
for a ∈ C◦G(d) \ {1}, one has C◦G(d) = C◦G(a).

Proof. Say d = ij with j another involution, and let A = C◦G(d). Let Ci be the
unique conjugate of C containing i, and define Cj likewise. Then i normalises A, and
C◦A(i) = C◦G(i, j) ≤ Ci ∩ Cj . If Ci = Cj then d = ij ∈ Ci is bright, a contradiction.
Thus Ci 6= Cj and C◦A(i) = 1; therefore i inverts A (which is abelian). So does j.

Suppose some c ∈ A is bright. Up to conjugacy we may suppose c ∈ C; now
i and j invert c so they normalise C. Let N = NG(C). If [N : C] is odd, then
i, j, d ∈ C: a contradiction. So by Fact 1, the configuration is dihedral and in
particular [N : C] = 2. Now exactly one of i, j is in C and the other in N \ C.
But the involution in C is unique so d = ij is an involution, a contradiction again.
Therefore A consists of dark elements.

Finally let a ∈ A \ {1}. We have proved that a is dark and inverted by i. So
the above applies: C◦G(a) is inverted by i, and j, hence centralised by d. Thus
C◦G(a) ≤ C◦G(d) ≤ C◦G(a) by abelianity. We are done.

Remarks.

• One easily proves that A is ti, and maximal as a definable, connected, nilpotent
group.

• A naive Jordan decomposition could be deduced; it is implicit in the identifica-
tion process of Theorem A.

• By ti-ness and non-genericity of dark matter, A is not almost self-normalising
in G. However Borel subgroups containing A will tend to be non-generic. See
our discussion of Theorem A in the introduction.

5



3 The proofs
All proofs are independent; the first two rely on the key lemma.

3.1 Proof of Theorem A
A possible proof is to invoke Theorem B, then rely on two subcases: Fact 2 and
[Zam22, Théorème 1.0.7]. This is artificial and convoluted; moreover we found The-
orem B only afterwards, as a by-product of the key lemma.

Instead our proof simplifies Zamour’s. It still uses some material from [Zam22],
namely the following three facts which generalise their ‘Frobenius’ counterparts by
Nesin.

Fact 3 (induced structure: [Zam22, Lemme 4.2.1], extending [BN94, Lemma 11.10]).
Let (C < G) be a definable, connected quasi-Frobenius pair of finite Morley rank.
Let H < G be definable and connected. If 1 < H ∩ C < C then (H ∩ C < H) is
another definable, connected, quasi-Frobenius pair. If C1, C2 are G-conjugates of C
with H ∩ Ci 6= 1 then C1 and C2 are H-conjugate.

Fact 4 (non-simple splitting: [Zam22, Proposition 4.2.3], extending [BN94, Lemma 11.21]).
Let (C < G) be a definable, connected quasi-Frobenius pair of finite Morley rank. Sup-
pose that C has an involution, and there is an infinite, definable, connected, normal
A / G avoiding C. Then G splits with an abelian kernel and complement C.

Fact 5 (soluble analysis: [Zam22, Lemme 4.3.1], extending [BN94, Theorem 11.32]).
Let (C < G) be a definable, connected quasi-Frobenius pair of finite Morley rank.
Suppose that G is soluble. Then (C < G) is a Frobenius pair; moreover, G splits as
G = G′ o C and C is abelian. Last,

⋃
g∈G C

g covers G \G′.

The proof of Theorem A starts here.

Notation.

• Let (C < G) be a definable, connected, quasi-Frobenius pair of finite Morley
rank. Suppose that G is U⊥2 with involutions.

• Suppose that C is soluble but G is not.
• Fix a Borel subgroup B ≥ C.
• Suppose B > C. This implies at once that B is not abelian.
• Let i be an involution. Following Bender, for k ∈ iG let Tk = {b ∈ B : bk = b−1}.
(Here B remains implicit in the notation.)

Proposition A.1 (cf. [Zam22, Lemme 4.6.3]).

(i) {k ∈ iG \NG(B) : dimTk ≥ dimB − dimCG(i)} is generic in iG.

Remarks.

• One needs only solubility of N◦G(B) so far. The inclusion C < B is used from (ii)
on, and the extra clause that B is a Borel subgroup from (iii) on.

• Actually solubility of N◦G(B) can be proved using C < B and solubility of B.
This is done in (iii).

• The case where C = C◦G(i) is a Borel subgroup yields no information since
Tk-sets are finite [CJ04; Del08; DJ16].
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Proof.

(i) As a contradiction using deg iG = 1, suppose iG ∩ NG(B) generic in iG. For
g ∈ G let Xg = iG ∩NG(Bg) = (iG ∩NG(B))g, a generic subset of iG. By the
dcc, there are g1, . . . , gn with:

L =
⋂
g∈G

NG(B)g =

n⋂
r=1

NG(B)gr .

Now Y = Xg1∩· · ·∩Xgn ⊆ L, and Y is generic in iG. So K = L◦ is a non-trivial,
definable, connected, normal subgroup. By solubility of N◦G(B), K is soluble.
If K ∩ C = 1, then the configuration splits by non-simplicity (Fact 4). Since K
and C are soluble, so is G: a contradiction. So K ∩ C 6= 1 and (K ∩ C < K)
is a quasi-Frobenius pair by Fact 3. But K E G. By a Frattini argument and
conjugacy in the induced structure (Fact 3), G = K ·NG(C) = K ·N◦G(C) = K ·C.
Since both are soluble, so is G: a contradiction. So iG \NG(B) is generic in iG.
The rest is the Bender computation [DJ16, Proposition 2], spreading iG in trans-
lates of B.

Since (C < B) is a quasi-Frobenius pair by Fact 3, it bears its own notion of
darkness. (ii) says it is induced by that of (C < G).

Proposition A.2.

(ii) B′ 6= 1 is the set of G-dark elements of B;
(iii) N◦G(B′) = B;
(iv) for g /∈ NG(B) one has B′ ∩Bg = 1. In particular, B ∩Bg is abelian.

Proof.

(ii) Recall B′ 6= 1 since otherwise B ≤ N◦G(C) = C. By soluble splitting (Fact 5),
B = B′oC and C is abelian. For i an involution in C, one gets C◦B′(i) = 1 so i
inverts B′. Hence B′ = [B, i] is abelian. By Fact 5, B ∩∆ ⊆ B′. But conversely
if x ∈ B′∩Cg\{1} for some G-conjugate of C, then B′ ≤ C◦G(x) ≤ Cg. Therefore
(B ∩ Cg < B) is a quasi-Frobenius pair, so B ∩ Cg is a B-conjugate of C by
Fact 3. Thus Cg ≤ B, and Cg is a B-conjugate of C. Now x ∈ B′ ∩ Cg is a
contradiction. This proves B′ ⊆ ∆.

(iii) Let H = N◦G(B′) ≥ B. Since C < B ≤ H, we find that (C < H) is a quasi-
Frobenius pair by Fact 3. But 1 < B′ / H so by non-simple splitting (Fact 4),
H splits with an abelian kernel and C as a complement. Hence H is soluble
(this does not use (i) but implies solubility of N◦G(B) ≤ H). Finally using the
definition of a Borel subgroup, H = B.

(iv) Keep (ii) in mind. Let d ∈ (B′ ∩ Bg) \ {1}. Then d ∈ B′ is dark, so d ∈
Bg ∩∆ = (Bg)′. Then B′, (Bg)′ ≤ C◦G(d) which is abelian by the key lemma;
now (Bg)′ ≤ C◦G(B′). But by (iii), the key lemma and the inner structure of
B one has C◦G(B′) ≤ C◦B(B′) ⊆ ∆ ∩ N◦G(B′) ⊆ ∆ ∩ B = B′, and therefore
(Bg)′ = B′. Take connected normalisers and apply (iii) again to find Bg = B, a
contradiction. Therefore (B ∩Bg)′ ≤ B′ ∩Bg = 1, and B ∩Bg is abelian.

So easily obtained an intersection control emphasises the strength of the ‘quasi-
Frobenius’ assumption: it entirely bypasses the local analysis of [DJ16].
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Proposition A.3 (cf. [Zam22, Lemme 4.6.5]).

(v) For k generic in iG, the set Tk equals (B ∩Bk)◦ and is a conjugate of C;

(vi) the configuration is dihedral.

Proof.

(v) Fix generic k. By (i), k does not normalise B but dimTk ≥ dimB − dimCG(i).
By (iv), B ∩Bk is abelian. So Tk is an abelian group and Tk ≤ B ∩Bk.
Suppose that Tk contains a dark element d; then d ∈ B′ by (ii), and d is strongly
real inverted by k. By the key lemma, k inverts C◦G(d) ≥ B′, so k normalises
B′. Hence k ∈ NG(N◦G(B′)) = NG(B) by (iii), a contradiction. So Tk consists
only of bright elements. Now if s, t ∈ Tk and t ∈ C, then by abelianity Cs = C
and s ∈ NB(C) = C by Fact 5. So all elements are in the same conjugate; we
may assume Tk ≤ C.
But then Tk = T kk ≤ Ck, so C = Ck ≤ B ∩ Bk. We conclude. Let Ck be
the conjugate of C containing k. If X = B ∩ Ck 6= 1, then both (X < B)
and (C < B) are quasi-Frobenius pairs. By conjugacy in the induced structure
(Fact 3), we find dimX = dimC, so Ck ≤ B and k ∈ Ck ≤ B, a contradiction.
Therefore X = 1 and C◦B∩Bk(k) ≤ B ∩ Ck = 1, so k inverts (B ∩ Bk)◦. This
means (B ∩Bk)◦ ≤ Tk. Summing up,

Tk ≤ C ≤ (B ∩Bk)◦ ≤ Tk,

as wanted.
(vi) Now k ∈ NG(C) \ C: the configuration is dihedral by Fact 1.

Remarks.

• (vi) is the reason why Zamour’s assumption on [N : C] is unnecessary.
• Mind the connected component when proving that k inverts (B ∩ Bk)◦. One

may not claim CG(k) ≤ Ck, as it is false in the dihedral case.
• One could prove Tk = B ∩Bk, but this is not used.

Proposition A.4.

(vii) G ' PGL2(K).

Proof.

(vii) We first observe dimB′ ≥ dimC. Let c ∈ C \ {1} centralise some d ∈ B′ \ {1}.
By Fact 5, d normalises C◦B(c) = C and therefore d ∈ C: a contradiction.
So the action of C on B′ is free, implying dimB′ ≥ dimC. (Using dimC =
dimTk ≥ dimB′ and linearisation methods we even have equality and can push
to B ' GA1(K) for some field K, but this is not used.)
Thanks to (v), to generic k ∈ iG associate the conjugate of C equal to Tk. The
range is contained in {Cb : b ∈ B} = {Cb : b ∈ B′} with same dimension as B′.
The fibre is easily seen to have dimension exactly that of C. Thus:

dimG− 2 dimC = dim iG − dimC ≤ dimB′.

We next show NG(B) = B. By a Frattini argument and Fact 3, NG(B) =
B · (NG(B) ∩ NG(C)). Suppose there is x ∈ NG(B) ∩ NG(C) \ C. Since the
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configuration is dihedral by (vi), Fact 1 implies that x is an involution inverting
C. It also normalises B′, which consists of dark matter by (ii): so CB′(x)◦ = 1,
and x inverts B′. So x inverts both C (which is 2-divisible) and B′; therefore C
centralises B′, a contradiction. So NG(B) = B.
Since for g /∈ B one has B′ ∩Bg = 1 by (iv), we deduce:

dimG ≥ dimB + dimB′ ≥ dimB + dimC = dimB′ + 2 dimC ≥ dimG.

This is enough to get the Bruhat decomposition G = BgB′ t B for g /∈ B
and retrieve the (B,N)-pair, like in [Zam22] or [DJ16, Proposition 3], or any
identification theorem for PGL2(K) known so far in the theory of groups of finite
Morley rank.

3.2 Proof of Theorem B
The proof adapts [BCJ07]. It is independent from § 3.1 but still uses the key lemma
of § 2.

Notation.

• Let (C < G) be a definable, connected, quasi-Frobenius pair of finite Morley
rank. Suppose that G is U⊥2 with involutions.

• Let N = NG(C). If [N : C] is even then we are done by Fact 1. So suppose that
[N : C] is odd. By Fact 1, (N < G) is strongly embedded.

• Let I be the set of involutions in G and Ǐ = I \ N . Notice that since [N : C]
is odd, Ǐ = I \ C. By strong embedding, I is a single G-conjugacy class, and
I ∩N = I ∩ C is a single N -conjugacy class [BN94, Theorem 10.19].

Proposition B.1 (a first generic set).

(i) Ǐ is generic in I;

(ii) the product map µ : C × Ǐ → G has trivial fibres;

(iii) C · Ǐ is generic in G;

(iv) for any i ∈ I ∩ C one has C = C◦G(i);

(v) non-trivial strongly real elements of C are involutions;

(vi) it is enough to prove N = C.

Proof.

(i) Otherwise I ∩ N is generic in I; by strong embedding the latter is a single G-
conjugacy class, so it has degree 1. Then for g ∈ G \N , one has (I ∩N) ∩ (I ∩
N)g 6= ∅, against strong embedding of (N < G).

(ii) If c1k1 = c2k2 in obvious notation with (c1, k1) 6= (c2, k2), then 1 6= c−11 c2 = k1k2
is an element of C inverted by k1. Since C is ti, it follows k1 ∈ N , against k1 ∈ Ǐ.

(iii) Let i ∈ C be an involution; since C is ti, one has C◦G(i) ≤ C. The map µ has
trivial fibres by (ii), so using (i):

dim(C·Ǐ) = dim(C×Ǐ) = dimC+dim I ≥ dimC◦G(i)+dimG−dimC◦G(i) = dimG,

proving genericity.
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(iv) In the proof of (iii) we also have equality in dimC◦G(i) ≤ dimC, so by connec-
tedness of the latter, C = C◦G(i).

(v) Let 1 6= k` ∈ C be a product of two involutions. Then k inverts k` so it
normalises C; since [N : C] is odd, k ∈ C and ` ∈ C likewise. Now by (iv) both
are central in C, so k` is an involution too.

(vi) Suppose this holds. By strong embedding and (iv), N = C = C◦G(i) conjug-
ates its involutions, so i is the only involution in C; hence the Prüfer 2-rank
of G, which equals that of C, is exactly 1. (One could also rely on [BN94,
Lemma 11.20].)

We henceforth assume C < N and derive a contradiction.

Notation.

• Let σ ∈ N \ C.
• Also let Iσ = (CσI) ∩ Ǐ.

Proposition B.2 (a generically dark coset).

(vii) Iσ is generic in I;

(viii) we may suppose that σ is strongly real and dark; we do so from now on;

(ix) C◦C(σ) = 1;

(x) σC is generic in σC.

Proof.

(vii) By (iii), C · Ǐ ⊆ C · I is generic in G; translating, so is σCI = CσI. By
connectedness, (CσI) ∩ (CǏ) = CIσ is generic in G as well. But Iσ ⊆ Ǐ so by
(ii), one finds:

dimC + dim I = dimG = dim(C · Iσ) = dimC + dim Iσ,

which implies dim Iσ = dim I.

(viii) It follows from (vii) that Iσ 6= ∅. So there is an equation cσk = ` in obvious
notation. Now cσ is strongly real; up to considering this element instead of our
original σ, we shall suppose that σ is strongly real. If σ is bright, then it lies
in a conjugate of C. By (v), σ is an involution of N . But σ ∈ N , so σ ∈ C: a
contradiction.

(ix) By (viii) we may apply the key lemma: C◦G(σ) consists of dark matter. In
particular, C◦C(σ) = 1.

(x) Computing modulo C one has the inclusion σC ⊆ σC. By (ix) one has C◦C(σ) =
1, so dim(σC) = dimC. Hence σC is a generic subset of σC.

Notation. Let Ž = CG(σ) \N .

Proposition B.3 (a second generic set and contradiction).

(xi) Ž is generic in CG(σ);

(xii) dim(CŽC) = 2 dimC + dimCG(σ);

(xiii) Every k ∈ Iσ inverts a unique element of σC;
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(xiv) dim I ≤ dimC + dimCG(σ);
(xv) CŽC is generic in G;
(xvi) contradiction.

Proof.
(xi) One has dim(CG(σ)∩N) = dimC◦N (σ) = dimC◦C(σ) = 0 by (ix), so Ž is generic

in CG(σ).
(xii) We shall prove that the product map C× Ž×C → G has finite fibres. Consider

equations of the form c1zc2 = c′1z
′c′2, in obvious notation. Since C is a subgroup,

we may assume c′1 = c′2 = 1, so this reduces to treating equations of the form
c1zc2 = z′. Applying σ yields:

cσ1 zc
σ
2 = z′σ = z′ = c1zc2,

whence z−1[c1, σ]z = [c−12 , σ] ∈ Cz ∩C. By definition z /∈ N , so [c1, σ] = 1. But
this happens only finitely often by (ix). Likewise for c2. So fibres are finite and
the desired equality follows from (xi).

(xiii) By definition, every k ∈ Iσ can be written k = cσ` with c ∈ C and ` ∈ I. Then
k inverts cσ ∈ Cσ = σC. Now suppose that σc1, σc2 ∈ σC are two elements
inverted by k. Let d = c−11 c2. Then

dk = (c−k1 σ−k)(σkck2) = (σc1)−k(σc2)k = σc1 · c−12 σ−1 ∈ Ck ∩ Cσ
−1

= Ck ∩ C.

Since k ∈ Iσ ⊆ Ǐ does not normalise C, we find d = 1, as desired.
(xiv) By (xiii), the following map is well-defined and definable: f : Iσ → σC taking k

to the only element of σC inverted by k. We bound the dimension of its fibres.
First, f(Iσ) ⊆ σC . Indeed, let τ ∈ f(Iσ). Then τ is strongly real; not being an
involution, it is dark by (v). Now by (x), τC is generic in σC, hence it intersects
σC : and τ is a C-conjugate of σ.
Therefore if f(`) = f(k) = τ , then k` ∈ CG(τ) and ` ∈ kCG(τ). But τ and σ
are conjugate, so:

dim f−1(k) ≤ dim (kCG(τ)) = dimCG(τ) = dimCG(σ).

Finally by (x) and (vii):

dimC = dim (σC) = dimσC ≥ dim f(Iσ) ≥ dim Iσ−dimCG(σ) = dim I−dimCG(σ).

(xv) Recall from (iv) that C = C◦G(i), so dimG = dim I + dimC. Using (xi), (xii)
and (xiv), one gets:

dim(CŽC) = 2 dimC + dimCG(σ) ≥ dimC + dim I = dimG,

as desired.
(xvi) By (iii) and (xv), both sets CǏ and CŽC are generic in G, which is connected.

So said sets are not disjoint, yielding an equation of the form ck = c1zc2, in
obvious notation. Conjugating then left-translating by elements of C, we reduce
to ck = z with c ∈ C, k ∈ Ǐ, and z ∈ Ž. Therefore cσkσ = ck, so [c, σ] ∈ C is
trivial or strongly real inverted by k. Since k ∈ Ǐ does not normalise C, we find
that σ centralises c; it thus centralises k = c−1z as well. So σ ∈ CG(k) = C◦G(k)
by Steinberg’s torsion theorem [Del09] and strong embedding. Now σ is bright,
violating (viii).
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3.3 Proof of Theorem C
Here again the argument is independent from § 3.1 and § 3.2. We reproduce the proof
of [Del07b, Corollaire 4.1.31] or [Del08, Corollaire 3.27].

Notation.

• Let (C < G) be a definable, connected, quasi-Frobenius pair of finite Morley
rank. Suppose G is U⊥2 with involutions, and the configuration is dihedral.

• Let I be the set of involutions, which is a single conjugacy class; the structure
of the Sylow 2-subgroup is known by [DW20, Proposition 1].

Proposition C.1.

(i) Let (i, j) be a generic pair of involutions. Then there is a unique involution
commuting to both.

(ii) dimG = 3 dimC.

Proof.

(i) Existence is given by [DW20, Proposition 1 (ix)]. We prove uniqueness. Suppose
i, j are independent involutions and k 6= ` are two involutions commuting with
both i and j.
If k` is an involution, then k and ` commute: so {1, i, k, `} is a four-group,
forcing i = k` = j likewise, a contradiction. So k` is not an involution, and
k` ∈ CG(i) implies k` ∈ C◦G(i). Since k` ∈ C◦G(j) likewise, we find i = j, a
contradiction again.

(ii) The above defines a map f : J→ I, where J ⊆ I × I is a generic subset. Now f
is clearly surjective by conjugacy. Moreover if f(i′, j′) = k, then i′, j′ ∈ CG(k);
conversely, any pair from CG(k)\C◦G(k) is mapped to k. So fibres have dimension
exactly 2 dimC. Altogether,

dim I = dim J− 2 dimC = 2 dim I − 2 dimC,

so that dimG− dimC = dim I = 2 dimC and dimG = 3 dimC.
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