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Abstract. This article is concerned with the local boundary null-controllability
of a 1-D system of two-parabolic nonlinear equations (often referred as reaction-

diffusion system) with coupled boundary conditions by means of a scalar con-
trol. The control force is exerted on one of the two state components through

a Neumann condition at the left end of the boundary while the other com-

ponent simply satisfies the homogeneous Neumann condition at that point.
On the other hand, at the right end of the boundary, the states are coupled

through the so-called δ′-type condition. Upon linearization around the station-

ary point (0, 0), we apply the well-known moments method to prove the global
null-controllability of the associated linearized system with explicit control cost

MeM/T as T → 0+. Then, we show the local null-controllability of the main

system by employing the source term method developed in [29] followed by the
Banach fixed point theorem.

1. Introduction and main results.

1.1. The system under consideration. In this paper, we address the bound-
ary null-controllability result of a 2 × 2 nonlinear parabolic system with coupled
boundary conditions by means of one Neumann boundary control. More precisely,
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for given finite time T > 0, we consider the following system

yt − yxx = f
(
y, z,

∫ 1

0
y,
∫ 1

0
z
)
, in (0, T )× (0, 1),

zt − zxx = g
(
y, z,

∫ 1

0
y,
∫ 1

0
z
)
, in (0, T )× (0, 1),

yx(t, 0) = q(t), zx(t, 0) = 0, in (0, T ),

yx(t, 1) = zx(t, 1), in (0, T ),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (0, T ),

y(0, x) = y0(x), z(0, x) = z0(x), in (0, 1),

(1)

where α ≥ 0 is some real parameter and (y0, z0) is the given initial data which we
choose from the space [L2(0, 1)]2.

In the above system, a control function q ∈ L2(0, T ) (to be determined) is applied
through the Neumann condition of only one state (namely y) while the other state z
simply satisfies the homogeneous Neumann boundary condition at the point x = 0.
On the other hand, the states are coupled at the boundary point x = 1 in terms
of the “equality condition of their normal derivatives” and a “combined Robin-
type condition”. In the literature, this kind of combined conditions (appearing at
the point x = 1) is typically called the δ′-type condition, see for instance [8, p. 26,
Chapter 1.4.4] or [18]. In fact, it has been addressed in [18] that the wavefunction of
a quantum mechanical particle living on a graph often satisfies the δ′-type boundary
conditions at the junction points.

The nonlinear functions f and g in (1) are given by{
f
(
y, z,

∫ 1

0
y,
∫ 1

0
z
)

= −yz + ay2 + bz2 + r1(t)y,

g
(
y, z,

∫ 1

0
y,
∫ 1

0
z
)

= yz + cy2 + dz2 + r2(t)z,
(2)

where a, b, c, d are L∞((0, T )× (0, 1)) functions and
r1(t) = α1

∫ 1

0

(
ψ1,1(x)y(t, x) + ψ2,1(x)z(t, x)

)
dx,

r2(t) = α2

∫ 1

0

(
ψ1,2(x)y(t, x) + ψ2,2(x)z(t, x)

)
dx,

(3)

with α1, α2 are real constants and ψ1,j , ψ2,j ∈ L∞(0, 1) for j = 1, 2.
Observe that the nonlinear model (1)–(2) is actually a reaction-diffusion system

which often describes several biological phenomenon or chemical reactions. In the
literature, such system is commonly known as “Lotka-Volterra” model with diffu-
sion (without any boundary conditions and control for the moment, let say), that
sometimes characterize the dynamics of a biological system where two species: prey
and predator interact between each other; see for instance [26,31,35]. In our model,
we consider that the two species are interacting in the reference domain (through
the nonlinear functions f, g) as well as at one boundary end (through the coupled
conditions at x = 1). Then, our goal is to put an external control force only on
one species from the other boundary end to locally control both the species at a
given time T . In this regard, we refer the very detailed work [36], where several
results concerning the controllability of reaction-diffusion systems in biology and
social sciences have been addressed.
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1.2. Bibliographic comments. The parabolic boundary control systems with less
number of control(s) than equations can be a delicate issue in various situations and
that there is lack of enough mathematical tools to tackle with these systems. In
fact, unlike the scalar problems the boundary controllability for such systems is no
longer equivalent with the distributed one, as it has been proven for instance in [22].
Moreover, the very powerful Carleman technique is often inefficient in that context.
Among some fascinating works on coupled control systems, we point out [22] where
the authors have proved a necessary and sufficient condition for boundary null-
controllability of some 2× 2 coupled parabolic system with single Dirichlet control.
A more general result regarding the controllability to the trajectories of an n × n
parabolic system with m(< n) Dirichlet controls (applied on a part of a boundary)
is available in [2]. In those works, the authors actually proved a general Kalman
condition which is necessary and sufficient for their controllability results.

To the best of our knowledge, most of the boundary controllability results for a
system with less controls than the equations are in 1-D and the reason behind is that
the spectral analysis of the associated adjoint elliptic operator helps to deal with the
so-called “moments technique” (initially developed by Fattorini and Russell [20,21])
to construct a control. In this regard, we mention that some multi-D (in cylindrical
geometry) results have been developed in [1, 7], which need a sharp estimate of
the control cost for the associated 1-D problem and a Lebeau-Robbiano spectral
inequality for higher dimensions. We further refer to [3] where the authors made a
survey of several recent results concerning the controllability of coupled parabolic
systems.

The above references mainly address the parabolic systems with internal cou-
plings. Let us mention that several systems with boundary couplings use to appear
when one considers the system of pdes on metric graphs, e.g., [8, 27, 30]. Concern-
ing the controllability issues for such systems, we first address [16, Chapters 6, 8]
where the authors have discussed some controllability results of wave, heat and
Schrödinger systems in the network when some control(s) is (are) exerted on some
of the vertices; see also the survey paper [5]. We also refer the works [4, 12, 13, 14]
where several controllability results have been achieved in the setting of metric graph
and certainly, in those works, the couplings are arisen in the junction points of the
graph. Very recently, the boundary null-controllability of some interior-boundary
coupled linear parabolic systems has been addressed in [10] where the boundary
coupling is chosen by means of a Kirchhoff-type condition.

In the context of controllability of nonlinear systems, let us first mention [24, Sec.
4, Chap. I] by Fursikov and Imanuvilov where a small-time local null-controllability
of semilinear heat equations has been proved using a perturbation argument. In
2000, Barbu [6], independently Fernández-Cara and Zuazua [23] proved the small-
time global null-controllability of semilinear heat equations where the nonlinear

functions satisfy the growth condition |s| ln3/2(1 + |s|). More recently, the large-
time global null-controllability has been established in [28] for the nonlinearities F
growing slower than |s| ln2(1 + |s|) verifying sF (s) ≥ 0 and 1

F ∈ L1([0,+∞)). Last
but not the least, we mention [25] where the local null-controllability of a nonlocal
semilinear heat equation has been intensively investigated along with numerical
illustrations.

In the present work, we shall deal with the local null-controllability of the para-
bolic system (1) and, as far as we know, the δ′-type condition has not been treated
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in the literature from the control theoretic perspective. Moreover, we consider the
nonlocal nonlinearities in this work.

1.3. Linearized system and functional setting. For any given boundary pa-
rameter α ≥ 0, the linearized system around the equilibrium point (0, 0) is given
by 

yt − yxx = 0, in (0, T )× (0, 1),

zt − zxx = 0, in (0, T )× (0, 1),

yx(t, 0) = q(t), zx(t, 0) = 0, in (0, T ),

yx(t, 1) = zx(t, 1), in (0, T ),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (0, T ),

y(0, x) = y0(x), z(0, x) = z0(x), in (0, 1).

(4)

The free system, that is the set of equations (4) without any control input, can
be written in the form of an infinite dimensional system of ordinary differential
equations as follows {

Y ′(t) +AY (t) = 0,

Y (0) = Y0,
(5)

where Y := (y, z), Y0 := (y0, z0) and the operator

A =

(
−∂xx 0

0 −∂xx

)
, (6)

with its domain

D(A) =
{
(u, v) ∈ [H2(0, 1)]2 | u′(0) = 0, v′(0) = 0, u′(1) = v′(1),

u(1) + v(1) + αu′(1) = 0
}
.

Observe that the operator (A,D(A)) is self-adjoint in nature but still we denote the
adjoint of A by A∗ for more clear presentation.

1.4. Notations. Throughout the paper, C denotes a generic positive constant that
may change line to line but does not depend on the time T or on the initial data
(y0, z0). We also denote the following Lebesgue spaces:

(i) Z := [L2(0, 1)]2 ,
(ii) H := [H1(0, 1)]2,
(iii) H∗ = dual of the space H with respect to the pivot space Z,
(iv) H1

{a}(0, 1) =
{
u ∈ H1(0, 1) : u(a) = 0

}
, for a ∈ {0, 1},

which shall be intensively used in the present work. The inner product in the space
Z is simply denoted by (·, ·)Z while we denote the dual product by ⟨·, ·⟩X∗,X between
the space X and its dual X∗. Sometimes, we write ⟨·, ·⟩Rd to denote the usual inner
product in the space Rd, d ≥ 1. The characteristic function will be denoted by χ[a,b]

in the real interval [a, b] with a < b.

1.5. Main results. We now write the main results of our present work.
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1.5.1. Local null-controllability of the nonlinear system. We have the following con-
trollability result for the system (1).

Theorem 1.1. Let f and g be given by (2) and α ≥ 0. Then, the nonlinear system
(1) is small-time locally null-controllable around the equilibrium (0, 0), that is to
say, for any given time T > 0, there is a δ > 0 such that for chosen initial state
(y0, z0) ∈ Z verifying ∥(y0, z0)∥Z ≤ δ, there exists a solution-control pair ((y, z), q)
with (y, z) ∈ C0([0, T ];Z)∩L2(0, T ;H) and q ∈ L2(0, T ) to the system (1) satisfying

(y(T, x), z(T, x)) = (0, 0) ∀x ∈ (0, 1). (7)

The strategy to prove Theorem 1.1 is the following:

– First, we prove the global boundary null-controllability result of the asso-
ciated linear model (4) by using the method of moments ( [20, 21]) with a
proper estimation of the control cost, precisely MeM/T ∥(y0, z0)∥Z , where M
is independent in T and (y0, z0).

– Next, by applying the source term method introduced in [29], we prove a null-
controllability result of the linearized model with additional source terms in
L2(0, T ;Z) which are exponentially decreasing as t → T−, and in this step,
we notably use the precise control cost as prescribed earlier.

– Finally, we use the Banach fixed-point theorem to obtain the local (boundary)
null-controllability for our nonlinear system (1).

1.5.2. Null-controllability of the linear system. Let us now state the global null-
controllability result for the linearized system (4).

Theorem 1.2. Let any T > 0, initial data (y0, z0) ∈ Z and parameter α ≥ 0 be
given. Then, there exists a control q ∈ L2(0, T ) such that the solution (y, z) to the
system (4) satisfies (y(T, ·), z(T, ·)) = (0, 0). In addition, q satisfies the following
estimate

∥q∥L2(0,T ) ≤MeM/T ∥(y0, z0)∥Z , (8)

where the constant M > 0 neither depends on T nor on (y0, z0).

1.6. Organization of the paper.

– In Section 2, we discuss the required well-posedness results for the linear
control problem (4) and its associated adjoint system (without any control
input).

– Section 3 is devoted to prove the null-controllability of the linearized system
(4). We study the spectral analysis for the associated adjoint operator in
subsection 3.1, which is crucial to apply the method of moments to construct
a null-control q ∈ L2(0, T ) for the system (4) with a precise control cost as
introduced earlier (see subsection 3.5).

– In Section 4, we prove the main result of our work, that is, Theorem 1.1.
– Finally, we conclude our paper by mentioning possible extension of this work
to a more general internal-boundary coupled parabolic system related to the
present paper, see Section 5.

2. Well-posedness of the linearized system. This section is devoted to prove
the existence and uniqueness of solution to the linear control system (4).
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2.1. Existence of analytic semigroup. Let us first prove the well-posedness of
the following homogeneous system

yt − yxx = g1, in (0, T )× (0, 1),

zt − zxx = g2, in (0, T )× (0, 1),

yx(t, 0) = 0, zx(t, 0) = 0, in (0, T ),

yx(t, 1) = zx(t, 1), in (0, T ),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (0, T ),

y(0, x) = y0(x), z(0, x) = z0(x), in (0, 1).

(9)

with given initial data (y0, z0) ∈ Z and source term (g1, g2) ∈ L2(0, T ;Z). We start
by proving the existence of semigroup defined by (−A,D(A)).

Proposition 2.1. The operator (−A,D(A)) defined in (6) forms an analytic semi-
group in the space Z.

Proof. We shall present the proof for the boundary parameter α > 0. The case
α = 0 is simpler. We prove this result into two steps.

Step 1. Let us define the usual norm on H, given by

∥(u, v)∥H =

(∫ 1

0

(|u(x)|2 + |u′(x)|2)dx+

∫ 1

0

(|v(x)|2 + |v′(x)|2)dx
) 1

2

,

and the sesquilinear map h : H×H → R such that for any (u, v), (φ,ψ) ∈ H

h((u, v), (φ,ψ)) =

∫ 1

0

u′(x)φ′(x)dx+

∫ 1

0

v′(x)ψ′(x)dx

+
1

α
[u(1) + v(1)][φ(1) + ψ(1)].

It follows that h is continuous on H×H with

|h((u, v), (φ,ψ))| ≤ c ∥(u, v)∥H ∥(φ,ψ)∥H , for all (u, v), (φ,ψ) ∈ H,
where c is a positive constant depending on α. We also have

|h((u, v), (u, v))| ≥ ∥(u, v)∥2H − ∥(u, v)∥2Z , for all (u, v) ∈ H.
Therefore, by [34, Proposition 1.51 & Theorem 1.52], the negative operator associ-
ated with h generates an analytic semigroup in Z of angle (π/2− arctan(c)).

It remains to prove that the operator associated to h is indeed A with the domain
D(A).

Step 2. Let us define the operator (Ã,D(Ã)) associated with the map h as follows.
D(Ã) =

{
(ũ, ṽ) ∈ H | ∃ (f1, f2) ∈ Z such that

h((ũ, ṽ), (φ,ψ)) = ((f1, f2), (φ,ψ))Z , ∀(φ,ψ) ∈ H
}
,

Ã(ũ, ṽ) := (f1, f2).

Part (i). Here we prove D(A) ⊂ D(Ã). Let (u, v) ∈ D(A). Then, for all
(φ,ψ) ∈ H, we have

h((u, v), (φ,ψ))

=

∫ 1

0

u′(x)φ′(x)dx+

∫ 1

0

v′(x)ψ′(x)dx+
1

α
[u(1) + v(1)][φ(1) + ψ(1)].
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Integrating by parts, we obtain

h((u, v), (φ,ψ)) = −
∫ 1

0

u′′(x)φ(x)dx−
∫ 1

0

v′′(x)ψ(x)dx+ u′(1)φ(1)

+v′(1)ψ(1) +
1

α
[u(1) + v(1)][φ(1) + ψ(1)]. (10)

We also have that u′(1) = v′(1) and u(1)+ v(1) = −αu′(1). Therefore, we get from
(10)

h((u, v), (φ,ψ)) = −
∫ 1

0

u′′(x)φ(x)dx−
∫ 1

0

v′′(x)ψ(x)dx

= (A(u, v), (φ,ψ))Z .

Thus, for given (u, v) ∈ D(A) we found a pair (f1, f2) = A(u, v) ∈ Z such that

h((u, v), (φ,ψ)) = ((f1, f2), (φ,ψ))Z for all (φ,ψ) ∈ H. This implies (u, v) ∈ D(Ã)

and consequently, D(A) ⊂ D(Ã).

Part (ii). We now show that D(Ã) ⊂ D(A). Let (ũ, ṽ) ∈ D(Ã). Then, there
exists (f1, f2) ∈ Z such that h((ũ, ṽ), (φ,ψ)) = ((f1, f2), (φ,ψ))Z , for all (φ,ψ) ∈ H
with Ã(ũ, ṽ) = (f1, f2), and accordingly,∫ 1

0

ũ′(x)φ′(x)dx+

∫ 1

0

ṽ′(x)ψ′(x)dx+
1

α
[ũ(1) + ṽ(1)][φ(1) + ψ(1)]

=

∫ 1

0

f1(x)φ(x)dx+

∫ 1

0

f2(x)ψ(x)dx,

for all (φ,ψ) ∈ H. Since f1, f2 ∈ L2(0, 1), by elliptic regularity theory, we have
u, v ∈ H2(0, 1). Thus, an integration by parts yields

−
∫ 1

0

ũ′′(x)φ(x)dx−
∫ 1

0

ṽ′′(x)ψ(x)dx+ ũ′(1)φ(1)− ũ′(0)φ(0) + ṽ′(1)ψ(1)

− ṽ′(0)ψ(0) +
1

α
[ũ(1) + ṽ(1)][φ(1) + ψ(1)]

=

∫ 1

0

f1(x)φ(x)dx+

∫ 1

0

f2(x)ψ(x)dx, (11)

for all (φ,ψ) ∈ H.
Let us first choose any (φ,ψ) ∈ [H1

0 (0, 1)]
2 ⊂ H in (11) and as a result we deduce

f1(x) = −ũ′′(x), f2(x) = −ṽ′′(x), for a.a. x ∈ (0, 1).

Once we have this, going back to (11), one has

ũ′(1)φ(1)−ũ′(0)φ(0)+ṽ′(1)ψ(1)−ṽ′(0)ψ(0)+ 1

α
[ũ(1)+ṽ(1)][φ(1)+ψ(1)] = 0, (12)

for all (φ,ψ) ∈ H. Now consider any (φ,ψ) ∈ H1
{0}(0, 1) × H1

0 (0, 1) ⊂ H, so that

we have (
ũ′(1) +

1

α
[ũ(1) + ṽ(1)]

)
φ(1) = 0,

that is,
ũ(1) + ṽ(1) + αũ′(1) = 0. (13)

Next, by choosing any (φ,ψ) ∈ H1
{1}(0, 1) × H1

0 (0, 1) ⊂ H in (12) we obtain the

condition
ũ′(0) = 0, (14)
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and similarly, the choice of any (φ,ψ) ∈ H1
0 (0, 1) × H1

{1}(0, 1) ⊂ H leads to the

condition

ṽ′(0) = 0. (15)

Finally, by considering any (φ,ψ) ∈ H and utilizing the previous boundary con-
ditions (13), (14) and (15), the equality (12) reduces to

(ṽ′(1)− ũ′(1))ψ(1) = 0,

for all ψ ∈ H1(0, 1) and this yields

ũ′(1) = ṽ′(1). (16)

Therefore (ũ, ṽ) ∈ D(A), which proves D(Ã) ⊂ D(A).
Hence, the operator associated with the sesquilinear form h is indeed (A,D(A)).

This completes the proof.

We hereby denote the associated semigroup by (e−tA)t≥0 and the following results
hold.

Proposition 2.2. Let any parameter α ≥ 0 be given. Then, for any Y0 := (y0, z0) ∈
D(A) and G := (g1, g2) ∈ C1([0, T ];Z), there exists unique strong solution Y :=
(y, z) ∈ C0([0, T ];D(A)) ∩ C1([0, T ];Z) to the system (9), given by

Y (t) = e−tAY0 +

∫ t

0

e−(t−s)AG(s) ds. (17)

Proposition 2.3. Let any parameter α ≥ 0 be given. Then, for any (y0, z0) ∈ Z
and (g1, g2) ∈ L2(0, T ;Z), there exists a unique weak solution

(y, z) ∈ C0([0, T ];Z) ∩ L2(0, T ;H) ∩H1(0, T ;H∗)

to the system (9) which satisfies the following energy estimate

∥(y, z)∥C0([0,T ];Z) + ∥(y, z)∥L2(0,T ;H) + ∥(yt, zt)∥L2(0,T ;H∗)

≤ CeCT
(
∥(y0, z0)∥Z + ∥(g1, g2)∥L2(0,T ;Z)

)
, (18)

where C > 0 is a constant that does not depend in T > 0.

Proof. For given initial state (y0, z0) ∈ Z and source term (g1, g2) ∈ L2(0, T ;Z), the
existence of a unique weak solution (y, z) ∈ C0([0, T ];Z) can be ensured by applying
Proposition 2.1. We just need to prove the energy estimate (18).

– We start with (y0, z0) ∈ D(A) and (g1, g2) ∈ C1([0, T ];Z). Then, the sys-
tem (9) has a unique strong solution (y, z) in the space C0([0, T ];D(A)) ∩
C1([0, T ];Z) as per Proposition 2.2. Taking the inner product in Z of (9) with
(y, z), we get

1

2

d

dt
∥(y(t), z(t))∥2Z + (A(y(t), z(t)), (y(t), z(t)))Z

= ((g1(t), g2(t)), (y(t), z(t)))Z , ∀t ∈ [0, T ].

Integrating by parts w.r.t. space and by applying the Cauchy-Schwarz and
Young’s inequalities, we have

1

2

d

dt
∥(y(t), z(t))∥2Z + ∥(y(t), z(t))∥2H + α|y′(t, 1)|2

≤ C
(
∥(g1(t), g2(t))∥2Z + ∥(y(t), z(t))∥2Z

)
, ∀t ∈ [0, T ]. (19)
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Here we recall that α ≥ 0, and then using Gronwall’s lemma (see [17, Appendix
B.2]) one can obtain the required estimate (18) for the quantity ∥(y, z)∥C0([0,T ];Z).
Then, by integrating (19) over [0, T ] and using the previous estimate, we get
the required bound for ∥(y, z)∥L2(0,T ;H).

– To obtain the estimate for (yt, zt) in L
2(0, T ;H∗), we consider any (φ,ψ) ∈ H

and from (9) we have〈
(yt(t), zt(t)), (φ,ψ)

〉
H∗,H +

(
A(y(t), z(t)), (φ,ψ)

)
Z

=
(
(g1(t), g2(t)), (φ,ψ)

)
Z
, ∀t ∈ [0, T ],

which implies∣∣〈(yt(t), zt(t)), (φ,ψ)〉H∗,H

∣∣
≤ C

(
∥(y(t), z(t))∥H + ∥(g1(t), g2(t))∥Z

)
∥(φ,ψ)∥H, ∀t ∈ [0, T ],

and this gives the estimation of ∥(yt, zt)∥L2(0,T ;H∗) as stated in (18).

Finally, by applying the usual density argument, we shall obtain the same es-
timate (18) for given data (y0, z0) ∈ Z and (g1, g2) ∈ L2(0, T ;Z). The proof is
finished.

2.2. The homogeneous adjoint system: backward in time. The adjoint sys-
tem to the linearized model (9) is given by

−ζt − ζxx = 0, in (0, T )× (0, 1),

−θt − θxx = 0, in (0, T )× (0, 1),

ζx(t, 0) = 0, θx(t, 0) = 0, in (0, T ),

ζx(t, 1) = θx(t, 1), in (0, T ),

ζ(t, 1) + θ(t, 1) + αζx(t, 1) = 0, in (0, T ),

ζ(T, x) = ζT (x), θ(T, x) = θT (x), in (0, 1),

(20)

with given final data (ζT , θT ) ∈ Z. In fact, we have the following result.

Proposition 2.4. Let any parameter α ≥ 0 and final data (ζT , θT ) ∈ Z be given.
Then, the system (20) possesses a unique weak solution

(ζ, θ) ∈ C0([0, T ];Z) ∩ L2(0, T ;H) ∩H1(0, T ;H∗)

with the following energy estimate:

∥(ζ, θ)∥C0([0,T ];Z) + ∥(ζ, θ)∥L2(0,T ;H) + ∥(ζt, θt)∥L2(0,T ;H∗)

≤ CeCT ∥(ζT , θT )∥Z , (21)

where C > 0 is a constant independent in T > 0.

Thanks to Proposition 2.1, the adjoint operator (−A∗,D(A∗)) (which is the same
as (−A,D(A)) but we use a different notation for better understanding) defines a
strongly continuous semigroup in Z, which ensures the existence and uniqueness of
solution (ζ, θ) ∈ C0([0, T ];Z) to (20) and moreover it can be expressed as

(ζ, θ)(t, x) = e−(T−t)A∗
(ζT , θT )(x), ∀(t, x) ∈ (0, T )× (0, 1),

where
(
e−tA∗)

t≥0
denotes the semigroup defined by (−A∗,D(A∗)).

Then the energy estimate (21) can be obtained by applying similar technique as
described in the proof of Proposition 2.3.
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2.3. The nonhomogeneous linearized system. We now address the notion of
solution to the following nonhomogeneous system (which is forward in time) in the
sense of transposition as introduced in [15,37]. Consider the system

yt − yxx = g1, in (0, T )× (0, 1),

zt − zxx = g2, in (0, T )× (0, 1),

yx(t, 0) = q1(t), zx(t, 0) = q2(t), in (0, T ),

yx(t, 1) = zx(t, 1), in (0, T ),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (0, T ),

y(0, x) = y0(x), z(0, x) = z0(x), in (0, 1),

(22)

and we write the following definition.

Definition 2.5 (Solution by transposition). Let α ≥ 0 be a given parameter. Then,
for given initial state (y0, z0) ∈ Z, boundary data (q1, q2) ∈ L2(0, T ;R2) and source
term (g1, g2) ∈ L2(0, T ;Z), a function (y, z) ∈ C0([0, T ];Z) is said to be a solution
to the system (22), if for any t ∈ [0, T ] and (ζT , θT ) ∈ Z, the following relation
holds:(

(y(t), z(t)), (ζT , θT )
)
Z
=
(
(y0, z0), e

−tA∗
(ζT , θT )

)
Z

+

∫ t

0

(
(g1(s), g2(s)), e

−(t−s)A∗
(ζT , θT )

)
Z

−
∫ t

0

〈
(q1(s), q2(s)),

(
e−(t−s)A∗

(ζT , θT )
)
(0)
〉
R2 . (23)

Let us now write the following result.

Theorem 2.6. Let α ≥ 0 be a given parameter and (y0, z0) ∈ Z, (g1, g2) ∈
L2(0, T ;Z), (q1, q2) ∈ L2(0, T ;R2) be given data. Then the system (22) has a unique
solution (y, z) ∈ C0([0, T ];Z) in the sense of transposition as given by Definition 2.5.

Furthermore, (y, z) ∈ L2(0, T ;H)∩H1(0, T ;H∗) and it satisfies the natural energy
estimate

∥(y, z)∥C0([0,T ];Z) + ∥(y, z)∥L2(0,T ;H) + ∥(yt, zt)∥L2(0,T ;H∗)

≤ CeCT
(
∥(y0, z0)∥Z + ∥(g1, g2)∥L2(0,T ;Z) + ∥(q1, q2)∥L2(0,T ;R2)

)
, (24)

where the constant C > 0 does not depend on T .

The proof for the energy estimate can be done using a similar technique as
implemented in the proof of Proposition 2.3. We skip the details.

Remark 2.7. For the nonhomogeneous system (22), we can achieve the usual
energy estimate (24) since the nonhomogeneous L2(0, T )-boundary terms q1, q2 ap-
pear through the Neumann conditions. This phenomenon has been broadly studied
in [32] in the context of parabolic equations with nonhomogeneous Neumann data.
We also refer [9, Proposition 2.4] where the usual energy estimate for parabolic
equations with nonhomogeneous Robin condition (with L2 boundary data) has been
obtained.

3. Controllability of the linearized system: the method of moments. This
section is devoted to the proof of null-controllability for our linearized system (4),
that is the Theorem 1.2. As mentioned earlier, the method of moments helps us to
construct a boundary null-control for our system and as it is well-known, to deal
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with this method we first need to study the spectral analysis of the corresponding
(adjoint) spatial operator. We discuss about this in the following section.

3.1. Spectral Analysis of the operator A∗. The eigenvalue problem associated
with the operator A∗ is

A∗U = λU, for λ ∈ C,
with U := (u, v), which explicitly looks like

−u′′(x) = λu(x), for x ∈ (0, 1),

−v′′(x) = λv(x), for x ∈ (0, 1),

u′(0) = 0, v′(0) = 0,

u′(1) = v′(1),

u(1) + v(1) + αu′(1) = 0, α ≥ 0.

(25)

We divide the analysis into several parts.

• Observe that the spatial operator (defined by (6)) is self-adjoint and thus, all
eigenvalues are real.

• From the set of equations (25), it is clear that u = 0 ⇔ v = 0 for any λ ∈ R.

• λ = 0 is an eigenvalue of the operator A∗ associated with the eigenfunction

(
1
−1

)
.

We denote this particular eigenfunction by Φλ0,1
associated with the eigenvalue

λ0,1 := 0 just to be consistent with the notations introduced for the first set of
eigenfunctions given by (27).

• Assume now that λ ̸= 0 and denote µ =
√
λ ∈ R+. Thanks to the boundary

condition u′(0) = v′(0), we expect the solutions to (25) as

u(x) = A1 cos(µx), v(x) = A2 cos(µx), ∀x ∈ [0, 1].

Then, the boundary conditions u′(1) = v′(1) and u(1) + v(1) + αu′(1) = 0 respec-
tively gives

A1µ sinµ = A2µ sinµ, (26a)

A1 cosµ+A2 cosµ− αA1µ sinµ = 0. (26b)

The case when A1 ̸= A2, the equation (26a) yields µ = kπ for any k ≥ 1, since
µ ̸= 0. Using this information in (26b), we deduce A1 = −A2. Therefore, the
eigenfunctions of the first family, denote them as Φλk,1

, are given by

Φλk,1
:=

(
cos(kπx)

− cos(kπx)

)
, (27)

associated with the eigenvalues λk,1 := k2π2 for all k ≥ 1.

In the case when sinµ ̸= 0, that is A1 = A2 (̸= 0 since we seek for non-trivial
µ), we have from (26b) that

h(µ) := 2 cosµ− αµ sinµ = 0, α ≥ 0. (28)

(i) The case α = 0 is straightforward; we have the eigenfunctions Φλ0
k,2

as follows:

Φλ0
k,2

:=

(
cos((k + 1

2 )πx)

cos((k + 1
2 )πx)

)
, (29)
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associated with the eigenvalues λ0k,2 := (k + 1
2 )

2π2 for all k ≥ 0.

(ii) The case when α ̸= 0, we compute that

h(kπ) = (−1)k2 and h

(
(k +

1

2
)π

)
= (−1)k+1α

(
(k +

1

2
)π

)
have different signs which ensures the existence of at least one root of h in the
interval

(
kπ, (k + 1

2 )π
)
for all k ≥ 0.

To prove the uniqueness, we compute

h′(µ) = −(α+ 2) sinµ− αµ cosµ

which has the same sign throughout the interval
(
kπ, (k+ 1

2 )π
)
for any k ≥ 0

and thus the required claim follows.
We denote this unique root by µα

k,2 and the eigenvalues by λαk,2 := (µα
k,2)

2 ∈(
k2π2, (k + 1

2 )
2π2) for any k ≥ 0. The associated eigenfunctions will be then

Φλα
k,2

:=

cos(
√
λαk,2x)

cos(
√
λαk,2x)

 , ∀k ≥ 0. (30)

We now write the following lemma concerning the eigen-elements of A∗.

Lemma 3.1. Let any α ≥ 0 be given. Then, we have the following.

1. The spectrum of the operator A∗ consists of only real simple eigenvalues and
it is given by

Λα :=
{
λk,1, λ

α
k,2

}
k≥0

, (31)

where

λk,1 = k2π2 and λαk,2

{
= (k + 1

2 )
2π2, when α = 0,

∈
(
k2π2, (k + 1

2 )
2π2
)
, when α > 0.

(32)

The associated eigenfunctions are

Φλk,1
(x) =

(
cos(kπx)

− cos(kπx)

)
and Φλα

k,2
(x) =

cos(
√
λαk,2x)

cos(
√
λαk,2x)

 , (33)

for the eigenvalues λk,1 and λαk,2 respectively for all k ≥ 0.

2. Moreover, the set of eigenfunctions
{
Φλk,1

,Φλα
k,2

}
k≥0

forms an orthogonal

basis in Z = [L2(0, 1)]2.

The formal proof of part 1 has been already discussed before the statement of
Lemma 3.1. Further, we note that the operator A∗ is self-adjoint and it can be
proved that A∗ has compact resolvent. Consequently, the result of part 2 follows.

Lemma 3.2 (Asymptotics of the eigenvalues for α > 0). For each α > 0, the
asymptotic of the second set of eigenvalues λαk,2 are

λαk,2 = k2π2 +
4

α
+O

(
1

k2

)
, for large enough k ∈ N∗. (34)

Proof. Recall that µα
k,2 ∈

(
kπ, (k + 1

2 )π
)
which uniquely satisfies the equation

2 cosµα
k,2 − αµα

k,2 sinµ
α
k,2 = 0, for each k ≥ 0. (35)
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We set µα
k,2 = kπ + δαk with δαk ∈ [0, π2 ]. Then, from (35) we have

(−1)k2 cos δαk − (−1)kα (kπ + δαk ) sin δ
α
k = 0, (36)

⇒ tan δαk =
2

α(kπ + δαk )
→ 0 as k → +∞

⇒ δαk → 0 as k → +∞. (37)

Using the fact (37) in (36), one has

δαk ∼+∞
2

αkπ
,

and thus,

µα
k,2 ∼+∞ kπ +

2

αkπ
.

Thereafter, expressing µα
k,2 = kπ + 2

αkπ + δ̃αk and substituting this in (35), one can
obtain

αδ̃αk kπ = − 4

αk2π2
− α(δ̃αk )

2 − 4δ̃αk
kπ

,

which asymptotically gives δ̃αk ∼+∞ O(1/k3). So, finally we have

µα
k,2 = kπ +

2

αkπ
+O

(
1

k3

)
, for large enough k ∈ N∗,

and that the asymptotic expression (34) follows.

3.2. Formulation of the control problem and approximate controllability.
Let us now present an equivalent criterion for the null-controllability of the linear
model (4).

Proposition 3.3 (Formulation of the control problem). Let any (y0, z0) ∈ Z, time
T > 0 and parameter α ≥ 0 be given. Then a function q ∈ L2(0, T ) is said to be a
null-control for the system (4) if and only if it satisfies: for any (ζT , θT ) ∈ Z,

(
(y0, z0), e

−TA∗
(ζT , θT )

)
Z
=

∫ T

0

q(t)

〈(
1
0

)
,
(
e−(T−t)A∗

(ζT , θT )
)
(0)

〉
R2

. (38)

We hereby introduce the observation operator

B∗ := 1{x=0}

(
1
0

)
: H 7→ R (39)

(recall that H = [H1(0, 1)]2) and to this end, we have the following result.

Proposition 3.4 (Approximate controllability). Let α ≥ 0 be given. Then, the
linearized system (4) is approximately controllable at any given time T > 0 in the
space Z.

Proof. Note that B∗Φλk,1
= B∗Φλα

k,2
= 1 for all α ≥ 0 and k ≥ 0. Then, by applying

the Fattorini-Hautus criterion (see [19,33]), we conclude the proposition.
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3.3. The moments problem. Recall that for any parameter α ≥ 0, the set of
eigenfunctions {Φλ}λ∈Λα of A∗ forms an orthogonal basis in Z (see Lemma 3.1).
Thus, it is enough to check the control problem (38) for all Φλ ∈ {Φλ}λ∈Λα . This
gives us the following.

• For any (y0, z0) ∈ Z and parameter α ≥ 0, a function q ∈ L2(0, T ) is a
null-control for the system (4) if and only if we have∫ T

0

e−λ(T−t)q(t) =
e−λT

B∗Φλ

(
(y0, z0),Φλ

)
Z
, for all λ ∈ Λα. (40)

Here, we have used the fact that

e−tA∗
Φλ = e−tλΦλ, ∀λ ∈ Λα.

We also recall that B∗Φλ = 1 for all λ ∈ Λα which ensures that the set of moment
problems (40) is well-defined and we shall solve those in the next subsections.

3.4. Existence of bi-orthogonal family. In the framework of parabolic control
theory, the existence of bi-orthogonal families to the family of exponential functions
in L2(0, T ) has been extensively studied from the pioneer work [21] up to the very
recent developments. In this paper, we use [11, Theorem V.4.26 & Corollary V.4.27]
(which is similar to [7, Theorem 1.5] but with a more general set of assumptions)
to establish the following result.

Lemma 3.5. For any α ≥ 0 recall the set Λα given by (31). Then, there exists a
family (pλ)λ∈Λα ⊂ L2(0, T ) bi-orthogonal to (e−λ(T−·))λ∈Λα , i.e.,∫ T

0

pλ(t)e
−λ̃(T−t) = δλ,λ̃, for any λ, λ̃ ∈ Λα. (41)

In addition, they satisfy the following estimate

∥pλ∥L2(0,T ) ≤ Ce
C
T e

T
2 λ+C

√
λ, ∀λ ∈ Λα, (42)

where the constant C > 0 is independent in T .

Remark 3.6. Without loss of generality, we assume that all the eigenvalues are
positive. In fact, we can choose some c0 > 0 such that λ+ c0 > 0 for all λ ∈ Λα. In
what follows, an extra factor eTc0 will appear in the estimation of control cost, but
without any consequences on our analysis.

Now, as mentioned earlier, we shall use [11, Theorem V.4.26] in order to prove
Lemma 3.5, and for that we need to show that the set of eigenvalues Λα defined
by (31), belongs to some sector of the complex half-plane, satisfies a uniform gap
property and some asymptotic conditions on the counting function.

• The sector condition. For any ν > 0, we define the sector

Sν := {z ∈ C | ℜz > 0, and |ℑz| < (sinh ν)ℜz} .

In our case, the set of eigenvalues Λα is real and so it is clear that there exists
some ν > 0 such that

Λα ⊂ Sν , (43)

for any α ≥ 0.
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• The gap condition. Recall the set of eigenvalues given by (31) and the asymp-
totics of the eigenvalues λαk,2 for α > 0 from Lemma 3.2. Then it can be seen
that there exists some c1 > 0 such that we have

|λk+1,1 − λk,1| ≥ c1k, ∀k ≥ 1,

|λαk+1,2 − λαk,2| ≥ c1k, ∀k ≥ 1 and α ≥ 0,

and there is some kα ∈ N∗ such that

|λ0k,2 − λk,1| ≥ c1k, ∀k ≥ 1,

|λαk,2 − λk,1| ≥
c1
α
, ∀k ≥ kα.

Remark 3.7. Unlike the case of α = 0, we note that for α > 0 the gap
between λαk,2 and λk,1 tends to a finite positive number as k goes to infinity
but does not tend to infinity like for the other cases. This is the reason why
we needed to compute the precise asymptotic expansions of the eigenvalues
λαk,2 for α > 0.

Using the above lower bounds of the differences of eigenvalues and the fact
that the spectrum is discrete, we can say that there is some ρ > 0 such that

|λ− λ̃| ≥ ρ, for any λ, λ̃ ∈ Λα with λ ̸= λ̃, (44)

which is the uniform spectral gap property.

• The condition on counting function. Let Nα be the counting function associ-
ated with the set of eigenvalues Λα (for any α ≥ 0) defined by

Nα(r) := # {λ ∈ Λα, s.t. |λ| ≤ r} , ∀r > 0.

Our goal is to show that there exists some κ0 > 0 independent in the set of
eigenvalues such that

Nα(r) ≤ κ0r
1/2, ∀r > 0, (45a)

|Nα(r)−Nα(s)| ≤ κ0

(
1 + |r − s|1/2

)
, ∀r, s > 0. (45b)

From (31), we recall that

Λα =
{
λk,1, λ

α
k,2

}
k≥0

.

As it is shown for instance in [11, Lemma V.4.20], it is enough to establish
the required results (45) for each of the two sets {λk,1}k≥0 and {λαk,2}k≥0.

We shall show this for {λαk,2}k≥0 when α > 0 since the same reasoning will

be applicable for the set {λ0k,2}k≥0 or {λk,1}k≥0. We denote the associated
counting function by Nα,2.

– Let r > 0 be fixed. Then, Nα,2(r) = k (k ∈ N∗) implies

λαk−1,2 ≤ r,

since {λαk,2}k≥0 is increasing. But we have λαk−1,2 ∈
(
(k − 1)2π2, (k −

1
2 )

2π2
)
for any k ≥ 1, which gives

(k − 1)2π2 ≤ r, i.e., k ≤ 1 +
1

π

√
r,

and the first condition (45a) follows for the counting function.



16 K. BHANDARI, J. KUMBHAKAR AND S. MAJUMDAR

– Let any 0 < s < r be given. Assume that l = Nα,2(s) and k = Nα,2(r)
for some l, k ∈ N∗ (certainly, k > l). Then, using the properties of the set
{λαk,2}k≥0, one has

(k − 1)π ≤
√
λαk−1,2 ≤

√
r, (l +

1

2
)π >

√
λαl,2 >

√
s,

which yields

k − l ≤ 3

2
+

1

π

(√
r −

√
s
)
≤ 3

2
+

1

π

√
r − s,

and that the second condition (45b) on the counting function is true.

Since the three conditions (43), (44) and (45) are now satisfied, by using [11,
Theorem V.4.16], we can ensure the existence of a bi-orthogonal family (pλ)λ∈Λα ⊂
L2(0, T ) to (e−λ(T−·))λΛα satisfying the sharp estimate as mentioned in Lemma 3.5.

3.5. Existence of a boundary null-control. Now, we are in position to solve
the set of moments problem (40) to find a control for the system (4).

Proof of Theorem 1.2. For any α ≥ 0 and initial data (y0, z0) ∈ Z, we consider

q(t) =
∑
λ∈Λα

qλ(t), ∀t ∈ [0, T ], (46a)

with qλ(t) =
e−λT

B∗Φλ

(
(y0, z0),Φλ

)
Z
pλ(t), ∀t ∈ [0, T ], ∀λ ∈ Λα (46b)

where pλ are given by Lemma 3.5. Observe that, the above choice of function q
formally solves the set of moments problem (40), thanks to the property (41) verified
by pλ for each λ ∈ Λα.

Now, recall that B∗Φλ = 1 for all λ ∈ Λα (see Proposition 3.4). Also, from
the expressions of the eigenfunctions given by (27)–(29)–(30), we have ∥Φλ∥Z ≤ C
for any λ ∈ Λα. Using these and the L2(0, T )-estimates of bi-orthogonal family
(pλ)λ∈Λα given by (42), we obtain λ ∈ Λα, that

∥qλ∥L2(0,T ) ≤ Ce−λT e
C
T e

T
2 λ+C

√
λ∥(y0, z0)∥Z

≤ Ce
C
T e−

T
2 λe

T
4 λ+C2

T ∥(y0, z0)∥Z
≤ Ce

C
T e−

T
4 λ∥(y0, z0)∥Z , (47)

where we have used the Young’s inequality

C
√
λ ≤ T

4
λ+

C2

T
, ∀λ ∈ Λα.

Using (47) we have

∥q∥L2(0,T ) ≤
∑
λ∈Λα

∥qλ∥L2(0,T ) ≤ Ce
C
T ∥(y0, z0)∥Z

∑
λ∈Λα

e−
T
4 λ

≤Me
M
T ∥(y0, z0)∥Z ,

thanks to the fact that Λα is an increasing sequence of order k2 (see (31)). Moreover,
it is clear that the constant M > 0 does not depend on T or (y0, z0).

The proof is complete.
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4. Local null-controllability of the nonlinear system. This section is devoted
to prove the local null-controllability result for the nonlinear system (1), i.e., The-
orem 1.1. The proof will be based on the so-called source term method developed
in [29] followed by a Banach fixed point argument and to employ this we shall

extensively use the control cost Me
M
T ∥(y0, z0)∥Z for the linear system, given by

Theorem 1.2.

4.1. The source term method. Let us discuss the source term method for our
problem. We first consider the following system:

yt − yxx = ξ, in (0, T )× (0, 1),

zt − zxx = η, in (0, T )× (0, 1),

yx(t, 0) = q(t), zx(t, 0) = 0, in (0, T ),

yx(t, 1) = zx(t, 1), in (0, T ),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (0, T ),

y(0, x) = y0(x), z(0, x) = z0(x), in (0, 1).

(48)

Then, our goal is to establish the null-controllability of the above system for any
given parameter α ≥ 0, initial data (y0, z0) ∈ Z and source terms (ξ, η) which
belong to some certain weighted L2(0, T ;Z) space. Let us discuss it at length in
the next couple of subsections.

4.1.1. Construction of weight functions and weighted spaces. Assume the constants
β > 0, γ > 1 in such a way that

1 < γ <
√
2, and β >

γ2

2− γ2
. (49)

We now define the weight functionsρ0(t) = e−
βM

(γ−1)(T−t) ,

ρS(t) = e−
(1+β)γ2M
(γ−1)(T−t) ,

∀t ∈
[
T

(
1− 1

γ2

)
, T

]
, (50)

and extended them in a constant way in

[
0, T

(
1− 1

γ2

)]
such that they are con-

tinous and non-increasing in [0, T ]. Note that ρ0(T ) = ρS(T ) = 0 and further, we
compute that

ρ20(t)

ρS(t)
= e

γ2M+βM(γ2−2)
(γ−1)(T−t) , ∀t ∈

[
T

(
1− 1

γ2

)
, T

]
.

Due to the choices of γ, β in (49), we have M
(
γ2 + β(γ2 − 2)

)
< 0, (γ − 1) > 0 and

therefore we conclude that

ρ20(t)

ρS(t)
≤ 1, ∀t ∈ [0, T ]. (51)

Let us now define the following weighted spaces:

S :=

{
ξ ∈ L2(0, T ;L2(0, 1)) | ξ

ρS
∈ L2(0, T ;L2(0, 1))

}
(52)

Y :=

{
(y, z) ∈ L2(0, T ;Z) |

(
y

ρ0
,
z

ρ0

)
∈ L2(0, T ;Z)

}
(53)

Q :=

{
q ∈ L2(0, T ) | q

ρ0
∈ L2(0, T )

}
, (54)
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where the functions ρ0 and ρS are defined in (50). The inner product on the spaces
S,Y and Q are respectively given by〈

ξ, ξ̃
〉
S
:=

∫ T

0

1

ρ2S(t)

〈
ξ(t), ξ̃(t)

〉
L2(0,1)

dt, ∀ ξ, ξ̃ ∈ S,

⟨(y, z), (ỹ, z̃)⟩Y :=

∫ T

0

1

ρ20(t)
⟨(y(t), z(t)), (ỹ(t), z̃(t))⟩Z dt, ∀ (y, z), (ỹ, z̃) ∈ Y,

⟨q, q̃⟩Q :=

∫ T

0

1

ρ20(t)
q(t)q̃(t)dt, ∀ q, q̃ ∈ Q.

Accordingly, the associated norms on the spaces S,Y and Q are respectively

∥ξ∥2S :=

∫ T

0

1

ρ2S(t)
∥ξ(t)∥2L2(0,1) dt, ∀ ξ ∈ S, (55)

∥(y, z)∥2Y :=

∫ T

0

1

ρ20(t)
∥(y(t), z(t))∥2Z dt, ∀ (y, z) ∈ Y, (56)

∥q∥2Q :=

∫ T

0

1

ρ20(t)
|q(t)|2 dt, ∀ q ∈ Q. (57)

4.1.2. Null-controllability of the linearized system with source terms. Our next re-
sult addresses the null-controllability of the inhomogeneous linear system (48) with
given source terms ξ, η from the space S and by definition of S, it is clear that
the function ξ or η vanishes exponentially near t = T . With the above choice of

source functions in hand, and then by utilizing the explicit control cost Me
M
T for

the homogeneous control system (see Section 3.5), we shall eventually show that
there exists a solution-control pair ((y, z), q) in the space Y ×Q to the system (48).
Then, by definitions of the space Y and weight function ρ0 (see (53) and (50) resp.),
one can conclude that the solution (y, z) has to be “zero” at t = T . Precisely we
prove the following proposition.

Proposition 4.1. Let any parameter α ≥ 0 be given. Then, for any given initial
state (y0, z0) ∈ Z and source terms (ξ, η) ∈ L2(0, T ;Z), there exists a linear map
T : Z × L2(0, T ;Z) → Y × Q such that T ((y0, z0), (ξ, η)) := ((y, z), q) solves the
system (48).

In addition, we have the following estimate∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
C0([0,T ];Z)

+

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
L2(0,T ;H)

+

∥∥∥∥ qρ0
∥∥∥∥
L2(0,T )

≤ CeCT+C
T

(
∥(y0, z0)∥Z +

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(0,T ;Z)

)
, (58)

for some constant C > 0 that is independent in T .

Proof. For the given time T > 0, let us define a sequence (Tk)k≥0 given by

Tk := T − T

γk
, ∀k ≥ 0, (59)

where γ is introduced in (49), and it can be easily seen that

(0, T ) = ∪k≥0(Tk, Tk+1).
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We also note that with this choice of Tk, one has

ρ0(Tk+2) = e
M

Tk+2−Tk+1 ρS(Tk), ∀k ≥ 0, (60)

where ρ0 and ρS have been defined by (50) .

Now, our goal is to decompose (48) in (Tk, Tk+1) for each k ≥ 0, into two parts:
one is only with forcing terms and zero initial data, and the other one is a homoge-
neous control system along with the initial data.

• Inhomogeneous system without control input. Let us define a sequence (ak)k≥0

such that

a0 := (y0, z0) ∈ Z and ak+1 :=
(
ỹ(T−

k+1), z̃(T
−
k+1)

)
, ∀k ≥ 0, (61)

where (ỹ, z̃) is the unique weak solution to the system

ỹt − ỹxx = ξ, in (Tk, Tk+1)× (0, 1),

z̃t − z̃xx = η, in (Tk, Tk+1)× (0, 1),

ỹx(t, 0) = 0, z̃x(t, 0) = 0, in (Tk, Tk+1),

ỹx(t, 1) = z̃x(t, 1), in (Tk, Tk+1),

ỹ(t, 1) + z̃(t, 1) + αỹx(t, 1) = 0, in (Tk, Tk+1),

ỹ(T+
k , ·) = 0, z̃(T+

k , ·) = 0, in (0, 1),

(62)

for all k ≥ 0. Thanks to the estimate (18) in Proposition 2.3, we get

∥(ỹ, z̃)∥C0([Tk,Tk+1];Z) + ∥(ỹ, z̃)∥L2(Tk,Tk+1;H)

≤ CeCT ∥(ξ, η)∥L2(Tk,Tk+1;Z) , ∀k ≥ 0. (63)

In particular, by means of (61), we have

∥ak+1∥Z ≤ CeCT ∥(ξ, η)∥L2(Tk,Tk+1;Z) , ∀k ≥ 0. (64)

• Control system without the source terms. We now consider the following ho-
mogeneous control system:

ŷt − ŷxx = 0, in (Tk, Tk+1)× (0, 1),

ẑt − ẑxx = 0, in (Tk, Tk+1)× (0, 1),

ŷx(t, 0) = q̂k(t), ẑx(t, 0) = 0, in (Tk, Tk+1),

ŷx(t, 1) = ẑx(t, 1), in (Tk, Tk+1),

ŷ(t, 1) + ẑ(t, 1) + αŷx(t, 1) = 0, in (Tk, Tk+1),(
ŷ(T+

k , ·), ẑ(T
+
k , ·)

)
= ak, in (0, 1),

(65)

for all k ≥ 0. Using Theorem 1.2, we have the existence of a control q̂k ∈
L2(Tk, Tk+1) with the estimate

∥q̂k∥L2(Tk,Tk+1)
≤Me

M
Tk+1−Tk ∥ak∥Z , (66)

such that the associated solution (ŷ, ẑ) to (65) satisfies(
ŷ(T−

k+1, x), ẑ(T
−
k+1, x)

)
= (0, 0), ∀x ∈ (0, 1) and ∀k ≥ 0.

Combining (66) with (64), we have

∥q̂k+1∥L2(Tk+1,Tk+2)
≤Me

M
Tk+2−Tk+1 ∥ak+1∥Z

≤ CeCT e
M

Tk+2−Tk+1 ∥(ξ, η)∥L2(Tk,Tk+1;Z) , ∀k ≥ 0.
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But ρS is a non-increasing function in [Tk, Tk+1]; in what follows we have

∥q̂k+1∥L2(Tk+1,Tk+2)
≤ CeCT e

M
Tk+2−Tk+1 ρS(Tk)

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(Tk,Tk+1;Z)

, ∀k ≥ 0.

Then, using the relation (60) between the weight functions ρ0 and ρS , we get

∥q̂k+1∥L2(Tk+1,Tk+2)
≤ CeCT ρ0(Tk+2)

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(Tk,Tk+1;Z)

, ∀k ≥ 0. (67)

Again, since ρ0 is non-increasing, we deduce∥∥∥∥ q̂k+1

ρ0

∥∥∥∥
L2(Tk+1,Tk+2)

≤ 1

ρ0(Tk+2)
∥q̂k+1∥L2(Tk+1,Tk+2)

≤ CeCT

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(Tk,Tk+1;Z)

, ∀k ≥ 0. (68)

We now define the control function q as follows:

q :=
∑
k≥0

q̂kχ(Tk,Tk+1) in (0, T ). (69)

Recall that we have already established the L2-estimates of
q̂k
ρ0

for all k ≥ 1 by (68).

It only remains to find the L2-estimate of
q̂0
ρ0

. But from the bound (66), we get

∥q̂0∥L2(0,T1)
≤Me

M
T1 ∥a0∥Z =Me

M
T1 ∥(y0, z0)∥Z ,

and then using the fact that ρ0 is non-increasing, one has∥∥∥∥ q̂0ρ0
∥∥∥∥
L2(0,T1)

≤ 1

|ρ0(T1)|
∥q̂0∥ ≤ M

ρ0(T1)
e

M
T1 ∥(y0, z0)∥Z

=Me
Mγ(1+βγ)
(γ−1)T ∥(y0, z0)∥Z , (70)

where in the last inclusion, we have used the fact that T2 = T − T

γ2
and ρ0(T1) =

ρ0(T2) = e−
γ2βM
(γ−1)T . Now, the quantity Mγ(1+βγ)

(γ−1) being positive, we eventually obtain

(by combining (68) and (70))∥∥∥∥ qρ0
∥∥∥∥
L2(0,T )

≤ CeCT+C
T

(
∥(y0, z0)∥Z +

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(0,T ;Z)

)
, (71)

where the constant C > 0 is independent in T > 0.

• Control system with the source terms. We now define

(y, z) = (ỹ, z̃) + (ŷ, ẑ). (72)
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Then (y, z) satisfies the following system

yt − yxx = ξ, in (Tk, Tk+1)× (0, 1),

zt − zxx = η, in (Tk, Tk+1)× (0, 1),

yx(t, 0) = q̂k(t), zx(t, 0) = 0, in (Tk, Tk+1),

yx(t, 1) = zx(t, 1), in (Tk, Tk+1),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (Tk, Tk+1),

(y(Tk, ·), z(Tk, ·)) = ak, in (0, 1),

(73)

for all k ≥ 0. Note that, the solution (y, z) satisfies

(y(T0), z(T0)) = a0 = (y0, z0),

and, for all k ≥ 0 we have(
y(T−

k+1), z(T
−
k+1)

)
=
(
ỹ(T−

k+1), z̃(T
−
k+1)

)
+
(
ŷ(T−

k+1), ẑ(T
−
k+1)

)
= ak+1,(

y(T+
k+1), z(T

+
k+1)

)
=
(
ỹ(T+

k+1), z̃(T
+
k+1)

)
+
(
ŷ(T+

k+1), ẑ(T
+
k+1)

)
= ak+1.

Therefore (y, z) is continuous at Tk for all k ≥ 0.

Now, applying the energy estimate (24) for the system (73), and using the esti-
mations for ak+1 from (64) and q̂k+1 from (66), we have

∥(y, z)∥C0([Tk+1,Tk+2];Z) + ∥(y, z)∥L2(Tk+1,Tk+2;H)

≤ CeCT
(
∥ak+1∥Z + ∥(ξ, η)∥L2(Tk+1,Tk+2;Z) + ∥q̂k+1∥L2(Tk+1,Tk+2)

)
≤ CeCT

(
∥ak+1∥Z + ∥(ξ, η)∥L2(Tk+1,Tk+2;Z) +Me

M
Tk+2−Tk+1 ∥ak+1∥Z

)
≤ CeCT ∥(ξ, η)∥L2(Tk,Tk+2;Z) + CeCT e

M
Tk+2−Tk+1 ∥(ξ, η)∥L2(Tk,Tk+1;Z)

≤ CeCT e
M

Tk+2−Tk+1 ∥(ξ, η)∥L2(Tk,Tk+2;Z) ,

for all k ≥ 0.
Since ρS is non-increasing in [Tk, Tk+2], we obtain from above,

∥(y, z)∥C0([Tk+1,Tk+2];Z) + ∥(y, z)∥L2(Tk+1,Tk+2;H)

≤ CeCT e
M

Tk+2−Tk+1 ρS(Tk)

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(Tk,Tk+2;Z)

= CeCT ρ0(Tk+2)

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(Tk,Tk+2;Z)

, (74)

for all k ≥ 0, since ρ0(Tk+2) = e
M

Tk+2−Tk+1 ρS(Tk) (see (60)).
Using the fact that ρ0 is non-increasing on [Tk+1, Tk+2], we further deduce from

(74) that ∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
C0([Tk+1,Tk+2];Z)

+

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
L2(Tk+1,Tk+2;H)

≤ 1

ρ0(Tk+2)

(
∥(y, z)∥C0([Tk+1,Tk+2];Z) + ∥(y, z)∥L2(Tk+1,Tk+2;H)

)
≤ CeCT

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(Tk,Tk+2;Z)

, (75)

for all k ≥ 0.
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Now, it remains to find the estimates of (y, z) in [0, T1]. Again, using the energy

estimate (24) we find that (also having in mind ρ0(T1) = e−
γβM

(γ−1)T )

∥(y, z)∥C0([0,T1];Z) + ∥(y, z)∥L2(0,T1;H)

≤ CeCT
(
∥a0∥Z + ∥q̂0∥L2(0,T1)

+ ∥(ξ, η)∥L2(0,T1;Z)

)
≤ CeCT

(
∥a0∥Z +Me

M
T1 ∥a0∥Z + ∥(ξ, η)∥L2(0,T1;Z)

)
≤ CeCT e

Mγ(1+β)
(γ−1)T ρ0(T1)

(
∥(y0, z0)∥Z +Me

M
T1 ∥a0∥Z + ∥(ξ, η)∥L2(0,T1;Z)

)
.

But, ρ0 and ρS are non-increasing functions in [0, T1] and thus the above estimate
follows to:∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
C0([0,T1];Z)

+

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
L2(0,T1;H)

≤ CeCT+C
T

(
∥(y0, z0)∥Z +

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(0,T1;Z)

)
. (76)

Combining the estimates (75) and (76), we have∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
C0([0,T ];Z)

+

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
L2(0,T ;H)

≤ CeCT+C
T

(
∥(y0, z0)∥Z +

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(0,T ;Z)

)
, (77)

for some constant C > 0 independent in T .
The above bound (77) along with (71), we achieve the required estimate (58) of

the proposition. This completes the proof.

4.2. Application of Banach fixed point theorem. This section is devoted to
prove the local null-controllability result of our nonlinear system (1), that is Theo-
rem 1.1.

Let any parameter α ≥ 0 be given as earlier and assume any initial data (y0, z0) ∈
Z such that ∥(y0, z0)∥Z ≤ δ, where δ > 0 will be specified later. We now define the
set

Sδ :=
{
(ξ, η) ∈ S × S : ∥(ξ, η)∥S×S ≤ δ

}
,

where the space S is defined in (52).
By Proposition 4.1, we can say that for any given source term (ξ, η) ∈ S × S,

there exists a control q ∈ L2(0, T ) such that the corresponding trajectory (y, z)
of the system (48) satisfies the estimate (58). In what follows, we define the map
F : Sδ → L2(0, T ;Z) by

F(ξ, η) =

(
f
(
y, z,

∫ 1

0
y,
∫ 1

0
z
)

g
(
y, z,

∫ 1

0
y,
∫ 1

0
z
)
)
, (78)

for all (ξ, η) ∈ Sδ, where we recall that the nonlinear functions f and g are givem
by {

f
(
y, z,

∫ 1

0
y,
∫ 1

0
z
)

= −yz + ay2 + bz2 + r1(t)y,

g
(
y, z,

∫ 1

0
y,
∫ 1

0
z
)

= yz + cy2 + dz2 + r2(t)z,
(79)
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where a, b, c, d are L∞((0, T )× (0, 1)) functions and
r1(t) = α1

∫ 1

0

(
ψ1,1(x)y(t, x) + ψ2,1(x)z(t, x)

)
dx,

r2(t) = α2

∫ 1

0

(
ψ1,2(x)y(t, x) + ψ2,2(x)z(t, x)

)
dx,

(80)

with α1, α2 ∈ R and ψ1,j , ψ2,j ∈ L∞(0, 1), j = 1, 2.

Our goal is to prove that there exists some δ > 0 such that the map F has a
unique fixed point in the set Sδ and to do so, we shall apply the Banach fixed point
theorem. We begin with the following lemma.

Lemma 4.2 (Stability). There exists some δ > 0 such that Sδ ⊂ S × S is stable
under the map F.

Proof. We have for (ξ, η) ∈ Sδ,

∥F(ξ, η)∥2S×S =

∥∥∥∥∥
(
f
(
y, z,

∫ 1

0
y,
∫ 1

0
z
)

g
(
y, z,

∫ 1

0
y,
∫ 1

0
z
)
)∥∥∥∥∥

2

S×S

≤
∥∥−yz + ay2 + bz2 + r1(t)y

∥∥2
S +

∥∥yz + cy2 + dz2 + r2(t)z
∥∥2
S .

Using the definition of norm in S (see (55)), we deduce from above that,

∥F(ξ, η)∥2S×S ≤ C

∫ T

0

1

ρ2S(t)

(
∥y(t)z(t)∥2L2(0,1) +

∥∥y2(t)∥∥2
L2(0,1)

+
∥∥z2(t)∥∥2

L2(0,1)

+ ∥r1(t)y(t)∥2L2(0,1) + ∥r2(t)z(t)∥2L2(0,1)

)
dt, (81)

where C := C(∥a∥L∞ , ∥b∥L∞ , ∥c∥L∞ , ∥d∥L∞) > 0. We now estimate the terms
appearing in the r.h.s. of (81). Note that,

∥y(t)z(t)∥2L2(0,1) =

∫ 1

0

|y(t, x)z(t, x)|2 dx ≤ 2

∫ 1

0

(
|y(t, x)|4 + |z(t, x)|4

)
dx. (82)

and ∥∥y2(t)∥∥2
L2(0,1)

=

∫ 1

0

|y(t, x)|4 dx,
∥∥z2(t)∥∥2

L2(0,1)
=

∫ 1

0

|z(t, x)|4 dx. (83)

We also have for j = 1, 2

∥rj(t)y(t)∥2L2(0,1) = |αj |2
∫ 1

0

∣∣∣∣y(t, x)∫ 1

0

(ψ1,j(x)y(t, x) + ψ2,j(x)z(t, x))dx

∣∣∣∣2 dx
≤ C

(∫ 1

0

(|y(t, x)|2 + |z(t, x)|2)dx
)∫ 1

0

|y(t, x)|2 dx, (84)

where C := C(|α1|, |α2|, ∥ψ1,1∥L∞ , ∥ψ1,2∥L∞ , ∥ψ2,1∥L∞ , ∥ψ2,2∥L∞) > 0.
Combining the above estimates (82), (83) and (84), we obtain from (81),

∥F(ξ, η)∥2S×S

≤ C

∫ T

0

1

ρ2S(t)

(∫ 1

0

(
|y(t, x)|4 + |z(t, x)|4

)
dx

)
dt

= C

∫ T

0

∫ 1

0

ρ40(t)

ρ2S(t)

∣∣∣∣y(t, x)ρ0(t)

∣∣∣∣4 dxdt+ C

∫ T

0

∫ 1

0

ρ40(t)

ρ2S(t)

∣∣∣∣z(t, x)ρ0(t)

∣∣∣∣4 dxdt. (85)
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Thanks to the fact (51), we get from (85) that

∥F(ξ, η)∥2S×S

≤ C

∫ T

0

∥∥∥∥ y(t)ρ0(t)

∥∥∥∥2
L∞(0,1)

(∫ 1

0

∣∣∣∣y(t, x)ρ0(t)

∣∣∣∣2 dx
)
dt

+ C

∫ T

0

∥∥∥∥ z(t)ρ0(t)

∥∥∥∥2
L∞(0,1)

(∫ 1

0

∣∣∣∣z(t, x)ρ0(t)

∣∣∣∣2 dx
)
dt

≤ C

∫ T

0

(∥∥∥∥ y(t)ρ0(t)

∥∥∥∥2
H1(0,1)

∥∥∥∥ y(t)ρ0(t)

∥∥∥∥2
L2(0,1)

+

∥∥∥∥ z(t)ρ0(t)

∥∥∥∥2
H1(0,1)

∥∥∥∥ z(t)ρ0(t)

∥∥∥∥2
L2(0,1)

)
dt

≤ C

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥2
C0([0,T ];Z)

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥2
L2(0,T ;H)

.

Using the estimate (58) in above, we finally arrive to the following:

∥F(ξ, η)∥S×S ≤ C

(∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
C0([0,T ];Z)

+

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
L2(0,T ;H)

)2

≤ CeCT+C
T

(
∥(y0, z0)∥Z + ∥(ξ, η)∥S×S

)2
≤ CeCT+C

T δ2, (86)

due to our choices of initial data ∥(y0, z0)∥Z ≤ δ and source terms (ξ, η) ∈ Sδ.
Now, one can choose δ > 0 small enough in (86) so that we have ∥F(ξ, η)∥S×S ≤ δ

for all (ξ, η) ∈ Sδ. This concludes our lemma.

The following lemma shows that F : Sδ → Sδ is a contraction map.

Lemma 4.3 (Contraction). There exists a δ > 0 such that the map F defined by
(78) is a contraction map on the closed ball Sδ.

Proof. Consider any two pairs (ξi, ηi) ∈ Sδ for i = 1, 2. Then, by means of Propo-
sition 4.1, there exist control functions qi ∈ Q for the system (48) with solutions
(yi, zi) ∈ Y associated to (ξi, ηi) ∈ Sδ for i = 1, 2.

Accordingly, we use the notations fi, gi for the nonlinear functions (see (79)–(80))
where {

fi
(
yi, zi,

∫ 1

0
yi,
∫ 1

0
zi
)

= −yizi + ay2i + bz2i + ri,1(t)yi,

gi
(
yi, zi,

∫ 1

0
yi,
∫ 1

0
zi
)

= yizi + cy2i + dz2i + ri,2(t)zi,

with 
ri,1(t) = α1

∫ 1

0

(
ψ1,1(x)yi(t, x) + ψ2,1(x)zi(t, x)

)
dx,

ri,2(t) = α2

∫ 1

0

(
ψ1,2(x)yi(t, x) + ψ2,2(x)zi(t, x)

)
dx,

for i = 1, 2.
Then, we compute

∥F(ξ1, η1)− F(ξ2, η2)∥2S×S

=

∥∥∥∥∥
(
−y1z1 + ay21 + bz21 + r1,1(t)y1

y1z1 + cy21 + dz21 + r1,2(t)z1

)
−

(
−y2z2 + ay22 + bz22 + r2,1(t)y2

y2z2 + cy22 + dz22 + r2,2(t)z2

)∥∥∥∥∥
2

S×S
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=

∥∥∥∥∥
(
−(y1z1 − y2z2) + a(y21 − y22) + b(z21 − z22) + r1,1(t)y1 − r2,1(t)y2

y1z1 − y2z2 + c(y21 − y22) + d(z21 − z22) + r1,2(t)z1 − r2,2(t)z2

)∥∥∥∥∥
2

S×S

≤ C

∫ T

0

1

ρ2S(t)

(
∥y1(t)z1(t)− y2(t)z2(t)∥2L2(0,1) +

∥∥y21(t)− y22(t)
∥∥2
L2(0,1)

+
∥∥z21(t)− z22(t)

∥∥2
L2(0,1)

+ ∥r1,1(t)y1(t)− r2,1(t)y2(t)∥2L2(0,1)

+ ∥r1,2(t)z1(t)− r2,2(t)z2(t)∥2L2(0,1)

)
dt. (87)

To this end, we find

∥y1(t)z1(t)− y2(t)z2(t)∥2L2(0,1)

≤ 2
(
∥y1(t)(z1(t)− z2(t))∥2L2(0,1) + ∥(y1(t)− y2(t))z2(t)∥2L2(0,1)

)
≤ C ∥y1(t)∥2L∞(0,1) ∥z1(t)− z2(t)∥2L2(0,1)

+ C ∥z2(t)∥2L∞(0,1) ∥y1(t)− y2(t)∥2L2(0,1)

≤ C ∥y1(t)∥2H1(0,1) ∥z1(t)− z2(t)∥2L2(0,1)

+ C ∥z2(t)∥2H1(0,1) ∥y1(t)− y2(t)∥2L2(0,1) . (88)

A straightforward computation also gives∥∥y21(t)− y22(t)
∥∥2
L2(0,1)

≤
(
∥y1(t)∥2H1(0,1) + ∥y2(t)∥2H1(0,1)

)
∥y1(t)− y2(t)∥2L2(0,1) , (89)

and ∥∥z21(t)− z22(t)
∥∥2
L2(0,1)

≤
(
∥z1(t)∥2H1(0,1) + ∥z2(t)∥2H1(0,1)

)
∥z1(t)− z2(t)∥2L2(0,1) . (90)

Next we look at the remaining terms in (87), we compute

∥r1,1(t)y1(t)− r2,1(t)y2(t)∥2L2(0,1)

≤ 2

∫ 1

0

|r1,1(t)(y1(t, x)− y2(t, x))|2 dx+ 2

∫ 1

0

|(r1,1(t)− r2,1(t))y2(t, x)|2 dx

≤ 2 |α1|2
∣∣∣∣∫ 1

0

(ψ1,1(x)y1(t, x) + ψ2,1(x)z1(t, x))dx

∣∣∣∣2 ∫ 1

0

|y1(t, x)− y2(t, x)|2 dx

+ 2

∫ 1

0

|y2(t, x)|2 dx
∣∣∣∣α1

∫ 1

0

(ψ1,1(x)y1(t, x) + ψ2,1(x)z1(t, x))dx

− α1

∫ 1

0

(ψ1,1(x)y2(t, x) + ψ2,1(x)z2(t, x))dx

∣∣∣∣2
≤ C ∥y1(t)− y2(t)∥2L2(0,1)

∫ 1

0

(|y1(t, x)|2 + |z1(t, x)|2)dx

+ C ∥y2(t)∥2L2(0,1) ×∫ 1

0

(
|ψ1,1(x)|2 |y1(t, x)− y2(t, x)|2 + |ψ2,1(x)|2 |z1(t, x)− z2(t, x)|2

)
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≤ C
(
∥y1(t)∥2L2(0,1) + ∥y2(t)∥2L2(0,1) + ∥z1(t)∥2L2(0,1)

)
×(

∥y1(t)− y2(t)∥2L2(0,1) + ∥z1(t)− z2(t)∥2L2(0,1)

)
. (91)

We similarly obtain

∥r1,2(t)z1(t)− r2,2(t)z2(t)∥2L2(0,1)

≤ C
(
∥y1(t)∥2L2(0,1) + ∥z1(t)∥2L2(0,1) + ∥z2(t)∥2L2(0,1)

)
×(

∥y1(t)− y2(t)∥2L2(0,1) + ∥z1(t)− z2(t)∥2L2(0,1)

)
. (92)

Combining the estimates (88), (89), (90), (91) and (92), we obtain from (87),
that

∥F(ξ1, η1)− F(ξ2, η2)∥2S×S

≤ C

∫ T

0

1

ρ2S(t)

[
∥(y1(t), z1(t))∥2H + ∥(y2(t), z2(t))∥2H

]
×∥∥(y1(t)− y2(t), z1(t)− z2(t)

)∥∥2
Z
dt

≤ C

∫ T

0

ρ40(t)

ρ2S(t)

[∥∥∥∥(y1(t)ρ0(t)
,
z1(t)

ρ0(t)

)∥∥∥∥2
H
+

∥∥∥∥(y2(t)ρ0(t)
,
z2(t)

ρ0(t)

)∥∥∥∥2
H

]
×∥∥∥∥(y1(t)− y2(t)

ρ0(t)
,
z1(t)− z2(t)

ρ0(t)

)∥∥∥∥2
Z

dt

≤ C

∥∥∥∥(y1ρ0 , z1ρ0
)
−
(
y2
ρ0
,
z2
ρ0

)∥∥∥∥2
C0([0,T ];Z)

×[∥∥∥∥(y1ρ0 , z1ρ0
)∥∥∥∥2

L2(0,T ;H)

+

∥∥∥∥(y2ρ0 , z2ρ0
)∥∥∥∥2

L2(0,T ;H)

]
, (93)

where we have used the fact that
ρ2
0(t)

ρS(t) ≤ 1 (see (51)).

But, due to the linearity of the solution map (see Proposition 4.1), we have the
following estimate (by means of (58))∥∥∥∥(y1ρ0 , z1ρ0

)
−
(
y2
ρ0
,
z2
ρ0

)∥∥∥∥
C0([0,T ];Z)

+

∥∥∥∥(y1ρ0 , z1ρ0
)
−
(
y2
ρ0
,
z2
ρ0

)∥∥∥∥
L2(0,T ;H)

≤ CeCT+C
T ∥(ξ1, η1)− (ξ2, η2)∥S×S .

Using the above bound and the estimate (58) in (93), we get

∥F(ξ1, η1)− F(ξ2, η2)∥S×S

≤ CeCT+C
T ∥(ξ1, η1)− (ξ2, η2)∥S×S ×[
∥(y0, z0)∥Z + ∥(ξ1, η1)∥S×S + ∥(ξ2, η2)∥S×S

]
≤ CeCT+C

T δ ∥(ξ1, η1)− (ξ2, η2)∥S×S

≤ 1

2
∥(ξ1, η1)− (ξ2, η2)∥S×S ,

for chosen 0 < δ ≤ 1
2CeCT+C/T .

This proves the contraction property of the map F in the closed ball Sδ provided
we start with initial data ∥(y0, z0)∥Z ≤ δ and source terms in Sδ.
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We now conclude the proof of the main result of our work.

Proof of Theorem 1.1. Let any boundary parameter α ≥ 0 and time T > 0 be given.
According to Lemma 4.2 and Lemma 4.3, there exists some δ > 0 small enough such
that if we choose the initial data (y0, z0) ∈ Z with ∥(y0, z0)∥Z ≤ δ, then by using
Banach fixed point theorem we can ensure that the map F : Sδ → Sδ (defined by

(78)) has a unique fixed point (ξ̂, η̂) ∈ Sδ.
At this point, by means of Proposition 4.1, there exists a solution-control pair

((y, z), q) ∈ Y×Q to the system (48) associated with the above source term (ξ̂, η̂) ∈
Sδ, which in addition satisfy the estimate (58). Then, by construction of the space
Y (see (53)) and the property lim

t→T−
ρ0(t) = 0 force the solution (y, z) to satisfy

y(T, x) = 0, z(T, x) = 0, ∀x ∈ (0, 1),

which is the required boundary local null-controllability result of our nonlinear
system (1).

5. Concluding remarks. In the present paper, we study the controllability prop-
erty of a parabolic system where the boundary couplings are posed in terms of the
δ′-type condition. The linear model of our work (see (4)) simply consists of the
aforementioned boundary couplings, and no internal coupling appears. It would
be interesting if one could impose internal coupling(s) as well, for instance let us
consider the following linear system,

yt − yxx + k1z = 0, in (0, T )× (0, 1),

zt − zxx + k2y = 0, in (0, T )× (0, 1),

yx(t, 0) = q(t), zx(t, 0) = 0, in (0, T ),

yx(t, 1) = zx(t, 1), in (0, T ),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (0, T ),

y(0, x) = y0(x), z(0, x) = z0(x), in (0, 1),

(94)

with some constants (k1, k2) ̸= (0, 0). In this regard, we mention the work [10],
where the presence of a zeroth order internal coupling in a parabolic system with
Kirchhoff boundary condition leads to different controllability results w.r.t. the
position of the boundary control (i.e., on y or, on z). To study the controllability
of system (94), the main work will be to investigate the spectral properties of the
associated adjoint operator, which is not so obvious in the case of δ′-type boundary
condition, and it needs further care.
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[13] E. Cerpa, E. Crépeau and C. Moreno, On the boundary controllability of the Korteweg–de

Vries equation on a star-shaped network, IMA J. Math. Control Inform., 37 (2020), 226–240,

URL https://doi.org/10.1093/imamci/dny047.
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