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LOCAL NULL-CONTROLLABILITY OF A TWO-PARABOLIC NONLINEAR

SYSTEM WITH COUPLED BOUNDARY CONDITIONS BY A SINGLE

NEUMANN CONTROL

KUNTAL BHANDARI∗, JITEN KUMBHAKAR†, AND SUBRATA MAJUMDAR‡

Abstract. This article is concerned with the local boundary null-controllability of a 1d nonlinear
system of two-parabolic equations with coupled boundary conditions by means of a single Neumann

control. In the system, the nonlinear functions, appearing in the state equations, are considered as

a combination of product, square and nonlocal nonlinearities. The control force is exerted on one
of the two state components through a Neumann condition at the left end of the boundary while

the other component simply satisfies the homogeneous Neumann condition at that point. On the

other hand, the states are coupled at the right end of the boundary in terms of equality of their
normal derivatives and a combined Robin-type condition. Upon linearization around the stationary

point (0, 0), we apply the so-called moments method to prove the global null-controllability of the

associated linearized system with the explicit control cost CeC/T as T → 0+. Then, we show the
local null-controllability of the main system by employing the source term method developed in [27]

followed by a Banach fixed point argument.

1. Introduction and main results

1.1. The system under consideration. In this paper, we address the boundary null-controllability
result of a 2 × 2 nonlinear parabolic system with coupled boundary conditions by means a single
Neumann boundary control. More precisely, for given finite time T > 0, we consider the following
system 

yt − yxx = f(y, z), in (0, T )× (0, 1),

zt − zxx = g(y, z), in (0, T )× (0, 1),

yx(t, 0) = q(t), zx(t, 0) = 0, in (0, T ),

yx(t, 1) = zx(t, 1), in (0, T ),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (0, T ),

y(0, x) = y0(x), z(0, x) = z0(x), in (0, 1),

(1.1)

where α ≥ 0 is some real parameter and (y0, z0) is the given initial data which we choose from the
space [L2(0, 1)]2.

In the above system, a control function q ∈ L2(0, T ) (to be determined) is applied through the Neu-
mann condition of only one state (namely y) while the other state z simply satisfies the homogeneous
Neumann boundary condition at the point x = 0. On the other hand, the states are coupled at the
boundary point x = 1 in terms of the “equality condition of their normal derivatives” and a “combined
Robin-type condition”. In the literature, this kind of combined conditions (appearing at the point
x = 1) is typically called the δ′-type condition, see for instance [7, p. 26, Chapter 1.4.4] or [17]. In
fact, it has been addressed in [17] that the wavefunction of a quantum mechanical particle living on a
graph often satisfies the δ′-type boundary conditions at the junction points.
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2 LOCAL BOUNDARY NULL-CONTROLLABILITY OF A COUPLED PARABOLIC SYSTEM

The nonlinear functions f and g in (1.1) are given by{
f(y, z) = −yz + ay2 + bz2 + r1(t)y,

g(y, z) = yz + cy2 + dz2 + r2(t)z,
(1.2)

where a, b, c, d are L∞((0, T )× (0, 1)) functions and
r1(t) = α1

∫ 1

0

(
ψ1,1(x)y(t, x) + ψ2,1(x)z(t, x)

)
dx,

r2(t) = α2

∫ 1

0

(
ψ1,2(x)y(t, x) + ψ2,2(x)z(t, x)

)
dx,

(1.3)

with α1, α2 are real constants and ψ1,j , ψ2,j ∈ L∞(0, 1) for j = 1, 2.
Observe that the nonlinear model (1.1)–(1.2) is actually a reaction-diffusion system which often

describes several biological phenomenon or chemical reactions. In the literature, such system is com-
monly known as “Lotka-Volterra” model with diffusion (without any boundary conditions and control
for the moment, let say), that sometimes characterize the dynamics of a biological system where two
species: prey and predator interact between each other; see for instance [24, 29, 33]. In our model, we
consider that the two species are interacting in the reference domain (through the nonlinear functions
f, g) as well as at one boundary end (through the coupled conditions at x = 1). Then, our goal is
to put an external control force only on one species from the other boundary end to locally control
both the species at a given time T . In this regard, we refer the very detailed work [34], where several
results concerning the controllability of reaction-diffusion systems in biology and social sciences have
been addressed.

1.2. Bibliographic comments. The parabolic boundary control systems with less number of con-
trol(s) than equations can be a delicate issue in various situations and that there is lack of enough
mathematical tools to tackle with these systems. In fact, unlike the scalar problems the boundary
controllability for such systems is no longer equivalent with the distributed one, as it has been proven
for instance in [21]. Moreover, the very powerful Carleman technique is often inefficient in that context.
Among some fascinating works on coupled control systems, we point out [21] where the authors have
proved a necessary and sufficient condition for boundary null-controllability of some 2 × 2 coupled
parabolic system with single Dirichlet control. A more general result regarding the controllability to
the trajectories of an n × n parabolic system with m(< n) Dirichlet controls (applied on a part of a
boundary) is available in [2]. In those works, the authors actually proved a general Kalman condition
which is necessary and sufficient for their controllability results.

To the best of our knowledge, most of the boundary controllability results for a system with less
controls than the equations are in 1-D and the reason behind is that the spectral analysis of the
associated adjoint elliptic operator helps to deal with the so-called “moments technique” (initially
developed by Fattorini and Russell [19, 20]) to construct a control. In this regard, we mention that
some multi-D (in cylindrical geometry) results have been developed in [1, 6], which need a sharp
estimate of the control cost for the associated 1-D problem and a Lebeau-Robbiano spectral inequality
for higher dimensions. We further refer to [3] where the authors made a survey of several recent results
concerning the controllability of coupled parabolic systems.

The above references mainly address the parabolic systems with internal couplings. Let us mention
that several systems with boundary couplings use to appear when one considers the system of pdes
on metric graphs, e.g., [7, 25, 28]. Concerning the controllability issues for such systems, we first
address [15, Chapters 6, 8] where the authors have discussed some controllability results of wave, heat
and Schrödinger systems in the network when some control(s) is (are) exerted on some of the vertices;
see also the survey paper [4]. We also refer the works [11, 12, 13] where several controllability results
have been achieved in the setting of metric graph and certainly, in those works, the couplings are arised
in the junction points of the graph. Very recently, the boundary null-controllability of some interior-
boundary coupled linear parabolic systems has been addressed in [9] where the boundary coupling is
chosen by means of a Kirchhoff-type condition.

In the context of controllability of nonlinear systems, let us first mention [23, Sec. 4, Chap. I]
by Fursikov and Imanuvilov where a small-time local null-controllability of semilinear heat equations
has been proved using a perturbation argument. In 2000, Barbu [5], independently Fernández-Cara
and Zuazua [22] proved the small-time global null-controllability of semilinear heat equations where

the nonlinear functions satisfy the growth condition |s| ln3/2(1 + |s|). More recently, the large-time
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global null-controllability has been established in [26] for the nonlinearities F growing slower than
|s| ln2(1 + |s|) verifying sF (s) ≥ 0 and 1

F ∈ L
1([0,+∞)).

In the present work, we shall deal with the local null-controllability of the parabolic system (1.1)
and as usual the first and foremost thing is to study the global null-controllability property for the
associated linearized system.

1.3. Linearized system and functional setting. For any given boundary parameter α ≥ 0, the
linearized system around the equilibrium point (0, 0) is given by

yt − yxx = 0, in (0, T )× (0, 1),

zt − zxx = 0, in (0, T )× (0, 1),

yx(t, 0) = q(t), zx(t, 0) = 0, in (0, T ),

yx(t, 1) = zx(t, 1), in (0, T ),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (0, T ),

y(0, x) = y0(x), z(0, x) = z0(x), in (0, 1).

(1.4)

The free system, that is the set of equations (1.4) without any control input, can be written in the
form of an infinite dimensional system of ordinary differential equations as follows{

Y ′(t) +AY (t) = 0,

Y (0) = Y0,
(1.5)

where Y := (y, z), Y0 := (y0, z0) and the operator

A =

(
−∂xx 0

0 −∂xx

)
, (1.6)

with its domain

D(A) =
{

(u, v) ∈ [H2(0, 1)]2 |u′(0) = 0, v′(0) = 0, u′(1) = v′(1), u(1) + v(1) + αu′(1) = 0
}
.

Observe that the operator (A,D(A)) is self-adjoint in nature but still we denote the adjoint of A by
A∗ for more clear presentations.

1.4. Notations. Throughout the paper, C denotes a generic positive constant that may change line
to line but does not depend on the time T or on the initial data (y0, z0). We also denote the following
Lebesgue spaces:

(i) Z := [L2(0, 1)]2 ,
(ii) H := [H1(0, 1)]2,
(iii) H∗ = dual of the space H with respect to the pivot space Z,
(iv) H1

{a}(0, 1) =
{
u ∈ H1(0, 1) : u(a) = 0

}
, for a ∈ {0, 1},

which shall be intensively used in the present work. The inner product in the space Z is simply
denoted by (·, ·)Z while we denote the dual product by 〈·, ·〉X∗,X between the space X and its dual
X∗. Sometimes, we write 〈·, ·〉Rd to denote the usual inner product in the space Rd, d ≥ 1. The
characteristic function will be denoted by χ[a,b] in the real interval [a, b] with a < b.

1.5. Main results. We now write the main results of our present work.

1.5.1. Local null-controllability of the nonlinear system. We have the following controllability
result for the main system (1.1) with the nonlinearities f and g given by (1.2).

Theorem 1.1. Let f and g be chosen of the forms (1.2) and α ≥ 0. Then, the nonlinear system (1.1)
is small-time locally null-controllable around the equilibrium (0, 0), that is to say, for any given time
T > 0, there is a δ > 0 such that for chosen initial state (y0, z0) ∈ Z verifying ‖(y0, z0)‖Z ≤ δ, there
exists a solution-control pair ((y, z), q) with (y, z) ∈ C0([0, T ];Z) ∩ L2(0, T ;H) and q ∈ L2(0, T ) to the
system (1.1) satisfying

(y(T, ·), z(T, ·)) = (0, 0), in (0, 1). (1.7)

The strategy to prove Theorem 1.1 is the following:
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– First, we prove the global boundary null-controllability result of the associated linear model
(1.4) using the method of moments ( [19, 20]) with a proper estimation of the control cost
(precisely CeC/T ‖(y0, z0)‖Z) which is crucial to deduce the local-controllability result for the
nonlinear model.

– Next, by applying the source term method introduced in [27], we prove the null-controllability
of the linearized model with additional source term in L2(0, T ;Z) which is exponentially de-
creasing while t→ T−.

– Then we use the Banach fixed-point argument to obtain the local (boundary) null-controllability
for the nonlinear system (1.1).

1.5.2. Null-controllability of the linear system. Let us now state the global null-controllability
result for the linearized system (1.4).

Theorem 1.2. Let any T > 0, initial data (y0, z0) ∈ Z and parameter α ≥ 0 be given. Then, there
exists a control q ∈ L2(0, T ) such that the solution (y, z) to the system (1.4) satisfies (y(T, ·), z(T, ·)) =
(0, 0). In addition, q satisfies the following estimate

‖q‖L2(0,T ) ≤ Ce
C/T ‖(y0, z0)‖Z , (1.8)

where the constant C > 0 neither depend on T nor on (y0, z0).

1.6. Organization of the paper.

– In Section 2, we discuss the required well-posedness results for the linear control problem (1.4)
and its associated adjoint system (without any control input).

– Section 3 is devoted to prove the null-controllability of the linearized system (1.4). We study
the spectral analysis for the associated adjoint operator in subsection 3.1, which is crucial to
apply the method of moments to construct a null-control q ∈ L2(0, T ) for the system (1.4)
with a precise control cost CeC/T (see subsection 3.5).

– Finally in Section 4, using the explicit control cost as stated above, we first prove the null-
controllability of the linearized system with some suitable weighted source terms and then
applying the Banach fixed point theorem, we conclude the proof of Theorem 1.1, that is, local
null-controllability result of (1.1) around the equilibrium point (0, 0).

2. Well-posedness of the linearized system

This section is devoted to prove the existence and uniqueness of solution to the linear control system
(1.4).

2.1. Existence of analytic semigroup. Let us first prove the well-posedness of the following homo-
geneous system 

yt − yxx = g1, in (0, T )× (0, 1),

zt − zxx = g2, in (0, T )× (0, 1),

yx(t, 0) = 0, zx(t, 0) = 0, in (0, T ),

yx(t, 1) = zx(t, 1), in (0, T ),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (0, T ),

y(0, x) = y0(x), z(0, x) = z0(x), in (0, 1).

(2.1)

with given initial data (y0, z0) ∈ Z and source term (g1, g2) ∈ L2(0, T ;Z). We start by proving the
existence of semigroup defined by (−A,D(A)).

Proposition 2.1. The operator (−A,D(A)) defined in (1.6) forms an analytic semigroup in the space
Z.

Proof. We shall present the proof for the boundary parameter α > 0. The case α = 0 is simpler. We
prove this result into two steps.

Step 1. Let us define the usual norm on H, given by

‖(u, v)‖H =

(∫ 1

0

(|u(x)|2 + |u′(x)|2)dx+

∫ 1

0

(|v(x)|2 + |v′(x)|2)dx

) 1
2

,
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and the sesquilinear map h : H×H → R such that for any (u, v), (ϕ,ψ) ∈ H

h((u, v), (ϕ,ψ)) =

∫ 1

0

u′(x)ϕ′(x)dx+

∫ 1

0

v′(x)ψ′(x)dx+
1

α
[u(1) + v(1)][ϕ(1) + ψ(1)]. (2.2)

It follows that h is continuous on H×H with

|h((u, v), (ϕ,ψ))| ≤ c ‖(u, v)‖H ‖(ϕ,ψ)‖H , for all (u, v), (ϕ,ψ) ∈ H,

where c is a positive constant depending on α. We also have

|h((u, v), (u, v))| ≥ ‖(u, v)‖2H − ‖(u, v)‖2Z , for all (u, v) ∈ H.

Therefore, by [32, Proposition 1.51 & Theorem 1.52], the negative of the operator associated with h
generates an analytic semigroup in Z of angle (π/2− arctan(c)).

It remains to prove that the operator associated to h is indeed A with the domain D(A).

Step 2. Let us define the operator (Ã,D(Ã)) associated with the map h as follows.
D(Ã) =

{
(ũ, ṽ) ∈ H : ∃ (f1, f2) ∈ Z such that

h((ũ, ṽ), (ϕ,ψ)) = ((f1, f2), (ϕ,ψ))Z , ∀(ϕ,ψ) ∈ H
}
,

Ã(ũ, ṽ) := (f1, f2).

Part (i). Here we prove D(A) ⊂ D(Ã). Let (u, v) ∈ D(A). Then, for all (ϕ,ψ) ∈ H, we have

h((u, v), (ϕ,ψ)) =

∫ 1

0

u′(x)ϕ′(x)dx+

∫ 1

0

v′(x)ψ′(x)dx+
1

α
[u(1) + v(1)][ϕ(1) + ψ(1)].

Integrating by parts, we obtain

h((u, v), (ϕ,ψ)) = −
∫ 1

0

u′′(x)ϕ(x)dx−
∫ 1

0

v′′(x)ψ(x)dx+ u′(1)ϕ(1) + v′(1)ψ(1) (2.3)

+
1

α
[u(1) + v(1)][ϕ(1) + ψ(1)].

We also have that u′(1) = v′(1) and u(1) + v(1) = −αu′(1). Therefore, we get from (2.3)

h((u, v), (ϕ,ψ)) = −
∫ 1

0

u′′(x)ϕ(x)dx−
∫ 1

0

v′′(x)ψ(x)dx

= (A(u, v), (ϕ,ψ))Z .

Thus, for given (u, v) ∈ D(A) we found a pair (f1, f2) = A(u, v) ∈ Z such that h((u, v), (ϕ,ψ)) =

((f1, f2), (ϕ,ψ))Z for all (ϕ,ψ) ∈ H. This implies (u, v) ∈ D(Ã) and consequently, D(A) ⊂ D(Ã).

Part (ii). We now show that D(Ã) ⊂ D(A). Let (ũ, ṽ) ∈ D(Ã). Then, there exists (f1, f2) ∈ Z such

that h((ũ, ṽ), (ϕ,ψ)) = ((f1, f2), (ϕ,ψ))Z , for all (ϕ,ψ) ∈ H with Ã(ũ, ṽ) = (f1, f2), and accordingly,∫ 1

0

ũ′(x)ϕ′(x)dx+

∫ 1

0

ṽ′(x)ψ′(x)dx+
1

α
[ũ(1)+ ṽ(1)][ϕ(1)+ψ(1)] =

∫ 1

0

f1(x)ϕ(x)dx+

∫ 1

0

f2(x)ψ(x)dx,

for all (ϕ,ψ) ∈ H. Since f1, f2 ∈ L2(0, 1), by elliptic regularity, u, v ∈ H2(0, 1). Thus, an integration
by parts yields

−
∫ 1

0

ũ′′(x)ϕ(x)dx−
∫ 1

0

ṽ′′(x)ψ(x)dx+ ũ′(1)ϕ(1)− ũ′(0)ϕ(0) + ṽ′(1)ψ(1)− ṽ′(0)ψ(0)

+
1

α
[ũ(1) + ṽ(1)][ϕ(1) + ψ(1)] =

∫ 1

0

f1(x)ϕ(x)dx+

∫ 1

0

f2(x)ψ(x)dx,

(2.4)

for all (ϕ,ψ) ∈ H.
Let us first choose any (ϕ,ψ) ∈ [H1

0 (0, 1)]2 ⊂ H in (2.4) and as a result we deduce

f1(x) = −ũ′′(x), f2(x) = −ṽ′′(x), for a.a. x ∈ (0, 1).

Once we have this, going back to (2.4), one has

ũ′(1)ϕ(1)− ũ′(0)ϕ(0) + ṽ′(1)ψ(1)− ṽ′(0)ψ(0) +
1

α
[ũ(1) + ṽ(1)][ϕ(1) + ψ(1)] = 0, (2.5)



6 LOCAL BOUNDARY NULL-CONTROLLABILITY OF A COUPLED PARABOLIC SYSTEM

for all (ϕ,ψ) ∈ H. Now consider any (ϕ,ψ) ∈ H1
{0}(0, 1)×H1

0 (0, 1) ⊂ H, so that we have(
ũ′(1) +

1

α
[ũ(1) + ṽ(1)]

)
ϕ(1) = 0,

that is,

ũ(1) + ṽ(1) + αũ′(1) = 0. (2.6)

Next, by choosing any (ϕ,ψ) ∈ H1
{1}(0, 1)×H1

0 (0, 1) ⊂ H in (2.5) we obtain the condition

ũ′(0) = 0, (2.7)

and similarly, the choice of any (ϕ,ψ) ∈ H1
0 (0, 1)×H1

{1}(0, 1) ⊂ H leads to the condition

ṽ′(0) = 0. (2.8)

Finally, by considering any (ϕ,ψ) ∈ H and utilizing the previous boundary conditions (2.6), (2.7)
and (2.8), the equality (2.5) reduces to

(ṽ′(1)− ũ′(1))ψ(1) = 0,

for all ψ ∈ H1(0, 1) and this yields

ũ′(1) = ṽ′(1). (2.9)

Therefore (ũ, ṽ) ∈ D(A), which proves D(Ã) ⊂ D(A).
Hence, the operator associated with the sesquilinear form h is indeed (A,D(A)). This completes

the proof. �

We hereby denote the associated semigroup by (e−tA)t≥0 and the following results hold.

Proposition 2.2. Let any parameter α ≥ 0 be given. Then, for any Y0 := (y0, z0) ∈ D(A) and G :=
(g1, g2) ∈ C1([0, T ];Z), there exists unique strong solution Y := (y, z) ∈ C0([0, T ];D(A))∩ C1([0, T ];Z)
to the system (2.1), given by

Y (t) = e−tAY0 +

∫ t

0

e−(t−s)AG(s) ds. (2.10)

Proposition 2.3. Let any parameter α ≥ 0 be given. Then, for any (y0, z0) ∈ Z and (g1, g2) ∈
L2(0, T ;Z), there exists a unique weak solution

(y, z) ∈ C0([0, T ];Z) ∩ L2(0, T ;H) ∩H1(0, T ;H∗)

to the system (2.1) which satisfies the following energy estimate

‖(y, z)‖C0([0,T ];Z) + ‖(y, z)‖L2(0,T ;H) + ‖(yt, zt)‖L2(0,T ;H∗)

≤ CeCT
(
‖(y0, z0)‖Z + ‖(g1, g2)‖L2(0,T ;Z)

)
,

(2.11)

where C > 0 is a constant that does not depend in T > 0.

Proof. For given initial state (y0, z0) ∈ Z and source term (g1, g2) ∈ L2(0, T ;Z), the existence of a
unique weak solution (y, z) ∈ C0([0, T ];Z) can be ensured by applying Proposition 2.1. We just need
to prove the energy estimate (2.11).

– We start with (y0, z0) ∈ D(A) and (g1, g2) ∈ C1([0, T ];Z). Then, the system (2.1) has a unique
strong solution (y, z) in the space C0([0, T ];D(A))∩C1([0, T ];Z) as per Proposition 2.2. Taking
the inner product in Z of (2.1) with (y, z), we get

1

2

d

dt
‖(y(t), z(t))‖2Z + (A(y(t), z(t)), (y(t), z(t)))Z

= ((g1(t), g2(t)), (y(t), z(t)))Z , ∀t ∈ [0, T ].

Integrating by parts w.r.t. space and by applying the Cauchy-Schwarz and Young’s inequalities,
we have

1

2

d

dt
‖(y(t), z(t))‖2Z + ‖(y(t), z(t))‖2H + α|y′(t, 1)|2

≤ C
(
‖(g1(t), g2(t))‖2Z + ‖(y(t), z(t))‖2Z

)
, ∀t ∈ [0, T ].

(2.12)
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Here we recall that α ≥ 0, and then using Gronwall’s lemma (see [16, Appendix B.2]) one
can obtain the required estimate (2.11) for the quantity ‖(y, z)‖C0([0,T ];Z). Then, by inte-
grating (2.12) over [0, T ] and using the previous estimate, we get the required bound for
‖(y, z)‖L2(0,T ;H).

– To obtain the estimate for (yt, zt) in L2(0, T ;H∗), we consider any (ϕ,ψ) ∈ H and from (2.1)
we have 〈

(yt(t), zt(t)), (ϕ,ψ)
〉
H∗,H +

(
A(y(t), z(t)), (ϕ,ψ)

)
Z

=
(
(g1(t), g2(t)), (ϕ,ψ)

)
Z
, ∀t ∈ [0, T ],

which implies∣∣〈(yt(t), zt(t)), (ϕ,ψ)
〉
H∗,H

∣∣
≤ C

(
‖(y(t), z(t))‖H + ‖(g1(t), g2(t))‖Z

)
‖(ϕ,ψ)‖H, ∀t ∈ [0, T ],

and this gives the estimation of ‖(yt, zt)‖L2(0,T ;H∗) as stated in (2.11).

Finally, by applying the usual density argument, we shall obtain the same estimate (2.11) for given
data (y0, z0) ∈ Z and (g1, g2) ∈ L2(0, T ;Z). The proof is finished. �

2.2. The homogeneous adjoint system: backward in time. The adjoint system to the linearized
model (2.1) is given by

−ζt − ζxx = 0, in (0, T )× (0, 1),

−θt − θxx = 0, in (0, T )× (0, 1),

ζx(t, 0) = 0, θx(t, 0) = 0, in (0, T ),

ζx(t, 1) = θx(t, 1), in (0, T ),

ζ(t, 1) + θ(t, 1) + αζx(t, 1) = 0, in (0, T ),

ζ(T, x) = ζT (x), θ(T, x) = θT (x), in (0, 1),

(2.13)

with given final data (ζT , θT ) ∈ Z. In fact, we have the following result.

Proposition 2.4. Let any parameter α ≥ 0 and final data (ζT , θT ) ∈ Z be given. Then, the system
(2.13) possesses a unique weak solution

(ζ, θ) ∈ C0([0, T ];Z) ∩ L2(0, T ;H) ∩H1(0, T ;H∗)
with the following energy estimate:

‖(ζ, θ)‖C0([0,T ];Z) + ‖(ζ, θ)‖L2(0,T ;H) + ‖(ζt, θt)‖L2(0,T ;H∗) ≤ Ce
CT ‖(ζT , θT )‖Z , (2.14)

where C > 0 is a constant independent in T > 0.

Thanks to Proposition 2.1, the adjoint operator (−A∗,D(A∗)) (which is the same as (−A,D(A))
but we use a different notation for better understanding) defines a strongly continuous semigroup in
Z, which ensures the existence and uniqueness of solution (ζ, θ) ∈ C0([0, T ];Z) to (2.13) and moreover
it can be expressed as

(ζ, θ)(t, x) = e−(T−t)A∗(ζT , θT )(x), ∀(t, x) ∈ (0, T )× (0, 1),

where
(
e−tA

∗)
t≥0

denotes the semigroup defined by (−A∗,D(A∗)).
Then the energy estimate (2.14) can be obtained by applying similar technique as described in the

proof of Proposition 2.3.

2.3. The nonhomogeneous linearized system. We now address the notion of solution to the
following nonhomogeneous system (which is forward in time) in the sense of transposition as introduced
in [14,35]. Consider the system

yt − yxx = g1, in (0, T )× (0, 1),

zt − zxx = g2, in (0, T )× (0, 1),

yx(t, 0) = q1(t), zx(t, 0) = q2(t), in (0, T ),

yx(t, 1) = zx(t, 1), in (0, T ),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (0, T ),

y(0, x) = y0(x), z(0, x) = z0(x), in (0, 1),

(2.15)
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and we write the following definition.

Definition 2.5 (Solution by transposition). Let α ≥ 0 be a given parameter. Then, for given initial
state (y0, z0) ∈ Z, boundary data (q1, q2) ∈ L2(0, T ;R2) and source term (g1, g2) ∈ L2(0, T ;Z), a
function (y, z) ∈ C0([0, T ];Z) is said to be a solution to the system (2.15), if for any t ∈ [0, T ] and
(ζT , θT ) ∈ Z, the following relation holds:(

(y(t), z(t)), (ζT , θT )
)
Z

=
(
(y0, z0), e−tA

∗
(ζT , θT )

)
Z

+

∫ t

0

(
(g1(s), g2(s)), e−(t−s)A∗(ζT , θT )

)
Z

−
∫ t

0

〈
(q1(s), q2(s)),

(
e−(t−s)A∗(ζT , θT )

)
(0)
〉
R2 .

(2.16)

Let us now write the following result.

Theorem 2.6. Let α ≥ 0 be a given parameter and (y0, z0) ∈ Z, (g1, g2) ∈ L2(0, T ;Z), (q1, q2) ∈
L2(0, T ;R2) be given data. Then the system (2.15) has a unique solution (y, z) ∈ C0([0, T ];Z) in the
sense of transposition as given by Definition 2.5.

Furthermore, (y, z) ∈ L2(0, T ;H) ∩H1(0, T ;H∗) and it satisfies the natural energy estimate

‖(y, z)‖C0([0,T ];Z) + ‖(y, z)‖L2(0,T ;H) + ‖(yt, zt)‖L2(0,T ;H∗)

≤ CeCT
(
‖(y0, z0)‖Z + ‖(g1, g2)‖L2(0,T ;Z) + ‖(q1, q2)‖L2(0,T ;R2)

)
,

(2.17)

where the constant C > 0 does not depend on T .

The proof for the energy estimate can be done using a similar technique as implemented in the proof
of Proposition 2.3. We skip the details.

Remark 2.7. For the nonhomogeneous system (2.15), we can achieve the usual energy estimate (2.17)
since the nonhomogeneous L2(0, T )-boundary terms q1, q2 appear through the Neumann conditions.
This phenomenon has been broadly studied in [30] in the context of parabolic equations with nonho-
mogeneous Neumann data. We also refer [8, Proposition 2.4] where the usual energy estimate for
parabolic equations with nonhomogeneous Robin condition (with L2 boundary data) has been obtained.

3. Controllability of the linearized system: the method of moments

This section is devoted to the proof of null-controllability for our linearized system (1.4), that is
the Theorem 1.2. As mentioned earlier, the method of moments helps us to construct a boundary
null-control for our system and as it is well-known, to deal with this method we first need to study the
spectral analysis of the corresponding (adjoint) spatial operator. We discuss about this in the following
section.

3.1. Spectral Analysis of the operator A∗. The eigenvalue problem associated with the operator
A∗ is

A∗U = λU, for λ ∈ C,
with U := (u, v), which explicitly looks like

−u′′(x) = λu(x), for x ∈ (0, 1),

−v′′(x) = λv(x), for x ∈ (0, 1),

u′(0) = 0, v′(0) = 0,

u′(1) = v′(1),

u(1) + v(1) + αu′(1) = 0, α ≥ 0.

(3.1)

We divide the analysis into several parts.

• Observe that the spatial operator (defined by (1.6)) is self-adjoint and thus, all eigenvalues are real.

• From the set of equations (3.1), it is clear that u = 0⇔ v = 0 for any λ ∈ R.

• λ = 0 is an eigenvalue of the operator A∗ associated with the eigenfunction

(
1
−1

)
.

We denote this particular eigenfunction by Φλ0,1
associated with the eigenvalue λ0,1 := 0 just to be

consistent with the notations introduced for the first set of eigenfunctions given by (3.3).
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• Assume now that λ 6= 0 and denote µ =
√
λ ∈ R+. Thanks to the boundary condition u′(0) = v′(0),

we expect the solutions to (3.1) as

u(x) = A1 cos(µx), v(x) = A2 cos(µx), ∀x ∈ [0, 1].

Then, the boundary conditions u′(1) = v′(1) and u(1) + v(1) + αu′(1) = 0 respectively gives

A1µ sinµ = A2µ sinµ, (3.2a)

A1 cosµ+A2 cosµ− αA1µ sinµ = 0. (3.2b)

The case when A1 6= A2, the equation (3.2a) yields µ = kπ for any k ≥ 1, since µ 6= 0. Using this
information in (3.2b), we deduce A1 = −A2. Therefore, the eigenfunctions of the first family, denote
them as Φλk,1 , are given by

Φλk,1 :=

(
cos(kπx)

− cos(kπx)

)
, (3.3)

associated with the eigenvalues λk,1 := k2π2 for all k ≥ 1.

In the case when sinµ 6= 0, that is A1 = A2 (6= 0 since we seek for non-trivial µ), we have from
(3.2b) that

h(µ) := 2 cosµ− αµ sinµ = 0, α ≥ 0. (3.4)

(i) The case α = 0 is straightforward; we have the eigenfunctions Φλ0
k,2

as follows:

Φλ0
k,2

:=

(
cos((k + 1

2 )πx)

cos((k + 1
2 )πx)

)
, (3.5)

associated with the eigenvalues λ0
k,2 := (k + 1

2 )2π2 for all k ≥ 0.

(ii) The case when α 6= 0, we compute that

h(kπ) = (−1)k2 and h

(
(k +

1

2
)π

)
= (−1)k+1α

(
(k +

1

2
)π

)
have different signs which ensures the existence of at least one root of h in the interval

(
kπ, (k+

1
2 )π
)

for all k ≥ 0.
To prove the uniqueness, we compute

h′(µ) = −(α+ 2) sinµ− αµ cosµ

which has the same sign throughout the interval
(
kπ, (k + 1

2 )π
)

for any k ≥ 0 and thus the
required claim follows.

We denote this unique root by µαk,2 and the eigenvalues by λαk,2 := (µαk,2)2 ∈
(
k2π2, (k +

1
2 )2π2) for any k ≥ 0. The associated eigenfunctions will be then

Φλαk,2 :=

cos(
√
λαk,2x)

cos(
√
λαk,2x)

 , ∀k ≥ 0. (3.6)

We now write the following lemma concerning the eigen-elements of A∗.

Lemma 3.1. Let any α ≥ 0 be given. Then, we have the following.

1. The spectrum of the operator A∗ consists of only real simple eigenvalues and it is given by

Λα :=
{
λk,1, λ

α
k,2

}
k≥0

, (3.7)

where

λk,1 = k2π2 and λαk,2

{
= (k + 1

2 )2π2, when α = 0,

∈
(
k2π2, (k + 1

2 )2π2
)
, when α > 0

. (3.8)

The associated eigenfunctions are

Φλk,1(x) =

(
cos(kπx)

− cos(kπx)

)
and Φλαk,2(x) =

cos(
√
λαk,2x)

cos(
√
λαk,2x)

 , (3.9)

for the eigenvalues λk,1 and λαk,2 respectively for all k ≥ 0.
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2. Moreover, the set of eigenfunctions
{

Φλk,1 ,Φλαk,2
}
k≥0

forms an orthogonal basis in Z = [L2(0, 1)]2.

The formal proof of part 1 has been already discussed before the statement of Lemma 3.1. Further,
we note that the operator A∗ is self-adjoint and it can be proved that A∗ has compact resolvent.
Consequently, the result of part 2 follows.

Lemma 3.2 (Asymptotics of the eigenvalues for α > 0). For each α > 0, the asymptotic of the second
set of eigenvalues λαk,2 are

λαk,2 = k2π2 +
4

α
+O

(
1

k2

)
, for large enough k ∈ N∗. (3.10)

Proof. Recall that µαk,2 ∈
(
kπ, (k + 1

2 )π
)

which uniquely satisfies the equation

2 cosµαk,2 − αµαk,2 sinµαk,2 = 0, for each k ≥ 0. (3.11)

We set µαk,2 = kπ + δαk with δαk ∈ [0, π2 ]. Then, from (3.11) we have

(−1)k2 cos δαk − (−1)kα (kπ + δαk ) sin δαk = 0, (3.12)

⇒ tan δαk =
2

α(kπ + δαk )
→ 0 as k → +∞

⇒ δαk → 0 as k → +∞. (3.13)

Using the fact (3.13) in (3.12), one has

δαk ∼+∞
2

αkπ
,

and thus,

µαk,2 ∼+∞ kπ +
2

αkπ
.

Thereafter, expressing µαk,2 = kπ + 2
αkπ + δ̃αk and substituting this in (3.11), one can obtain

αδ̃αk kπ = − 4

αk2π2
− α(δ̃αk )2 − 4δ̃αk

kπ
,

which asymptotically gives δ̃αk ∼+∞ O(1/k3). So, finally we have

µαk,2 = kπ +
2

αkπ
+O

(
1

k3

)
, for large enough k ∈ N∗,

and that the asymptotic expression (3.10) follows. �

3.2. Formulation of the control problem and approximate controllability. Let us now present
an equivalent criterion for the null-controllability of the linear model (1.4).

Proposition 3.3 (Formulation of the control problem). Let any (y0, z0) ∈ Z, time T > 0 and param-
eter α ≥ 0 be given. Then a function q ∈ L2(0, T ) is said to be a null-control for the system (1.4) if
and only if it satisfies: for any (ζT , θT ) ∈ Z,(

(y0, z0), e−TA
∗
(ζT , θT )

)
Z

=

∫ T

0

q(t)

〈(
1
0

)
,
(
e−(T−t)A∗(ζT , θT )

)
(0)

〉
R2

. (3.14)

We hereby introduce the observation operator

B∗ := 1{x=0}

(
1
0

)
: H 7→ R (3.15)

(recall that H = [H1(0, 1)]2) and to this end, we have the following result.

Proposition 3.4 (Approximate controllability). Let α ≥ 0 be given. Then, the linearized system (1.4)
is approximately controllable at any given time T > 0 in the space Z.

Proof. Note that B∗Φλk,1 = B∗Φλαk,2 = 1 for all α ≥ 0 and k ≥ 0. Then, by applying the Fattorini-

Hautus criterion (see [18,31]), we conclude the proposition. �
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3.3. The moments problem. Recall that for any parameter α ≥ 0, the set of eigenfunctions
{Φλ}λ∈Λα of A∗ forms an orthogonal basis in Z (see Lemma 3.1). Thus, it is enough to check the
control problem (3.14) for all Φλ ∈ {Φλ}λ∈Λα . This gives us the following.

• For any (y0, z0) ∈ Z and parameter α ≥ 0, a function q ∈ L2(0, T ) is a null-control for the
system (1.4) if and only if we have∫ T

0

e−λ(T−t)q(t) =
e−λT

B∗Φλ
(
(y0, z0),Φλ

)
Z
, for all λ ∈ Λα. (3.16)

Here, we have used the fact that

e−tA
∗
Φλ = e−tλΦλ, ∀λ ∈ Λα.

We also recall that B∗Φλ = 1 for all λ ∈ Λα which ensures that the set of moment problems (3.16) is
well-defined and we shall solve those in the next subsections.

3.4. Existence of bi-orthogonal family. In the framework of parabolic control theory, the existence
of bi-orthogonal families to the family of exponential functions in L2(0, T ) has been extensively studied
from the pioneer work [20] up to the very recent developments. In this paper, we use [10, Theorem
V.4.16] (which is similar to [6, Theorem 1.5] but with a more general set of assumptions) to establish
the following result.

Lemma 3.5. For any α ≥ 0 recall the set Λα given by (3.7). Then, there exists a family (pλ)λ∈Λα ⊂
L2(0, T ) bi-orthogonal to (e−λ(T−·))λ∈Λα , i.e.,∫ T

0

pλ(t)e−λ̃(T−t) = δλ,λ̃, for any λ, λ̃ ∈ Λα. (3.17)

In addition, they satisfy the following estimate

‖pλ‖L2(0,T ) ≤ Ce
C
T e

T
2 λ+C

√
λ, ∀λ ∈ Λα, (3.18)

where the constant C > 0 is independent in T .

Remark 3.6. Without loss of generality, we assume that all the eigenvalues are positive. In fact, we
can choose some c0 > 0 such that λ+ c0 > 0 for all λ ∈ Λα. In what follows, an extra factor eTc0 will
appear in the estimation of control cost, but without any consequences on our analysis.

Now, as mentioned earlier, we shall use [10, Theorem V.4.16] in order to prove Lemma 3.5, and for
that we need to show that the set of eigenvalues Λα defined by (3.7), belongs to some sector of the
complex half-plane, satisfies a uniform gap property and some asymptotic conditions on the counting
function.

• The sector condition. For any ν > 0, we define the sector

Sν := {z ∈ C | <z > 0, and |=z| < (sinh ν)<z} .
In our case, the set of eigenvalues Λα is real and so it is clear that there exists some ν > 0
such that

Λα ⊂ Sν , (3.19)

for any α ≥ 0.

• The gap condition. Recall the set of eigenvalues given by (3.7) and the asymptotics of the
eigenvalues λαk,2 for α > 0 from Lemma 3.2. Then it can be seen that there exists some c1 > 0
such that we have

|λk+1,1 − λk,1| ≥ c1k, ∀k ≥ 1,

|λαk+1,2 − λαk,2| ≥ c1k, ∀k ≥ 1 and α ≥ 0,

and there is some kα ∈ N∗ such that

|λ0
k,2 − λk,1| ≥ c1k, ∀k ≥ 1,

|λαk,2 − λk,1| ≥
c1
α
, ∀k ≥ kα.

Remark 3.7. Unlike the case of α = 0, we note that for α > 0 the gap between λαk,2 and λk,1
tends to a finite positive number as k goes to infinity but does not tend to infinity like for the
other cases. This is the reason why we needed to compute the precise asymptotic expansions of
the eigenvalues λαk,2 for α > 0.
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Using the above lower bounds of the differences of eigenvalues and the fact that the spectrum
is discrete, we can say that there is some ρ > 0 such that

|λ− λ̃| ≥ ρ, for any λ, λ̃ ∈ Λα with λ 6= λ̃, (3.20)

which is the uniform spectral gap property.

• The condition on counting function. Let Nα be the counting function associated with the set
of eigenvalues Λα (for any α ≥ 0) defined by

Nα(r) := # {λ ∈ Λα, s.t. |λ| ≤ r} , ∀r > 0.

Our goal is to show that there exists some κ0 > 0 independent in the set of eigenvalues such
that

Nα(r) ≤ κ0r
1/2, ∀r > 0, (3.21a)

|Nα(r)−Nα(s)| ≤ κ0

(
1 + |r − s|1/2

)
, ∀r, s > 0. (3.21b)

From (3.7), we recall that

Λα =
{
λk,1, λ

α
k,2

}
k≥0

.

As it is shown for instance in [10, Lemma V.4.20], it is enough to establish the required results
(3.21) for each of the two sets {λk,1}k≥0 and {λαk,2}k≥0. We shall show this for {λαk,2}k≥0

when α > 0 since the same reasoning will be applicable for the set {λ0
k,2}k≥0 or {λk,1}k≥0. We

denote the associated counting function by Nα,2.

– Let r > 0 be fixed. Then, Nα,2(r) = k (k ∈ N∗) implies

λαk−1,2 ≤ r,

since {λαk,2}k≥0 is increasing. But we have λαk−1,2 ∈
(
(k−1)2π2, (k− 1

2 )2π2
)

for any k ≥ 1,
which gives

(k − 1)2π2 ≤ r, i.e., k ≤ 1 +
1

π

√
r,

and the first condition (3.21a) follows for the counting function.

– Let any 0 < s < r be given. Assume that l = Nα,2(s) and k = Nα,2(r) for some l, k ∈ N∗
(certainly, k > l). Then, using the properties of the set {λαk,2}k≥0, one has

(k − 1)π ≤
√
λαk−1,2 ≤

√
r, (l +

1

2
)π >

√
λαl,2 >

√
s,

which yields

k − l ≤ 3

2
+

1

π

(√
r −
√
s
)
≤ 3

2
+

1

π

√
r − s,

and that the second condition (3.21b) on the counting function is true.

Since the three conditions (3.19), (3.20) and (3.21) are now satisfied, by using [10, Theorem V.4.16],
we can ensure the existence of a bi-orthogonal family (pλ)λ∈Λα ⊂ L2(0, T ) to (e−λ(T−·))λΛα

satisfying
the sharp estimate as mentioned in Lemma 3.5.

3.5. Existence of a boundary null-control. Now, we are in position to solve the set of moments
problem (3.16) to find a control for the system (1.4).

Proof of Theorem 1.2. For any α ≥ 0 and initial data (y0, z0) ∈ Z, we consider

q(t) =
∑
λ∈Λα

qλ(t), ∀t ∈ [0, T ], (3.22a)

with qλ(t) =
e−λT

B∗Φλ
(
(y0, z0),Φλ

)
Z
pλ(t), ∀t ∈ [0, T ], ∀λ ∈ Λα (3.22b)

where pλ are given by Lemma 3.5. Observe that, the above choice of function q formally solves the set
of moments problem (3.16), thanks to the property (3.17) verified by pλ for each λ ∈ Λα.
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Now, recall that B∗Φλ = 1 for all λ ∈ Λα (see Proposition 3.4). Also, from the expressions of the
eigenfunctions given by (3.3)–(3.5)–(3.6), we have ‖Φλ‖Z ≤ C for any λ ∈ Λα. Using these and the
L2(0, T )-estimates of bi-orthogonal family (pλ)λ∈Λα given by (3.18), we obtain λ ∈ Λα, that

‖qλ‖L2(0,T ) ≤ Ce−λT e
C
T e

T
2 λ+C

√
λ‖(y0, z0)‖Z

≤ CeCT e−T2 λeT4 λ+C2

T ‖(y0, z0)‖Z
≤ CeCT e−T4 λ‖(y0, z0)‖Z ,

(3.23)

where we have used the Young’s inequality

C
√
λ ≤ T

4
λ+

C2

T
, ∀λ ∈ Λα.

Using (3.23) we have

‖q‖L2(0,T ) ≤
∑
λ∈Λα

‖qλ‖L2(0,T ) ≤ Ce
C
T ‖(y0, z0)‖Z

∑
λ∈Λα

e−
T
4 λ ≤ CeCT ‖(y0, z0)‖Z , (3.24)

thanks to the fact that Λα is an increasing sequence of order k2 (see (3.7)).
The proof ends. �

4. Local null-controllability of the nonlinear system

This section is devoted to prove the local null-controllability result for the nonlinear system (1.1),
i.e., Theorem 1.1. The proof will be based on the so-called source term method developed in [27]
followed by a Banach fixed point argument and to employ this we shall extensively use the control cost

Ce
C
T ‖(y0, z0)‖Z obtained for the linear system given by Theorem 1.2.

4.1. The source term method. Let us discuss the source term method for our problem. We first
consider the following system:

yt − yxx = ξ, in (0, T )× (0, 1),

zt − zxx = η, in (0, T )× (0, 1),

yx(t, 0) = q(t), zx(t, 0) = 0, in (0, T ),

yx(t, 1) = zx(t, 1), in (0, T ),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (0, T ),

y(0, x) = y0(x), z(0, x) = z0(x), in (0, 1).

(4.1)

Then, our goal is to establish the null-controllability of the above system for any given parameter α ≥ 0,
initial data (y0, z0) ∈ Z and source terms (ξ, η) which belong to some certain weighted L2(0, T ;Z)
space. Let us discuss it at length in the next couple of subsections.

4.1.1. Construction of weight functions and weighted spaces. Assume the constants β > 0,
γ > 1 in such a way that

1 < γ <
√

2, and β >
γ2

2− γ2
. (4.2)

We also redenote the constant appearing in the control estimate (1.8) of the linearized model by M ;

more precisely the control cost is given by Me
M
T (to make difference with the generic constant C). We

now define the weight functionsρ0(t) = e−
βM

(γ−1)(T−t) ,

ρS(t) = e−
(1+β)γ2M
(γ−1)(T−t) ,

∀t ∈
[
T

(
1− 1

γ2

)
, T

]
, (4.3)

and extended them in a constant way in

[
0, T

(
1− 1

γ2

)]
such that they are continous and non-

increasing in [0, T ]. Note that ρ0(T ) = ρS(T ) = 0 and further, we compute that

ρ2
0(t)

ρS(t)
= e

γ2M+βM(γ2−2)
(γ−1)(T−t) , ∀t ∈

[
T

(
1− 1

γ2

)
, T

]
.
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Due to the choices of γ, β in (4.2), we have M
(
γ2 + β(γ2 − 2)

)
< 0, (γ − 1) > 0 and therefore we

conclude that

ρ2
0(t)

ρS(t)
≤ 1, ∀t ∈ [0, T ]. (4.4)

Let us now define the following weighted spaces:

S :=

{
ξ ∈ L2(0, T ;L2(0, 1)) :

ξ

ρS
∈ L2(0, T ;L2(0, 1))

}
(4.5)

Y :=

{
(y, z) ∈ L2(0, T ;Z) :

(
y

ρ0
,
z

ρ0

)
∈ L2(0, T ;Z)

}
(4.6)

Q :=

{
q ∈ L2(0, T ) :

q

ρ0
∈ L2(0, T )

}
, (4.7)

where the functions ρ0 and ρS are defined in (4.3). The inner product on the spaces S,Y and Q are
respectively given by〈

ξ, ξ̃
〉
S

:=

∫ T

0

1

ρ2
S(t)

〈
ξ(t), ξ̃(t)

〉
L2(0,1)

dt, for any ξ, ξ̃ ∈ S,

〈(y, z), (ỹ, z̃)〉Y :=

∫ T

0

1

ρ2
0(t)
〈(y(t), z(t)), (ỹ(t), z̃(t))〉Z dt, for any (y, z), (ỹ, z̃) ∈ Y,

〈q, q̃〉Q :=

∫ T

0

1

ρ2
0(t)

q(t)q̃(t)dt, for any q, q̃ ∈ Q.

Accordingly, the associated norms on the spaces S,Y and Q are respectively

‖ξ‖2S :=

∫ T

0

1

ρ2
S(t)

‖ξ(t)‖2L2(0,1) dt, for any ξ ∈ S, (4.8)

‖(y, z)‖2Y :=

∫ T

0

1

ρ2
0(t)
‖(y(t), z(t))‖2Z dt, for any (y, z) ∈ Y, (4.9)

‖q‖2Q :=

∫ T

0

1

ρ2
0(t)
|q(t)|2 dt, for any q ∈ Q. (4.10)

4.1.2. Null-controllability of the linearized system with source terms. Our next result ad-
dresses the null-controllability of the inhomogeneous linear system (4.1) with given source terms ξ, η
from the space S and by definition of S, it is clear that the function ξ or η vanishes exponentially near
t = T . With the above choice of source functions in hand, and then by utilizing the explicit control

cost Me
M
T for the homogeneous control system (see Section 3.5), we shall eventually show that there

exists a solution-control pair ((y, z), q) in the space Y × Q to the system (4.1). Then, by definitions
of the space Y and weight function ρ0 (see (4.6) and (4.3) resp.), one can conclude that the solution
(y, z) has to be “zero” at t = T . Precisely we prove the following proposition.

Proposition 4.1. Let any parameter α ≥ 0 be given. Then, for any given initial state (y0, z0) ∈ Z
and source terms (ξ, η) ∈ L2(0, T ;Z), there exists a linear map T : Z ×L2(0, T ;Z)→ Y ×Q such that
T ((y0, z0), (ξ, η)) := ((y, z), q) solves the system (4.1).

In addition, we have the following estimate∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
C0([0,T ];Z)

+

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
L2(0,T ;H)

+

∥∥∥∥ qρ0

∥∥∥∥
L2(0,T )

≤ CeCT+C
T

(
‖(y0, z0)‖Z +

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(0,T ;Z)

)
, (4.11)

for some constant C > 0 that is independent in T .

Proof. For the given time T > 0, let us define a sequence (Tk)k≥0 given by

Tk := T − T

γk
, ∀k ≥ 0, (4.12)

where γ is introduced in (4.2), and it can be easily seen that

(0, T ) = ∪k≥0(Tk, Tk+1).
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We also note that with this choice of Tk, one has

ρ0(Tk+2) = e
M

Tk+2−Tk+1 ρS(Tk), for all k ≥ 0, (4.13)

where ρ0 and ρS have been defined by (4.3) .

Now, our goal is to decompose (4.1) in (Tk, Tk+1) for each k ≥ 0, into two parts: one is only with
forcing terms and zero initial data, and the other one is a homogeneous control system along with the
initial data.

• Inhomogeneous system without control input. Let us define a sequence (ak)k≥0 such that

a0 := (y0, z0) ∈ Z and ak+1 :=
(
ỹ(T−k+1), z̃(T−k+1)

)
, ∀k ≥ 0, (4.14)

where (ỹ, z̃) is the unique weak solution to the system

ỹt − ỹxx = ξ, in (Tk, Tk+1)× (0, 1),

z̃t − z̃xx = η, in (Tk, Tk+1)× (0, 1),

ỹx(t, 0) = 0, z̃x(t, 0) = 0, in (Tk, Tk+1),

ỹx(t, 1) = z̃x(t, 1), in (Tk, Tk+1),

ỹ(t, 1) + z̃(t, 1) + αỹx(t, 1) = 0, in (Tk, Tk+1),

ỹ(T+
k , ·) = 0, z̃(T+

k , ·) = 0, in (0, 1),

(4.15)

for all k ≥ 0. Thanks to the estimate (2.11) in Proposition 2.3, we get

‖(ỹ, z̃)‖C0([Tk,Tk+1];Z) + ‖(ỹ, z̃)‖L2(Tk,Tk+1;H) ≤ Ce
CT ‖(ξ, η)‖L2(Tk,Tk+1;Z) , ∀k ≥ 0. (4.16)

In particular, by means of (4.14), we have

‖ak+1‖Z ≤ Ce
CT ‖(ξ, η)‖L2(Tk,Tk+1;Z) , ∀k ≥ 0. (4.17)

• Control system without the source terms. We now consider the following homogeneous control
system: 

ŷt − ŷxx = 0, in (Tk, Tk+1)× (0, 1),

ẑt − ẑxx = 0, in (Tk, Tk+1)× (0, 1),

ŷx(t, 0) = q̂k(t), ẑx(t, 0) = 0, in (Tk, Tk+1),

ŷx(t, 1) = ẑx(t, 1), in (Tk, Tk+1),

ŷ(t, 1) + ẑ(t, 1) + αŷx(t, 1) = 0, in (Tk, Tk+1),(
ŷ(T+

k , ·), ẑ(T
+
k , ·)

)
= ak, in (0, 1),

(4.18)

for all k ≥ 0. Using Theorem 1.2, we have the existence of a control q̂k ∈ L2(Tk, Tk+1) with the
estimate

‖q̂k‖L2(Tk,Tk+1) ≤Me
M

Tk+1−Tk ‖ak‖Z , (4.19)

such that the associated solution (ŷ, ẑ) to (4.18) satisfies(
ŷ(T−k+1, x), ẑ(T−k+1, x)

)
= (0, 0), ∀x ∈ (0, 1), and ∀k ≥ 0.

Combining (4.19) with (4.17), we have

‖q̂k+1‖L2(Tk+1,Tk+2) ≤Me
M

Tk+2−Tk+1 ‖ak+1‖Z ≤ Ce
CT e

M
Tk+2−Tk+1 ‖(ξ, η)‖L2(Tk,Tk+1;Z) ,

for all k ≥ 0. But ρS is a non-increasing function in [Tk, Tk+1]; in what follows we have

‖q̂k+1‖L2(Tk+1,Tk+2) ≤ Ce
CT e

M
Tk+2−Tk+1 ρS(Tk)

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(Tk,Tk+1;Z)

,

for all k ≥ 0. Then, using the relation (4.13) between the weight functions ρ0 and ρS , we get

‖q̂k+1‖L2(Tk+1,Tk+2) ≤ Ce
CT ρ0(Tk+2)

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(Tk,Tk+1;Z)

, (4.20)

for all k ≥ 0. Again, since ρ0 is non-increasing, we deduce∥∥∥∥ q̂k+1

ρ0

∥∥∥∥
L2(Tk+1,Tk+2)

≤ 1

ρ0(Tk+2)
‖q̂k+1‖L2(Tk+1,Tk+2) ≤ Ce

CT

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(Tk,Tk+1;Z)

, (4.21)

for all k ≥ 0.
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We now define the control function q as follows:

q :=
∑
k≥0

q̂kχ(Tk,Tk+1) in (0, T ). (4.22)

Recall that we have already established the L2-estimates of
q̂k
ρ0

for all k ≥ 1 by (4.21). It only remains

to find the L2-estimate of
q̂0

ρ0
. But from the bound (4.19), we get

‖q̂0‖L2(0,T1) ≤Me
M
T1 ‖a0‖Z = Me

M
T1 ‖(y0, z0)‖Z ,

and then using the fact that ρ0 is non-increasing, one has∥∥∥∥ q̂0

ρ0

∥∥∥∥
L2(0,T1)

≤ 1

|ρ0(T1)|
‖q̂0‖ ≤

M

ρ0(T1)
e
M
T1 ‖(y0, z0)‖Z = Me

Mγ(1+β)
(γ−1)T ‖(y0, z0)‖Z , (4.23)

where in the last inclusion, we have used the fact that T1 = T
(
1− 1/γ

)
and ρ0(T1) = e−

γβM
(γ−1)T . Now,

the quantity Mγ(1+β)
(γ−1) being positive, we eventually obtain (by combining (4.21) and (4.23))∥∥∥∥ qρ0

∥∥∥∥
L2(0,T )

≤ CeCT+C
T

(
‖(y0, z0)‖Z +

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(0,T ;Z)

)
, (4.24)

where the constant C > 0 is independent in T > 0.

• Control system with the source terms. We now define

(y, z) = (ỹ, z̃) + (ŷ, ẑ). (4.25)

Then (y, z) satisfies the following system

yt − yxx = ξ, in (Tk, Tk+1)× (0, 1),

zt − zxx = η, in (Tk, Tk+1)× (0, 1),

yx(t, 0) = q̂k(t), zx(t, 0) = 0, in (Tk, Tk+1),

yx(t, 1) = zx(t, 1), in (Tk, Tk+1),

y(t, 1) + z(t, 1) + αyx(t, 1) = 0, in (Tk, Tk+1),

(y(Tk, ·), z(Tk, ·)) = ak, in (0, 1),

(4.26)

for all k ≥ 0. Note that, the solution (y, z) satisfies

(y(T0), z(T0)) = a0 = (y0, z0),

and for all k ≥ 0(
y(T−k+1), z(T−k+1)

)
=
(
ỹ(T−k+1), z̃(T−k+1)

)
+
(
ŷ(T−k+1), ẑ(T−k+1)

)
= ak+1 + (0, 0) = ak+1,(

y(T+
k+1), z(T+

k+1)
)

=
(
ỹ(T+

k+1), z̃(T+
k+1)

)
+
(
ŷ(T+

k+1), ẑ(T+
k+1)

)
= (0, 0) + ak+1 = ak+1.

Therefore (y, z) is continuous at Tk for all k ≥ 0.

Now, applying the energy estimate (2.17) for the system (4.26), and using the estimations for ak+1

from (4.17) and q̂k+1 from (4.19), we have

‖(y, z)‖C0([Tk+1,Tk+2];Z) + ‖(y, z)‖L2(Tk+1,Tk+2;H)

≤ CeCT
(
‖ak+1‖Z + ‖(ξ, η)‖L2(Tk+1,Tk+2;Z) + ‖q̂k+1‖L2(Tk+1,Tk+2)

)
≤ CeCT

(
‖ak+1‖Z + ‖(ξ, η)‖L2(Tk+1,Tk+2;Z) +Me

M
Tk+2−Tk+1 ‖ak+1‖Z

)
≤ CeCT ‖(ξ, η)‖L2(Tk,Tk+2;Z) + CeCT e

M
Tk+2−Tk+1 ‖(ξ, η)‖L2(Tk,Tk+1;Z)

≤ CeCT e
M

Tk+2−Tk+1 ‖(ξ, η)‖L2(Tk,Tk+2;Z) ,
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for all k ≥ 0. Since ρS is non-increasing in [Tk, Tk+2], we obtain from above,

‖(y, z)‖C0([Tk+1,Tk+2];Z) + ‖(y, z)‖L2(Tk+1,Tk+2;H)

≤ CeCT e
M

Tk+2−Tk+1 ρS(Tk)

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(Tk,Tk+2;Z)

= CeCT ρ0(Tk+2)

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(Tk,Tk+2;Z)

,

(4.27)

for all k ≥ 0, since ρ0(Tk+2) = e
M

Tk+2−Tk+1 ρS(Tk) for all k ≥ 0 (see (4.13)). Using the fact that ρ0 is
non-increasing on [Tk+1, Tk+2], we further deduce from (4.27) that∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
C0([Tk+1,Tk+2];Z)

+

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
L2(Tk+1,Tk+2;H)

≤ 1

ρ0(Tk+2)

(
‖(y, z)‖C0([Tk+1,Tk+2];Z) + ‖(y, z)‖L2(Tk+1,Tk+2;H)

)
≤ CeCT

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(Tk,Tk+2;Z)

, ∀k ≥ 0.

(4.28)

Now, it remains to find the estimates of (y, z) in [0, T1]. Again, using the energy estimate (2.17) we

find that (also having in mind ρ0(T1) = e−
γβM

(γ−1)T )

‖(y, z)‖C0([0,T1];Z) + ‖(y, z)‖L2(0,T1;H)

≤ CeCT
(
‖a0‖Z + ‖q̂0‖L2(0,T1) + ‖(ξ, η)‖L2(0,T1;Z)

)
≤ CeCT

(
‖a0‖Z +Me

M
T1 ‖a0‖Z + ‖(ξ, η)‖L2(0,T1;Z)

)
≤ CeCT e

Mγ(1+β)
(γ−1)T ρ0(T1)

(
‖(y0, z0)‖Z +Me

M
T1 ‖a0‖Z + ‖(ξ, η)‖L2(0,T1;Z)

)
.

But, ρ0 and ρS are non-increasing functions in [0, T1] and thus the above estimate follows to:∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
C0([0,T1];Z)

+

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
L2(0,T1;H)

≤ CeCT+C
T

(
‖(y0, z0)‖Z +

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(0,T1;Z)

)
. (4.29)

Combining the estimates (4.28) and (4.29), we have∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
C0([0,T ];Z)

+

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
L2(0,T ;H)

≤ CeCT+C
T

(
‖(y0, z0)‖Z +

∥∥∥∥( ξ

ρS
,
η

ρS

)∥∥∥∥
L2(0,T ;Z)

)
, (4.30)

for some constant C > 0 independent in T .
The above bound (4.30) along with (4.24), we achieve the required estimate (4.11) of the proposition.

This completes the proof. �

4.2. Application of Banach fixed point theorem. This section is devoted to prove the local
null-controllability result of our nonlinear system (1.1), that is Theorem 1.1.

Let any parameter α ≥ 0 be given as earlier and assume any initial data (y0, z0) ∈ Z such that
‖(y0, z0)‖Z ≤ δ, where δ > 0 will be specified later. We now define the set

Sδ :=
{

(ξ, η) ∈ S × S : ‖(ξ, η)‖S×S ≤ δ
}
,

where the space S is defined in (4.5).
By Proposition 4.1, we can say that for any given source term (ξ, η) ∈ S × S, there exists a control

q ∈ L2(0, T ) such that the corresponding trajectory (y, z) of the system (4.1) satisfies the estimate
(4.11). In what follows, we define the map F : Sδ → L2(0, T ;Z) by

F(ξ, η) =

(
f(y, z)

g(y, z)

)
, (4.31)



18 LOCAL BOUNDARY NULL-CONTROLLABILITY OF A COUPLED PARABOLIC SYSTEM

for all (ξ, η) ∈ Sδ, where we recall that the nonlinear functions f and g are givem by{
f(y, z) = −yz + ay2 + bz2 + r1(t)y,

g(y, z) = yz + cy2 + dz2 + r2(t)z,
(4.32)

where a, b, c, d are L∞((0, T )× (0, 1)) functions and
r1(t) = α1

∫ 1

0

(
ψ1,1(x)y(t, x) + ψ2,1(x)z(t, x)

)
dx,

r2(t) = α2

∫ 1

0

(
ψ1,2(x)y(t, x) + ψ2,2(x)z(t, x)

)
dx,

(4.33)

with α1, α2 ∈ R and ψ1,j , ψ2,j ∈ L∞(0, 1), j = 1, 2.

Now, our goal is to prove that there exists some δ > 0 such that the map F has a unique fixed
point in the set Sδ and to do so, we shall apply the Banach fixed point theorem. We begin with the
following lemma.

Lemma 4.2 (Stability). There exists some δ > 0 such that Sδ ⊂ S × S is stable under the map F.

Proof. We have for (ξ, η) ∈ Sδ,

‖F(ξ, η)‖2S×S =

∥∥∥∥∥
(
f(y, z)

g(y, z)

)∥∥∥∥∥
2

S×S

≤
∥∥−yz + ay2 + bz2 + r1(t)y

∥∥2

S +
∥∥yz + cy2 + dz2 + r2(t)z

∥∥2

S .

Using the definition of norm in S (see (4.8)), we deduce from above that,

‖F(ξ, η)‖2S×S ≤ C
∫ T

0

1

ρ2
S(t)

(
‖y(t)z(t)‖2L2(0,1) +

∥∥y2(t)
∥∥2

L2(0,1)
+
∥∥z2(t)

∥∥2

L2(0,1)

+ ‖r1(t)y(t)‖2L2(0,1) + ‖r2(t)z(t)‖2L2(0,1)

)
dt,

(4.34)

where C := C(‖a‖L∞ , ‖b‖L∞ , ‖c‖L∞ , ‖d‖L∞) > 0. We now estimate the terms appearing in the r.h.s.
of (4.34). Note that,

‖y(t)z(t)‖2L2(0,1) =

∫ 1

0

|y(t, x)z(t, x)|2 dx ≤ 2

∫ 1

0

(
|y(t, x)|4 + |z(t, x)|4

)
dx. (4.35)

and ∥∥y2(t)
∥∥2

L2(0,1)
=

∫ 1

0

|y(t, x)|4 dx,
∥∥z2(t)

∥∥2

L2(0,1)
=

∫ 1

0

|z(t, x)|4 dx. (4.36)

We also have for j = 1, 2

‖rj(t)y(t)‖2L2(0,1) = |αj |2
∫ 1

0

∣∣∣∣y(t, x)

∫ 1

0

(ψ1,j(x)y(t, x) + ψ2,j(x)z(t, x))dx

∣∣∣∣2 dx (4.37)

≤ C
(∫ 1

0

(|y(t, x)|2 + |z(t, x)|2)dx

)∫ 1

0

|y(t, x)|2 dx,

where C := C(|α1|, |α2|, ‖ψ1,1‖L∞ , ‖ψ1,2‖L∞ , ‖ψ2,1‖L∞ , ‖ψ2,2‖L∞) > 0.
Combining the above estimates (4.35), (4.36) and (4.37), we obtain from (4.34),

‖F(ξ, η)‖2S×S ≤ C
∫ T

0

1

ρ2
S(t)

(∫ 1

0

(
|y(t, x)|4 + |z(t, x)|4

)
dx

)
dt (4.38)

= C

∫ T

0

∫ 1

0

ρ4
0(t)

ρ2
S(t)

∣∣∣∣y(t, x)

ρ0(t)

∣∣∣∣4 dxdt+ C

∫ T

0

∫ 1

0

ρ4
0(t)

ρ2
S(t)

∣∣∣∣z(t, x)

ρ0(t)

∣∣∣∣4 dxdt.
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Thanks to the fact (4.4), we get from (4.38) that

‖F(ξ, η)‖2S×S

≤ C
∫ T

0

∥∥∥∥ y(t)

ρ0(t)

∥∥∥∥2

L∞(0,1)

(∫ 1

0

∣∣∣∣y(t, x)

ρ0(t)

∣∣∣∣2 dx
)
dt+ C

∫ T

0

∥∥∥∥ z(t)ρ0(t)

∥∥∥∥2

L∞(0,1)

(∫ 1

0

∣∣∣∣z(t, x)

ρ0(t)

∣∣∣∣2 dx
)
dt

≤ C
∫ T

0

∥∥∥∥ y(t)

ρ0(t)

∥∥∥∥2

H1(0,1)

∥∥∥∥ y(t)

ρ0(t)

∥∥∥∥2

L2(0,1)

dt+ C

∫ T

0

∥∥∥∥ z(t)ρ0(t)

∥∥∥∥2

H1(0,1)

∥∥∥∥ z(t)ρ0(t)

∥∥∥∥2

L2(0,1)

dt

≤ C
∥∥∥∥ yρ0

∥∥∥∥2

C0([0,T ];L2(0,1))

∫ T

0

∥∥∥∥ y(t)

ρ0(t)

∥∥∥∥2

H1(0,1)

dt+ C

∥∥∥∥ zρ0

∥∥∥∥2

C0([0,T ];L2(0,1))

∫ T

0

∥∥∥∥ z(t)ρ0(t)

∥∥∥∥2

H1(0,1)

dt

≤ C
∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥2

C0([0,T ];Z)

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥2

L2(0,T ;H)

.

Using the estimate (4.11) in above, we finally arrive to the following:

‖F(ξ, η)‖S×S ≤ C

(∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
C0([0,T ];Z)

+

∥∥∥∥( y

ρ0
,
z

ρ0

)∥∥∥∥
L2(0,T ;H)

)2

≤ CeCT+C
T

(
‖(y0, z0)‖Z + ‖(ξ, η)‖S×S

)2
≤ CeCT+C

T δ2, (4.39)

due to our choices of initial data ‖(y0, z0)‖Z ≤ δ and source terms (ξ, η) ∈ Sδ.
Now, one can choose δ > 0 small enough in (4.39) such that we determine ‖F(ξ, η)‖S×S ≤ δ for all

(ξ, η) ∈ Sδ. This concludes our lemma. �

The following lemma shows that F : Sδ → Sδ is a contraction map.

Lemma 4.3 (Contraction). There exists a δ > 0 such that the map F defined by (4.31) is a contraction
map on the closed ball Sδ.

Proof. Consider any two pairs (ξi, ηi) ∈ Sδ for i = 1, 2. Then, by means of Proposition 4.1, there exist
control functions qi ∈ Q for the system (4.1) with solutions (yi, zi) ∈ Y associated to (ξi, ηi) ∈ Sδ for
i = 1, 2.

Accordingly, we use the notations fi, gi for the nonlinear functions (see (4.32)–(4.33)) where{
fi(yi, zi) = −yizi + ay2

i + bz2
i + ri,1(t)yi,

gi(yi, zi) = yizi + cy2
i + dz2

i + ri,2(t)zi,
with


ri,1(t) = α1

∫ 1

0

(
ψ1,1(x)yi(t, x) + ψ2,1(x)zi(t, x)

)
dx,

ri,2(t) = α2

∫ 1

0

(
ψ1,2(x)yi(t, x) + ψ2,2(x)zi(t, x)

)
dx,

for i = 1, 2.
Then, we compute

‖F(ξ1, η1)− F(ξ2, η2)‖2S×S

=

∥∥∥∥∥
(
−y1z1 + ay2

1 + bz2
1 + r1,1(t)y1

y1z1 + cy2
1 + dz2

1 + r1,2(t)z1

)
−

(
−y2z2 + ay2

2 + bz2
2 + r2,1(t)y2

y2z2 + cy2
2 + dz2

2 + r2,2(t)z2

)∥∥∥∥∥
2

S×S

=

∥∥∥∥∥
(
−(y1z1 − y2z2) + a(y2

1 − y2
2) + b(z2

1 − z2
2) + r1,1(t)y1 − r2,1(t)y2

y1z1 − y2z2 + c(y2
1 − y2

2) + d(z2
1 − z2

2) + r1,2(t)z1 − r2,2(t)z2

)∥∥∥∥∥
2

S×S

≤C
∫ T

0

1

ρ2
S(t)

(
‖y1(t)z1(t)− y2(t)z2(t)‖2L2(0,1) +

∥∥y2
1(t)− y2

2(t)
∥∥2

L2(0,1)
+
∥∥z2

1(t)− z2
2(t)

∥∥2

L2(0,1)

+ ‖r1,1(t)y1(t)− r2,1(t)y2(t)‖2L2(0,1) + ‖r1,2(t)z1(t)− r2,2(t)z2(t)‖2L2(0,1)

)
dt.

(4.40)



20 LOCAL BOUNDARY NULL-CONTROLLABILITY OF A COUPLED PARABOLIC SYSTEM

To this end, we find

‖y1(t)z1(t)− y2(t)z2(t)‖2L2(0,1)

≤2
(
‖y1(t)(z1(t)− z2(t))‖2L2(0,1) + ‖(y1(t)− y2(t))z2(t)‖2L2(0,1)

)
≤C ‖y1(t)‖2L∞(0,1) ‖z1(t)− z2(t)‖2L2(0,1) + C ‖z2(t)‖2L∞(0,1) ‖y1(t)− y2(t)‖2L2(0,1)

≤C ‖y1(t)‖2H1(0,1) ‖z1(t)− z2(t)‖2L2(0,1) + C ‖z2(t)‖2H1(0,1) ‖y1(t)− y2(t)‖2L2(0,1) . (4.41)

A straightforward computation also gives∥∥y2
1(t)− y2

2(t)
∥∥2

L2(0,1)
≤
(
‖y1(t)‖2H1(0,1) + ‖y2(t)‖2H1(0,1)

)
‖y1(t)− y2(t)‖2L2(0,1) , (4.42)∥∥z2

1(t)− z2
2(t)

∥∥2

L2(0,1)
≤
(
‖z1(t)‖2H1(0,1) + ‖z2(t)‖2H1(0,1)

)
‖z1(t)− z2(t)‖2L2(0,1) . (4.43)

Next we look at the remaining terms in (4.40), we compute

‖r1,1(t)y1(t)− r2,1(t)y2(t)‖2L2(0,1) =

∫ 1

0

|r1,1(t)y1(t, x)− r2,1(t)y2(t, x)|2 dx

≤2

∫ 1

0

|r1,1(t)(y1(t, x)− y2(t, x))|2 dx+ 2

∫ 1

0

|(r1,1(t)− r2,1(t))y2(t, x)|2 dx

≤2 |α1|2
∣∣∣∣∫ 1

0

(ψ1,1(x)y1(t, x) + ψ2,1(x)z1(t, x))dx

∣∣∣∣2 ∫ 1

0

|y1(t, x)− y2(t, x)|2 dx

+ 2

∫ 1

0

|y2(t, x)|2 dx
∣∣∣∣α1

∫ 1

0

(ψ1,1(x)y1(t, x) + ψ2,1(x)z1(t, x))dx

− α1

∫ 1

0

(ψ1,1(x)y2(t, x) + ψ2,1(x)z2(t, x))dx

∣∣∣∣2
≤C ‖y1(t)− y2(t)‖2L2(0,1)

∫ 1

0

(|y1(t, x)|2 + |z1(t, x)|2)dx

+ C ‖y2(t)‖2L2(0,1)

∫ 1

0

(
|ψ1,1(x)|2 |y1(t, x)− y2(t, x)|2 + |ψ2,1(x)|2 |z1(t, x)− z2(t, x)|2

)
≤C

(
‖y1(t)‖2L2(0,1) + ‖y2(t)‖2L2(0,1) + ‖z1(t)‖2L2(0,1)

)
×(

‖y1(t)− y2(t)‖2L2(0,1) + ‖z1(t)− z2(t)‖2L2(0,1)

)
.

(4.44)

We similarly obtain

‖r1,2(t)z1(t)− r2,2(t)z2(t)‖2L2(0,1) ≤ C
(
‖y1(t)‖2L2(0,1) + ‖z1(t)‖2L2(0,1) + ‖z2(t)‖2L2(0,1)

)
×(

‖y1(t)− y2(t)‖2L2(0,1) + ‖z1(t)− z2(t)‖2L2(0,1)

)
. (4.45)

Combining the estimates (4.41), (4.42), (4.43), (4.44) and (4.45), we obtain from (4.40)

‖F(ξ1, η1)− F(ξ2, η2)‖2S×S

≤C
∫ T

0

1

ρ2
S(t)

[
‖(y1(t), z1(t))‖2H + ‖(y2(t), z2(t))‖2H

] ∥∥(y1(t)− y2(t), z1(t)− z2(t)
)∥∥2

Z
dt

≤C
∫ T

0

ρ4
0(t)

ρ2
S(t)

[∥∥∥∥(y1(t)

ρ0(t)
,
z1(t)

ρ0(t)

)∥∥∥∥2

H
+

∥∥∥∥(y2(t)

ρ0(t)
,
z2(t)

ρ0(t)

)∥∥∥∥2

H

]∥∥∥∥(y1(t)− y2(t)

ρ0(t)
,
z1(t)− z2(t)

ρ0(t)

)∥∥∥∥2

Z

dt

≤C
∥∥∥∥(y1

ρ0
,
z1

ρ0

)
−
(
y2

ρ0
,
z2

ρ0

)∥∥∥∥2

C0([0,T ];Z)

[∥∥∥∥(y1

ρ0
,
z1

ρ0

)∥∥∥∥2

L2(0,T ;H)

+

∥∥∥∥(y2

ρ0
,
z2

ρ0

)∥∥∥∥2

L2(0,T ;H)

]
, (4.46)

where we have used the fact that
ρ2

0(t)
ρS(t) ≤ 1 (see (4.4)).
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But, due to the linearity of the solution map (see Proposition 4.1), we have the following estimate
(by (4.11)) ∥∥∥∥(y1

ρ0
,
z1

ρ0

)
−
(
y2

ρ0
,
z2

ρ0

)∥∥∥∥
C0([0,T ];Z)

+

∥∥∥∥(y1

ρ0
,
z1

ρ0

)
−
(
y2

ρ0
,
z2

ρ0

)∥∥∥∥
L2(0,T ;H)

≤ CeCT+C
T ‖(ξ1, η1)− (ξ2, η2)‖S×S .

Using the above bound and the estimate (4.11) in (4.46), we get

‖F(ξ1, η1)− F(ξ2, η2)‖S×S
≤CeCT+C

T ‖(ξ1, η1)− (ξ2, η2)‖S×S
[
‖(y0, z0)‖Z + ‖(ξ1, η1)‖S×S + ‖(ξ2, η2)‖S×S

]
≤CeCT+C

T δ ‖(ξ1, η1)− (ξ2, η2)‖S×S

≤1

2
‖(ξ1, η1)− (ξ2, η2)‖S×S ,

for chosen 0 < δ ≤ 1
2CeCT+C/T .

This proves the contraction property of the map F in the closed ball Sδ provided we start with
initial data ‖(y0, z0)‖Z ≤ δ and source terms in Sδ. �

Now, we are ready to prove the main result of our paper.

Proof of Theorem 1.1. Let any boundary parameter α ≥ 0 and time T > 0 be given. Now, accord-
ing to Lemma 4.2 and Lemma 4.3, there exists some δ > 0 small enough such that if we choose the
initial data (y0, z0) ∈ Z with ‖(y0, z0)‖Z ≤ δ, then by using Banach fixed point theorem we can ensure

that the map F : Sδ → Sδ (defined by (4.31)) has a unique fixed point (ξ̂, η̂) ∈ Sδ.
At this point, by means of Proposition 4.1, there exists a solution-control pair ((y, z), q) ∈ Y × Q

to the system (4.1) associated with the above source term (ξ̂, η̂) ∈ Sδ, which in addition satisfy the
estimate (4.11). Then, by construction of the space Y (see (4.6)) and the property lim

t→T−
ρ0(t) = 0

force the solution (y, z) to satisfy

y(T, x) = 0, z(T, x) = 0, ∀x ∈ (0, 1),

which is the required local null-controllability result of our nonlinear system (1.1).
Hence, the proof is finished. �

Acknowledgements

Kuntal Bhandari deeply acknowledges Prof. Franck Boyer for several fruitful discussions on the
topic of controllability for parabolic systems with coupled boundary conditions. His work is partially
supported by the Czech-Korean project grant: GC22-08633J. Jiten Kumbhakar acknowledges the
financial supports from IISER Kolkata and the Prime Minister’s Research Fellowship (ref. no. 41-
1/2018-TS-1/PMRF), Government of India. The work of Subrata Majumdar is partially supported by
Department of Atomic Energy and NBHM Fellowship (grant no. 0203/16(21)/2018-R&D-II/10708).

References

[1] D. Allonsius and F. Boyer. Boundary null-controllability of semi-discrete coupled parabolic systems in some multi-

dimensional geometries. Mathematical Control and Related Fields, 10(2):217–256, 2020.
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[23] A. V. Fursikov and O. Yu. Imanuvilov. Controllability of evolution equations, volume 34 of Lecture Notes Series.
Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.

[24] J. Jost. Mathematical methods in biology and neurobiology. Universitext. Springer, London, 2014.

[25] V. Kostrykin, J. Potthoff, and R. Schrader. Contraction semigroups on metric graphs. In Analysis on graphs and
its applications, volume 77 of Proc. Sympos. Pure Math., pages 423–458. Amer. Math. Soc., Providence, RI, 2008.

[26] K. Le Balc’h. Global null-controllability and nonnegative-controllability of slightly superlinear heat equations. J.
Math. Pures Appl. (9), 135:103–139, 2020.

[27] Y. Liu, T. Takahashi, and M. Tucsnak. Single input controllability of a simplified fluid-structure interaction model.

ESAIM Control Optim. Calc. Var., 19(1):20–42, 2013.
[28] G. Lumer. Connecting of local operators and evolution equations on networks. In Potential theory, Copenhagen

1979 (Proc. Colloq., Copenhagen, 1979), volume 787 of Lecture Notes in Math., pages 219–234. Springer, Berlin,

1980.
[29] J. D. Murray. Mathematical biology. I, volume 17 of Interdisciplinary Applied Mathematics. Springer-Verlag, New

York, third edition, 2002. An introduction.

[30] R. Nittka. Inhomogeneous parabolic neumann problems. Czechoslovak Mathematical Journal, 64(3):703–742, sep
2014.

[31] G. Olive. Boundary approximate controllability of some linear parabolic systems. Evol. Equ. Control Theory,

3(1):167–189, 2014.
[32] E. M. Ouhabaz. Analysis of heat equations on domains, volume 31 of London Mathematical Society Monographs

Series. Princeton University Press, Princeton, NJ, 2005.

[33] B. Perthame. Parabolic equations in biology. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer,
Cham, 2015. Growth, reaction, movement and diffusion.

[34] D. Ruiz-Balet and E. Zuazua. Control of reaction-diffusion models in biology and social sciences. Mathematical
Control and Related Fields, 12(4):955–1038, 2022.

[35] M. Tucsnak and G. Weiss. Observation and control for operator semigroups. Birkhäuser Advanced Texts: Basler
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