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Abstract

In a few recent manuscripts, we used the affine connection to introduce two massless scalar

fields in the Einstein-Palatini action. These fields lead to non-metricity. In this article, we

will discuss the significance of these fields in inflation and dark energy. We will construct

a Lagrangian formalism to include these scalar fields in a theory of gravity coupled with

ordinary matter and radiation. We will find that these fields need not to be included in the

actions of interacting gauge theories coupled with conserved fermionic vector currents as a

part of the connection. The same remains valid for ordinary scalar fields. We can couple

the connection-scalars with ordinary matter by adding suitable interaction terms. In this

context, we will find that Stokes’ theorem leads us to include the right-handed neutrinos in

the electroweak theory in curved spacetime even with the Levi-Civita connection. This is

required to obtain consistent equations of motion and anomaly-free conserved vector current

for the neutrinos. Axial vector currents for different Dirac fields may remain anomalous

depending on the theory. The right-handed neutrinos can be useful to explain neutrino

oscillation and dark matter. We will also discuss the possibility of introducing massless

finite integer spin particles using second rank symmetric traceless tensors with reference to

the corresponding little group in flat spacetime. We will show that we can use massless

(A,A) type fields in Minkowski space to introduce massless finite integer spin particles.
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I. Introduction

A lot of work has been done during the last few decades on two periods of cosmic acceler-

ations: inflation and dark energy [1,2,3,4,5,6]. Inflation is driven by the scalar field inflation.

We also have multi-scalar inflation and higher spin driven inflation models [7,8,9]. Dark

energy is not yet detected directly. It is not localized like ordinary matter and is assumed

to have negative pressure to explain the present cosmic acceleration. We also need dark

matter which is observed by its gravitational effects [6,10,11,12]. Data from the Cosmic

Microwave Background Radiation (CMBR) and supernovae surveys predict that the energy

composition of the universe consists of about 20% dark matter, about 70% dark energy and

the rest ordinary matter like hadrons and radiation. The first candidate for dark energy

is the cosmological constant Λ [6,13]. It is of order (10−3eV )4 and is far below from the

value predicted by quantum gravity [14]. This led to construct alternate theories. There

are two principal approaches. The first adds stress-tensors with negative pressure in the

source part of the Einstein equation. Quintessence, k-essence and perfect fluid models are

the most well-known among various theories [15,16,17]. These fields are expected to originate

as matter fields. There is the possibility that they can come with a negative kinetic term

[5,6]. Corresponding fields are known as ghost fields. Despite a lot of efforts, the origins of

inflation, dark energy and dark matter are yet to completely fit within an extended version

of the standard model. The other approach modifies the Einstein-Hilbert action. Examples

are f(R) gravity [18,19], scalar-tensor theories [6,20] and braneworld models [21,22]. These

are geometric theory of dark energy [20]. The experimental success of Einstein’s theory of

gravity, linear in the scalar curvature, in explaining many astrophysical observations led us

to search for additional fields that can be introduced by using a quantum theory of gravity

that is linear in the scalar curvature at the classical level.

In a few recent manuscripts [23,24], we have demonstrated that a quantum theory of

gravity can introduce additional fields besides metric that can be useful to explain inflation

and dark energy. Here, we are considering the free theory. The natural candidates are the

affine connections used to define covariant derivatives in a curved spacetime [25,26,27,28,29].

We found it is more appropriate to use affine connection more general than the metric com-

patible connections in a quantum theory of gravity [23,24]. This is related to the consistency

of canonical commutators and various metric-metric commutators used to quantize the the-

ory. A theory involving curvature is not primarily a theory of metric but in general is a
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theory of non-trivial connection [26]. Hence, it is not bizarre that we can have non-metricity

[30,31] in a quantum theory of gravity. Regarding variational principle, the simplest theory

to introduce connections more general than the Levi-Civita connection is to consider the

Einstein-Palatini action [28]. Here, the connection is expressed as: Θα
µν = Γαµν + Cα

µν ,

where Γαµν is the metric compatible Levi-Civita connection and Cα
µν is a third rank tensor

field that can introduce non-metricity. The Lagrangian density is given by
√
−gR′, where

R′ is the scalar curvature evaluated using the connection Θα
µν . In [23,24], we have used a

potential-like formalism to express Cα
µν as various covariant derivatives of lower rank ten-

sor fields. This is similar to the Levi-Civita connection which is constructed from metric.

We will find in Sect.III that scalar fields are the most suitable candidates for this purpose.

This is due to the compatibility of the corresponding Einstein equation with the contracted

Bianchi identity in Γαµν . Unless stated otherwise, in this article, contracted Bianchi identity

will mean twice contracted Bianchi identity. We have previously introduced two scalar fields

that obey homogeneous wave equation in the free theory and can be non-localized. These

scalar fields can be related to two traces of Cα
µν , one w.r.t (α, µ) and the other w.r.t (µ, ν).

They provide positive and negative stress-tensors in Einstein’s equation respectively, and

will be useful for constructing new non-trivial vacuum solutions [28]. Here, we have a scalar-

tensor theory directly related to quantum gravity, that could explain both inflation and dark

energy provided we modify the action by adding suitable potential terms [6]. The scalar fields

mentioned above give non-metricity although their effects are geometrically different. They

are similar to the cosmological constant Λ that gives deviation from the Newtonian theory

of gravity in the weak field slow motion limit [28]. In the present article, we will elaborate

on this in the next section. We will mostly consider affine connection symmetric in the lower

indices that gives symmetric Ricci tensor. In Sect.II, we will first discuss the scalar field ω

that can be related to an affine connection compatible with a metric conformal to the actual

solution. This introduces a massless scalar field similar to dilaton. We will also introduce

a massless scalar field ψ that is more significant as far as non-metricity is concerned. ψ

contributes a negative stress tensor in Einstein’s equation and can be useful to explain dark

energy.

In Sect.III, we will discuss the possible coupling between ω, ψ and matter fields including

radiation that can arise due to the presence of Cα
µν(ω, ψ) in the covariant derivative. Matter

fields are various representations of SL(2, c). In this context, a careful application of the

Stokes’ theorem reveals that we may need to introduce the right-handed neutrinos as free
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fields in the electroweak theory in curved spacetime. This remains valid even when we use

only the Levi-Civita connection and is required to obtain consistent equations of motion

and anomaly-free conserved vector current for the neutrinos. The right-handed neutrinos

can be important in dark matter research. There are other advantages related to neutrino

oscillations to be mentioned later. Stokes’ theorem also indicates that the axial vector

currents for various Dirac fields, including that of neutrinos, could become anomalous in

curved spacetime as well as in flat spacetime when we use curvilinear coordinates. This is not

rare in quantum field theory in flat spacetime. We will demonstrate that in a mathematically

consistent Lagrangian description that preserves the principle of general covariance and the

principle of equivalence, it is sufficient to use Γαµν as the connection to construct actions and

conserved stress tensors of ordinary matter and radiation fields. We will find that for fields

relevant to the standard model with the addition of the right handed neutrinos, Cα
µν(ω, ψ)

can at most contribute boundary terms to the matter and radiation field actions and do not

appear in the equations of motion. Thus, we may not include Cα
µν(ω, ψ) in the actions and

stress tensors of ordinary matter and radiation. The resulting equation is consistent with

the contracted Bianchi identity in Γαµν , and merely contains an additional stress-tensor in

the right hand side of Einstein’s equation coming from Cα
µν(ω, ψ) present in the curvature

scalar. This agrees partly with experimental observations regarding dark energy which does

not couple with ordinary matter and radiation. We will find in Sect.IV that this may also be

required to construct a stable theory [6]. Deviation from Einstein’s gravity with Γαµν , due to

dark energy, is small. This is apparent from the smallness of the cosmological constant in the

ΛCDM theory. A similar situation presently remains valid for the stress-tensor associated

with ω and ψ, if we try to explain dark energy using these fields. This explains why the

Levi-Civita connection and Einstein’s gravity describe the observable universe to a very good

approximation even if ω and ψ are present. Non-metricity produced by ω and ψ is also small.

In Sect.IV, we will discuss possible modifications of Einstein’s theory of gravity in the

presence of ω and ψ. The equations for ω and ψ are coupled through derivative terms. We

will find that we can separate the equations by introducing two scalar fields, Φ and Ψ that

are linear combinations of ω and ψ. The resulting action is a new form of scalar-tensor

theory with two scalar fields. Φ contributes a positive stress tensor to Einstein’s equation.

When required, we can supplement the Einstein-Palatini action by Φ dependent potential

term. We can couple Φ with ordinary matter by introducing suitable interaction term. Φ

gives finite non-metricity and we can construct a quantum theory where only Φ is present.
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Later, we will consider theories with more than one such field. Ψ contributes a negative

stress-tensor. A scalar matter with negative kinetic term in Einstein’s equation is known

as a phantom/ghost scalar [6]. We find that a phantom scalar of geometric origin can be

present in quantum gravity. The negative kinetic term of Ψ can lead to instability if coupled

to ordinary matter. We can add Ψ dependent potential term to get stable theories [6]. We

will mention a few words on the stability of the theory in this section. Another way to

generalize Einstein’s theory is to include Φ, Ψ and the cosmological constant Λ. This could

lead to a possible geometric theory of inflation together with dynamic and spatially varying

dark energy.

In section:V, we will first discuss the possibility of introducing additional scalar fields and

higher spin fields. We will find that we need to modify the Einstein-Hilbert-Palatini action if

we want to introduce higher spin fields using the affine connection. In flat spacetime, second

rank symmetric traceless tensors give (A,A) type representations of higher spin fields like

j = 1, 2. The most general candidate to give the stabilizer (little group) for massless fields in

Minkowski space is taken to be: W = ISO(2) [32]. However, this group is not represented

by normal matrices [33] when acting on four vectors/tensors. We will find that we have to

use a one parameter subgroup of SO(3) as the little group for massless higher spin fields

in Minkowski space. This allows us to construct a (A,A) type quantum field theory for

massless vector fields using symmetric traceless derivatives. Such derivatives are not gauge

invariant and cannot couple with matter fields in a theory that preserves local internal gauge

invariance. They can be useful for describing dark energy and dark matter. The massless

higher spin particles can also be useful to construct higher spin driven inflation theories

[9,16] in the absence of spontaneous symmetry breaking. Such a theory need not to be a

gauge theory.

II. Affine Connections and Scalar Fields

In this section, we will consider a potential-like formalism of the Palatini theory developed

in [23,24]. This formalism introduces finite on shell non-metricity [23,24]. The connection is

expressed as: Θα
µν = Γαµν + Cα

µν and Cα
µν is symmetric in the lower indices. Here, we will

mostly consider symmetric Ricci tensor to compare with the semi-classical limit of quantum

gravity. The latter is locally Lorentz invariant quantum field theory in curved spaces. We

will use the geometrized units in the following where, h̄ = G = c = 1. The flat spacetime
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metric is taken to be of signature +2.

In [23,24], we have mentioned a few simple ways to introduce non-metricity. We first

consider an affine connection compatible with a non-singular symmetric covariant field: bµν =

gµν + aµν ; aµν 6= kgµν , where gµν is the metric and k is a constant. This connection give

symmetric Ricci tensor. We will return to this aspect later. We first break aµν into a trace

and a traceless part:

aµν(x) = φ(x)gµν + āµν(x); φ(x) =
a(x)

4
(1)

where, φ is a scalar field, a(x) is the trace of aµν and āµν is trace-free. Corresponding

connection can be expressed in the following way [23,26,28,34]:

∇′µAν = ∂µAν −Θα
µνAα (2)

Θα
µν = Γαµν + Cα

µν

= Γαµν + δα(µ∇ν)[ln(1 + φ)]− 1

2
gµν∇α[ln(1 + φ)] +Dα

µν .

Here Θα
µν satisfy the compatibility conditions: bµν|α = 0, where the bar denotes covariant

derivative with connection Θα
µν . Γαµν is the Levi-Civita connection and ∇µ are evaluated

using Γαµν . Θα
µν and Cα

µν are symmetric in the lower indices. Cα
µν can be expressed in

gµν , aµν and their derivatives. The first three terms in the r.h.s of the last line give the

contribution of the trace part of bµν given by: gµν + φ(x)gµν . D
α
µν involve āµν(x). We find:

Θα
αν = ∂ν(ln

√
|b|) (3)

= Γααν + Cα
αν

= ∂ν(ln
√
|g|) + Cα

αν .

The determinants b and g are relative scalars of weight two and transform similarly. Thus,

Cα
αν can only be the gradient of scalar fields. This gives us a symmetric Ricci tensor which,

in the present context, is given by [26,28,34]:

(∇′µ∇′ν −∇′ν∇′µ)Aαβ = −R′ α
µνκ Aκβ +R′

κ
µνβ Aακ (4)

R′
κ

µνα = R κ
µνα + 2∇[νC

κ
µ]α + 2[Cλ

[µ|α|C
κ
ν|λ|]]

R′µα = Rµα + 2∇[κC
κ
µ]α + 2[Cλ

[µ|α|C
κ
κ|λ|]]
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where ∇′µ is the covariant derivative evaluated using the complete connection Θα
µν , ∇µ is

the covariant derivative evaluated using Γαµν , R
κ

µνα is the curvature tensor for Γαµν and Rµα

is the Ricci tensor associated with the Levi-Civita connection. In flat spacetime, a second

rank symmetric traceless tensor give (1, 1) representation of the homogeneous Lorentz group

and can describe a j = 0, j = 1 and j = 2 field, [32]. We will discuss this aspect further in

Sect.V with reference to the contracted Bianchi identities. Thus, we can reduce Dα
µν further

to obtain the following expression for Θα
µν :

Θα
µν = Γαµν + δα(µ∇ν)[ln(1 + φ)]− 1

2
gµν∇α[ln(1 + φ)] (5)

+δα(µ∇ν)ξ + Uα
µν .

It can be shown that ξ contributes a negative stress-tensor in Einstein’s equation. The same

remains valid if we make δα(µ∇ν)ξ traceless in (α, µ). ξ and Uα
αν are associated with āµν(x).

Another simple way to introduce non-metricity in the spacetime manifold is to consider

the connection to be given by the following expression:

Θα
µν = Γαµν +∇αqµν , qµν = qνµ (6)

= Γαµν + gµν∇αψ +∇αq̄µν ; ψ =
1

4
q µ
µ , q̄ µ

µ = 0

= Γαµν + gµν∇αψ + δα(µ∇ν)η −
1

4
gµν∇αη + V α

µν

where the we have extracted η from ∇µq̄µν . The corresponding term is traceless in the lower

indices. ψ contributes a negative stress-tensor while η contributes a positive stress-tensor to

Einstein’s equation. It is possible to introduce a spin 1 field by using traceless symmetric

derivatives in q̄µν , [32]. However, the Ricci tensor will not remain symmetric for general

qµν . In the following, we will first consider an important special case where āµν and q̄µν

vanish but both φ and ψ can be present. The connection is not compatible with gµν , bµν

and qµν . This helps us to avoid the problems associated with quantization and connection

discussed in [23,24]. We will later consider the more general cases, including the possibility

of introducing new vector fields using the present formalism.

We obtain an important theory when Cα
µν contains only φ and ψ. φ and ψ can be related

to two possible traces of Cα
µν , one w.r.t (µ, ν) and the other w.r.t (α, µ). We will find in the

following section that the corresponding Cα
µν always preserve the Bianchi identity in Γαµν .

Cα
µν is given by the following expression [24]:
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Θα
µν = Γαµν + Cα

µν (7)

Cα
µν = δα(µ∇ν)ω −

1

2
gµν∇αω + gµν∇αψ, ω = ln(1 + φ).

We find that: Cα
αν = ∇ν(2ω − ψ) and Cα µ

µ = ∇α(4ψ − ω). We can add additional scalar

fields depending on observations. We will discuss this later. The Einstein-Palatini action is

now given by the following expression:

S =

∫ √
−gR′e +

∑
κMSM(χa, gµν) =

∫ √
−gR′e +

∑
κMSM(χa, gµν) (8)

where e is the coordinate volume element dx0 ∧ dx1 ∧ dx2 ∧ dx3 [28], χa represents collection

of ordinary matter and radiation and SM is the corresponding action. In the last expression

we have removed total divergence terms coming from the second term, 2∇[κC
κ
µ]α, present

in the expression of R′µα given by Eq.(4). This requires fixing the normal derivatives of

ω and ψ on the boundary. Later, we will also require to fix ω and ψ on the boundary to

obtain corresponding equations of motion. Thus, we need to remove ambiguities (if any in

curved spacetime) present in solutions with either the Dirichlet boundary conditions or the

Neumann boundary conditions. It is possible to use the Cauchy boundary conditions with

open boundaries in flat spacetime. When possible, we can use periodic boundary conditions.

We can also modify the action by introducing a suitable boundary term with the boundary

integrand given by: −Cα µ
µ + Cµ α

µ . This is similar to that done for metric [28] and Chern-

Simons theory. Thus, we introduce the modified Ricci tensor R′µν and modified curvature

scalar R′ given by the following expressions:

R′ = gµαR′µα = gµα
{
Rµα + 2[Cλ

[µ|α|C
κ
κ|λ|]]

}
(9)

= R− 3

2
(∇ω)2 + 3(∇ψ)2 + 3[(∇κω)(∇κψ)]

where Rµα and R are the Ricci tensor and curvature scalar associated with the Levi-Civita

connection respectively. We obtain the field equations by considering various variational

derivatives. Here, we assume that Cα
µν(ω, ψ) is not present in SM . This is consistent with

observations. We will illustrate this in the next section. We have the following modification

of the r.h.s of Einstein’s equation [23,28]:
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Gµα = 8π[Pµα(χa) +
3

16π
Pµα(ω)− 3

8π
Pµα(ψ)− 3

8π
Pµα(ω, ψ)] (10)

Pµα(ψ, φ) = (∇(µψ)(∇α)ω)− 1

2
gµα(∇κψ)(∇κω)

=
1

(1 + φ)
[(∇(µψ)(∇α)φ)− 1

2
gµα(∇κψ)(∇κφ)]

∇κ∇κω =
1

1 + φ
∇κ∇κφ− (

1

1 + φ
)2(∇φ)2 = 0

∇κ∇κψ = 0

where Pµα(χa) is the stress tensor of ordinary matter and radiation. ω and ψ obey the

massless Klien-Gordan equation that have non-trivial solutions for most spacetimes. The

above equations are consistent with the contracted Bianchi identity associated with Γαµν :

∇αGµα = 0. We will discuss this aspect further in the following section. Pµα(ω) and Pµα(ψ)

are the stress tensors of ordinary massless scalar fields. ψ contributes a negative stress tensor

to the Einstein equation. ω and ψ together with suitable additional interaction terms give

an alternate way to explain inflation and dark energy [6,35]. Further significance of negative

stress tensor can be found in [36,37]. We find that the coupling of ω with ψ in R′ gives

another contribution to the source stress tensor. We will later show that the equations

can be separated in the scalar fields. Cα
µν in Eq.(7) is now given by the solutions of the

above equations. Pµα(χa) will be multiplied by appropriate factors when we transform to

non-geometrized ordinary units.

We conclude the present section with a discussion on the geometrical significance of the

non-metricities associated with ω and ψ. Non-metricity is defined using the non-metricity

tensor Qµαβ, [31]:

Qµαβ = −∇′µgαβ (11)

where ∇′µ is evaluated using the complete connection: Γαµν + Cα
µν . We have the following

expressions for Qµαβ:

Qµαβ = gαβ∇µω; 2gµ(α∇β)ψ. (12)

The first expression is valid when only ω is finite, while the second one is valid only when ψ

is finite. Both ω and ψ are present in the manifold in a theory given by Eq.(10). They are
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given by solutions of the homogeneous wave equation in Eq.(10). The resulting Qµαβ is the

sum of the above two expressions. We can express Qµαβ in the following way [31]:

Qµαβ = Qµgαβ + Q̄µαβ (13)

where Q̄µαβ is traceless in the last two indices. Q̄µαβ vanishes for ω. Corresponding Cα
µν

preserves the light cone under parallel transport due to the reparameterization invariance of

the form of the geodesic equation: tµ∇µt
ν = ftν , where f is a scalar function on the curve

[28]. Here, we can use a parameterization so that: f = 1
2
tµ∇µω. Examples of non-metric

affine connections with vanishing Q̄ are given in [31]. These are local gauge theories of the

Weyl group that can have torsion. Both trace and traceless parts of Qµαβ are finite for ψ.

Depending on ψ, corresponding connection may not preserve the light cone under parallel

transport [30,31]. The global (3+1) -splitting of the complete spacetime manifold into space

and time may not exist under this circumstance.

III. Matter Fields in Presence of Non-metricity Scalar Fields

In this section, we will discuss the possible coupling between the scalars (ω, ψ) and

ordinary matter fields, including radiation. The fields ω and ψ are introduced to have finite

non-metricity Qµαβ. They are required in a quantum theory of gravity. This is discussed in

detail in [23,24]. We can introduce scalar fields like ω and ψ without reference to āµν and q̄µν

respectively. The last two fields are introduced to have higher spin fields. We will discuss

the possibility of introducing higher spin fields using āµν and q̄µν in Sect.V. We have to

consider a few points when we try to construct a Lagrangian description of gravity coupled

with matter fields with a connection more general than the Levi-Civita connection:

(1) Euler-Lagrange’s equations, Bianchi identity and its contracted forms:

This is regarding the Euler-Lagrange’s equations, Bianchi identity and its contracted

forms. We do not have any problem with these identities for R′ κ
µνα given by Eq.(4) when

derivatives are taken w.r.t the total connection Θα
µν . ω and ψ in Eq.(7) can be any pair of

regular fields. We can in general have problems when we do away with the total divergence

term in R′ given by 2gµα∇[κC
κ
µ]α and apply the principle of least action to S given by Eq.(8).

It is required to have: ∇αGµα = 0, the contracted Bianchi identity w.r.t Γαµν , when we

express Einstein’s equation in the form given by Eq.(10) with the fields associated with Cα
µν
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contributing source stress tensor terms in the right hand side. This remains valid for ω and

ψ individually. The only scalar quadratic in the first order derivative of a scalar field is the

square of the norm of covariant derivative and the corresponding term in
√
−gR′ coincides

with the Lagrangian density of a massless scalar field apart from numerical factor. This leads

to the familiar conserved stress tensor of a massless scalar field with a numerical factor in the

r.h.s of Einstein’s equation when we express it in the form given by Eq.(10). The contracted

Bianchi identity w.r.t Γαµν also remains valid for Eq.(10) where we have both ω and ψ with

derivative coupling. We will show this also in the next section by diagonalizing the second

order expression in ∇µω and ∇νψ present in R′ given by Eq.(9). This observation allows us

to introduce scalar fields without reference to symmetric second order tensors. More on this

will be discussed in section V. We can also include various potential terms to be discussed

later. Similar situation may not remain valid when we include higher spin fields in Cα
µν .

(2) Application of Stokes’ theorem and conservation laws:

The second is the possibility of removing the total divergence term:
∫√
−ggµα∇[κC

κ
µ]αd

4x

by applying the Stokes’ theorem. This is possible when we can express this term as:∫
d4x∇µ(

√
−gV µ), where V µ is a contravariant vector field [26,28]. This happens when

the connection in ∇κ is Γαµν [26,28]. We can add a Cα
µν only when the total connection

is metric compatible, leading to: Cα
αν = 0, [26]. The same conditions remain valid when

Cα
µν is not symmetric in the lower indices. Thus, we have used Γαµν in ∇µ. This also agrees

with a local theory based on the principle of equivalence considered below. Same discussions

remain valid with ordinary matter field actions: SM =
∫
d4xLM , where

√
−g is included in

LM . While deriving the corresponding Euler-Lagrange’s equations, we have to eliminate the

four-divergence term: ∇′µ[ ∂L′M
∂(∇′

µχa)
δχa] by applying the Stokes’ theorem. Here, L′M is the

matter Lagrangian density evaluated using the total connection Θα
µν . This is not possible

until ∂L′M
∂(∇′

µχa)
δχa is a relative contravariant vector field of weight +1 [26,28]. Otherwise, the

functional derivative δSM
δχa

can contain a non-covariant term. When we can eliminate the

total divergence term, the functional derivative is given by: δSM
δχa

= −∇′µ( ∂L′M
∂(∇′

µχa)
) + ∂L′M

∂χa
.

We now discuss the possible coupling between the connection scalars ω, ψ and matter fields

that can arise through the equations of motion obtained by using a variational principal.

For scalar fields (including many non-linear models, [38]), Cα
µν does not appear in the

corresponding variational derivatives δSM
δχa

and field equations even if we use Θα
µν to evaluate
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∇′µ( ∂L′M
∂(∇′

µχa)
). Thus, we can use Γαµν to construct the actions SM , δSM

δχa
and field equations. A

similar attribute remains valid for the gauge invariant electromagnetic field tensor described

by the Lagrangian density: −1
4

√
−gFµνF µν . We get the following set of equations for free

electromagnetic theory:

∇µF
µν = −Cν

αβF
αβ = 0 (14)

∇[µFνκ] = 0.

The right hand side of the first equation is replaced by a current conserved w.r.t ∇µ when

we have sources. The same remains valid with nonabelian gauge theories. We have, [38]:

Fµνa = ∇µAνa −∇νAµa − θbcaAµbAνc (15)

∇µF
µν
a − θbcaAµbF

µν
c = 0, θbca = −θcba

where θbca is the structure constant of the gauge group. Note that Cν
αβ(ω, ψ) does not

appear explicitly in L′M of all three cases mentioned so far. We now consider the Dirac

fields described by the Lagrangian density [32,39,40]:

L′ = −
√
−g{1

2
[χ̄γµ∇′µχ− (∇′µχ̄)γµχ] +mχ̄χ}, γµ = V µ

a γ
a (16)

where χ are the SL(2, c) spinors, V µ
a are the vierbeins [39,40] and γa are the flat spacetime

Dirac matrices. Note that the vierbeins locally satisfy: V µ
a (x)Vbµ(x) = ηab, but V µ

a (x) at two

different points cannot be related by parallel transport with non-trivial Cα
µν . The covariant

derivative on the SL(2, c) spinors χ is given by [39,40]:

∇′µ = ∂µ +
1

2
σbcV ν

b (∇′µVcν) (17)

= ∇µ −
1

2
σbcV ν

b VcαC
α
µν , σbc = − i

4
[γb, γc]

= ∇µ + Cµ.

For Cα
µν given by Eq.(7), L′ simplifies to:

L′ = −
√
−g{1

2
[χ̄γµ∇µχ− (∇µχ̄)γµχ] +mχ̄χ− 3i

4
(χ̄γµχ)∇µ(ω − ψ)} (18)
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We can neglect the second term in a theory where the Dirac spinors are coupled with gauge

fields through conserved currents proportional to χ̄γµχ. This includes quantum electrody-

namics. Gauge fields are described as before. Thus, in all four cases mentioned above, we

can replace Θα
µν by Γαµν in L′M and express the latter as LM . We can use LM to obtain

corresponding field equations and construct matter field stress-tensors in ∇µ. Such stress-

tensors lead to Einstein’s equation consistent with the Bianchi identity in Γαµν when we add

them in the r.h.s of Eq.(10).

Things become more complicated with weak interaction that include relative (axial) vector

currents [26,38]. To illustrate, we consider the electroweak theory [38] without the complex

scalar fields and use the Levi-Civita connection:

L̃ =
√
−g[−1

4
~Aµν . ~A

µν − 1

4
BµνB

µν (19)

− ēR(γµ∇µ + ig′γµBµ)eR − L̄e(γµ∇µ + i
g′

2
γµBµ − i

g

2
σiγ

µAiµ)Le]

Le =

νL
eL

, eR/L =
1

2
(1± γ5)χe, νL =

1

2
(1− γ5)χν

where χe and χν are the Dirac fields for the electrons and neutrinos respectively. Other sym-

bols have usual meanings [38]. As before, ∇µ is evaluated using the Levi-Civita connection.

We have discussed the free gauge field terms before. Here, we first consider the Dirac field

terms that are only coupled with gravity. This part can be expressed as:

L̃D =
√
−g[−χ̄eγµ∇µχe (20)

−1

2
χ̄νγ

µ∇µχν +
1

2
χ̄νγ

µγ5∇µχν ].

We do not have any problem with the electron field part. However, the variational derivative:

δS̃D
δχν(x)

is non-covariant. This is because
√
−g[χ̄νγ

µγ5(δχν)] is a vector and, as mentioned be-

fore, we cannot eliminate the total divergence in
∫

e∇µ[
√
−g(χ̄νγ

µγ5δχν)] completely by us-

ing the Stokes’ theorem [26,28]. We can eliminate total divergence terms by using the Stokes’

theorem for relative vector fields of weight +1. We find that: δS̃D
δχ̄ν(x)

= −
√
−gγµ∇µχνL(x)

and δS̃D
δχν(x)

=
√
−g[χ̄νL(x)γµ

←−
∇µ + 1

2
Γµµα(χ̄νγ

αγ5)]. This is expected because of the mixing of

scalar density [26] and scalar in L̃D for χν . We also find that we cannot derive a consistent

pair of equations for χν and χ̄ν by applying the principle of least action directly to the above
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action when χ̄ν is taken to be the adjoint of χν given by χ†νγ
0. The latter choice is required

to construct various physical variables like stress-tensor from L̃D and will be used in the

present article. We do not have problems when: Γµµν = 0, which is not valid in general. We

solve this problem by adding the kinetic term for νR. Thus, we modify L̃D to:

LD = −1

2

√
−g[χ̄eγ

µ∇µχe − (∇µχ̄e)γ
µχe + χ̄νγ

µ∇µχν − (∇µχ̄ν)γ
µχν ]. (21)

The equations for νL and ν̄L can be obtained from that of χν and χ̄ν . There are other

important advantages. We will find below that LD can be used to construct an expression

for conserved vector current for the neutrino while this is not valid for L̃D. These comments

remain valid in flat spacetime with curvilinear coordinates. In flat spacetime, the right-

handed neutrinos can be useful to remove triangle anomalies in the lepton sector [41], and

can be important in explaining neutrino oscillation [42]. They can also be relevant in the

dark matter research. We now consider possible conserved currents associated with L̃D, LD
and the theory that we obtain when we replace L̃D by LD in Eq.(19).

(i) We find that the global phase transformation: χ → e−icχ, where c is a constant, is an

exact symmetry of both L̃D and LD. We generate a conserved vector current for the Dirac

spinors by generalizing to the local phase transformation: χe/ν → e−iα(x)χe/ν and defining

the current as:
√
−g∇µj

µ = i δSM
δα(x)

, [32]. We have: ∇µj
µ = 0, for the classical fields. Current

conservation also follows from the equations of motion directly. In an anomaly-free gauge

theory minimally coupled with the Dirac fields, the current remains conserved and the action

remains invariant under local phase transformation even for the non-classical configurations

relevant to the quantum theory. Thus, we can define the conserved current using the above

expression with δSM
δα(x)

= 0, [43]. We do not have any problem with electrons. However, with

L̃D, we cannot define a covariant functional derivative δSM
δα(x)

for the neutrinos. This is because,

as before, we cannot apply the Stokes’ theorem to the vector:
√
−gα(x)(χ̄νγ

µγ5χν), where

α(x) is any regular scalar field and hence, cannot define a covariant functional derivative

δ
δα(x)

of the functional:
∫

e
√
−g[χ̄νγ

µ(1− γ5)χν ]∇µα. Similar comments can remain valid

for curvilinear coordinates in flat spacetime. We do not have such problems with LD. The

right-handed neutrinos have been used before to cancel anomalies [41]. Thus, LD is also

more appropriate to define the conserved vector current for the neutrinos.

(ii) χ→ e−icγ5χ is another symmetry transformation [43] of both L̃D and LD, although we

cannot define axial vector currents using δSM
δα(x)

when we generalize c to α(x). This remains
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valid for both L̃D and LD and is due to the reasons discussed before regarding the Stokes’

theorem in curved spacetime. Axial vector currents like χ̄γµγ5χ remain conserved for the

classical solutions by the equations of motion obtained from LD. Various axial vector currents

may remain approximately conserved in the quantum theory in the presence of gravity.

However, the comments regarding Stokes’ theorem in curved spacetime remain valid for

curvilinear coordinates in flat spacetime. Thus, we expect anomalies for various axial vector

currents in a naive interacting theory even in flat spacetime. Anomalies in the axial vector

currents are common in flat spacetime when the fermions are coupled with various gauge

fields through the axial vector currents [38,43]. This includes pion decay. We thus replace

Eq.(19) by the following expression:

L =
√
−g{−1

4
~Aµν . ~A

µν − 1

4
BµνB

µν (22)

− 1

2
[χ̄eγ

µ∇µχe − (∇µχ̄e)γ
µχe + χ̄νγ

µ∇µχν − (∇µχ̄ν)γ
µχν ]

+ ig′ēRγ
µBµeR + i

g′

2
L̄eγ

µBµLe − i
g

2
L̄eσiγ

µAiµLe}.

(iii) L̃ is invariant under simultaneous gauge and local phase transformations of various

Dirac fields with eL and eR transforming differently due to parity violating effects. The same

remains valid for L with νR remaining unchanged under such transformations. However, SM

obtained from L̃ is not invariant under pure gauge transformations: Aµ → Aµ + ∇µλ(x),

without any change in the phases of various Dirac fields. This is consistent with (i) and (ii)

and indicates possible axial current anomaly. The same remains valid for L. Note that for

a pure gauge transformation without any change in the phases of Dirac fields, the variation

of the action comes from the coupling terms between the potentials and fermionic bilinear

forms: χ̄γµMχ, M = 1, γ5. As before, Stokes’ theorem implies that δSM
δλ(x)

is not tensorial in

general under pure gauge transformations even if we impose ∇µ(χ̄γµχ) = 0. Thus, with L we

cannot define conserved currents by using: δSM
δλ(x)

. This is the reason that we have started with

invariance under phase transformations of Dirac fields to define possible conserved currents

[43] in the present theory rather than the gauge transformations. Similar aspect remains

valid with curvilinear coordinates in flat spacetime and we can have axial vector current

anomaly in flat spacetime as mentioned before. The above discussions indicate that various

regularization schemes used in quantum theory need to preserve pure gauge transformation

and corresponding local phase transformations in the Dirac fields mentioned before. We can
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still have anomalies in axial vector currents that depends on L, regularization schemes and

possibly boundary conditions [43,44,45]. (i), (ii) and (iii) can be important in the early

universe.

We now replace the Levi-Civita connection in Eq.(22) by Θα
µν . As in the case of Eq.(16),

it is easy to show that ω and ψ can be eliminated from the action obtained from L. This

helps us to take L′(Θα
µν) = L(Γαµν) for the Dirac fields in the electroweak theory with L

suitably generalized from Eq.(22) by adding the complex scalar fields [38]. Thus, we can

construct the standard model using ∇µ only. Cα
µν(ω, ψ) given by Eq.(7) does not appear

explicitly in action for scalar fields, abelian and nonabelian gauge fields. It also does not

appear in the equations of motion for these fields even if we include it in the corresponding

covariant derivatives. For spin half spinors, Cα
µν(ω, ψ) only contributes boundary terms

when we use Eq.(21). Cα
µν(ω, ψ) will not be present in matter field stress-tensors also. This

partly justifies our efforts to explain dark energy using ψ. We conclude that we do not have

any problem with the contracted Bianchi identity when we generalize the standard model to

curved spacetime described by the connection Θα
µν provided we modify the action so that we

do not have any problem with Γαµν . The right-handed neutrino, νR, remains a free field and

can be important for various purposes mentioned before, including QFT in flat spacetime.

We can follow (3) below when we use Eq.(19) to describe electroweak theory. Otherwise, we

have coupling between ω, ψ and neutrinos that can give novel features in the semiclassical

theory, quantum fields in curved spacetime. In this case, we have to consider a particular

combination of ω and ψ to have a stable theory. This is discussed in the next section. We can

not define conserved vector current for the neutrinos even when ω, ψ = 0. We have coupling

between (ω, ψ) and general tensor fields that are not antisymmetric. In this case, we can

again follow (3) below. It is unexpected that ω and ψ will couple with classical sources if

they do not couple with quantum fields. The stress tensor of such sources, when added to

the source of Einstein’s equation given by Eq.(10), gives equation of motion consistent with

the Bianchi identity [28]. Torsion will be discussed later.

(3) Restricting Θα
µν to Γαµν in matter and radiation actions:

According to the principle of general covariance, we can restrict Θα
µν to Γαµν , when we

need to replace the partial derivatives acting on matter and radiation fields by covariant

derivatives. When we try to construct a theory of gravity with sources, of the form given

by Eq.(10), we supplement the r.h.s of Eq.(10) with stress tensors that are symmetric and
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conserved w.r.t ∇µ. The stress tensor of ideal fluid does not contain the connection and is

conserved w.r.t Γαµν . Quantum fields are introduced in flat spacetime as different irreducible

representations of SL(2, c), parity and various internal symmetries. Corresponding actions

are generalized to local Lorentz invariance in curved spacetime to couple with gravity. This

is according to the principle of equivalence. Gauge theories are described by gauge covariant

derivatives of potentials that do not contain the connection [23,31]. Partial derivatives acting

on SL(2, c) spinors are generalized from flat spacetime to curved spacetime by replacing them

with suitable combinations of covariant derivatives given by ∇′µ, V µ
a ∂µ, V µ

a ∇′µ and ∇′νV µ
a

where V µ
a are the vierbeins. The choice of connection depends on the contracted Bianchi

identity. In general, stress tensor of SL(2, c) spinors are always conserved w.r.t ∇′µ when

the connection in ∇′µ is Γαµν , [40]. Γαµν is also used in the Newman-Penrose formalism.

Thus, a theory where we do not include Cα
µν(ω, ψ) in the covariant derivatives when acting

on matter and radiation from the beginning, is a possible theory.

We find from the above three points that it is nontrivial to extend the standard model

to curved spacetime even with the Levi-Civita connection. We have to introduce the right-

handed neutrino as a free field singlet in the standard model to have a theory with conserved

vector current for the neutrinos. Observations in (2) and (3) imply that for fields relevant to

the standard model, fields that are various representations of SL(2, c) with the addition of

the right handed neutrinos, we can use only Γαµν as the connection present in the covariant

derivatives acting on them even when Cα
µν(ω, ψ) is finite. Variables like stress-tensors of

ordinary matter and radiation fields also contain only Γαµν as the connection. We find that

this agrees with: (i) a principle of least action, (ii) principle of general covariance, (iii)

Stokes’ theorem, (iv) contracted Bianchi identity in presence of finite non-metricity and (v)

principle of equivalence. We do the same to defining the gauge invariant electromagnetic

field tensor in the presence of torsion [23,31]. This explains why Levi-Civita connection

and Einstein’s gravity explain the observable universe to a very good approximation. Under

these circumstances, Cα
µν(ω, ψ) only contributes a stress-tensor in the r.h.s of the modified

Einstein’s equation given by Eq.(10) that presently has small effect on spacetime.

Depending on ψ, we may not have: V µ
a Vbµ = ηab, where ηab is the flat spacetime metric,

when we parallel transport V µ
a from one point to a distant point in the spacetime mani-

fold. This can be discussed using Eq.(12). Thus, we do not have any problem with the

principle of equivalence, but the global splitting of spacetime into space and time may not
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remain exact. In the Einstein-Palatini formalism considered here, ω and ψ obey the ho-

mogeneous wave equation and can be finite everywhere i.e they are non-localized. We can

add suitable potential terms for themselves. We will discuss this later. Dark energy does

not interact with ordinary matter directly and is observed through large scale cosmological

observations. ψ contributes a negative source stress tensor to Einstein’s equation and the

preceding discussions indicate that ω and ψ need not be present in the covariant derivatives

acting on matter and radiation fields. Thus, ω/φ and ψ need not to have ordinary matter

and radiation as their sources [31]. All these make ω and ψ as possible candidates to explain

inflation and dark energy. This qualitatively agrees with the energy budget mentioned in

section:I. It is unexpected that 10% ordinary matter can produce 70% dark energy. This

may be required to construct a stable theory. We will discuss this issue in the next section.

We find that a part of dark matter can be the right-handed neutrinos. φ is similar to the

dilaton [46]. Cosmological observations indicate that non-metricities produced by ω and ψ

are presently very small. This is consistent with the smallness of the cosmological constant

in the ΛCDM model. ω and ψ manifest themselves through long range geodesics and the

global structure of spacetime. However, local inhomogeneities and anisotropies in ω and ψ

can cause significant effects on geodesic motions in the corresponding regions. ω and ψ are

useful to discuss geometry. In the next section, we will find that it is more useful to consider

linear combinations of ω and ψ in discussing stability and their effects like inflation and dark

energy.

IV. Extension of Einstein’s Theory of Gravity

We can use classical theories and quantum field theory in curved spaces to find the effects

of ω and ψ. This will be useful in cosmic epoch. We now compare Eqs.(8,9) with the action

of scalar-tensor theories [6]:

S =

∫
e
√
−g
[
f(φ,R)− ζ(φ)(∇φ)2

]
+ Sm(χa, νR, gµν) (23)

where χa is the collection of ordinary matter and radiation. Eq.(9) indicates that: ζ(ω) =

3
2
, ζ(ψ) = −3. f(φ,R) = R for both fields. Thus, the scalars mentioned at the beginning

of the first section like quintessence and k-essence can be related to quantum gravity and

can have geometrical origin. When required, we can modify the theory by adding suitable

φ and ψ dependent terms in Eq.(9). We get:
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L =
√
−g(R′ − V) (24)

where V contains the added terms which should be consistent with: ∇αGµα = 0, if we

express the equations in the form similar to Eq.(10). However, R′ in the above equation

contains a term that give derivative coupling between ω and ψ. We obtain a decoupled

theory by diagonalizing the symmetric bilinear form in ∇µω and ∇νψ given by Eq.(9), [47].

This bilinear form is similar to: a2− 2ab− 2b2 and the corresponding symmetric matrix has

eigenvalues: λ± = (−1±
√

13)/2 . R′ is now given by the following expression:

R′ = R− 3

2
[(∇ω)2 − 2(∇ψ)2 − 2(∇κω)(∇κψ)] (25)

= R− 3

2
gµν [λ+(∇µΦ′)(∇νΦ

′) + λ−(∇µΨ′)(∇νΨ
′)]

where Φ′ and Ψ′ are related to ω and ψ by the following expression:

Φ′

Ψ′

 = ST

ω
ψ

, S =

c+
1 c−1

c+
2 c−2

. (26)

Here c±i are the components of two orthonormal eigenvectors. S is given by the following

expression:

S =

 √
4

26−6
√

13

√
4

26+6
√

13

3−
√

13
2

√
4

26−6
√

13
3+
√

13
2

√
4

26+6
√

13

. (27)

We can absorb the positive numerical factors into Φ′,Ψ′ and the modified curvature scalar

is given by:

R′ = R− 1

2
[(∇Φ)2 − (∇Ψ)2]. (28)

The above expression gives a more convenient way to discuss the physical effects of the non-

metricity scalar fields ω and ψ. We can express Cα
µν in terms of Φ and Ψ using the inverse

of Eq.(26). We find that Ψ contributes a negative stress tensor to Einstein’s equation and

is a phantom scalar [6] of geometric origin. We always get a scalar field with a negative

stress tensor in Einstein’s equation, irrespective of the initial linear combinations of ∇µω

and ∇νψ, provided they give finite Cα µ
µ . Ψ vanishes when Cα

µν is traceless in the lower

indices. We can introduce various potential terms like V1(Φ), V2(Ψ) and as per requirement.
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V1(Φ) and V2(Ψ) can give us a theory more general than that given by Eq.(23) and new

effects in the scalar-tensor theories. The contracted Bianchi identity will remain valid for

this theory. Thus, transforming back to (ω, ψ) we will get a theory with (ω, ψ) that preserves

the contracted Bianchi identity. Note that both Φ and Ψ contribute to Qµ and Q̄µαβ.

We can consider a theory containing Φ, Ψ and the cosmological constant Λ. This can lead

to a possible theory of inflation together with dynamic and spatially varying dark energy.

Einstein’s equation will be generalized to:

Gµν + Λgµν − Λµν(Φ,Ψ) = 8πPµν(χa) (29)

where Λµν(Φ,Ψ) includes Pµν(Φ), Pµν(Ψ) and potential terms for Φ and Ψ. The left hand

side gives a generalization of the ΛCDM theory linear in curvature and consistent with the

Bianchi identities. This is along the line of introducing the cosmological constant in Einstein’s

equation. Pµν(χa) is the stress tensor of ordinary matter and radiation including the right

handed neutrinos. We can construct new non-trivial solutions of the vacuum Einstein’s

equation [28,48,49], i.e, for Pµν(χa) = 0, with different choices of Λµν(Φ,Ψ). An important

issue is the stability of the theory. Ψ provides a negative kinetic term, thus behaving like

a phantom scalar [5,50,51,52,53]. Phantom field is a possible candidate to explain dark

energy [5,6]. A phantom field, interacting with ordinary matter and radiation, can lead

to instability both in classical and quantum theory. Stable classical theories are discussed

by a few authors by adding suitable potential terms for the phantom fields [52,53]. There

remains the issue of unstable vacuum [54,55]. In the present theory, Ψ does not couple with

ordinary matter and scattering between the two sectors causing instability of the vacuum is

not possible. Processes of the form: V acuum → 2γ + 2ψ, where γ is a photon and ψ is a

phantom quanta, need careful analysis. The coupling between gµν and Ψ, given by (∇Ψ)2,

can be put in the form Ψ∇2Ψ, vanishes for the classical solutions, thus prohibiting the decay

of the vacuum to a detectable on-shell spectrum. Total derivatives in the action have no

effect on the classical states. Ψ∇2Ψ becomes a polynomial in Ψ with a V(Ψ) for the on-shell

spectrum in a nonperturbative theory, and there is no coupling with the graviton. Thus,

classically stable self-interacting theory of Ψ can give a stable quantum theory. A theory

with static or nearly static Ψ can be useful for discussing dark energy. A scalar field with

negative energy density is also required to construct the steady state model of the expanding

universe [48,56,57,58,59].
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Φ contributes a positive stress tensor and gives a stable theory. Both Qµ and Q̄µαβ are

finite for Φ. Thus, we can consider a quantum theory with only Φ present as the non-

metricity field. In the next section we will consider theories that can contain more than one

Φ fields. Such a theory can be useful to explain both inflation and dark energy [20]. We can

introduce quadratic self-interaction term in Φ. We can couple Φ with ordinary matter by

adding suitable interaction terms. Being of geometric origin, the coupling between gµν and

Φ does not involve G. The same remains valid for Ψ. Φ and Ψ are quantum gravitational

in origin [23,24], and it is expected that they can play important roles in the very early

universe. gµν ,Φ,Ψ should be treated similarly in discussing quantum effects like vacuum

fluctuations. Various free field configurations of Φ and Ψ, their vacuum energies, quantum

fluctuations and classical configurations with possible interactions can be useful to explain

inflation and dark energy [6,35,50].

Equation (29) leads to a generalization of the ΛCDM theory. We do not obtain the

Newtonian theory in the weak field and slow motion limit when Λ 6= 0, [28]. This implies

that Λ is small. This is similar to the non-metricities produced by the pair (ω, ψ) or (Ψ,

Φ) as discussed in the previous section. In this context, Φ and Ψ have the advantage of

being dynamical and hence can produce significant classical and quantum effects even in a

free theory. This is along the line of perturbative quantum field theory and Casimir effect.

Various non-trivial vacuum solutions of Einstein’s equation, with and without Λ [48,49],

imply that affine connection need not to have ordinary matter and radiation as its sources

even in the classical theory. The same can remain valid for Φ and Ψ. This agrees with the

comments in the previous paragraph and the observed energy composition of our universe if

these fields are useful to explain inflation and dark energy. It is unexpected that 10% ordinary

matter can produce 70% dark energy. We find that inflation and dark energy possibly

indicate that we have to generalize the classical structures of spacetime in the quantum

domain. This is not completely unexpected. A complete theory of quantum mechanics can

be partly spacetime independent algebraic theory as suggested by Einstein and apparent

in various quantum entanglement experiments [60,61,62]. We will discuss applications of

Eq.(29) in cosmology in a forthcoming article. Pµν(χa) will be multiplied by appropriate

factors when we transform to non-geometrized ordinary units. Quantum corrections to the

effective actions of various theories mentioned above, like that given by Eq.(29), will contain

higher order curvature invariants evaluated using the Levi-Civita connection together with

quantum corrections coming for various matter fields and possibly for non-metricity fields Φ
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and Ψ. The last set will depend on the requirement of potential terms for Φ and Ψ. This is

the case with some low energy effective actions of string theory that contain ghost field [6].

Lastly, a possible approach to explaining dark energy could be to consider Ψ as the possible

source of Λ. Discussions on possible sources of Λ for constant curvature spaces can be found

in [48]. These are similar to Ψ. We cannot generate the cosmological constant with perfect

fluids for which both energy density and pressure are positive definite. We will discuss this

aspect later.

V. Additional Fields and Stabilizer (Little Group)

In the theory considered in Sect.II containing aµν and qµν , we can try to introduce two

additional scalar fields. One of them is ξ in Eq.(5) and the other is η in Eq.(6). It is not

possible to have a set of āµν with non-trivial ξ but vanishing Uα
µν . We cannot introduce

āµν without modifying the action when Uα
µν is finite. This is due to the equation of motion

and contracted Bianchi identity and will be discussed below. We can use η as an additional

scalar field provided we can set V α
µν = 0 in Eq.(6). However, as discussed in Sect.III, we

can introduce scalar fields through Cα
µν without reference to any symmetric second rank

tensors. It is thus possible to introduce additional scalar fields depending on observations,

i.e, when such scalars couple differently with other fields including ω, ψ. We can take the

corresponding part of Cα
µν to be traceless in the mixed indices or in the lower indices. This

term will be either of the form given for ξ in Eq.(5) or that for η in Eq.(6) respectively. ξ

contributes a negative stress tensor and η contributes a positive stress tensor to Einstein’s

equation. The resulting theory is consistent with the contracted Bianchi identity in Γαµν .

The modified scalar curvature containing various scalar fields discussed in the present article

can be expressed as:

Cα
µν = δα(µ∇ν)ω −

1

2
gµν∇αω + gµν∇αξ − 2

5
δα(µ∇ν)ξ (30)

+ gµν∇αψ + δα(µ∇ν)η −
1

4
gµν∇αη

R′ = R(Γαµν)−
1

2
[

4∑
1

(−1)si(∇Φi)
2]

where si = 0/1. Two of si are zero and two are 1, i.e, corresponding Φi are phantom fields.

As before, we do not need to include Cα
µν(Φi) in the matter and radiation field actions when
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we include the right handed neutrinos. We can introduce self interactions depending on

observations. We can also couple those Φi with positive kinetic terms to ordinary matter.

The above model resemblances various models to address inflation and dark energy, including

the multi-scalar theory of inflation [7,35,50], k-essence and phantom fields to explain dark

energy, steady-state model of the expanding universe [48,56,57] and re-bouncing model of

the universe [48], as special cases. The theory with only Φ and Ψ associated with two traces

of Cα
µν appears to be mathematically most straightforward.

We now consider the case of higher spin (j > 0) fields that can be introduced using Cα
µν

symmetric in the lower indices and expressed as derivatives of lower rank tensors. These

fields can be important for theories like higher spin driven inflation [8,9]. We consider the

case that includes q̄µν :

Cα
µν = δα(µ∇ν)ω −

1

2
gµν∇αω + gµν∇αψ +∇αq̄µν . (31)

Regarding dimensions, we have: [q̄µν ] = [gµν ]. We have discussed in Sect.III that after

we have removed the total divergence terms in R′ and expressed the Einstein’s equation

in the form given by Eq.(10), where the contribution of the non-metricity fields appears

as source terms, the resulting equations have to be consistent with the contracted Bianchi

identity in Γαµν . This, together with the equations of motion, impose severe restrictions

on q̄µν . The exception being the scalar fields mentioned before. Thus, we have to modify

the Einstein-Palatini action by adding suitable q̄µν dependent terms so that the resulting

theory is consistent with the contracted Bianchi identity. We can also use the metric-affine

f(R′) theories. This may indicate that the resulting theory is described by the low energy

effective action of a more fundamental theory. We can replace q̄µν by the traceless derivative:

tµν = ∇(µBν) of a vector field Bα with ∇αB
α = 0, to have a spin one field from geometric

sector. We then have:

Cα
µν = δα(µ∇ν)ω −

1

2
gµν∇αω + gµν∇αψ +∇αtµν (32)

where t µµ = ∇.B = 0. Note that we have used a symmetric field tµν to introduce a spin

one field and this field will not give a symmetric R′µν although the corresponding R′µα
will be symmetric. We again have problem with the contracted Bianchi identity similar to

that mentioned before. We will later address this problem. We also note that we cannot

eliminate Bα from the action of the Dirac field spinors and the latter can couple with Bα.
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Such coupling is yet to be observed. Thus, the two-scalar model for symmetric Cα
µν is more

consistent with the observations.

We conclude the present article with a few discussions on the issue of constructing a

semi-classical limit of the above possible theories [63], one of which can be a locally Lorentz

invariant quantum field theory in curved spaces including tµν . We discuss this with reference

to stabilizers (little groups) in Minkowski space and (A,A) type fields [32]. We do not have

any problem with the massless scalar fields for which A = 0, [32]. Massless integer spin

particles are usually described by (A, 0) ⊕ (0, A) type fields [32,64]. Here, A is an integer.

The most general candidate to give the little group (stabilizer) for massless particles with

spin greater than zero in Minkowski space is taken to be: W = ISO(2), [32]. This forces

us to use (1, 0)⊕ (0, 1) type gauge invariant antisymmetric derivatives to describe massless

spin-one particles [32]. Similar situation remains valid with other massless integral spin

particles. However, ISO(2) is not represented by normal matrices [33] when acting on four

vectors/tensors. In the following, we will find that we have to use a one parameter subgroup

of SO(3) as the little group for massless higher spin fields in Minkowski space. This allows

us to construct a (1, 1) type quantum field theory for massless vector fields using symmetric

traceless derivatives in addition to (1, 0) ⊕ (0, 1) type antisymmetric derivatives. Thus, we

can use the symmetric traceless derivative: tµν = ∂(µBν) with ∂.B = 0, to introduce a

massless spin-one particle.

In flat spacetime, the standard momentum kµ used to construct the little group for

massless fields is taken to be (0, 0, k, k), where the fourth component represents time and

the metric is of signature +2, [32]. The little group that keeps the standard momentum

unchanged is given by ISO(2) and for spacetime tensors, it is taken to be W (θ, α, β) =

S(α, β)Rz(θ), [32]. Where Rz(θ) is a spatial rotation about the Z -axis by angle θ and

S(α, β) is given by:

Sµν(α, β) =


1 0 −α α

0 1 −β β

α β 1− γ γ

α β −γ 1 + γ

 . (33)

Here, γ = (α2 + β2)/2. To construct a Lorentz covariant quantum field theory of a massless

four vector field, the momentum space four vector with the standard momentum (0, 0, k, k)

have to obey [32]:
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W µ
νe
ν(k, σ) = exp (−iσθ(k,W ))eµ(k, σ). (34)

However, the matrix representing Sµν is not normal (STS 6= SST ). This is also valid for

W = SR and the above eigenvalue equation for eµ(k, σ) does not exist [33]. Thus, we

restrict W to Rz(θ) only. This is consistent with the fact that massless particle states in

flat spacetime are characterized by helicity and there are no charges associated with the

generators of S(α, β) with the charges continuously dependent on θ, [32].

We now consider eµ(k, σ) that satisfy the following equation instead of Eq.(34):

[Rz(θ)]
µ
νe
ν(k, σ) = exp (−iσθ)eµ(k, σ) (35)

where, σ = 0,±1. A convenient choice for eµ(k, 0;±1) is: eµ(k,±1) = 1√
2
(1,±i, 0, 0) and

eµ(k, 0) = (0, 0, 1, 1). We note that for null vectors like (0, 0, k, k) in Minkowski space,

there can be more than one way to obtain a null vector like: ( βk√
1−β2

, 0, k, k√
1−β2

). Firstly,

we can apply a boost β along the x1 axis. Alternatively, we can rotate (0, 0, k, k) to

(kβ, 0, k
√

1− β2, k) and thereafter apply a boost along the direction of the spatial mo-

mentum by α where:

1− β2 =
1− α
1 + α

, α = |~α|. (36)

The above two Lorentz transformations do not lead to the same eµ(~p,±1). This is related

to the four -dimensional geometry. However, we can always have: kµe
µ(k, σ) = pµe

µ(~p, σ) =

0 = ∂µB
µ(x), where Bµ(x) is the Fourier transform of eµ(~p, σ) given by, [32]:

Bµ(x) =

∫
d3p√
2p0

(2π)−3/2
∑
σ

[eµ(~p, σ)exp(ip.x)a(~p, σ) + c.c] (37)

where, a(~p, σ) is an operator. Under a Lorentz transformation L, Bµ transform as:

U(L)Bµ(x)U−1(L) = LνµBν(Lx) (38)

where U(L) are the unitary transformations constructed from a suitable Lagrangian density.

To construct a local theory invariant under parity, we can introduce a massless vector field Bν

through the (1, 1) type symmetric traceless field: ∂(µBν) (here we have ∂.B = 0) or through

the (1, 0)⊕ (0, 1) type antisymmetric field ∂[µBν]. The latter is used to describe QED to

preserve the U(1) internal symmetry present in the corresponding sources [38]. In this
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context, we note that the Coulomb gauge ~∇. ~B = 0 together with B0 = 0 is a non-covariant

choice of gauge and a Lorentz transformation on one such field will in general not yield

another such field [38]. Things change in QED when we modify the canonical commutators

to eliminate the unphysical degrees of freedom. In this case, the right hand side of the above

equation is appended by pure gauge terms that ensure Lorentz covariance [65]. The above

conclusions are also consistent with the Gupta-Bleuler quantization of the electromagnetic

field [38]. ∇(µBν) is not gauge invariant and Bα, with the kinetic term obtained using∇(µBν),

cannot minimally couple with matter fields that possess internal symmetries like U(1) in a

theory that preserves such symmetries. Thus, the effect of these fields would be purely

gravitational to influence the metric and they appear only in Einstein’s equations. This

is similar to the discussions given in Sec.I regarding (ω, ψ) and can be relevant to explain

dark energy and dark matter. On the other hand, coupling between these fields and matter

fields can lead to gauge invariance breaking effects like particle-antiparticle asymmetry. The

present section demonstrates that we can use massless higher spin bosons to construct higher

spin driven inflation theories [9,16,49] that need not to be gauge theories.

We can introduce another scalar field when Cα
µν is not symmetric in the lower indices.

This can be associated with the trace of corresponding torsion tensor. We generalize Eq.(7)

to the following expression:

Θα
µν = Γαµν + Cα

µν (39)

Cα
µν = δα(µ∇ν)ω −

1

2
gµν∇αω + gµν∇αψ + δα[µ∇ν]ρ, ω = ln(1 + φ)

The non-metricity due to ρ is given by: Qµαβ = gµ(α∇β)ρ − gαβ∇µρ; and is similar to that

of ψ. Corresponding modified curvature scalar is given by the following expression:

R′ = gµαR′µα = gµα
{
Rµα + 2[Cλ

[µ|α|C
κ
κ|λ|]]

}
(40)

= R− 3

2
(∇ω)2 + 3(∇ψ)2 +

3

4
(∇ρ)2 + 3(∇κω)(∇κψ) +

1

2
(∇κω)(∇κρ)

Note that R′µα is no longer symmetric. We can again diagonalize and rescale various scalar

fields to obtain:

R′ = R− 1

2
[(∇Φ)2 − (∇Ψ)2 − (∇P )2] (41)
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We find that ρ contributes another phantom field. Φ,Ψ and P are given by linear com-

binations with different strengths of all three fields: ω, ψ and ρ. ρ does not couple

with scalar fields and Dirac fields when the Lagrangian of the later is given by expres-

sions similar to Eq.(21). However, ρ couples with the gauge fields. This is evident

from Eq.(15) and is expected in presence of torsion [30,31]. The field tensor is given

by: Fαβ = gαµgβνFµν = gαµgβν [∇µAν − ∇νAµ + TαµνAα] = gαµgβν [∂µAν − ∂νAµ]. Here:

Tαµν = 2δα[µ∇ν]ρ and −Cν
αβF

αβ = −F νβ∇β(ρ). The coupling of Fαβ with torsion violates

the current conservation in an interacting theory. There is no problem in a theory with

free gauge fields. Vacuum effects can again be useful to explain inflation, dark energy and

related problems [6,35,49,66,67,68]. Higher spin fields can also be introduced using torsion

potentials [69].

VI. Conclusion

To conclude, in this article we have proposed new geometric fields from the gravity sector

as possible candidates for inflation and dark energy. Previously, Einstein-Palatini action was

used to introduce two massless scalar fields ω and ψ, that give non-metricity. It was found

to be more consistent with a quantum theory of gravity. The connection is expressed as:

Γαµν + Cα
µν(ω, ψ). The Einstein-Palatini formalism is particularly suitable for introducing

scalar fields through Cα
µν . We found that for fields relevant to the standard model with the

addition of the right handed neutrinos, Cα
µν(ω, ψ) can at most contribute boundary terms to

the matter and radiation field actions and do not appear in the equations of motion. Thus,

we do not need to include Cα
µν(ω, ψ) in the actions and stress tensors of ordinary matter

and radiation that are various representations of SL(2, c), through the covariant derivatives.

This scheme, developed in Sect.III, can also be required to construct a stable theory with

dark energy. The issue of stability is discussed in Sect.IV, where we have performed linear

transformation on ω and ψ, to obtain a theory of two decoupled scalars Φ and Ψ. Ψ gives a

negative stress tensor. We can introduce potential terms in Φ and Ψ. The negative kinetic

term in Ψ prohibits any coupling between itself and other fields, including Φ. We can have a

self-interacting theory of Ψ. We can couple Φ to ordinary matter. All these give a versatile

model where vacuum expectation values and quantum fluctuations can play important roles.

We can construct various models by adding suitable interaction terms. We can generalize

the ΛCDM theory by including Φ and Ψ to give dynamic and spatially varying dark energy
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and inflation. Λ, Φ and Ψ are similar in many respects. Together, they give the most

general theory linear in scalar curvature that is consistent with the Bianchi identity in Γαµν .

They need not to have ordinary matters as their sources and can be non-localized. They

contribute positive and negative stress tensors in Einstein’s equation that are not coupled

to the metric through the gravitational constant. Λ, Φ and Ψ give us departures from the

classical theory and the global splitting of spacetime into space and time, thus modifying

the global structure of spacetime. However, present cosmological observations suggest that

such effects are finite but small. Eq.(29) can be used to construct new non-trivial solutions

of the vacuum Einstein’s equation. Lastly, we can consider a theory that contains more than

one Φ fields but no Ψ field.

We found that we may have to introduce the right-handed neutrinos into the standard

model to define the equation of motion and conserved vector currents for neutrinos in curved

spacetime. This is related to the existence of required variational derivatives in curved

spacetime. The same remains valid for curvilinear coordinates in flat spacetime. The right

handed neutrinos have been used before to eliminate anomalies. The axial vector currents for

various Dirac fields including the neutrinos can still remain anomalous. Anomalies in axial

vector currents are common in flat spacetime. We considered the right-handed neutrinos to

be free field singlets of the SU(2) gauge theory in the present article. They can be useful

in the dark matter research. They can also be useful to explain neutrino oscillation. The

neutrinos couple with Φ and Ψ when we do not include the right handed neutrinos in the

action. In this case, we can not define conserved neutrino vector currents in curved spacetime

even if we use the Levi-Civita connection. The above observations can be important in the

early universe.

In this article, we have used (A,A) type representations to introduce higher integral spin

fields. We have found that for massless fields, we have to use a one parameter subgroup

of SO(3) as the little group in Minkowski space. This allows us to use (A,A) type fields

to introduce massless integral spin fields with spin greater than zero. Such fields do not

couple with ordinary matter through gauge theories. These fields and the right handed

neutrinos can be useful in dark matter, dark energy and higher spin driven inflation models.

We can modify the action or use f(R′) theories to include higher spin fields. Lastly, we

have introduced a phantom scalar using torsion that gives non-metricity. It couples with

gauge fields and can violate current conservation laws. Its vacuum effects can be useful in

cosmology.
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