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Homogeneous Sobolev and Besov spaces on special Lipschitz

domains and their traces ∗†

Anatole Gaudin‡

May 1, 2023

Abstract

We propose here to garnish the folklore of function spaces on Lipschitz domains. We prove
the boundedness of the trace operator for homogeneous Sobolev and Besov spaces on a special
Lipschitz domain with sharp regularity. In order to obtain such a result, we also provide appro-
priate definitions and properties so that our construction of homogeneous of Sobolev and Besov
spaces on special Lipschitz domains, and their boundary, that are suitable for the treatment of
non-linear partial differential equations and boundary value problems. The trace theorem for ho-
mogeneous Sobolev and Besov spaces on special Lipschitz domains occurs in range s ∈ ( 1

p
, 1+ 1

p
) .

While the case of inhomogeneous Sobolev and Besov spaces is very common and well known,
the case of homogeneous function spaces seems to be new. This paper uses and improves several
arguments exposed by the author in a previous paper for function spaces on the whole and the
half-space.
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1 Introduction

1.1 Issues for realization of homogeneous function spaces

The use of homogeneous Sobolev and Besov spaces is very important in the treatment of global-
in-time well-posedness of partial differential equations in unbounded domains. It has been the case
especially in the last two decades, see for instance [BCD11,DM09,DM15,DHMT21,OS16,OS21,OS22]
and the references therein.

In the scope of non-linear partial differential equations (even on the whole space), one has to be
clear about the definition of homogeneous function spaces. Usually, the elements of homogeneous
function spaces, such as homogeneous Sobolev and Besov spaces, are given as equivalence classes of

tempered distributions modulo polynomials denoted by S′(Rn)
/

C[x] , as in [BL76, Chapter 6, Sec-

tion 6.3], [Tri83, Chapter 5] or [Saw18, Chapter 2].
However, in that case, it is not clear what would be the actual meaning of homogeneous function

spaces on general domains (even smooth), since one cannot perform a composition with the change
of coordinates, even in the case of a smooth bent half-space.

Indeed, assuming that u + P ∈ S′(Rn) is a representative of [u] ∈ S′(Rn)
/

C[x] , and Ψ is a

smooth diffeomorphism of Rn , the meaning of

u ◦Ψ + P ◦Ψ

is not clear. Even if it has one, it should not depend on the choice of P which is again unclear.
It is then a major issue to find a way to transfer properties of homogeneous function spaces from
the whole and the half space to a bent one by change of coordinates. In particular, investigation of
traces at the boundary seems to be tricky.

Therefore the realization of homogeneous function spaces on special Lipschitz domains provided

by Costabel, Mc Intosh and Taggart [CMT13], built on S′(Rn)
/

C[x] , seems to be far from being

exploitable for linear problems with boundary values, in addition of being not suitable for non-linear
problems.

To circumvent this issue, we are going to use the idea of Bahouri, Chemin and Danchin introduced
in [BCD11, Chapter 2]. The idea is to introduce a subspace of S′(Rn) such that we get rid of
polynomials, see [BCD11, Examples, p.23]. The aforementioned subspace of S′(Rn) is denoted
S′

h(Rn), see the definition at the beginning of Section 1.3.3. With S′
h(Rn) as an ambient space,

Bahouri, Chemin and Danchin gave a construction of homogeneous Besov spaces Ḃs
p,q(Rn) which

are complete whenever (s, p, q) ∈ R× (1,+∞)× [1,+∞] satisfies
[

s <
n

p

]

or

[

q = 1 and s 6
n

p

]

.

Later, this has also led Danchin and Mucha to consider homogeneous Besov spaces on Rn
+ and

on exterior domains, see [DM09, DM15], and Danchin, Hieber, Mucha and Tolksdorf [DHMT21] to
consider homogeneous Sobolev spaces Ḣm,p on Rn and Rn

+ , for m ∈ N , p ∈ (1,+∞).
This construction was then extended by the author in the previous work [Gau22] and covers

the whole scale of homogeneous Sobolev spaces in the reflexive range on the half space Rn
+ , with

an investigation of interpolation properties, and meaning of traces at the boundary. A review of
properties of homogeneous Besov spaces on the half-space has been done too.

In order to be able to give a suitable meaning of traces, we will give a construction of homoge-
neous Sobolev and Besov spaces on special Lipschitz domains, by improvements of some arguments
presented in [Gau22, Section 2]. The structure of extension and projection operators used here in-
duce the consideration of two families of regularity indices: (−1 + 1

p , 1] and [0,+∞) with common

overlap [0, 1]. We also note that the naive argument presented for [Gau22, Proposition 2.16] is no
longer available for the non-negative family of regularity indices.
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1.2 Trace theorems

Trace theorems with sharp regularity are fundamental to study boundary value problems in the
field of partial differential equations. The usual theorem for traces of Besov or Sobolev functions
on Rn

+ = Rn−1 × (0,+∞) and on bounded and sufficiently regular domains can be found in [BL76,
Subection 6.6], [AF03, Theorem 7.43, Remark 7.45], [Sch10, Theorems 3.16 & 3.19]. A very general
result for traces on subsets of Rn with minimal geometric assumptions can be found in [JW84,
Chapters VI & VII]. The usual trace theorem for Lipschitz domains can be stated as follows.

Theorem 1.1 Let p ∈ (1,+∞) , q ∈ [1,+∞] , s ∈ ( 1
p , 1+ 1

p ) , and Ω be either a special or a bounded
Lipschitz domain,

(i) the trace operator [·]|∂Ω
: Hs,p(Ω) −→ B

s− 1
p

p,p (∂Ω) is a bounded surjection, in particular for all
u ∈ Hs,p(Ω) ,

‖u|∂Ω
‖

B
s− 1

p
p,p (∂Ω)

.s,p,n ‖u‖Hs,p(Ω);

(ii) the trace operator [·]|∂Ω
: Bs

p,q(Ω) −→ B
s− 1

p
p,q (∂Ω) is a bounded surjection, in particular for all

u ∈ Bs
p,q(Ω) ,

‖u|∂Ω
‖

B
s− 1

p
p,q (∂Ω)

.s,p,n ‖u‖Bs
p,q(Ω);

(iii) the trace operator [·]|∂Ω
: B

1
p

p,1(∂Ω) −→ Lp(∂Ω) is a bounded surjection, in particular for all

u ∈ B
1
p

p,1(Ω) ,

‖u|∂Ω
‖Lp(∂Ω) .p,n ‖u‖

B
1
p
p,1(Ω)

;

Moreover, the trace operator [·]|∂Ω
admits a right bounded inverse for each of the above cases.

Roughly speaking, the goal here is, up to technical modifications, to add dots on every H and B
symbols in Theorem 1.1 in the case of special Lipschitz domains. We take a focus on special Lipschitz
domains for two main reasons. First, on a bounded Lipschitz domain the localisation aspects induce
that there are not that much differences between inhomogenenous and homogeneous function spaces,
one may think about Poincaré-Wirtinger-Sobolev type inequalities. In a second time, the class of
special Lipschitz domains seems to be the only suitable class of domains that admits good extension
operators with homogeneous estimates at the moment. For more general unbounded Lipschitz,
or smoother, domains one cannot reach homogeneous function spaces by localisation with smooth
cut-off since this procedure completely destroys the homogeneity.

The reader must know that in the case of inhomogeneous function spaces, one may find simpler
proofs for the existence of traces seeing the trace operator as a (compact) operator with value in
Lp(∂Ω) (when Ω has compact boundary). Similar results are also available for partial traces of vector
fields, even with compactness property in the case of compact boundary, e.g. see [Mon15, Den21]
and the references therein. A quite general result for partial traces on bounded Lipschitz domains
is achieved by Mitrea, Mitrea and Shaw in [MMS08, Section 4] for differential forms, containing the
result for vector fields.

Theorem 1.1 and fine properties of simple and double layer potentials were extensively used to
study regularity and well-posedness of elliptic boundary value problems and deduce some functional
analytic properties of involved elliptic operators (see e.g. [JK95,FMM98,MM01,MMT01]).

However, if one wants to look at boundary value problems in unbounded domains, such as half-
spaces and in particular special Lipschitz domains, we may have a lack of control on derivatives
of lower order. In this case, homogeneous estimates are required, then the use of homogeneous
Sobolev and Besov spaces, Ḣs,p(Ω) and Ḃs

p,q(Ω). One may see that in the case of the flat upper
half-space (or the whole space with trace in a hyper plane), that the trace theorem still holds, see for
instance [Jaw78]. But in this case, the usual definition of such function spaces is given by restriction
of tempered distributions modulo polynomials, which is not convenient to adapt the usual strategy
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which requires point-wise composition in order to flatten the boundary. For a suitable realization of
homogeneous function spaces on the flat upper half-space, the expected results are easily obtained
by the author in [Gau22, Section 3].

The goal of this paper is to give a proof of the usual trace theorem for scalar-valued homogeneous
Sobolev and Besov spaces on special Lipschitz domains. In order to prove the homogeneous version
of Theorem 1.1, we aim to follow the strategy exhibited in [Din96], and initially described in [Cos88].
However, the use of the Fourier transform and the overall strategy restrict everything to the case
of inhomogeneous L2 -based Sobolev spaces. The idea we present here is to use the global-in-time
Ḣs,p(Lp)-maximal regularity for the Poisson semigroup on Rn−1 and interpolation theory to replace
the use of L2 techniques.

1.3 Notations, definitions and review of usual concepts

Throughout this paper the dimension will be n > 2, and N will be the set of non-negative integers.
For a, b ∈ R with a 6 b , we write Ja, bK := [a, b] ∩ Z .

For two real numbers A,B ∈ R , A .a,b,c B means that there exists a constant C > 0 depending
on a, b, c such that A 6 CB . When both A .a,b,c B and B .a,b,c A are true, we simply write

A ∼a,b,c B . When the number of indices is overloaded, we allow ourselves to write A .
d,e,f
a,b,c B

instead of A .a,b,c,d,e,f B .

1.3.1 Smooth and measurable functions on open sets

Denote by S(Rn,C) the space of complex valued Schwartz function, and S′(Rn,C) its dual called the
space of tempered distributions. The Fourier transform on S′(Rn,C) is written F , and is pointwise
defined for any f ∈ L1(Rn,C) by

Ff(ξ) :=

∫

Rn

f(x) e−ix·ξ dx, ξ ∈ R
n.

Additionnally, for p ∈ [1 +∞] , we will write p′ = p
p−1 its Hölder conjugate.

For any m ∈ N , the map ∇m : S′(Rn,C) −→ S′(Rn,Cnm

) is defined as ∇mu := (∂αu)|α|=m .

We denote by (e−t(−∆)
1
2 )t>0 respectively the Poisson semigroup on Rn . We also introduce the

operator ∇′ which stands for the gradient on Rn−1 identified with the n− 1 first variables of Rn ,
i.e. ∇′ = (∂x1 , . . . , ∂xn−1).

When Ω is an open set of Rn , C∞
c (Ω,C) is the set of smooth compactly supported function in

Ω, and D′(Ω,C) is its topological dual. For p ∈ [1,+∞), Lp(Ω,C) is the normed vector space of
complex valued (Lebesgue-) measurable functions whose p-th power is integrable with respect to
the Lebesgue measure, S(Ω,C) (resp. C∞

c (Ω,C)) stands for functions which are restrictions on Ω
of elements of S(Rn,C) (resp. C∞

c (Rn,C)). Unless the contrary is explicitly stated, we will always
identify Lp(Ω,C) (resp. C∞

c (Ω,C)) as the subspace of function in Lp(Rn,C) (resp. C∞
c (Rn,C))

supported in Ω through the extension by 0 outside Ω. L∞(Ω,C) stands for the space of essentially
bounded (Lebesgue-) measurable functions.

For s ∈ R , p ∈ [1,+∞), ℓp
s(Z,C), stands for the normed vector space of p-summable se-

quences of complexes numbers with respect to the counting measure 2kspdk ; ℓ∞
s (Z,C) stands for

sequences (xk)k∈Z such that (2ksxk)k∈Z is bounded. More generally, when X is a Banach space, for
p ∈ [1,+∞] , one may also consider Lp(Ω, X) which stands for the space of (Bochner-)measurable
functions u : Ω −→ X , such that t 7→ ‖u(t)‖X ∈ Lp(Ω,R), similarly one may consider ℓp

s(Z, X).
Finally, C0(Ω, X) stands for the space of continuous functions on Ω ⊂ Rn with values in X . The
subspace C0

b(R, X) is made of uniformly bounded continuous functions and is the set C0
0(R, X) of

continuous functions that vanish at infinity. For C ∈ {C0,C0
b ,C

0
0,C

∞
c } , we set C(Ω, X) to be the

set of continuous functions on Ω which are restrictions of elements that belongs to C(Rn, X).
For s ∈ R , p ∈ [1,+∞), ℓp

s(Z,C), stands for the normed vector space of p-summable se-
quences of complexes numbers with respect to the counting measure 2kspdk ; ℓ∞

s (Z,C) stands for
sequences (xk)k∈Z such that (2ksxk)k∈Z is bounded. More generally, when X is a Banach space, for
p ∈ [1,+∞] , one may also consider Lp(Ω, X) which stands for the space of (Bochner-)measurable
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functions u : Ω −→ X , such that t 7→ ‖u(t)‖X ∈ Lp(Ω,R), similarly one may consider ℓp
s(Z, X).

Finally, C0(Ω, X) stands for the space of continuous functions on Ω ⊂ Rn with values in X . The
subspace C0

b(R, X) is made of uniformly bounded continuous functions and is the set C0
0(R, X) of

continuous functions that vanish at infinity. For C ∈ {C0,C0
b ,C

0
0} , we set C(Ω, X) to be the set of

continuous functions on Ω which are restrictions of elements that belongs to C(Rn, X).
For Ω an open set of Rn , we say that Ω is a special Lipschitz domain, if there exists, up to a

rotation, a globally Lipschitz function φ : Rn−1 −→ R , such that

Ω = { (x′, xn) ∈ R
n−1 × R |xn > φ(x′) }.

In other words, a special Lipschitz domain of Rn is the epigraph of real valued Lipschitz function
defined on Rn−1 .

1.3.2 Interpolation of normed vector spaces

Let (X, ‖·‖X) and (Y, ‖·‖Y ) be two normed vector spaces. We write X →֒ Y to say that X
embeds continuously into Y . Now let us recall briefly basics of interpolation theory. If there exists
a Hausdorff topological vector space Z , such that X,Y ⊂ Z , then X ∩ Y and X + Y are normed
vector spaces with their canonical norms, and one can define the K -functional of z ∈ X + Y , for
any t > 0 by

K(t, z,X, Y ) := inf
(x,y)∈X×Y,

z=x+y

(‖x‖X + t ‖y‖Y ) .

This allows us to construct, for any θ ∈ (0, 1), q ∈ [1,+∞] , the real interpolation spaces between
X and Y with indexes θ, q as

(X,Y )θ,q :=
{

x ∈ X + Y
∣

∣

∣ t 7−→ t−θK(t, x,X, Y ) ∈ Lq
∗(R+)

}

,

where Lq
∗(R+) := Lq((0,+∞), dt/t). The interested reader could check [Lun18, Chapter 1], [BL76,

Chapter 3] for more informations about real interpolation and its applications.
If moreover we assume that X and Y are complex Banach spaces, one can consider F(X,Y )

the set of all continuous functions f : S 7−→ X + Y , S being the strip of complex numbers whose
real part is between 0 and 1, with f holomorphic in S , and such that

t 7−→ f(it) ∈ C0
b(R, X) and t 7−→ f(1 + it) ∈ C0

b(R, Y ).

We can endow the space F(X,Y ) with the norm

‖f‖F(X,Y ) := max

(

sup
t∈R

‖f(it)‖X , sup
t∈R

‖f(1 + it)‖Y

)

,

which makes F(X,Y ) a Banach space since it is a closed subspace of C0(S,X + Y ). Hence for
θ ∈ (0, 1), the normed vector space given by

[X,Y ]θ :=
{

f(θ)
∣

∣ f ∈ F(X,Y )
}

,

‖x‖[X,Y ]θ
:= inf

f∈F(X,Y ),
f(θ)=x

‖f‖F(X,Y ) ,

is a Banach space called the complex interpolation space between X and Y associated with θ .
Again, the interested reader could check [Lun18, Chapter 2], [BL76, Chapter 4] for more informations
about complex interpolation and its applications.

1.3.3 Sobolev and Besov spaces on the whole space

To deal with Sobolev and Besov spaces on the whole space, we need to introduce Littlewood-Paley
decomposition given by ϕ ∈ C∞

c (Rn), radial, real-valued, non-negative, such that

• supp ϕ ⊂ B(0, 4/3);

• ϕ|B(0,3/4)
= 1;
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so we define the following functions for any j ∈ Z for all ξ ∈ Rn ,

ϕj(ξ) := ϕ(2−jξ), ψj(ξ) := ϕj(ξ/2)− ϕj(ξ),

and the family (ψj)j∈Z has the following properties

• supp(ψj) ⊂ { ξ ∈ R
n | 3 · 2j−2 6 |ξ| 6 2j+3/3 } ;

• ∀ξ ∈ Rn \ {0} ,
N
∑

j=−M

ψj(ξ) −−−−−−−→
N,M→+∞

1.

Such a family (ϕ, (ψj)j∈Z) is called a Littlewood-Paley family. Now, we consider the two following
families of operators associated with their Fourier multipliers :

• The homogeneous family of Littlewood-Paley dyadic decomposition operators (∆̇j)j∈Z , where

∆̇j := F
−1ψjF,

• The inhomogeneous family of Littlewood-Paley dyadic decomposition operators (∆k)k∈Z ,
where

∆−1 := F
−1ϕF,

∆k := ∆̇k for any k > 0, and ∆k := 0 for any k 6 −2.

One may notice, as a direct application of Young’s inequality for the convolution, that they are all
uniformly bounded families of operators on Lp(Rn), p ∈ [1,+∞] .

Both family of operators lead for s ∈ R , p, q ∈ [1,+∞] , u ∈ S′(Rn) to the following quantities,

‖u‖Bs
p,q(Rn) =

∥

∥

∥(2ks ‖∆ku‖Lp(Rn))k∈Z

∥

∥

∥

ℓq(Z)
and ‖u‖Ḃs

p,q(Rn) =
∥

∥

∥(2js
∥

∥∆̇ju
∥

∥

Lp(Rn)
)j∈Z

∥

∥

∥

ℓq(Z)
,

respectively named the inhomogeneous and homogeneous Besov norms, but the homogeneous norm
is not really a norm since ‖u‖Ḃs

p,q(Rn) = 0 does not imply that u = 0. Thus, following [BCD11,

Chapter 2] and [DHMT21, Chapter 3], we introduce a subspace of tempered distributions such that
‖·‖Ḃs

p,q(Rn) is point-separating, say

S
′
h(Rn) :=

{

u ∈ S
′(Rn)

∣

∣

∣ ∀Θ ∈ C∞
c (Rn), ‖Θ(λD)u‖L∞(Rn) −−−−−→λ→+∞

0

}

,

where for λ > 0, Θ(λD)u = F−1Θ(λ·)Fu . Notice that S′
h(Rn) does not contain any polynomials,

and for any p ∈ [1,+∞), Lp(Rn) ⊂ S′
h(Rn) so that ‖u‖Ḃs

p,q(Rn) = 0 does imply that u = 0 when

u ∈ S′
h(Rn).

One can also define the following quantities called the inhomogeneous and homogeneous Sobolev
spaces’ potential norms

‖u‖Hs,p(Rn) :=
∥

∥(I−∆)
s
2u

∥

∥

Lp(Rn)
and ‖u‖Ḣs,p(Rn) :=

∥

∥

∥

∑

j∈Z

(−∆)
s
2 ∆̇ju

∥

∥

∥

Lp(Rn)
,

where (−∆)
s
2 is understood on u ∈ S′

h(Rn) by the action on its dyadic decomposition, i.e.

(−∆)
s
2 ∆̇ju := F

−1|ξ|sF∆̇ju,

which gives a family of C∞ functions with at most polynomial growth.
Hence for any p, q ∈ [1,+∞] , s ∈ R , we define

• the inhomogeneous and homogeneous Sobolev (Bessel and Riesz potential) spaces,

Hs,p(Rn) =
{

u ∈ S′(Rn)
∣

∣ ‖u‖Hs,p(Rn) < +∞
}

, Ḣs,p(Rn) =
{

u ∈ S′
h(Rn)

∣

∣ ‖u‖Ḣs,p(Rn) < +∞
}

;

• and the inhomogeneous and homogeneous Besov spaces,

Bs
p,q(Rn) =

{

u ∈ S′(Rn)
∣

∣ ‖u‖Bs
p,q(Rn) < +∞

}

, Ḃs
p,q(Rn) =

{

u ∈ S′
h(Rn)

∣

∣ ‖u‖Ḃs
p,q(Rn) < +∞

}

,

which are all normed vector spaces.
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The treatment of homogeneous Besov spaces Ḃs
p,q(Rn), s ∈ R , p, q ∈ [1,+∞] , defined on S′

h(Rn)
has been done in an extensive manner in [BCD11, Chapter 2]. However, the corresponding construc-
tion for homogeneous Sobolev spaces Ḣs,p(Rn), s ∈ R , p ∈ (1,+∞). See [BCD11, Chapter 1] for
the case p = 2, [DHMT21, Chapter 3] for the case s ∈ N , [Gau22, Subsection 2.1] for the case
s ∈ R .

The following subspace of Schwartz functions, say

S0(Rn) := {u ∈ S(Rn) | 0 /∈ supp (Ff) } ,

is a nice dense subspace in Lp(Rn), Hs,p(Rn), Ḣs,p(Rn), Bs
p,q(Rn) and Ḃs

p,q(Rn), for all p ∈
(1,+∞), q ∈ [1,+∞), s ∈ R .

The inhomogeneous spaces Lp(Rn), Hs,p(Rn), and Bs
p,q(Rn) are all complete for all p, q ∈

[1,+∞] , s ∈ R , but in this setting homogenenous spaces are no longer always complete (see [BCD11,
Proposition 1.34, Remark 2.26]). Indeed, it can be shown (see [BCD11, Theorem 2.25]) that homo-
geneous Besov spaces Ḃs

p,q(Rn) are complete whenever (s, p, q) ∈ R× (1,+∞)× [1,+∞] satisfies
[

s <
n

p

]

or

[

q = 1 and s 6
n

p

]

, (Cs,p,q)

From now, and until the end of this paper, we write (Cs,p) for the statement (Cs,p,p). One may show
that, similarly, Ḣs,p(Rn) is complete whenever (Cs,p) is satisfied, see [Gau22, Proposition 2.4].

We recall that all s > 0, (p, q) ∈ (1,+∞)× [1,+∞] , we have Lp(Rn)∩Ḣs,p(Rn) = Hs,p(Rn), and
Lp(Rn) ∩ Ḃs

p,q(Rn) = Bs
p,q(Rn) with equivalent norms, see [BL76, Theorem 6.3.2] for more details.

Proposition 1.2 ( [Gau22, Proposition 2.11] ) For any s ∈ R , p ∈ (1,+∞) ,










Ḣs,p × Ḣ−s,p′

−→ C

(u, v) 7−→
∑

|j−j′|≤1

〈

∆̇ju, ∆̇j′v
〉

Rn

defines a continuous bilinear functional on Ḣs,p(Rn) × Ḣ−s,p′

(Rn) . Denote by V−s,p′

the set of
functions v ∈ S(Rn) ∩ Ḣ−s,p′

(Rn) such that ‖v‖Ḣ−s,p′ (Rn) 6 1 . If u ∈ S′
h(Rn) , then we have

‖u‖Ḣs,p(Rn) = sup
v∈V−s,p′

∣

∣

〈

u, v
〉

Rn

∣

∣.

Moreover, if (Cs,p) is satisfied, Ḣs,p(Rn) is reflexive and we have

(Ḣ−s,p′

(Rn))′ = Ḣs,p(Rn). (1.1)

For the same result in the case of homogeneous Besov spaces, see [BCD11, Proposition 2.29].
We recall also the usual interpolation properties.

Proposition 1.3 ( [Gau22, Proposition 2.10] ) Let (p0, p1, p, q, q0, q1) ∈ (1,+∞)3 × [1,+∞]3 ,
s0, s1 ∈ R , such that s0 6= s1 , and let

(

s,
1

pθ
,

1

qθ

)

:= (1− θ)

(

s0,
1

p0
,

1

q0

)

+ θ

(

s1,
1

p1
,

1

q1

)

.

Assuming (Cs0,p) (resp. (Cs0,p,q0 )), we get the following

(Ḣs0,p(Rn), Ḣs1,p(Rn))θ,q = (Ḃs0
p,q0

(Rn), Ḃs1
p,q1

(Rn))θ,q = Ḃs
p,q(Rn). (1.2)

If moreover (Cs0,p0) and (Cs1,p1) are true then also is (Cs,pθ
) and

[Ḣs0,p0 (Rn), Ḣs1,p1 (Rn)]θ = Ḣs,pθ (Rn), (1.3)

and similarly if (Cs0,p0,q0 ) and (Cs1,p1,q1) are satisfied then (Cs,pθ,qθ
) is also satisfied and

[Ḃs0
p0,q0

(Rn), Ḃs1
p1,q1

(Rn)]θ = Ḃs
pθ,qθ

(Rn). (1.4)

Proposition 1.4 ( [Gau22, Proposition 2.15] ) For all p ∈ (1,+∞) , q ∈ [1,+∞] , for all s ∈
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(−1 + 1
p ,

1
p ) , for all u ∈ Ḣs,p(Rn) (resp. Ḃs

p,q(Rn)),

‖1Rn
+
u‖Ḣs,p(Rn) .s,p,n ‖u‖Ḣs,p(Rn) (resp. ‖1Rn

+
u‖Ḃs

p,q(Rn) .s,p,n ‖u‖Ḃs
p,q(Rn) ).

The same result still holds with (H,B) instead of (Ḣ, Ḃ) .

We also have the useful and very well known equivalence with the Triebel-Lizorkin norm for
Riesz potential spaces.

Lemma 1.5 ( [Gau22, Lemma 2.7] ) For all s ∈ R , p ∈ (1,+∞) , u ∈ S′
h(Rn) ,

∥

∥(∆̇ju)j∈Z

∥

∥

Lp(Rn,ℓ2
s(Z))

∼p,n,s ‖u‖Ḣs,p(Rn) .

2 Sobolev and Besov spaces on special Lipschitz domains

2.1 Function spaces by restriction

Let s ∈ R , p ∈ (1,+∞), q ∈ [1,+∞] and Ω an open set of Rn . For any X ∈ {Bs
p,q, Ḃ

s
p,q,H

s,p, Ḣs,p} ,
and we define

X(Ω) := X(Rn)|Ω
,

with the quotient norm ‖u‖X(Ω) := inf
ũ∈X(Rn),
ũ|Ω

=u .

‖ũ‖X(Rn) . A direct consequence of the definition of those

spaces is the density of S0(Ω) ⊂ S(Ω) in each of them, and the completeness and reflexivity when
their counterpart on Rn are complete and reflexive. We can also define

X0(Ω) :=
{

u ∈ X(Rn)
∣

∣

∣ supp u ⊂ Ω
}

,

with its natural induced norm ‖u‖X0(Ω) := ‖u‖X(Rn) . We always have the canonical continuous
injection,

X0(Ω) →֒ X(Ω).

Since there is a natural embedding S
′(Rn) →֒ D

′(Ω), we also have the inclusion

X(Ω) ⊂ D
′(Ω),

where D′(Ω) = (C∞
c (Ω))′ is the topological vector space of distributions on Ω.

If X and Y are different function spaces

• if one has a continuous embedding

Y(Rn) →֒ X(Rn).

A direct consequence from the definition is that

Y(Ω) →֒ X(Ω),

and similarly with X0 and Y0 .

• We write [X ∩ Y](Ω) the restriction of X(Rn) ∩ Y(Rn) to Ω, in general there is nothing to
ensure more than

[X ∩Y](Ω) →֒ X(Ω) ∩Y(Ω).

The results corresponding to those obtained for the whole space Rn in the previous section are
usually carried over by the existence of an appropriate extension operator

E : S
′(Ω) −→ S

′(Rn),

bounded from X(Ω) to X(Rn).
By mean of Proposition 1.3, as for [DHMT21, Proposition 3.22] and [Gau22, Lemma 2.29], the

definition of function spaces by restriction yields the next result.
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Lemma 2.1 Let (p, q, q0, q1) ∈ (1,+∞)× [1,+∞]3 , s0, s1 ∈ R , such that s0 < s1 , and set

s := (1− θ)s0 + θs1.

If (Cs0,p) is satisfied, we have continuous embeddings

Ḃs
p,q(Ω) →֒ (Ḣs0,p(Ω), Ḣs1,p(Ω))θ,q, (2.1)

Ḃs
p,q,0(Ω) ←֓ (Ḣs0,p

0 (Ω), Ḣs1,p
0 (Ω))θ,q, (2.2)

Similarly if (Cs0,p,q0 ) is satisfied, we also have

Ḃs
p,q(Ω) →֒ (Ḃs0

p,q0
(Ω), Ḃs1

p,q1
(Ω))θ,q, (2.3)

Ḃs
p,q,0(Ω) ←֓ (Ḃs0

p,q0,0(Ω), Ḃs1
p,q1,0(Ω))θ,q. (2.4)

2.2 Quick overview of inhomogeneous function spaces on (special) Lips-
chitz domains

This subsection is here in order to recall few selected facts about inhomogeneous function spaces
on Lipschitz domains. A substantial part of the presented results is used in next sections to carry
over the corresponding ones for the homogeneous scales of function spaces. One may also see this
subsection as guide lines for the results we aim to reproduce. We follow closely the presentation
given in [Gau22, Section 2.2].

For a suitable extension operator in the case of inhomogeneous function spaces on a (special)
Lipschitz domain, a notable approach was achieved by Stein in [Ste70, Chapter VI, Section 3], for
Sobolev spaces with non-negative index, and Besov spaces of positive index of regularity (this follows
by real interpolation). A full and definitive result for the inhomogeneous case on Lipschitz domains,
and even in a more general case (allowing p, q to be less than 1 considering the whole Besov and
Triebel-Lizorkin scales), was given by Rychkov in [Ryc99] where the extension operator is known to
be universal and to cover even negative regularity index.

The extension operator provided by Rychkov can be used to prove, thanks to [BL76, Theo-
rem 6.4.2], if (h, b) ∈ {(H,B), (H0,B·,·,0)} ,

[hs0,p0(Ω), hs1,p1 (Ω)]θ = hs,pθ (Ω), (bs0
p,q0

(Ω), bs1
p,q1

(Ω))θ,q = bs
p,q(Ω), (2.5)

(hs0,p(Ω), hs1,p(Ω))θ,q = bs
p,q(Ω), [bs0

p0,q0
(Ω), bs1

p1,q1
(Ω)]θ = bs

pθ,qθ
(Ω), (2.6)

whenever (p0, q0), (p1, q1), (p, q) ∈ [1,+∞]2 (p 6= 1,+∞ , when dealing with Sobolev (Bessel poten-
tial) spaces), θ ∈ (0, 1), s0 6= s1 two real numbers, such that

(

s,
1

pθ
,

1

qθ

)

:= (1 − θ)

(

s0,
1

p0
,

1

q0

)

+ θ

(

s1,
1

p1
,

1

q1

)

.

A nice property is that the description of the boundary yields the following density results, for
all p ∈ (1,+∞), q ∈ [1,+∞), s ∈ R ,

Hs,p
0 (Ω) = C∞

c (Ω)
‖·‖Hs,p(Rn)

, and Bs
p,q,0(Ω) = C∞

c (Ω)
‖·‖Bs

p,q(Rn)
. (2.7)

One may check [JK95, Section 2] for the treatment of Sobolev spaces case, the Besov spaces case
follows by interpolation argument, see [BL76, Theorem 3.4.2]. As a direct consequence, one has from
[JK95, Proposition 2.9] and [BL76, Theorem 3.7.1], that for all s ∈ R , p ∈ (1,+∞), q ∈ [1,+∞),

(Hs,p(Ω))′ =H−s,p′

0 (Ω), (Bs
p,q(Ω))′ = B−s

p′,q′,0(Ω), (2.8)

(Bs
p,q,0(Ω))′ = B−s

p′,q′(Ω). (2.9)

And finally, thanks to a modified version of Proposition 1.4, we also have a particular case of
equality of Sobolev spaces, with equivalent norms, for all p ∈ (1,+∞), q ∈ [1,+∞] , s ∈ (−1+ 1

p ,
1
p ),

Hs,p(Ω) = Hs,p
0 (Ω), Bs

p,q(Ω) = Bs
p,q,0(Ω). (2.10)

The interested reader may also found an explicit and way more general (and still valid, for the
most part of it, in the case of a special Lipschitz domain) treatment for bounded Lipschitz domains
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in [KMM07], where the Triebel-Lizorkin scale, including Hardy spaces, and other endpoint function
spaces are also treated.

A more recent elementary and accessible exposition is available in [Leo23, Chapter 8 &11]. It
deals with inhomogeneous Sobolev-Slobodeckij spaces Ws,p(Ω), which coincides with usual Sobolev
spaces when s ∈ Z , and with diagonal Besov spaces Bs

p,p(Ω) when s ∈ R \ Z . The case of indices
s ∈ [0, 1] is treated in the case of Lipschitz domains, and s ∈ [0,m + 1] in the case where Ω is a
Cm,1 domain.

All the results presented above will be used without being mentioned and are assumed to be well
known to the reader.

2.3 Homogeneous Sobolev and Besov spaces on a special Lipschitz do-
main.

From now on, and until the end of the paper, Ω will be a fixed special Lipschitz domain given by a
fixed uniformly Lipschitz function φ : Rn−1 −→ R , i.e.,

Ω := { (x′, xn) ∈ R
n−1 × R |xn > φ(x′) }.

We also set the following global bi-Lipschitz map of Rn = Rn−1 × R ,

Ψ : (x′, xn) 7−→ (x′, xn + φ(x′)).

For which, we have

Ψ(Rn
+) = Ω, Ψ−1(Ω) = R

n
+ and det(∇Ψ) = det(∇(Ψ−1)) = 1. (2.11)

As in [Gau22, Section 2.2.2], one may expect to recover similar results for the scale of homo-
geneous Sobolev and Besov as the one mentioned in Section 2.2. However, it still suffers the same
issues as the one raised at the beginning of [Gau22, Section 2.2.2]: the lack of completeness on the
scale and it is not known whether Rychkov’s extension operator satisfies homogeneous estimates.

The extension method employed in [DHMT21, Chapter 3] and [Gau22, Section 2.2.2], the use
of the global change of coordinates and extension operators of higher order reflection around the
boundary, will fail for high regularities. Indeed, the global bi-Lipschitz map Ψ suffers from its
own lack of regularity, making it impossible to take its derivatives more than once. Moreover, even
if it were a smooth global diffeomorphism, higher order derivatives would produce inhomogeneous
parts with lower order terms. However, this method still makes sense for regularity indices s ∈
(−1 + 1/p, 1].

The first idea here is to use Stein’s extension operator introduced in [Ste70, Chapter VI], for
which we have homogeneous estimates for non-negative integers indices of regularity.

The second idea is to fall in a setting so that one just has to use the proofs in [Gau22, Section 2], or
at least reproduce it with minor modifications. Indeed those proofs mainly depend on the existence of
good extension operator with appropriate homogeneous estimates, and the reflexivity of considered
Sobolev spaces.

2.3.1 Homogeneous Sobolev spaces

The Sobolev embeddings are a straightforward consequence of the definition of function spaces by
restriction, see e.g. [Gau22, Proposition 2.23].

Proposition 2.2 Let p, q ∈ (1,+∞) , s ∈ [0, n) , such that

1

q
=

1

p
−
s

n
.

Then the following inequalities hold,

‖u‖Lq(Ω) .n,s,p,q ‖u‖Ḣs,p(Ω), ∀u ∈ Ḣs,p(Ω) ,

‖u‖Ḣ−s,q
0 (Ω) .n,s,p,q ‖u‖Lp(Ω) , ∀u ∈ Lp(Ω) .

Moreover, each underlying embedding is dense.
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In particular, Sobolev embeddings imply that any appropriate extension operator, such as the
next one, are already uniquely well defined on any function in homogeneous Sobolev spaces such
that Ḣs,p(Ω) ⊂ L

pn
n−sp (Ω), i.e. for those who are complete. It remains to show the continuity with

respect to homogeneous Sobolev norms.

Proposition 2.3 There exists a universal extension operator E , such that for all p ∈ (1,+∞) ,
s ∈ R+ , all u ∈ Hs,p(Ω) ,

Eu|Ω
= u,

with the estimate

‖Eu‖Ḣs,p(Rn) .p,s,n,∂Ω ‖u‖Ḣs,p(Ω) .

In particular, E : Ḣs,p(Ω) −→ Ḣs,p(Rn) extends uniquely as a bounded operator whenever (Cs,p) is
satisfied.

Proof. — Let E be Stein’s extension operator given in [Ste70, Chapter 6, Section 3, Theorem 5’].
For all m ∈ N , p ∈ (1,+∞), u ∈ Hm,p(Ω), we have

‖∇mu‖Lp(Ω) 6 ‖u‖Ḣm,p(Ω) = inf
ũ∈Ḣm,p(Rn),

ũ|Ω
=u .

‖∇mũ‖Lp(Rn) 6 ‖∇
m(Eu)‖Lp(Rn) .p,n,m,∂Ω ‖∇

mu‖Lp(Ω) .

Hence, it satisfies

‖Eu‖Ḣm,p(Rn) .p,n,m,∂Ω ‖u‖Ḣm,p(Ω) . (2.12)

So that E : Ḣm,p(Ω) −→ Ḣm,p(Rn) is bounded on subspace Hm,p(Ω), in particular on whole
Ḣm,p(Ω) when it is complete, i.e. m < n

p , since S(Ω) ⊂ Hm,p(Ω) is dense in Ḣm,p(Ω).

The estimate (2.12) implies, that for all U ∈ Hm,p(Rn), by the definition of function spaces by
restriction

‖E [1ΩU ]‖Ḣm,p(Rn) .p,n,m,∂Ω ‖U‖Ḣm,p(Rn) .

Therefore, if one uses Lemma 1.5,

‖(∆̇jE [1ΩU ])j∈Z‖Lp(Rn,ℓ2
m(Z)) .p,n,m,∂Ω ‖(∆̇jU)j∈Z‖Lp(Rn,ℓ2

m(Z)) . (2.13)

For v = (vj)j∈Z ∈ Lp(Rn, ℓ2
m(Z)) with finite support with respect to the discrete variable, we set

ΞΩv :=
(

∆̇jE
[

1Ω

(

∑

k∈Z

∆̇k

[

vk−1 + vk + vk+1

])]

)

j∈Z

and since v has finite support with respect to the discrete variable we may define the auxiliary
function V :=

∑

k∈Z
∆̇k

[

vk−1 +vk +vk+1

]

∈ Hm,p(Rn), and we obtain, by [Gra14, Proposition 6.1.4],

‖ΞΩv‖Lp(Rn,ℓ2
m(Z)) .p,n,m,∂Ω ‖(∆̇jV )j∈Z‖Lp(Rn,ℓ2

m(Z)) .p,n,m,∂Ω ‖v‖Lp(Rn,ℓ2
m(Z)) .

It follows that ΞΩ extends uniquely as a bounded linear operator on Lp(Rn, ℓ2
m(Z)) for all

p ∈ (1,+∞), m ∈ N , which is consistent on elements whose support in the discrete variable is finite.
It is still consistent on all element of the form (∆̇jU)j∈Z , provided U ∈ Hα,p(Rn) , α > m and we
have by construction and uniqueness of the extension

ΞΩ[(∆̇jU)j∈Z] =
(

∆̇jE
[

1ΩU
])

j∈Z
.

The complex interpolation of mixed weighted Lebesgue spaces, see [BL76, Theorems 5.1.2 & 5.6.3],
yields that

ΞΩ : Lp(Rn, ℓ2
s(Z)) −→ Lp(Rn, ℓ2

s(Z))

is a well defined bounded linear operator for all s > 0, p ∈ (1,+∞). Then, the map

ΞΩ[(∆̇j [·])j∈Z] : Ḣs,p(Rn) −→ Lp(Rn, ℓ2
s(Z)) (2.14)

is also well defined and bounded by Lemma 1.5. Provided s > 0, Eu ∈ Hs,p(Rn) is already entirely
determined for u ∈ Hs,p(Ω) by the boundedness on the inhomogeneous Sobolev scale. Hence, for
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U ∈ Ḣs,p(Rn) such that U|Ω
= u , by uniqueness of the extension of ΞΩ , we have

ΞΩ[(∆̇jU)j∈Z] =
(

∆̇kE [1ΩU ]
)

k∈Z
=

(

∆̇kEu
)

k∈Z
.

Thus, one may use the estimate (2.14) and Lemma 1.5 to deduce

‖Eu‖Ḣs,p(Rn) .p,s,n,∂Ω ‖U‖Ḣs,p(Rn) .

However, U is an arbitrary Ḣs,p -extension of u , so that by the definition of function spaces by
restriction, it holds that

‖Eu‖Ḣs,p(Rn) .p,s,n,∂Ω ‖u‖Ḣs,p(Ω) .

When (Cs,p) is satisfied, Ḣs,p(Rn) is complete, and since S0(Ω) ⊂ Hs,p(Ω) is dense in Ḣs,p(Ω), the
operator extends uniquely on the whole Ḣs,p(Ω). �

Remark 2.4 The method employed here is quite general, and could be adapted to the interpolation
of many other kind of linear operators.

The general idea is to lift the operator at a level for which we can take completion without losing
any ambiant structure information, here at the level of anisotropic Lebesgue spaces Lp(ℓ2

s), instead
of taking abstract completion of our Sobolev spaces Ḣs,p . From this point, one perform the complex
interpolation, then one may hope to get back on a (appropriate dense) subset of those spaces for
which we can compute explicitly the operator, which was exactly what we have done.

This is one of the novelty of the present paper.

Proposition 2.3 is already a powerful enough tool to carry many results. However, this Stein’s
extension operator has its use restricted to non-negative indices of regularity for the Sobolev scale
and positive indices of regularity for the Besov scale. It would be of a great interest to be able to
look at similar properties for regularity indices s ∈ (−1 + 1/p, 1/p).

We need to carry over the behavior of the global change of coordinates on the homogeneous scale.
For any measurable function u on either Ω or R

n , and any measurable function v on either R
n
+

or Rn , we introduce the maps

Tφu := u ◦Ψ, and T−1
φ v = v ◦Ψ−1. (2.15)

Proposition 2.5 Let p ∈ (1,+∞) , s ∈ [−1, 1] and T ∈ {Tφ, T
−1
φ } . We assume that one of the

two following conditions is satisfied

(i) (Cs,p) and u ∈ Ḣs,p(Rn) ,

(ii) s > n/p and u ∈ Hs,p(Rn) .

Then T u ∈ Ḣs,p(Rn) with the estimate

‖T u‖Ḣs,p(Rn) .p,n,∂Ω ‖u‖Ḣs,p(Rn).

Proof. — We set T = Tφ and T ∗ = T−1
φ . First, we let u ∈ H1,p(Rn) and we recall that the following

equalities hold almost everywhere

∂xk
(T u) = T (∂xk

u) + ∂xk
φT (∂xnu) , ∂xn(T u) = T (∂xnu) , k ∈ J1, n− 1K .

We recall that T is bounded on Lp(Rn), and that, moreover, the Jacobian determinant of Ψ is 1,
see (2.11). Therefore, we obtain

‖∇T u‖Lp(Rn)6 ‖∂xnu‖Lp(Rn)+

n−1
∑

k=1

‖∂xk
u‖Lp(Rn)+‖∂xk

φ‖L∞‖∂xnu‖Lp(Rn)

6 (1 + (n− 1)‖∇′φ‖L∞)‖∇u‖Lp(Rn).

Similar computations yield,

‖∇T ∗u‖Lp(Rn)6 (1 + (n− 1)‖∇′φ‖L∞)‖∇u‖Lp(Rn).
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Now, for v ∈ L2(Rn) ∩ Ḣ−1,p(Rn), by Proposition 1.2, and since the Jacobian determinant of Ψ−1

is 1,

‖T v‖Ḣ−1,p(Rn) = sup
u∈S(Rn)

‖u‖
Ḣ1,p′

(Rn)
61

∣

∣

∣

∣

∫

Rn

T v(x)u(x) dx

∣

∣

∣

∣

= sup
u∈S(Rn)

‖u‖
Ḣ1,p′

(Rn)
61

∣

∣

∣

∣

∫

Rn

v(x) T ∗u(x) dx

∣

∣

∣

∣

6 ‖v‖Ḣ−1,p(Rn)









sup
u∈S(Rn)

‖u‖
Ḣ1,p′

(Rn)
61

‖T ∗u‖Ḣ1,p′(Rn)









.p,n,∂Ω ‖v‖Ḣ−1,p(Rn).

The same goes for T ∗ . Hence, T (resp. T ∗ ) extends uniquely as a bounded linear operator on
Ḣ−1,p(Rn). But since T (resp. T ∗ ) is known to be bounded on Lp(Rn), by complex interpolation
given in Proposition 1.3, T (resp. T ∗ ) is then a bounded linear operator on Ḣs,p(Rn), for all
s ∈ [−1, 0]. One may repeat the duality argument, thanks to the boundedness on Ḣ−s,p′

(Rn) we
just proved, to obtain for s ∈ [0, 1], u ∈ Hs,p(Rn),

‖T u‖Ḣs,p(Rn).p,s,n,∂Ω ‖u‖Ḣs,p(Rn),

and similarly for T ∗ . Finally, when (Cs,p) is satisfied, Ḣs,p(Rn) is complete, and since Hs,p(Rn) is
dense in Ḣs,p(Rn), the operator extends uniquely on the whole Ḣs,p(Rn). �

Remark 2.6 Everything still hold for more general bi-Lipschitz transformation with constant Jaco-
bian determinants. One may probably want to generalize Proposition 2.5 in a way similar to [DM15,
Lemma 2.1.1].

We can deduce from Proposition 2.5 many interesting corollaries.

Corollary 2.7 For all p ∈ (1,+∞) , for all s ∈ (−1 + 1
p ,

1
p ) , for all u ∈ Ḣs,p(Rn) ,

‖1Ωu‖Ḣs,p(Rn) .s,p,n,∂Ω ‖u‖Ḣs,p(Rn)

The same result still holds with H instead of Ḣ .

Proof. — It suffices to write 1Ωu = T−1
φ 1Rn

+
Tφu then to apply Propositions 2.5 and 1.4. �

Corollary 2.8 Let p ∈ (1,+∞) , s ∈ [0, 1] . If one of the two following conditions is satisfied

(i) (Cs,p) and u ∈ Ḣs,p(Ω) ,

(ii) s > n/p and u ∈ Hs,p(Ω) ,

we have Tφu ∈ Ḣs,p(Rn
+) with the estimate

‖Tφu‖Ḣs,p(Rn
+) .p,s,n,∂Ω ‖u‖Ḣs,p(Ω) .

In particular, Tφ : Ḣs,p(Ω) −→ Ḣs,p(Rn
+) is an isomorphism of Banach spaces whenever (Cs,p) is

satisfied. The result still holds if we replace (Ω,Rn
+, Tφ) by (Rn

+,Ω, T
−1
φ ) .

Proof. — Let u ∈ Hs,p(Ω), then Tφu = [TφEu]|Rn
+

∈ Hs,p(Rn
+) ⊂ Ḣs,p(Rn

+), where E is Stein’s

universal extension operator. Therefore by the definition of function spaces by restriction and
Propositions 2.5 and 2.3, we have successively

‖Tφu‖Ḣs,p(Rn
+) 6 ‖TφEu‖Ḣs,p(Rn) .s,p,n,∂Ω ‖Eu‖Ḣs,p(Rn) .s,p,n,∂Ω ‖u‖Ḣs,p(Ω).

When (Cs,p) is satisfied, Ḣs,p(Rn
+) is complete, and since S0(Ω) ⊂ Hs,p(Ω) is dense in Ḣs,p(Ω), the

operator extends uniquely on the whole Ḣs,p(Ω). �
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Corollary 2.9 Let p ∈ (1,+∞) , s ∈ (−1 + 1/p, 1] . There exists an extension operator E , such
that if one of the two following conditions is satisfied

(i) (Cs,p) and u ∈ Ḣs,p(Rn) ,

(ii) s > n/p and u ∈ Hs,p(Rn) ,

we have

Eu|Ω
= u,

with the estimate

‖Eu‖Ḣs,p(Rn) .p,s,n,∂Ω ‖u‖Ḣs,p(Ω) .

In particular, E : Ḣs,p(Ω) −→ Ḣs,p(Rn) extends uniquely as a bounded linear operator whenever
(Cs,p) is satisfied.

Proof. — We introduce the extension operator on the half space by even reflection, for any measur-
able function u : Rn

+ −→ C , and for almost every (x′, xn) ∈ Rn−1 × R ,

Ẽu(x′, xn) :=

{

u(x′, xn) , if (x′, xn) ∈ Rn−1 × (0,+∞),

u(x′,−xn) , if (x′, xn) ∈ Rn−1 × (−∞, 0).

The operator Ẽ is known to have the desired properties when Ω = Rn
+ , see e.g. [Gau22, Proposi-

tion 2.16]. It suffices to set

E := T−1
φ ẼTφ.

The boundedness properties follows from Propositions 2.5 and 1.4 when s ∈ (−1 + 1/p, 1/p). When
s > 0, it suffices to apply Corollary 2.8. �

Proposition 2.10 Let p ∈ (1,+∞) , k ∈ J1,+∞J, s > k − 1 + 1
p , for all u ∈ Hs,p(Ω) ,

‖∇ku‖Ḣs−k,p(Ω) ∼s,k,p,n,∂Ω ‖u‖Ḣs,p(Ω).

In particular, ‖∇k·‖Ḣs−k,p(Ω) is an equivalent norm on Ḣs,p(Ω) , whenever (Cs−k,p) is satisfied.

Proof. — For all k ∈ J1,+∞J , p ∈ (1,+∞), s ∈ R , u ∈ Ḣs,p(Ω), the estimate

‖∇ku‖Ḣs−k,p(Ω) .s,k,p,n ‖u‖Ḣs,p(Ω)

always holds by the definition of function spaces by restriction. Therefore, it suffices to prove the
reverse inequality.

First, we assume s ∈ (1/p, 1]. Let u ∈ Hs,p(Ω). In this case, by Corollary 2.9 and the definition
of function spaces by restriction,

‖u‖Ḣs,p(Ω) 6 ‖Eu‖Ḣs,p(Rn) .s,p,n ‖∇Eu‖Ḣs−1,p(Rn) .s,p,n,∂Ω ‖∇u‖Ḣs−1,p(Ω).

Now, if s > 1, one obtains in a similar way from Proposition 2.3,

‖u‖Ḣs,p(Ω) 6 ‖Eu‖Ḣs,p(Rn) .s,p,n ‖∇Eu‖Ḣs−1,p(Rn) .s,p,n,∂Ω ‖∇u‖Ḣs−1,p(Ω). (2.16)

This yields the result when s > k − 1 + 1/p , and k = 1.
We mention that the estimate (2.16) is indeed legal, because for k ∈ J1, nK , there is a linear

operator Tk which has exactly the same boundedness properties as E , and which satisfies the
commutation property ∂xk

E = E [∂xk
]+Tk[∂xn ] , see for instance the argument in the proof of [JK95,

Proposition 2.18].
Now, for s > 2− 1 + 1/p , k = 2, by the previous step for k = 1, we have

‖u‖Ḣs,p(Ω) .s,p,n,∂Ω ‖∇u‖Ḣs−1,p(Ω).

Since s− 1 > 1− 1 + 1/p , if s > 1 one may use again Stein’s extension operator to obtain

‖u‖Ḣs,p(Ω) .s,p,n,∂Ω ‖∇u‖Ḣs−1,p(Ω) .s,p,n,∂Ω ‖∇E∇u‖Ḣs−2,p(Rn) .s,p,n,∂Ω ‖∇
2u‖Ḣs−2,p(Ω).
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Otherwise for s− 1 ∈ (1/p, 1], one uses the extension operator given by Corollary 2.9.
For k > 2, one obtains the result by induction, reproducing the steps above. �

Proposition 2.11 Let pj ∈ (1,+∞) , sj > −1 + 1
pj

, j ∈ {0, 1} , such that (Cs0,p0 ) is satisfied.

Assume that one of the two following conditions is satisfied

(i) s0, s1 6 1 and E = E , given by Corollary 2.9,

(ii) s0, s1 > 0 and E = E , given by Proposition 2.3.

Then for all u ∈ Ḣs0,p0(Ω) ∩ Ḣs1,p1 (Ω) , we have Eu ∈ Ḣsj ,pj (Rn) , j ∈ {0, 1} , with the estimate

‖Eu‖Ḣsj,pj (Rn) .sj ,pj ,n ‖u‖Ḣsj,pj (Ω). (2.17)

Therefore, the following equality of vector spaces holds with equivalence of norms

Ḣs0,p0(Ω) ∩ Ḣs1,p1(Ω) = [Ḣs0,p0 ∩ Ḣs1,p1 ](Ω).

In particular, Ḣs0,p0(Ω) ∩ Ḣs1,p1 (Ω) is a Banach space which admits S0(Ω) as a dense subspace.

Proof. — Let pj ∈ (1,+∞), sj > −1 + 1/pj , such that (Cs0,p0). We proceed as in [Gau22, Proposi-
tion 2.18] for Ω = Rn

+ , [Ḣs0,p0 ∩ Ḣs1,p1 ](Ω) is complete and admits S0(Ω) as a dense subspace and
the following continuous embedding also holds by construction,

[Ḣs0,p0 ∩ Ḣs1,p1 ](Ω) →֒ Ḣs0,p0 (Ω) ∩ Ḣs1,p1 (Ω).

One may expect to reproduce the proof of [Gau22, Proposition 2.18], which is only possible when
E = E. Indeed, this is not possible for E = E , since the aforementioned proof use the fact that one
can take derivatives a finite amount of time to fall in a complete space. When p1 is large enough
[0, n/p1) is of size less than one, while (−1+1/p1, n/p1)∩(−1+1/p1, 1] always contains a translation
of the interval [0, 1].

We let E = E and then we get back on the on the use of the operator ΞΩ , as introduced in
(2.14). We consider u ∈ Ḣs0,p0(Ω) ∩ Ḣs1,p1(Ω), and let U ∈ Ḣs1,p1 (Rn) such that U|Ω

= u . We

recall that we have Eu ∈ Ḣs0,p0(Rn) ⊂ S′
h(Rn) since (Cs0,p0) is satisfied. One also has

(

∆̇kEu
)

k∈Z
=

(

∆̇kE [1ΩU ]
)

k∈Z
= ΞΩ[(∆̇kU)k∈Z] ∈ Lp1 (Rn, ℓ2

s1
(Z)).

Therefore, by Lemma 1.5, since Eu ∈ S′
h(Rn),

‖Eu‖Ḣs1,p1 (Rn) ∼p1,s1,n ‖
(

∆̇kEu
)

k∈Z
‖Lp1 (Rn,ℓ2

s1
(Z))

∼p1,s1,n ‖ΞΩ[(∆̇kU)k∈Z]‖Lp1 (Rn,ℓ2
s1

(Z))

.p1,s1,n,∂Ω ‖U‖Ḣs1,p1 (Rn).

As in the proof of Proposition 2.3, since U is an arbitrary extension of u in Ḣs1,p1 (Rn), taking the
infimum on all such U yields

‖Eu‖Ḣs1,p1 (Rn) .p1,s1,n,∂Ω ‖u‖Ḣs1,p1 (Ω).

Thus for u ∈ Ḣs0,p0(Ω) ∩ Ḣs1,p1(Ω), and by the definition of restriction spaces,

‖u‖[Ḣs0,p0 ∩Ḣs1,p1 ](Ω) 6 ‖Eu‖Ḣs0,p0 (Rn) + ‖Eu‖Ḣs1,p1 (Rn) .
p0,p1,n
s0,s1,∂Ω ‖u‖Ḣs0,p0 (Ω) + ‖u‖Ḣs1,p1 (Ω).

This yields the result. �

From now on, everything has been set up so that the most part of the remaining proofs in [Gau22,
Section 2] could be reproduced verbatim (sometimes up to the appropriate technical modifications).

Now, we want to work with homogeneous Sobolev spaces whose elements are supported in Ω.

Proposition 2.12 Let pj ∈ (1,+∞) , sj > −1 + 1
pj

, j ∈ {0, 1} , such that (Cs0,p0 ) is satisfied.

Then,

(i) if s0, s1 6 1 , there exists a linear operator P0 = P0 ,
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(ii) if s0, s1 > 0 , there exists a linear operator P0 = P0 ,

such that for all u ∈ Ḣs0,p0(Rn)∩Ḣs1,p1(Rn) , we have P0u ∈ Ḣ
sj ,pj

0 (Ω) , j ∈ {0, 1} , with the estimate

‖P0u‖Ḣsj,pj (Rn) .sj ,pj ,n,∂Ω ‖u‖Ḣsj,pj (Rn).

Proof. — We notice that Ω
c

is also a special Lipschitz domain. If E is an extension operator for Ω
provided by Proposition 2.11, we denote by E− the extension operator for Ω

c
, and we set for all

u ∈ Ḣs0,p0(Rn) ∩ Ḣs1,p1 (Rn)

P0u := u− E
−[1Ω

cu].

In this case, the boundedness properties follow from Proposition 2.11. �

The next proposition admits a proof similar to the one of [Gau22, Propositions 2.24 & 2.25].
Indeed, all the appropriate tools are available, thanks to Propositions 2.2 and 2.12.

Proposition 2.13 Let s, s0, s1 ∈ R , p ∈ (1,+∞) , then the space C∞
c (Ω) is dense in

(i) Ḣs,p
0 (Ω) , whenever s ∈ (−n/p′, n/p) ;

(ii) Ḣs0,p
0 (Ω) ∩ Ḣs1,p

0 (Ω) , if s0, s1 > 0 , and (Cs0,p) is satisfied.

The next corollary is fundamental for a proper theory of Sobolev spaces involving boundary
values. This is a direct combination of Proposition 2.13 and Corollary 2.7.

Corollary 2.14 For all p ∈ (1,+∞) , s ∈ (−1 + 1
p ,

1
p ) ,

Ḣs,p
0 (Ω) = Ḣs,p(Ω).

In particular, C∞
c (Ω) is dense in Ḣs,p(Ω) for the same range of indices.

Proposition 2.15 Let p ∈ (1,+∞) , s ∈ (− n
p′ ,

n
p ) , we have

(Ḣs,p(Ω))′ = Ḣ−s,p′

0 (Ω) and (Ḣs,p
0 (Ω))′ = Ḣ−s,p′

(Ω).

Proof. — It suffices to reproduce the proof of [Gau22, Proposition 2.27], replacing R
n
+ by Ω. �

Corollary 2.16 Let p ∈ (1,+∞) , −n/p′ < s0 < s1 < n/p . The space C∞
c (Ω) is dense in

Ḣs0,p
0 (Ω) ∩ Ḣs1,p

0 (Ω) .

Proof. — It suffices to reproduce the proof of [Gau22, Corollary 2.28], replacing R
n
+ by Ω. �

Proposition 2.17 Let pj ∈ (1,+∞) , sj ∈ (−n/p′
j, n/pj) , for j ∈ {0, 1} and for θ ∈ (0, 1) we set,

(

s,
1

p

)

:= (1− θ)

(

s0,
1

p0

)

+ θ

(

s1,
1

p1

)

.

We assume that one of the two following condition is satisfied

(i) sj > 0 , for j ∈ {0, 1} ;

(ii) sj ∈ (−1 + 1/pj, 1] , j ∈ {0, 1} .

Then for h ∈ {Ḣ, Ḣ0} ,

[hs0,p0(Ω), hs1,p1(Ω)]θ = hs,p(Ω) ,

[h−s0,p′
0 (Ω), h−s1,p′

1(Ω)]θ = h−s,p′

(Ω).

Proof. — We prove the first interpolation equality. It suffices to assert that {ḣs0,p0 (Ω), ḣs1,p1 (Ω)} is
a retraction of {Ḣs0,p0 (Rn), Ḣs1,p1(Rn)} , thanks to [BL76, Theorem 6.4.2]. Indeed, both retractions
are given by

E : Ḣsj ,pj (Ω) −→ Ḣsj ,pj (Rn) and RΩ : Ḣsj ,pj (Rn) −→ Ḣsj ,pj (Ω),

ι : Ḣ
sj ,pj

0 (Ω) −→ Ḣsj ,pj (Rn) and P0 : Ḣsj ,pj (Rn) −→ Ḣ
sj ,pj

0 (Ω).
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where E and P0 are given by Propositions 2.11 and 2.12, respectively. RΩ stands for the restriction
operator, and ι for the canonical embedding.

By construction, Ḣs0,p0 (Ω)∩ Ḣs1,p1(Ω) is dense in Ḣsj ,pj (Ω), j ∈ {0, 1} , since it contains S0(Ω).
Corollary 2.16 gives the density of Ḣs0,p0

0 (Ω)∩ Ḣs1,p1

0 (Ω) in Ḣ
sj ,pj

0 (Ω), j ∈ {0, 1} . Since all involved
spaces are reflexive, one deduces the second interpolation identity by duality, see [BL76, Corol-
lary 4.5.2]. �

2.3.2 Homogeneous Besov spaces

Proposition 2.18 For all p ∈ (1,+∞) , q ∈ [1,+∞] , for all s ∈ (−1+ 1
p ,

1
p ) , for all u ∈ Ḃs

p,q(Rn) ,

‖1Ωu‖Ḃs
p,q(Rn) .s,p,n,∂Ω ‖u‖Ḃs

p,q(Rn)

The same results still hold with B instead of Ḃ .

Proof. — It suffices to apply real interpolation given by Proposition 1.3 to Corollary 2.7. �

Corollary 2.19 For all p ∈ (1,+∞) , q ∈ [1,+∞] , s ∈ (−1 + 1
p ,

1
p ) ,

Ḃs
p,q,0(Ω) = Ḃs

p,q(Ω).

In particular, if q < +∞ , the space C∞
c (Ω) is dense in Ḃs

p,q(Ω) for the same range of indices.

Proof. — The equality of function spaces is straightforward from Proposition 2.18.
We only prove that C∞

c (Ω) is dense in Ḃs
p,q(Ω). We use an interpolation theoretical argument.

By the same equality for homogeneous Sobolev spaces, Corollary 2.14, and the elementary in-
terpolation embeddings (2.1) and (2.2), we obtain the following equality of function spaces with
equivalence of norms,

(Ḣs0,p
0 (Ω), Ḣs1,p

0 (Ω)) s−s0
s1−s0

,q
= Ḃs

p,q,0(Ω) = Ḃs
p,q(Ω),

with p ∈ (1,+∞), −1 + 1/p < s0 < s < s1 < 1/p , q ∈ [1,+∞] . By [BL76, Theorem 3.4.2], when
q ∈ [1,+∞), we have the canonical dense embedding

Ḣs0,p
0 (Ω) ∩ Ḣs1,p

0 (Ω) →֒ Ḃs
p,q(Ω).

But C∞
c (Ω) is known to be dense in Ḣs0,p

0 (Ω) ∩ Ḣs1,p
0 (Ω) by Corollary 2.16. �

During the proof of the last result, we have shown our first real interpolation identity. In fact it
can be improved. In order to prove general real interpolation statements, we want to improve the
boundedness of extension and projection operators up to the scale of Besov spaces.

Proposition 2.20 Let p ∈ (1,+∞) , q ∈ [1,+∞] , s > −1 + 1
p . Let us consider the extension

operator E (resp. P0 ) as in Proposition 2.11 (resp. Proposition 2.12). We assume moreover that

• s > 0 , if E = E (resp. P0 = P0 );

• s < 1 , if E = E (resp. P0 = P0 ).

If one of the two following assertion is satisfied

(i) s > 0 and u ∈ Bs
p,q(Ω) (resp. u ∈ Bs

p,q(Rn)) ;

(ii) s ∈ (−1 + 1
p , 0] and u ∈ Ḃs

p,q(Ω) (resp. u ∈ Ḃs
p,q(Rn)).

Then Eu ∈ Ḃs
p,q(Rn) , (resp. P0u ∈ Ḃs

p,q,0(Ω)) and we have the estimate

‖Eu‖Ḃs
p,q(Rn) .s,p,n,∂Ω ‖u‖Ḃs

p,q(Ω). (resp. ‖P0u‖Ḃs
p,q(Rn) .s,p,n,∂Ω ‖u‖Ḃs

p,q(Rn) .)

In particular, E (resp. P0 ) is a bounded linear operator from Ḃs
p,q(Ω) to Ḃs

p,q(Rn) (resp. from

Ḃs
p,q(Rn) to Ḃs

p,q,0(Ω)) whenever (Cs,p,q) is satisfied.
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Proof. — One just has to reproduce the proof of [Gau22, Corollary 2.30]. �

Proposition 2.21 Let p ∈ (1,+∞) , q ∈ [1,+∞) , s > −1+1/p , such that (Cs,p,q) is satisfied. The
space C∞

c (Ω) is dense in Ḃs
p,q,0(Ω) .

Proof. — For s ∈ (−1 + 1/p, 1/p), the result is proved in Corollary 2.19. Now assume s > 0.
Let u ∈ Ḃs

p,q,0(Ω) ⊂ Ḃs
p,q(Rn), then for (uk)k∈N a sequence in Bs

p,q(Rn) which converges to u in

Ḃs
p,q(Rn). By Proposition 2.20, P0uk ∈ Bs

p,q,0(Ω) and we have

‖u− P0uk‖Ḃs
p,q,0(Ω) .s,p,q,∂Ω ‖u− uk‖Ḃs

p,q(Rn) −−−−−→
k→+∞

0.

The density of C∞
c (Ω) in Bs

p,q,0(Ω) yields the result. �

Proposition 2.22 Let (p0, p1, p, q, q0, q1) ∈ (1,+∞)3× [1,+∞]3 , s0, s1 ∈ R , such that s0 < s1 , let
(h, b) ∈ {(H,B), (H0,B·,·,0)} , and set for θ ∈ (0, 1) ,

(

s,
1

pθ
,

1

qθ

)

:= (1− θ)

(

s0,
1

p0
,

1

q0

)

+ θ

(

s1,
1

p1
,

1

q1

)

.

If either one of following assertions is satisfied,

(i) sj ∈ (−1 + 1
pj
, 1] , j ∈ {0, 1} ;

(ii) sj > 0 , j ∈ {0, 1} ;

If p0 = p1 = p and (Cs,p,q) is satisfied, the following equality is true with equivalence of norms

(ḣs0,p(Ω), ḣs1,p(Ω))θ,q = ḃs
p,q(Ω). (2.18)

If (Csj ,pj ,qj ) is true for j ∈ {0, 1} , with sj < 1 in case (i), sj > 0 in case (ii), then also is (Cs,pθ,qθ
)

and

[ḃs0
p0,q0

(Ω), ḃs1
p1,q1

(Ω)]θ = ḃs
pθ,qθ

(Ω). (2.19)

Proof. — The proof is verbatim the one of [Gau22, Proposition 2.33], even if the statement seems
quite confusing due to additional conditions, due to the use of two different extension operators. We
propose to reassure the reader by giving the proof anyway.

Step 1: First, we assume (Csj ,pj ,qj ) in the case of Besov space, (Csj ,pj ) in the case of Sobolev
spaces j ∈ {0, 1} . We have retractions given by

E : Ḣsj ,pj (Ω) −→ Ḣsj ,pj (Rn) and RΩ : Ḣsj ,pj (Rn) −→ Ḣsj ,pj (Ω),

Ḃsj
pj ,qj

(Ω) −→ Ḃsj
pj ,qj

(Rn) Ḃsj
pj ,qj

(Rn) −→ Ḃsj
pj ,qj

(Ω),

ι : Ḣ
sj ,pj

0 (Ω) −→ Ḣsj ,pj (Rn) and P0 : Ḣsj ,pj (Rn) −→ Ḣ
sj ,pj

0 (Ω),

Ḃ
sj

pj ,qj ,0(Ω) −→ Ḃsj
pj ,qj

(Rn) Ḃsj
pj ,qj

(Rn) −→ Ḃ
sj

pj ,qj ,0(Ω).

where E and P0 are given by Propositions 2.11, 2.12 and 2.20. RΩ stands for the restriction
operator, and ι for the canonical embedding. In particular, the interpolation identity (2.19) holds.

Step 2: The interpolation identity (2.18) for (h, b) = (H,B) when q < +∞ .
Thanks to (2.1) in Lemma 2.1, we have continuous embedding,

Ḃs
p,q(Ω) →֒ (Ḣs0,p(Ω), Ḣs1,p(Ω))θ,q.

Let us prove the reverse embedding,

Ḃs
p,q(Ω) ←֓ (Ḣs0,p(Ω), Ḣs1,p(Ω))θ,q.

Without loss of generality, we can assume s1 > n
p . Let f ∈ S0(Ω) ⊂ Ḃs

p,q(Ω), if follows that

f ∈ (Ḣs0,p(Ω), Ḣs1,p(Ω))θ,q ⊂ Ḣs0,p(Ω) + Ḣs1,p(Ω). Thus, for all (a, b) ∈ Ḣs0,p(Ω) × Ḣs1,p(Ω) such
that f = a+ b , we have,

b = f − a ∈ (S0(Ω) + Ḣs0,p(Ω)) ∩ Ḣs1,p(Ω).
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In particular, we have a ∈ Ḣs0,p(Ω) and b ∈ Ḣs0,p(Ω) ∩ Ḣs1,p(Ω). Hence, for F := Ea + Eb , we
have F|Ω

= f , Ea ∈ Ḣs0,p(Rn) and Eb ∈ Ḣs0,p(Rn) ∩ Ḣs1,p(Rn), with the estimates, given by
Proposition 2.11,

‖Ea‖Ḣs0,p(Rn) .s0,∂Ω,p,n ‖a‖Ḣs0,p(Ω) and ‖Eb‖Ḣs1,p(Rn) .s1,∂Ω,p,n ‖b‖Ḣs1,p(Ω).

Then, one may bound the K -functional of F , for t > 0,

K(t, F, Ḣs0,p(Rn), Ḣs1,p(Rn)) 6 ‖Ea‖Ḣs0,p(Rn) + t‖Eb‖Ḣs1,p(Rn) .sj ,p,n ‖a‖Ḣs0,p(Ω) + t‖b‖Ḣs1,p(Ω)

Taking the infimum over all such functions a and b , we obtain

K(t, F, Ḣs0,p(Rn), Ḣs1,p(Rn)) .sj ,p,n K(t, f, Ḣs0,p(Ω), Ḣs1,p(Ω)),

from which we obtain, after multiplying by t−θ , taking the Lq
∗ -norm with respect to t , and applying

Proposition 1.3,

‖f‖Ḃs
p,q(Ω) 6 ‖F‖Ḃs

p,q(Rn) .s,p,n ‖f‖(Ḣs0,p(Ω),Ḣs1,p(Ω))θ,q
.

Finally, thanks to the first embedding (2.1), we have

‖f‖Ḃs
p,q(Ω) ∼p,s,n,∂Ω ‖f‖(Ḣs0,p(Ω),Ḣs1,p(Ω))θ,q

, ∀f ∈ S0(Ω).

Since q < +∞ , we can conclude by density of S0(Ω) in both Ḃs
p,q(Ω) and in the interpolation

space (Ḣs0,p(Ω), Ḣs1,p(Ω))θ,q . Density argument for the later one is carried over by Proposition 2.11
and [BL76, Theorem 3.4.2].

Step 3: The interpolation identity (2.18) for (h, b) = (H0,B0) when q < +∞ .
Thanks the elementary embedding (2.2) in Lemma 2.1, we have continuous embedding,

(Ḣs0,p
0 (Ω), Ḣs1,p

0 (Ω))θ,q →֒ Ḃs
p,q,0(Ω).

We are going to prove the reverse embedding,

(Ḣs0,p
0 (Ω), Ḣs1,p

0 (Ω))θ,q ←֓ Ḃs
p,q,0(Ω).

Again, without loss of generality we can assume s1 > n
p , otherwise one can go back to Step 1.

Let us consider u ∈ C∞
c (Ω), then u belongs to Ḣs0,p(Rn) + Ḣs1,p(Rn). In particular for (a, b) ∈

Ḣs0,p(Rn)× Ḣs1,p(Rn), such that u = a+ b we have

b = u− a ∈ (C∞
c (Ω) + Ḣs0,p(Rn)) ∩ Ḣs1,p(Rn).

in particular we have a ∈ Ḣs0,p(Rn) and b ∈ Ḣs0,p(Rn) ∩ Ḣs1,p(Rn).
Consequently, we have u = P0u = P0a+P0b , with P0a ∈ Ḣs0,p

0 (Ω) and P0b ∈ Ḣs0,p
0 (Ω)∩Ḣs1,p

0 (Ω),
with the estimates

‖P0a‖Ḣ
s0,p
0 (Ω) .s0,p,n,∂Ω ‖a‖Ḣs0,p(Rn) and ‖P0b‖Ḣ

s1,p
0 (Ω) .s1,p,n,∂Ω ‖b‖Ḣs1,p(Rn),

thanks to Proposition 2.12. Thus, one may follow the lines of Step 2, to obtain for all u ∈ C∞
c (Ω),

‖u‖Ḃs
p,q,0(Ω) ∼s,p,n,∂Ω ‖u‖(Ḣ

s0,p

0 (Ω),Ḣ
s1,p

0 (Ω))θ,q
.

Again, one can conclude via density arguments since q < +∞ , and C∞
c (Ω) is dense in Ḃs

p,q,0(Ω)
thanks to Proposition 2.21.

Step 4: The interpolation identity (2.18) when q = +∞ .
In the case of (h, b) = (H,B), the reiteration theorem [BL76, Theorem 3.5.3] in combination

with Step 1 and Step 2 yields the identity.
Similarly for the case of (h, b) = (H0,B0) with Step 1 and Step 3. �

Lemma 2.23 Let pj ∈ (1,+∞) , qj ∈ [1,+∞] , sj > −1 + 1
pj

, j ∈ {0, 1} , such that (Cs0,p0,q0) is

satisfied and consider the extension operator E given by Proposition 2.20.
Then for all u ∈ Ḃs0

p0,q0
(Ω) ∩ Ḃs1

p1,q1
(Ω) , we have Eu ∈ Ḃ

sj
pj ,qj (Rn) , j ∈ {0, 1} , with the estimate

‖Eu‖
Ḃ

sj
pj,qj

(Rn)
.sj ,pj ,n,∂Ω ‖u‖Ḃ

sj
pj,qj

(Ω)
.

The same result holds replacing (E, Ḃ
sj
pj ,qj (Ω), Ḃ

sj
pj ,qj (Rn)) by (P0, Ḃ

sj
pj ,qj (Rn), Ḃ

sj

pj ,qj ,0(Ω)) , where P0
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is the projection operator given in Proposition 2.20.

Proof. — It suffices to apply real interpolation to prove the boundedness

ΞΩ : ℓq
s(Z,Lp(Rn)) −→ ℓq

s(Z,Lp(Rn))

from the proof of Proposition 2.3, where s > 0, p ∈ (1,+∞), q ∈ [1,+∞] .
Finally, the result follows reproducing the arguments in the proofs of Propositions 2.3 and 2.11.�

Proposition 2.24 Let pj ∈ (1,+∞) , qj ∈ [1,+∞] , j ∈ {0, 1} , −1 + 1
p < s0 < s1 , such that

(Cs0,p0,q0 ) is satisfied. We assume morover that either s0 > 0 , or s1 < 1 . Then the following
equality of vector spaces holds with equivalence of norms

Ḃs0
p0,q0

(Ω) ∩ Ḃs1
p1,q1

(Ω) = [Ḃs0
p0,q0

∩ Ḃs1
p1,q1

](Ω).

In particular, Ḃs0
p0,q0

(Ω) ∩ Ḃs1
p1,q1

(Ω) is a Banach space, and it admits S0(Ω) as a dense subspace
whenever qj < +∞ , j ∈ {0, 1} .

Similarly, the following equality with equivalence of norms holds for all s > 0 , q ∈ [1,+∞] ,

Lp(Ω) ∩ Ḃs
p,q(Ω) = Bs

p,q(Ω).

Proof. — This is a direct consequence of Lemma 2.23. �

Proposition 2.25 Let pj ∈ (1,+∞) , qj ∈ [1,+∞] , j ∈ {0, 1} , such that (Cs0,p0,q0 ) is satisfied.
For all u ∈ Ḃs0

p0,q0
(Ω) ∩ Ḃs1

p1,q1
(Ω) ,

‖∇mju‖
Ḃ

sj−mj
pj,qj

(Ω)
∼sj ,mj ,pj ,n ‖u‖Ḃ

sj
pj,qj

(Ω)
.

Proof. — The proof follows the lines of the proof of Proposition 2.10. �

Proposition 2.26 Let (p, q, q0, q1) ∈ (1,+∞)× [1,+∞]3 , s0, s1 ∈ R , such that s0 < s1 .
Let b ∈ {B,B·,·,0} , and set for θ ∈ (0, 1) ,

s := (1− θ)s0 + θs1.

Assume qj < +∞ if (Csj ,pj ,qj ) is not true for j ∈ {0, 1} , and that one of following assertions
is satisfied,

(i) sj ∈ (−1 + 1
pj
, 1) , j ∈ {0, 1} ;

(ii) sj > 0 , j ∈ {0, 1} ;

If (Cs,p,q) is satisfied, the following equality is true with equivalence of norms

(ḃs0
p,q0

(Ω), ḃs1
p,q1

(Ω))θ,q = ḃs
p,q(Ω). (2.20)

Proof. — The proof follows the lines of the proof of Proposition 2.22. �

Finally, we claim the density result for Ḃs
p,∞ spaces, whose proof is an exact copy of the same

statement [Gau22, Corollary 2.35]. The same goes for the duality result that follows, see [Gau22,
Proposition 2.40].

Proposition 2.27 Let p ∈ (1,+∞) , s > −1 + 1/p , such that (Cs,p,∞) is satisfied.

• The space C∞
c (Ω) is weak∗ dense in Ḃs

p,∞,0(Ω) .

• The space S0(Ω) is weak∗ dense in Ḃs
p,∞(Ω) .

Proposition 2.28 Let p ∈ (1,+∞) , q ∈ (1,+∞] , s > −1 + 1
p , if (Cs,p,q) is satisfied then the

following isomorphisms hold

(Ḃ−s
p′,q′,0(Ω))′ = Ḃs

p,q(Ω) and (Ḃ−s
p′,q′(Ω))′ = Ḃs

p,q,0(Ω).
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3 The trace theorem

In the previous section, an appropriate construction of homogeneous Sobolev and Besov spaces on
special Lipschitz domains was given with their interpolation properties. Now, we want to make sense
of boundary values in homogeneous function spaces which stand for the main interest of the present
paper.

The first subsection is devoted to the construction of function spaces on the boundary.
The second one concerns the transference of properties on the flat upper half-space to the bent

one via the global change of coordinates. However, we want to reach the sharp range of regularity
(1/p, 1 + 1/p) for the trace result. The main issue will occur when s ∈ [1, 1 + 1/p), since we
do not have more than one full gradient under the action of the global change of coordinate. To
circumvent this issue, we introduce an anisotropic trace result inherited from the recent work of the
author [Gau23b, Theorem 4.7]. This result is obtained from the Ḣs−1,p(Lp)-maximal regularity for

the Poisson semigroup (e−t(−∆′)1/2

)t>0 on Rn−1 .
The last section is devoted to the statement of the main theorem, and several straightforward

consequences.

3.1 Function spaces on the boundary

To define the trace as in the case of inhomogeneous function spaces, we have to define first (homoge-
neous) Besov spaces on the boundary ∂Ω. To do so, since we have Ω =

{

(x′, xn) ∈ Rn−1 × R
∣

∣ xn > φ(x′)
}

,
where φ : R

n−1 −→ R is uniformly Lipschitz, we recall that the surface measure on the boundary
∂Ω =

{

(x′, φ(x′)), x′ ∈ Rn−1
}

⊂ Rn is defined as

σ(A) :=

∫

Rn−1

1A(x′, φ(x′))
√

1 + |∇′φ(x′)|2 dx′,

where A is any Lebesgue-measurable set of ∂Ω.
We also recall that σ is the unique Borel measure on ∂Ω so that we have the integration by

parts formula
∫

Ω

∂xk
u(x)v(x) dx = −

∫

Ω

u(x)∂xk
v(x) dx +

∫

∂Ω

u(x)v(x)νk(x) dσx, k ∈ J1, nK, (3.1)

provided u, v ∈ C0,1
c (Rn), the space of complex-valued compactly supported Lipschitz functions.

And in (3.1), νj stands for the j -th component of the outward unit normal of Ω, defined almost
everywhere on ∂Ω by

ν :=
1

√

|∇′φ|2 + 1
(∇′φ,−1).

We introduce the pushforward map from ∂Ω to Rn−1 for any measurable function u : ∂Ω −→ C ,

Sφu(x′) := u(x′, φ(x′)), x′ ∈ R
n−1. (3.2)

We also have the pullback map defined for any measurable function v : R
n−1 −→ C ,

S−1
φ v(y) := v(y′), y ∈ ∂Ω. (3.3)

To construct the homogeneous function spaces on the boundary, we are going to follow the ideas
given in [DM15, Chapter 2, Section 2.2] and [Din96, Section 2].

Definition 3.1 For p ∈ [1,+∞), s ∈ (0, 1), for any measurable function f on ∂Ω, we define the
following quantities

‖f‖p
Lp(∂Ω) :=

∫

∂Ω

|f(x)|p dσx, ‖f‖p

Ḃs
p,p(∂Ω)

:=

∫

∂Ω

∫

∂Ω

|f(x)− f(y)|p

|x− y|ps+n−1
dσxdσy ,

with the usual modification when p = +∞ . We set, assuming p 6= 1,+∞ for the last case,

• Lp(∂Ω) := { u : ∂Ω −→ C meas. | ‖u‖Lp(∂Ω) < +∞} ,

• Ḃs
p,p(∂Ω) := { u ∈ L1

loc(∂Ω) |Sφu ∈ S′
h(Rn−1) & ‖u‖Ḃs

p,p(∂Ω) < +∞}
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• Ḣ1,p(∂Ω) := { u ∈ L1
loc(∂Ω) |Sφu ∈ S′

h(Rn−1) & ‖u‖Ḣ1,p(∂Ω) := ‖S−1
φ [∇′Sφu]‖Lp(∂Ω) < +∞} .

The next lemmas justify that these definitions are meaningful.

Lemma 3.2 Let p ∈ [1,+∞] . The map

Sφ : Lp(∂Ω) −→ Lp(Rn−1)

is well defined and a is continuous isomorphism of normed vector spaces. The same result holds with
Lp

loc , instead of Lp , as complete metric spaces.

Proof. — By direct computations, we obtain for all p ∈ [1,+∞] , u ∈ Lp(∂Ω),

‖Sφu‖Lp(Rn−1) 6 ‖u‖Lp(∂Ω) 6 (1 + ‖∇′φ‖2
L∞)

1
2p ‖Sφu‖Lp(Rn−1).

The same goes for S−1
φ .

For the Lp
loc isomorphism property, thanks to the last inequality, it suffices to exhibit two ap-

propriate families of compact subsets.
For a, b ∈ Rn−1 , with aj < bj , j ∈ J1, nK , we define

Q(a,b) :=

n−1
∏

j=1

[aj , bj] and K(a,b) := { (x′, φ(x′)), x′ ∈ Q(a,b) }.

In this case (Q(a,b))a<b (resp. (K(a,b))a<b ) is a family of compact subsets of Rn−1 (resp. ∂Ω), such
that

(Sφ1Q(a,b)
)a<b = (1K(a,b)

)a<b and (S−1
φ 1K(a,b)

)a<b = (1Q(a,b)
)a<b. �

The following corollary is a direct consequence of Lemma 3.2.

Corollary 3.3 Let p ∈ (1,+∞) . For u ∈ Ḣ1,p(∂Ω) , we have Sφu ∈ Ḣ1,p(Rn−1)∩L1
loc

(Rn−1) , with
the estimate

‖u‖Ḣ1,p(∂Ω) ∼s,p,n,∂Ω ‖Sφu‖Ḣ1,p(Rn−1).

Conversely, if v ∈ Ḣ1,p(Rn−1)∩L1
loc

(Rn−1) , then S−1
φ v ∈ Ḣ1,p(∂Ω) with the corresponding estimate.

The idea behind the definition of Besov spaces on the boundary lies in the fact that for all
u ∈ L1

loc(R
n−1) ∩ S′

h(Rn−1), when s ∈ (0, 1), p ∈ [1,+∞),

‖f‖p

Ḃs
p,p(Rn−1)

∼p,s,n

∫

Rn−1

∫

Rn−1

|f(x)− f(y)|p

|x− y|ps+n−1
dxdy, (3.4)

see [BCD11, Theorem 2.36] for a proof. The case p = +∞ is reated via usual modification with
homogeneous Hölder (semi-)norms.

Lemma 3.4 Let p ∈ [1,+∞] , s ∈ (0, 1) . For all u ∈ Ḃs
p,p(∂Ω) , Sφu ∈ Ḃs

p,p(Rn−1) ∩ L1
loc(R

n−1)
with the estimate

‖u‖Ḃs
p,p(∂Ω) ∼s,p,n,∂Ω ‖Sφu‖Ḃs

p,p(Rn−1)

Conversely, for v ∈ Ḃs
p,p(Rn−1)∩L1

loc(R
n−1) , one has S−1

φ v ∈ Ḃs
p,p(∂Ω) with corresponding estimate.

Proof. — For u ∈ L1
loc(∂Ω), if p < +∞ ,

‖u‖p

Ḃs
p,p(∂Ω)

=

∫

∂Ω

∫

∂Ω

|u(x) − u(y)|p

|x− y|ps+n−1
dσxdσy

=

∫

Rn−1

∫

Rn−1

|u(x′, φ(x′))− u(y′, φ(y′))|p

|(x′ − y′, φ(x′)− φ(y′))|ps+n−1

√

|∇′φ(x′)|2 + 1
√

|∇′φ(y′)|2 + 1 dx′dy′

6 [1 + ‖∇′φ‖2
L∞ ]

∫

Rn−1

∫

Rn−1

|Sφu(x′)− Sφu(y′)|p

|x′ − y′|ps+n−1
dx′dy′

.p,s,n,∂Ω ‖Sφu‖
p

Ḃs
p,p(Rn−1)

.
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The last estimate comes from (3.4).
For the reverse estimate, we start with (3.4) then, we obtain

‖Sφu‖
p

Ḃs
p,p(Rn−1)

.p,s,n

∫

Rn−1

∫

Rn−1

|Sφu(x′)− Sφu(y′)|p

|x′ − y′|ps+n−1
dx′dy′

.p,s,n [1 + ‖∇′φ‖2
L∞ ]

(n−1)+ps
2

∫

Rn−1

∫

Rn−1

|u(x′, φ(x′))− u(y′, φ(y′))|p

|(x′ − y′, φ(x′)− φ(y′))|ps+n−1
dx′dy′

.p,s,n,∂Ω

∫

∂Ω

∫

∂Ω

|u(x)− u(y)|p

|x− y|ps+n−1
dσxdσy = ‖u‖p

Ḃs
p,p(∂Ω)

.

The case p = +∞ is similar and left to the reader with

‖w‖Ḃs
∞,∞(∂Ω) = sup

(x,y)∈∂Ω2,
x 6=y.

|w(x) − w(y)|

|x− y|s
. �

Proposition 3.5 Let p ∈ (1,+∞) , s ∈ (0, 1) . The following equality holds with equivalence of
norms

(Lp(∂Ω), Ḣ1,p(∂Ω))s,p = Ḃs
p,p(∂Ω) .

Proof. — Let u ∈ Lp(∂Ω) + Ḣ1,p(∂Ω) ⊂ L1
loc(∂Ω), then for (a, b) ∈ Lp(∂Ω) × Ḣ1,p(∂Ω) such that

u = a+ b , by Corollary 3.3, we have

Sφu = Sφa+ Sφb ∈ Lp(Rn−1) + Ḣ1,p(Rn−1). (3.5)

Therefore, by the definition of the K -functional and Corollary 3.3, we obtain

K(t, Sφu,L
p(Rn−1), Ḣ1,p(Rn−1)) 6 ‖Sφa‖Lp(Rn−1) + t‖Sφb‖Ḣ1,p(Rn−1)

.p,n,∂Ω ‖a‖Lp(∂Ω) + t‖b‖Ḣ1,p(∂Ω).

Looking at the infimum on all such pair (a, b) yields

K(t, Sφu,L
p(Rn−1), Ḣ1,p(Rn−1)) .p,n,∂Ω K(t, u,Lp(∂Ω), Ḣ1,p(∂Ω)).

Now, for the reverse estimate from (3.5), let (A,B) ∈ Lp(Rn−1) × Ḣ1,p(Rn−1), such that on has
Sφu = A+B , since Sφu,A ∈ L1

loc(R
n−1), it follows that

B = Sφu−A ∈ L1
loc(R

n−1) ∩ Ḣ1,p(Rn−1).

Hence, by Corollary 3.3,

u = S−1
φ A+ S−1

φ B ∈ Lp(∂Ω) + Ḣ1,p(∂Ω).

So as before, we obtain,

K(t, u,Lp(∂Ω), Ḣ1,p(∂Ω)) .p,n,∂Ω K(t, Sφu,L
p(Rn−1), Ḣ1,p(Rn−1)).

In the end we have obtained for all u ∈ Lp(∂Ω) + Ḣ1,p(∂Ω) and all t > 0:

K(t, u,Lp(∂Ω), Ḣ1,p(∂Ω)) ∼p,n,∂Ω K(t, Sφu,L
p(Rn−1), Ḣ1,p(Rn−1)). (3.6)

Finally, if one multiplies by (3.6) by t−s , then take its Lq
∗ -norm, thanks to (1.2) and Lemma 3.4 we

obtain

‖u‖(Lp(∂Ω),Ḣ1,p(∂Ω))s,p
∼s,p,n,∂Ω ‖Sφu‖Ḃs

p,p(Rn−1) ∼s,p,n,∂Ω ‖u‖Ḃs
p,p(∂Ω)

which ends the proof. �

Now, we introduce the following definition of homogeneous Besov space on the boundary with
third index q 6= p , consistent with the case q = p .

Definition 3.6 For p ∈ (1,+∞), q ∈ [1,+∞] , s ∈ (0, 1), we define

Ḃs
p,q(∂Ω) := (Lp(∂Ω), Ḣ1,p(∂Ω))s,q.
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The following results are then a direct consequence of the estimate (3.6) and usual results for
homogeneous Sobolev and Besov spaces on Rn−1 .

Corollary 3.7 Let p ∈ (1,+∞) , s ∈ (0, 1) , q ∈ [1,+∞] . For all u ∈ Ḃs
p,q(∂Ω) , Sφu ∈ Ḃs

p,q(Rn−1)∩
L1

loc(R
n−1) with the estimate

‖u‖Ḃs
p,q(∂Ω) ∼s,p,n,∂Ω ‖Sφu‖Ḃs

p,q(Rn−1)

Conversely, for v ∈ Ḃs
p,q(Rn−1)∩L1

loc(Rn−1) , one has S−1
φ v ∈ Ḃs

p,q(∂Ω) with corresponding estimate.

Proposition 3.8 Let p ∈ (1,+∞) , q ∈ [1,+∞] , s ∈ (0, 1) . The following assertions are true.

(i) Ḃs
p,q(∂Ω) is a Banach space whenever (Cs+ 1

p ,p,q) is satisfied.

(ii) If s ∈ (0, n−1
p ) , for 1

r := 1
p −

s
n−1 , if q ∈ [1, r] , we have the continuous embedding

Ḃs
p,q(∂Ω) →֒ Lr(∂Ω).

(iii) When p > n− 1 , we have the continuous embedding

Ḃ
n−1

p

p,1 (∂Ω) →֒ C0
0(∂Ω).

Remark 3.9 One could also check that the intersection space Ḃs0
p0,q0

(∂Ω)∩ Ḃs1
p1,q1

(∂Ω) is complete
whenever (Cs0+ 1

p0
,p0,q0

) is satisfied.

From there, it is straightforward to check that one can recover usual and very well known function
spaces H1,p(∂Ω) = Lp(∂Ω) ∩ Ḣ1,p(∂Ω), Bs

p,q(∂Ω) = Lp(∂Ω) ∩ Ḃs
p,q(∂Ω), s ∈ (0, 1), p ∈ (1,+∞),

q ∈ [1,+∞] .

3.2 Preliminary results for the trace theorem

The strategy of the proof will mainly arise from a flattening procedure of the boundary with
anisotropic estimates as done in [Din96, Lemma 1, Lemma 2]. For the reader’s convenience we
recall, from (2.11) and (2.15), that for any measurable function u : Ω −→ C ,

Tφu(x′, xn) = u(x′, xn + φ(x′)), (x′, xn) ∈ R
n−1 × [0,+∞).

For p ∈ (1,+∞), s ∈ [1, 2], we introduce the function space

Ks,p(Rn
+) := Hs,p(R+,L

p(Rn−1)) ∩Hs−1,p(R+,H
1,p(Rn−1))

with its natural norm. We also introduce the homogeneous semi-norm

‖u‖K̇s,p(Rn
+) := ‖(∂xnu,∇

′u)‖Ḣs−1,p(R+,Lp(Rn−1)).

We notice that K1,p(Rn
+) = H1,p(Rn

+), and ‖·‖K̇1,p(Rn
+) ∼p,n ‖∇·‖Lp(Rn

+) .

During this section, we will need for a brief moment to use Banach valued (anisotropic) homoge-
neous Sobolev spaces for non-negative index and with values in a (reflexive) Lebesgue space. See the
previous work of the author [Gau23b, Section 3.1] for an elementary construction of homogeneous
vector-valued Riesz potential spaces and references therein for a more general review of vector-valued
Sobolev (Bessel potential) spaces and their properties.

For p ∈ (1,+∞), provided 0 6 α < 1/p , we define 1
r := 1

p − α ,

Ḣα,p(R,Lp(Rn−1)) :=
{

u ∈ Lr(R,Lp(Rn−1))
∣

∣ (−∂2
xn

)
α
2 u ∈ Lp(R,Lp(Rn−1)) = Lp(Rn)

}

.

We also define by restriction, in the sense of distributions, the corresponding space on the half line

Ḣα,p(R+,L
p(Rn−1)) := Ḣα,p(R,Lp(Rn−1))|R+

.

This is a Banach space with respect to the quotient norm

‖u‖Ḣα,p(R+,Lp(Rn−1)) := inf
U|R+

=u,

U∈Ḣα,p(R,Lp(Rn−1)).

‖U‖Ḣα,p(R,Lp(Rn−1)).
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Lemma 3.10 Let p ∈ (1,+∞) , α ∈ [0, 1/p) . For all u ∈ Ḣα,p(Rn
+) , we have the estimate

‖u‖Ḣα,p
xn (R+,Lp

x′ (Rn−1)) .p,α,n ‖u‖Ḣα,p(Rn
+).

Proof. — On Rn = Rn−1 × R , the result follows from the boundedness of Riesz transforms. The
case of the half-space follows from the definition of function spaces by restriction. �

Lemma 3.11 For p ∈ (1,+∞) , s ∈ [1, 1 + 1/p) . Then the linear operator

Tφ : Hs,p(Ω) −→ Ks,p(Rn
+)

is well defined and bounded.
Moreover, for all u ∈ Hs,p(Ω) we have the homogeneous estimate

‖Tφu‖K̇s,p(Rn
+) .p,s,n,∂Ω ‖u‖Ḣs,p(Ω). (3.7)

Proof. — For the boundedness of Tφ from Hs,p(Ω) to Ks,p(Rn
+), it suffices to follow the proof

of [Din96, Lemma 2]. One may check the boundedness properties

Tφ : H1,p(Ω) −→ H1,p(R+,L
p(Rn−1))

H2,p(Ω) −→ H2,p(R+,L
p(Rn−1))

which imply by complex interpolation, that

Tφ : Hs,p(Ω) −→ Hs,p(R+,L
p(Rn−1)) (3.8)

is well defined and bounded for all s ∈ [1, 2]. Similarly, from the boundedness

Tφ : H1,p(Ω) −→ Lp(R+,H
1,p(Rn−1))

H2,p(Ω) −→ H1,p(R+,H
1,p(Rn−1)),

for s ∈ [1, 2], we deduce that

Tφ : Hs,p(Ω) −→ Hs−1,p(R+,H
1,p(Rn−1)) (3.9)

is well defined and bounded. Thus, (3.8) and (3.9) yield the boundedness of Tφ . Now, we prove the
estimate (3.7). For u ∈ Hs,p(Ω) ⊂ Ḣs,p(Ω), we have Tφu ∈ K

s,p(Rn
+), and since

∂xk
(Tφu) = Tφ(∂xk

u) + ∂xk
φTφ(∂xnu) , ∂xn(Tφu) = Tφ(∂xnu) , k ∈ J1, n− 1K ,

we obtain,

‖Tφu‖K̇s,p(Rn
+) = ‖(∂xnTφu,∇

′Tφu)‖Ḣs−1,p(R+,Lp(Rn−1))

6 ‖Tφ∂xnu‖Ḣs−1,p(R+,Lp(Rn−1)) + ‖∇′Tφu‖Ḣs−1,p(R+,Lp(Rn−1))

6 (1 + (n− 1)‖∇′φ‖L∞)‖Tφ∇
′u‖Ḣs−1,p(R+,Lp(Rn−1))+‖Tφ∂xnu‖Ḣs−1,p(R+,Lp(Rn−1))

.p,s,n,∂Ω ‖Tφ∇u‖Ḣs−1,p(R+,Lp(Rn−1)).

The estimate (3.7) is then a consequence of Lemma 3.10 and Proposition 2.5

‖Tφu‖K̇s,p(Rn
+) .p,s,n,∂Ω ‖Tφ∇u‖Ḣs−1,p(R+,Lp(Rn−1))

.p,s,n,∂Ω ‖Tφ∇u‖Ḣs−1,p(Rn
+)

.p,s,n,∂Ω ‖∇u‖Ḣs−1,p(Ω)

.p,s,n,∂Ω ‖u‖Ḣs,p(Ω). �

One may notice that, for say all u ∈ H1,p(Ω), we have in B
1−1/p
p,p (∂Rn

+), the equality

[Tφu]|∂Rn
+

= Sφ[u|∂Ω
].

Lemma 3.12 Let p ∈ (1,+∞) , s ∈ [1, 1 + 1/p) . For all u ∈ Hs,p(Ω) , we have

Tφu ∈ C0
0(R+,B

s−1/p
p,p (Rn−1)).
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Proof. — For u ∈ Hs,p(Ω) ⊂ H1,p(Ω), then Tφu ∈ H1,p(Rn
+) ∩ Ks,p(Rn

+), and by [Gau22, Corol-
lary 3.4],

Tφu ∈ C0
0(R+,B

1−1/p
p,p (Rn−1)),

and [Tφu]|∂Rn
+

= Sφ[u|∂Ω
] in B

1−1/p
p,p (Rn−1).

Therefore, if we set v(t, x′) := Tφu(x′, t), t > 0, x′ ∈ Rn−1 , we have

F := ∂tv + (I−∆′)
1
2 v ∈ Hs−1,p(R+,L

p(Rn−1)) ⊂ Lp(R+,L
p(Rn−1)),

and v(0, ·) = [Tφu]|∂Rn
+

= Sφ[u|∂Ω
] ∈ Bs−1/p

p,p (Rn−1) ⊂ B1−1/p
p,p (Rn−1) ⊂ Lp(Rn−1).

By uniqueness of the mild solution, for all t > 0

v(t) = e−t(I−∆′)
1
2 v(0) +

∫ t

0

e−(t−s)(I−∆′)
1
2 F (s) ds.

Therefore, by [Gau23b, Theorem 4.7], since (I − ∆′)
1
2 is invertible on Lp(Rn−1) with its domain

Dp((I−∆′)
1
2 ) = H1,p(Rn−1), we have the following maximal regularity estimate

‖v‖
L∞(R+,B

s−1/p
p,p (Rn−1))

.p,s,n ‖(∂tv, (I−∆′)
1
2 v)‖Ḣs−1,p(R+,Lp(Rn−1)) .p,s,n‖F‖Ḣs−1,p(R+,Lp(Rn−1))

+ ‖v(0)‖
B

s−1/p
p,p (Rn−1)

,

and v ∈ C0
0(R+,B

s−1/p
p,p (Rn−1)). �

Corollary 3.13 Let p ∈ (1,+∞) , s ∈ [1, 1 + 1/p) . For all u ∈ Hs,p(Ω) ,

‖Tφu‖L∞(R+,Ḃ
s−1/p
p,p (Rn−1))

.p,s,n,∂Ω ‖Tφu‖K̇s,p(Rn
+).

Proof. — By Lemma 3.12,

Tφu ∈ C0
0(R+,B

s−1/p
p,p (Rn−1)) ⊂ C0

0(R+, Ḃ
s−1/p
p,p (Rn−1)).

As in the proof of Lemma 3.12, for v(t, x′) := Tφu(x′, t), x′ ∈ Rn−1 and t > 0, we have

f := ∂tv + (−∆′)
1
2 v ∈ Hs−1,p(R+,L

p(Rn−1)) ⊂ Ḣs−1,p(R+,L
p(Rn−1)),

and v(0, ·) = [Tφu]|∂Rn
+

= Sφ[u|∂Ω
] ∈ Bs−1/p

p,p (Rn−1) ⊂ Ḃs−1/p
p,p (Rn−1).

Therefore, by [Gau23b, Theorem 4.7], since the operator (−∆′)
1
2 on Lp(Rn−1) has homogeneous

domain Dp( ˚(−∆′)
1
2
) = Ḣ1,p(Rn−1), we have the following estimate maximal regularity estimate

‖v‖
L∞(R+,Ḃ

s−1/p
p,p (Rn−1))

.p,s,n ‖(∂tv, (−∆′)
1
2 v)‖Ḣs−1,p(R+,Lp(Rn−1)) ∼p,s,n ‖v‖K̇s,p(Rn

+). �

We may need a Besov counterpart of Corollary 2.8 to carryover the trace result, or more generally
to transfer properties from the half-space to Besov spaces on special Lipschitz domains by global
change of coordinates. However, our strategy will be a bit different, so that the result will only used
in the very specific case s = 1

p ,q = 1, but it still has its own interest.

Lemma 3.14 Let p ∈ (1,+∞) , s ∈ (−1 + 1/p, 1) , q ∈ [1,+∞] . If one of the two following
conditions is satisfied

(i) (Cs,p,q) and u ∈ Ḃs
p,q(Ω) ,

(ii) s > n/p and u ∈ Bs
p,q(Ω) ,

we have Tφu ∈ Ḃs
p,q(Rn

+) with the estimate

‖Tφu‖Ḃs
p,q(Rn

+) .p,s,n,∂Ω ‖u‖Ḃs
p,q(Ω) .

In particular, Tφ : Ḃs
p,q(Ω) −→ Ḃs

p,q(Rn
+) is an isomorphism of Banach spaces whenever (Cs,p,q) is

satisfied. The result still holds if we replace (Ω,Rn
+, Tφ) by (Rn

+,Ω, T
−1
φ ) .
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Proof. — For s ∈ (−1 + 1/p, 1/p), the result follows from real interpolation, by Corollary 2.8 and
Proposition 2.22. Therefore, without loss of generality, we can assume s ∈ [1/p, 1). We are going to
proceed via a manual real interpolation scheme. Let u ∈ Bs

p,q(Ω), then we have

u ∈ Lp(Ω) + H1,p(Ω) ⊂ Lp(Ω) + Ḣ1,p(Ω).

Let (a, b) ∈ Lp(Ω)× Ḣ1,p(Ω), such that u = a+ b ,

b = u− a ∈ (Bs
p,q(Ω) + Lp(Ω)) ∩ Ḣ1,p(Ω) ⊂ H1,p(Ω).

We have Tφu ∈ Bs
p,q(Rn

+) ⊂ Ḃs
p,q(Rn

+), and Tφa ∈ Lp(Rn
+), Tφb ∈ H1,p(Rn

+),

Tφu = Tφa+ Tφb ∈ Lp(Rn
+) + H1,p(Rn

+) ⊂ Lp(Rn
+) + Ḣ1,p(Rn

+).

For E, the operator extension from Rn
+ to Rn by reflection given in the proof of Corollary 2.9, we

have ETφu ∈ Bs
p,q(Rn

+), and

ETφu = ETφa+ ETφb ∈ Lp(Rn) + H1,p(Rn) ⊂ Lp(Rn) + Ḣ1,p(Rn).

Now, for t > 0, by definition of the K -functional and homogeneous estimates given by Corollar-
ies 2.8 and 2.9, we obtain

K(t,ETφu,L
p(Rn), Ḣ1,p(Rn)) 6 ‖ETφa‖Lp(Rn) + t‖ETφb‖Ḣ1,p(Rn)

.p,n,∂Ω ‖a‖Lp(Ω) + t‖b‖Ḣ1,p(Ω).

Looking at the infimum over such pairs (a, b) yields for t > 0,

K(t,ETφu,L
p(Rn), Ḣ1,p(Rn)) .p,n,∂Ω K(t, u,Lp(Ω), Ḣ1,p(Ω)).

One multiply by t−s , and take the Lq
∗ -norm, so that as a consequence of Lemma 2.1, Proposition 1.3

and the definition of function spaces by restriction

‖Tφu‖Ḃs
p,q(Rn

+) 6 ‖ETφu‖Ḃs
p,q(Rn) ∼p,s,n ‖ETφu‖(Lp(Rn),Ḣ1,p(Rn))s,q

.p,s,n,∂Ω ‖u‖(Lp(Ω),Ḣ1,p(Ω))s,q

.p,s,n,∂Ω ‖u‖Ḃs
p,q(Ω).

If q < +∞ and (Cs,p,q) is satisfied, the result follows by density argument. For q = +∞ , if (Cs,p,q) is
satisfied, the result follows from real interpolation by the mean of Proposition 2.26 and the reiteration
theorem [BL76, Theorem 3.5.3]. One may reproduce a similar proof for T−1

φ . �

3.3 The trace theorem and related results

Theorem 3.15 Let p ∈ (1,+∞) , q ∈ [1,+∞] , s ∈ (1/p, 1 + 1/p) . The following statements are
true:

(i) for all u ∈ Hs,p(Ω) ,

‖u|∂Ω
‖

Ḃ
s− 1

p
p,p (∂Ω)

.p,s,n,∂Ω ‖u‖Ḣs,p(Ω);

In particular, the trace operator [·]|∂Ω
extends uniquely as a bounded linear operator from

Ḣs,p(Ω) to Ḃ
s− 1

p
p,p (∂Ω) whenever (Cs,p) is satisfied.

(ii) for all u ∈ Bs
p,q(Ω) ,

‖u|∂Ω
‖

Ḃ
s− 1

p
p,q (∂Ω)

.p,s,n,∂Ω ‖u‖Ḃs
p,q(Ω);

In particular, the trace operator [·]|∂Ω
extends uniquely as a bounded linear operator from

Ḃs
p,q(Ω) to Ḃ

s− 1
p

p,q (∂Ω) whenever (Cs,p,q) is satisfied.

27



(iii) for all u ∈ Ḃ
1
p

p,1(Ω) ,

‖u|∂Ω
‖Lp(∂Ω) .p,n,∂Ω ‖u‖

Ḃ
1
p
p,1(Ω)

;

(iv ) for all u ∈ B
1+ 1

p

p,1 (Ω) ,

‖u|∂Ω
‖Ḣ1,p(∂Ω) .p,n,∂Ω ‖u‖

Ḃ
1+ 1

p
p,1 (Ω)

;

In particular, the trace operator [·]|∂Ω
extends uniquely as a bounded linear operator from

Ḃ
1+ 1

p

p,1 (Ω) to Ḣ1,p(∂Ω) whenever p < n− 1 is satisfied.

Proof. — We are going to cut the proof into three parts.

(i) First part: homogeneous Sobolev spaces.

Let u ∈ Hs,p(Ω). We assume first that s ∈ ( 1
p , 1]. By Proposition 2.5, we have Tφu ∈

Hs,p(Rn
+). The standard trace theorem with homogeneous estimates [Gau22, Theorem 3.5]

yields that, xn 7→ Tφu(·, xn) ∈ C0
b(R+, Ḃ

s−1/p
p,p (Rn−1)), with the estimates

‖Tφu(·, 0)‖
Ḃ

s− 1
p

p,p (Rn−1)
.s,p,n ‖Tφu‖Ḣs,p(Rn

+) .s,p,n ‖u‖Ḣs,p(Ω) .

But for almost every x′ ∈ Rn−1 , we recall recall that

Tφu(x′, 0) = u(x′, 0 + φ(x′)) = Sφ[u|∂Ω
](x′) .

Thus, one may apply Lemma 3.4 :

‖u|∂Ω
‖

Ḃ
s− 1

p
p,p (∂Ω)

.p,s,n,∂Ω ‖Sφ[u|∂Ω
]‖

Ḃ
s− 1

p
p,p (Rn−1)

.s,p,n,∂Ω ‖u‖Ḣs,p(Ω) .

Now, we consider u ∈ Hs,p(Ω), with s ∈ [1, 1 + 1
p ) it follows from the successive use of

Lemma 3.10 and Corollary 3.13, that,

‖Tφu(·, 0)‖
Ḃ

s− 1
p

p,p (Rn−1)
.s,p,n ‖Tφu‖K̇s,p(Rn

+) .s,p,n,∂Ω ‖u‖Ḣs,p(Ω) .

Therefore one may ends similarly as in the case s ∈ ( 1
p , 1].

Hence, if moreover, we assume (Cs,p), then every involved space is complete and one may
conclude by density argument.

(ii) Second part: homogeneous Besov spaces with traces in Lebesgue/Sobolev spaces.

For u ∈ Ḃ
1
p

p,1(Ω), by Lemma 3.14 and [Gau22, Theorem 3.5],

Tφu ∈ Ḃ
1
p

p,1(Rn
+) ⊂ C0

0(R+,L
p(Rn−1))

with the estimates

‖u|∂Ω
‖Lp(∂Ω) ∼p,n,∂Ω ‖Tφu(·, 0)‖Lp(Rn−1) .p,n,∂Ω ‖Tφu‖

Ḃ
1
p
p,1(Rn

+)
.p,n,∂Ω ‖u‖

Ḃ
1
p
p,1(Ω)

. (3.10)

Now, for u ∈ Ḃ
1
p

p,1(Ω) ∩ Ḃ
1+ 1

p

p,1 (Ω), since ∇u ∈ Ḃ
1
p

p,1(Ω), we may use the estimate (3.10),

‖[∇u]|∂Ω
‖Lp(∂Ω) .p,n,∂Ω ‖∇u‖

Ḃ
1
p
p,1(Ω)

.p,n,∂Ω ‖u‖
Ḃ

1+ 1
p

p,1 (Ω)
.

But one may check that we have

‖u|∂Ω
‖Ḣ1,p(∂Ω) = ‖S−1

φ ∇
′[Sφu|∂Ω

]‖Lp(∂Ω) .p,n,∂Ω ‖[∇u]|∂Ω
‖Lp(∂Ω) .p,n,∂Ω ‖u‖

Ḃ
1+ 1

p
p,1 (Ω)

. (3.11)

(iii) Third part: homogeneous Besov spaces.
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Let s ∈ (1/p, 1 + 1/p), q ∈ [1,+∞] , and let u ∈ Bs
p,q(Ω).

u ∈ Bs
p,q(Ω) ⊂ B

1
p

p,1(Ω) + B
1+ 1

p

p,1 (Ω) ⊂ Ḃ
1
p

p,1(Ω) + Ḃ
1+ 1

p

p,1 (Ω).

Let (a, b) ∈ Ḃ
1
p

p,1(Ω)× Ḃ
1+ 1

p

p,1 (Ω), such that u = a+ b ,

b = a− u ∈ (Ḃ
1
p

p,1(Ω) + Bs
p,q(Ω)) ∩ Ḃ

1+ 1
p

p,1 (Ω) ⊂ Ḃ
1
p

p,1(Ω) ∩ Ḃ
1+ 1

p

p,1 (Ω).

Therefore u|∂Ω
∈ B

s− 1
p

p,q (∂Ω) ⊂ Ḃ
s− 1

p
p,q (∂Ω) and (a|∂Ω

, b|∂Ω
) ∈ Lp(∂Ω) × H1,p(∂Ω), so that by

definition of the K -functional and homogeneous estimates (3.10) and (3.11), we obtain

K(t, u|∂Ω
,Lp(∂Ω), Ḣ1,p(∂Ω)) 6 ‖a|∂Ω

‖Lp(∂Ω) + t‖b|∂Ω
‖Ḣ1,p(∂Ω)

.p,n,∂Ω ‖a‖
Ḃ

1
p
p,1(Ω)

+ t‖b‖
Ḃ

1+ 1
p

p,1 (Ω)
.

Looking at the infimum over all such pairs (a, b) yields for all t > 0,

K(t, u|∂Ω
,Lp(∂Ω), Ḣ1,p(∂Ω)) .p,n,∂Ω K(t, u, Ḃ

1
p

p,1(Ω), Ḃ
1+ 1

p

p,1 (Ω)).

Multiplying by t−(s− 1
p ) , then taking the Lq

∗ -norm, by definition of homogeneous Besov spaces
on the boundary (see Definition 3.6, and Lemma 2.1), it holds that

‖u|∂Ω
‖

Ḃ
s− 1

p
p,q (∂Ω)

∼p,s,n ‖u|∂Ω
‖(Lp(∂Ω),Ḣ1,p(∂Ω))

s− 1
p

,q
.p,s,n,∂Ω ‖u‖

(Ḃ
1
p
p,1(Ω),Ḃ

1+ 1
p

p,1 (Ω))
s− 1

p
,q

.p,s,n,∂Ω ‖u‖Ḃs
p,q(Ω).

If q < +∞ and (Cs,p,q) is satisfied, the result follows by density argument. For q = +∞ , if
(Cs,p,q) is satisfied, the result follows from real interpolation by the mean of Proposition 2.26,
Definition 3.6 and the reiteration theorem [BL76, Theorem 3.5.3]. �

We state interesting consequences concerning regularity and integrability of traces in the case of
intersection spaces, and identification of function spaces for functions that vanish on the boundary.
The proofs are very similar to the proofs one can found at the end of [Gau22, Section 3] for Ω being
the half-space, therefore we present shortened proofs and the full ones are omitted.

Proposition 3.16 Let p ∈ (1,+∞) , q ∈ [1,+∞) , and θ ∈ (0, 1) , −1 + 1
p < s0 <

1
p < s1 < 1 + 1

p
such that

1

p
= (1 − θ)s0 + θs1.

Then the following assertions hold.

(i) For all u ∈ Ḣs0,p(Ω) ∩ Ḣs1,p(Ω) , we have u|∂Ω
∈ B

s1− 1
p

p,p (∂Ω) , with the estimate

‖u|∂Ω
‖

B
s1− 1

p
p,p (∂Ω)

.s0,s1,p,n,∂Ω ‖u‖
1−θ

Ḣs0,p(Ω)
‖u‖θ

Ḣs1,p(Ω)
+ ‖u‖Ḣs1,p(Ω).

We also have

‖u|∂Ω
‖

Ḃ
s1− 1

p
p,p (∂Ω)

.s0,s1,p,n,∂Ω ‖u‖Ḣs1,p(Ω) ;

(ii) For all u ∈ Ḃs0
p,q(Ω) ∩ Ḃs1

p,q(Ω) , we have u|∂Ω
∈ B

s1− 1
p

p,q (∂Ω) , with the estimate

‖u|∂Ω
‖

B
s1− 1

p
p,q (∂Ω)

.s0,s1,p,n,∂Ω ‖u‖
1−θ
Ḃ

s0
p,q(Ω)

‖u‖θ
Ḃ

s1
p,q(Ω)

+ ‖u‖Ḃ
s1
p,q(Ω).

We also have

‖u|∂Ω
‖

Ḃ
s1− 1

p
p,q (∂Ω)

.s0,s1,p,n,∂Ω ‖u‖Ḃ
s1
p,q(Ω);
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(iii) For all u ∈ Ḃs0
p,∞(Ω) ∩ Ḃs1

p,∞(Ω) , we have u|∂Ω
∈ Lp(∂Ω) , with the estimate

‖u|∂Ω
‖Lp(∂Ω) .s0,s1,p,n,∂Ω ‖u‖

1−θ

Ḃ
s0
p,∞(Ω)

‖u‖θ
Ḃ

s1
p,∞(Ω)

.

Proof. — We mention the result [Gau22, Proposition 3.6] for the case Ω = Rn
+ , where the proof only

relies on good interpolation inequalities and the appropriate trace estimates. Everything has been
made in order to recover the same interpolation inequalities, the result then follows from Theorem
3.15 points (i) and (iii) for the case of Sobolev spaces, and from points (ii) and (iii) for the case of
Besov spaces. �

Proposition 3.17 Let pj ∈ (1,+∞) , qj ∈ [1,+∞) , sj > 1/pj , j ∈ {0, 1} , such that (Cs0,p0 ) (resp.
(Cs0,p0,q0 )) is satisfied. Then,

(i) For all u ∈ [Ḣs0,p0 ∩ Ḣs1,p1 ](Ω) , we have u|∂Ω
∈ Ḃ

sj− 1
pj

pj ,pj (∂Ω) , j ∈ {0, 1} , with the estimate

‖u|∂Ω
‖

Ḃ
sj − 1

pj
pj ,pj

(∂Ω)

.sj ,p,n ‖u‖Ḣsj,pj (Ω);

(ii) For all u ∈ [Ḃs0
p0,q0

∩ Ḃs1
p1,q1

](Ω) , we have u|∂Ω
∈ Ḃ

sj− 1
pj

pj ,qj (∂Ω) , j ∈ {0, 1} , with the estimate

‖u|∂Ω
‖

Ḃ
sj − 1

pj
pj ,qj

(∂Ω)

.s0,s1,p,n ‖u‖Ḃ
sj
pj,qj

(Ω)
;

Proof. — This is a direct consequence of density results provided by Propositions 2.11 and 2.24, and
the trace theorem Theorem 3.15. �

Lemma 3.18 Let pj ∈ (1,+∞) , sj ∈ (1/pj, 1 + 1/pj) , j ∈ {0, 1} such that (Cs0,p0) is satisfied.
We have the following canonical isomorphism of Banach spaces

{ u ∈ [Ḣs0,p0 ∩ Ḣs1,p1 ](Ω) |u|∂Ω
= 0 } ≃ [Ḣs0,p0

0 ∩ Ḣs1,p1

0 ](Ω).

The result still holds replacing Ḣsj ,pj by Ḃ
sj
pj ,qj , qj ∈ [1,+∞] , j ∈ {0, 1} assuming that (Cs0,p0,q0 )

is satisfied.

Proof. — We mention the results [Gau22, Lemma 3.10 & Corollary 3.11] where the proofs only rely
on integration by parts, the meaning of traces, and the possibility to extends elements of Ḣs,p from
Ω to the whole space Rn by 0 boundedly, whenever s ∈ (−1 + 1/p, 1/p). The boundedness of the
extension by 0 from Ω to the whole space Rn is a direct consequence of Corollary 2.7. The same
holds for Besov spaces with Proposition 2.18. �

We conclude with few remarks.

• In Theorem 3.15, we don’t give any claim about a right bounded inverse. The naive composition
with Poisson’s extension only yields right bounded inverse for regularity indices between 1/p
and 1 for Theorem 3.15.

• For a right bounded inverse regularity indices between 1/p and 1 + 1/p in Theorem 3.15, per-
sonal discussions with Patrick Tolksdorf and Moritz Egert persuaded the author that it should
be possible to adapt Jonsson and Wallin’s extension operator [JW84, Chapter VII, Theorem 3]
from the boundary from the whole domain in a way so that it preserves homogeneous norms.

• One may also use the same Jonsson and Wallin’s (usual) extension operator to reprove exactly
the same way [Gau23a, Theorem A.2] making sense of weak partial traces of differentials forms,
replacing Rn

+ by Ω a special Lipschitz domain. The result is still far from being optimal by
the way, for instance one may see [MMS08] for the case of inhomogeneous function spaces on
bounded Lipschitz domains.
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