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Abstract: The motion of a classical point particle submitted to a central restoring force in a non-

inertial frame is studied. Exact trajectories are provided and several classical cases are detailed. 

Results are applied to the classical case of the Foucault pendulum problem, and centered trochoid 

trajectories are highlighted. These original solutions are linked to concerns of contemporary physics. 

.  
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1. Introduction 

It is well known that studies of the trajectories of particles in non-inertial frames are major concerns of 

physics. Among them, behaviors of harmonic oscillators in such frames are particularly interesting, 

given the many possible contemporary physical applications. We are thinking, for example, of studies 

concerning spectroscopy or plasma physics, whether in a classical or quantum framework. Another 

major application, which will be particularly studied in this article, concerns the Foucault pendulum 

problem. Indeed, this problem is generally studied in the small-angle approximation, which implies 

that the pendulum becomes, in this case, a two-dimensional harmonic oscillator.  

 

The purpose of this paper is to contribute to this topic, by presenting an original study of the trajectory 

of these harmonic oscillators in non-inertial frames, more precisely in time varying rotating frames. 

Indeed, using the laws of classical mechanics, we will present original solutions, which seem to be 

known only for certain limit cases. The particular case where the speed of rotation of the non-inertial 

frame is constant will be highlighted, and we will show that the corresponding trajectories are the 

centered trochoid curves. In a second part, we will apply these general results to the case of Foucault's 

pendulum. This will allow us to find certain limiting cases already known, but also to characterize 

geometrically several possible trajectories and to determine the laws of motion. 

 

There are many reasons for us to apply our results to this particular problem. First of all, it is, of 

course, one of the most important popular experiment in the history of Physics, which was presented 

for the first time by the French physicist Foucault to the Parisian public in 1851 [1], and was 

subsequently reproduced in many museums around the world. Schematically, the experiment consists 

in setting in motion a long and heavy pendulum and measuring the slow rotation of the plane of 

oscillation, due to the Earth rotation. It is then possible to highlight this rotation and to deduce, for 

example, the latitude of the pendulum. Naturally, studies of the behavior of the pendulum has been 

presented in many physics text books and various solutions have been presented (the reader can 

consult, for example, the classical references [2, 3, 4]). Unfortunately, these works, and more 
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particularly the establishment of equations of motion and determination of geometrics characteristics 

of trajectories, do not seem to be unanimous, and therefore remains an important concern of the 

contemporary Physics. This explains why research papers are still regularly published on this topic 

with the aim, in general, to provide the most precise possible laws of motion. 

 

Another reason concerns the possible practical applications of this experiment. For example, it is 

planned for measurement of the lense-Thirring effect and, consequently to improve our knowledge of 

the theories of Gravitation and of the space time. Moreover, for the reason the extension of the 

pendulum principle allows the development of gyroscopic systems, very numerous applications in 

many fields of applied physics and technology are considered. 

 

Therefore, paper is organized as follows: in a first part, we study the behavior of a two-dimensional 

harmonic oscillator in all kind of time varying rotating frame. Secondly, we apply our results to the 

particular case of the Foucault pendulum. 

 

The reader will therefore find in this article progress concerning several areas of the physics: on the 

one hand, from a geometric point of view, a new approach to trochoid curves. On the other hand, exact 

solutions of the movement two dimensional harmonic oscillator in time varying rotating frame and 

application to the Foucault's pendulum problem, in the approximation of small angles. To conclude, 

we attract his attention that this work has been carried out within the framework of classical mechanics  

(quantum and relativistic effects have been neglected).  

 

2. Two dimensional harmonic oscillator in time varying rotating frame 

2.1 Present the problem 

 

(Note, to simplify the calculation,  the masses were, in this part, considered equal to 1, so that the 

forces and the accelerations are confused) 

 

We begin the study by introducing a Galilean system of coordinate (𝑂, 𝑋0
⃗⃗⃗⃗ , 𝑌0⃗⃗  ⃗, 𝑍0

⃗⃗⃗⃗ ) where a point 

particle 𝑀  moves under the influence of a restoring force centered at 𝑂 and given with 

 

𝐹 = −𝑘𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = −𝑘𝑟 = −𝑤2𝑟                (1) 

Where 𝑤 is the pulsation of the pendulum. We consider now a second system of coordinate 

(𝑂, 𝑥 , 𝑦 , 𝑧 ). This frame is animated by a rotation movement around the z axis such 

 

Ω⃗⃗ (𝑡) = Ω𝑧  

 

And is consequently non-inertial. As we presented it, goal of the paper is to describes the trajectory of 

𝑀 in this frame.  

 

To obtain the equation of motion we have to consider the fictitious forces, defined, according to the 

laws of classical mechanics, by 
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𝐹𝐹𝑖
⃗⃗ ⃗⃗  ⃗ = 𝑎0⃗⃗⃗⃗ − Ω⃗⃗ × Ω⃗⃗ × 𝑟 − 2Ω⃗⃗ ×

𝑑r 

𝑑𝑡
−

𝑑Ω⃗⃗ 

𝑑𝑡
× 𝑟                   (2) 

 

Where we successively recognize the acceleration of translation between the two frames, centrifugal 

force, the force of Coriolis and of Euler (see for example classical textbooks in references [2, 3]). 

 

Respecting our conditions, the translational acceleration is zero and the equation of the dynamics 

becomes in this frame  

 

𝐹 = −𝑘𝑟 − Ω⃗⃗ × Ω⃗⃗ × 𝑟 − 2Ω⃗⃗ ×
𝑑r 

𝑑𝑡
−

𝑑Ω⃗⃗ 

𝑑𝑡
× 𝑟                   (3) 

2.2 Solving 

Equation of motion leads to the system :  

 

{�̈� = −𝑤2𝑋+Ω2𝑋 + 2Ω�̇� + 𝑌Ω̇
�̈� = −𝑤2𝑌+Ω2𝑌 − 2Ω�̇� − 𝑋Ω̇

}                 (4) 

 

Again, these equations are not original (see for example [2]). The classical method of solving consists 

in introducing a complex number such that 

 

𝑢 = 𝑋 + 𝑗𝑌 

 

 Differential equation (4) becomes 

 

𝑑2𝑢

𝑑𝑡2 = −(𝑤2 − Ω2)𝑢 − 2𝑗Ω
𝑑𝑢

𝑑𝑡
− 𝑗Ω̇𝑢          (5) 

 

To solve, we choose to investigate a solution in the original following form: 

 

𝑢 = 𝑟1𝑒
𝑗(𝑤𝑡+𝑓(𝑡)) 

 

And (5) becomes 

 

𝑗𝑓̈ − (𝑤 + 𝑓̇)
2
= −𝑤2 + Ω2 + 2Ω(𝑤 + 𝑓̇) − 𝑗Ω̇ 

 

Identifying the imaginary and real parts we get the system of equations : 

 

{
𝑓̈ = −Ω̇                                                                          6.1

−(𝑤 + 𝑓̇)
2
= −𝑤2 + Ω2 + 2Ω(𝑤 + 𝑓̇)                6.2

} 

 

By considering the constants of integration as null (6.1) leads to 
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𝑓(𝑡) = −∫Ω(t)𝑑𝑡           (7) 

 

Introducing  

 

𝑓̇ = −Ω 

 

In 6..2 we verify easily the solution. Moreover, we note that a second solution exits, given by 

 

𝑢 = 𝑟2𝑒
𝑗(−𝑤𝑡+𝑓(𝑡)) 

 

Because it leads to the same relation (7) and also satisfies real relation, given this time with 

 

−(−𝑤 + 𝑓̇)
2
= −𝑤2 + Ω2 + 2Ω(−𝑤 + 𝑓̇) 

 

Whereas these results we obtain thus a general solution such 

 

𝑢 = 𝑟1𝑒
𝑗(𝑤𝑡+𝑓(𝑡)) + 𝑟2𝑒

𝑗(−𝑤𝑡+𝑓(𝑡)) 

 

Rewritting the expression, we obtain : 

 

{
𝑋 = (𝑟1 + 𝑟2) cos 𝑤𝑡 cos f(t) − (𝑟1 − 𝑟2)sin𝑤𝑡 sin f(t)

𝑌 = (𝑟1 + 𝑟2)cos𝑤𝑡 sin f(t) + (𝑟1 − 𝑟2)sin𝑤𝑡 cos f(t)
}       (8)             

 

Now, consider the limiting cases for which we know the solution. This is, of course, the case where 

Ω = 0. Then, the point particle describes naturally an ellipse of Lissajous-Bowditch, define (with 

correct initial conditions) by 

{
𝑋 = 𝑎 cos𝑤 𝑡
𝑌 = 𝑏 sin𝑤 𝑡

}       

Where (𝑎, 𝑏) are the semi major and minor axis of the conic. We deduce that 

 

{
𝑟1 + 𝑟2 = 𝑎
𝑟1 − 𝑟2 = 𝑏

} 

 

Finally the solution can be written in the form of simple trigonometric functions, for example 

 

{
𝑋 = 𝑎 cos 𝑤𝑡 cos f(t) − 𝑏 sin𝑤𝑡 sin f(t)

𝑌 = 𝑎 cos𝑤𝑡 sin f(t) + 𝑏 sin𝑤𝑡 cos f(t)
}       (8)             

 

Note that it is possible to verify these results, by calculating the successive derivatives of these 

solutions and introducing them into the equation of motion (4). Also note that these solutions seems 

original in general cases. 

 

2.3 Presentation of trajectories 
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2.3.1 Particular case:  Two dimensionnal oscillator in constant speed of rotation : 

hypotrochoid curves 

 

Solutions becomes simply 

 

{
𝑥 = 𝑎 cos𝑤𝑡 cosΩ𝑡 − 𝑏 sin𝑤𝑡 sinΩ𝑡
𝑦 = 𝑎 cos 𝑤𝑡 sinΩ𝑡 + 𝑏 sin𝑤𝑡 cosΩ𝑡

}                     (9)             

 

Note that these trajectories are not unknown but represent a part of the centered trochoid curves (more 

exactly the hypotrochoid curves) as defined, for example, in reference [5]. 

 

Among these trajectories, several particular cases can be noticed : an emblematic case concern the rose 

trajectory, corresponding on a mono dimensional oscillator (𝑏 = 0). In this case, the angular speed is 

constant and simply equal to Ω [6]. Others well known trajectories can be reobtain, such the 

hypocycloid, etc.. Certains of them will be drawn in the following parts. 

 

2.3.2 General case 

It is also possible to study the trajectories of the harmonic oscillator in a time-dependent rotating 

frame. Consider for example the classic example 

 

Ω⃗⃗ = Ω(1 + 𝛽 cos 𝜈𝑡)𝑧  

We obtain using (7) the expression 

𝑓(𝑡) = −Ω(𝑡 +
𝛽

𝜈
sin 𝜈𝑡) 

 

In figures 2.1 and 2.2 we present the modifications of the trajectories due to the addition of a time-

dependent part to the constant rotational speed Ω 
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Figure 2.1 . Left : hypocycloid of parameters : 𝑎 = 1, 𝑏 = −1/5, 𝑓 = 𝑡/5 

Right : trajectory under parameter    𝑎 = 1, 𝑓 = 1/5𝑡 + 0.2 ∗ sin(𝑡) 

 

    

 

Figure 2.2 . Left : centered trochoid of parameters : 𝑎 = 1, 𝑏 = 0.5, 𝑓 = −𝑡/5 

Right : trajectory under parameter    𝑎 = 1, 𝑏 = 0.5, 𝑓 = −1/5(𝑡 + 0.8 ∗ sin(𝑡)) 

 
Consider also the case of the monodimensional oscillator (figure 2.3) 
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Figure 2.3 . Left : rose curve of parameters : 𝑎 = 1, 𝑓 = 𝑡/5 

Right : trajectory under parameter    𝑎 = 1, 𝑓 = 1/5(𝑡 + 0.2 ∗ sin(𝑡) 

 
Note that trajectories are here defined with 

 

{
𝑋 = 𝑎 cos 𝑤𝑡 sin 𝑓(𝑡)

𝑌 = 𝑎 cos 𝑤𝑡 cos 𝑓(𝑡)
} 

 

And are corresponding on a mono dimensional harmonic oscillator. Polar angle is thus simply 

𝜃 = 𝑓(𝑡) = ∫Ω(𝑡) 𝑑𝑡 

 

If speed is entirely time varying, such Ω⃗⃗ = Ω cos 𝜈𝑡 𝑧  (figure 2 .4) 

 
 

 

 

 

 

Another classic case concerns a speed of rotation which gradually decreases until it cancels out: 

Considering for example the case Ω = Ω0𝑒
−𝜆𝑡. We obtain 

 

Figure 2.4 . Left : monodimensional oscillator : 𝑎 = 1, 𝑏 = 0, 𝑓 = −
3

4
sin 𝑡 

Right :  two dimensional oscillator, 𝑎 = 1, 𝑏 = 0.5, 𝑓 = −
3 sin 𝑡

4
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𝑓(𝑡) =
Ω0

𝜆
𝑒−𝜆𝑡  

 

The trajectories gradually have to become elliptical again (figure 2.4) 

 

 

 
Figure 2.5    𝑎 = 1, 𝑏 = 0.5, 𝑓 = 2𝑒−0.1𝑡  . Left 𝑡 ∈]0,20]; Right : 𝑡 ∈ [20,35]; 

Consider also, for example, the general case 

{

Ω(t) = Ω0(1 + 𝛼𝑒−𝜆𝑡)

f(t) = Ω0 −
𝛼𝑒−𝜆𝑡

𝜆

} 

 

 

    

 
Figure 2.6   𝑎 = 1, 𝑏 = 0.5, 𝑓 = 2𝑒−0.1𝑡  . Left 𝑡 ∈]0,15]; Right : 𝑡 ∈ [20,40]; 

 
 

the trajectories this time become the trochoids corresponding to the constant rotation speed. 
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3. Application to Foucault pendulum problem 

As we introduced, we now apply these theoretical results to the case of the Foucault pendulum 

problem. First, we quickly present the classical case of the simple pendulum in an inertial frame. 

 

3.1 Simple gravity pendulum 

Simple pendulum is naturally a well-known oscillating system, which has often be described in 

classical text books (see for example [2]). In figure 3, the force diagram and the system of coordinate 

is detailed. Note that friction forces and mass of the rod are neglected, and that length 𝑃𝑀 = 𝐿 is 

considered constant. 

 

   

 

 

 𝜃 

𝑥  

𝑦  

𝑧  

�⃗�  

�⃗�  

Figure 3.1  Foucault Pendulum 

M 

P 

O 

 
The system of coordinate (𝑂, 𝑥 , 𝑦 , 𝑧 ) is, in this case, Galilean (because Earth ‘s rotation is neglected). 

We can write the second equation of dynamics, whic leads to the following relation 

 

�⃗� + �⃗� = 𝑚𝑎               (10) 

 

Where 𝑎  is the acceleration of the point mass 𝑀(𝑚). In the small angle approximation, the motion is 

considered planar and contained in the plane (𝑂, 𝑥 , 𝑦 ). (10) become thus 

 

{
−𝑇 sin𝜃 = 𝑚�̈�

𝑇 cos 𝜃 − 𝑚𝑔𝑂 = 𝑚�̈�
}        (11) 
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In this approximation we can also write following relations: 

 

{
𝑦 = 𝐿 sin 𝜃 ≈ 𝐿𝜃

𝑧 = 0
} 

And (11) becomes 

 

{
−𝑇𝜃 = 𝑚𝐿�̈�
𝑇 = 𝑚𝑔0

} 

 

By substitution we obtain the rotational equation of motion 

 

�̈� +
𝑔0

𝐿
𝜃 = 0 

i.e. the simple harmonic oscillator equation. Solving leads naturally to the relation 

 

𝜃 = 𝜃0 cos 𝑤 𝑡 

 

Where 𝜃0 is the initial angle and 𝑡 the time. Pulsation is given with 

𝑤 = √
𝑔0

𝐿
 

 

Problem of this solution is that the Earth rotation is neglected and, consequently, that frame isn’t 

exactly inertial: if we now consider this rotation, we have naturally to modify the equations of motion. 

This is the subject of the next chapter. 

 

3.2 Physics: fictitious forces and trajectories 

Thus consider this time the rotation of the Earth. The system of coordinate (𝑂, 𝑥 , 𝑦 , 𝑧 ) can no longer be 

considered Galilean but becomes, due to the Earth’s rotation, a non-inertial rotating system frame. To 

detail corresponding fictitious forces we need to definite more precisely the system of coordinate 

(𝑂, 𝑥 , 𝑦 , 𝑧 ) that we use.  

 

Origin 0 is located at the latitude 𝜑 . To simplify the calculation, we choose the x-axis pointing east, 

y-axis north, and z-axis is vertical. 𝑣 (�̇�, �̇�, �̇�) is the speed of the pendulum and vector of rotation of the 

Earth is Ω⃗⃗ . In this system, the coordinates of this vector is given by 

 

Ω⃗⃗ {
0

Ω cos𝜑
Ω sin𝜑

} 

 

We can now deduce the mathematical expression of the fictitious forces:  

 

- In the classical problem, Euler’s force is neglected because Earth’s rotation speed is nearly 

constant.  
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- The centrifugal force (see reference [2]) is directed toward the rotation axis of the Earth 

and is independent of the motion of the particle in the rotating frame.  Its major effect is to 

modify the gravitational acceleration, which becomes the effective gravitational 

acceleration given by  

 

𝑔 = 𝑔0⃗⃗⃗⃗ − 𝑚Ω⃗⃗ × (Ω⃗⃗ × 𝑟 ) 

 

For this reason, the effect of this force on the pendulum’s precession is usually neglected. It is the case 

in many theoretical Mechanics textbooks. 

 

- The last force (Coriolis force) is thus considered as the only one which acts on the 

pendulum precession. In our system of coordinate, it can be written 

𝐹𝐶
⃗⃗⃗⃗ = −2𝑚Ω⃗⃗ × (�̇�𝑥 + �̇�𝑦 + �̇�𝑧 ) 

 

However, with the small angle approximation, we consider that �̇� = 0 and we obtain thus the 

following expression in the plane (𝑂, 𝑥, 𝑦) 

 

𝐹𝐶 {
2𝑚�̇�Ω sin𝜑
−2𝑚�̇�Ω sin𝜑

} 

 

Finally, the equations of motion can be written, in the rotating frame, by the system 

 

{
�̈� = −

𝑔

𝐿
𝑥 + 2Ω sin𝜑 �̇�

�̈� = −
𝑔

𝐿
𝑥 − 2Ω sin𝜑 �̇�

}       (12) 

 

Because of the results presented in the part 2.2, it makes sence to write the solutions in the form 

 

{
𝑥 = 𝑎 cos𝑤𝑡 cos 𝑓𝑡 − 𝑏 sin𝑤𝑡 sin 𝑓𝑡
𝑦 = 𝑎 cos𝑤𝑡 sin𝑓𝑡 + 𝑏 sin𝑤𝑡 cos 𝑓𝑡

}            (13) 

 

Where 𝑓 is the pulsation given by 

𝑓 = Ωsin𝜑 

 

And where the frequencies are linked with 

 
𝑔

𝐿
= 𝑤2 − 𝑓2 

Trajectories are thus hypotrochoid curves. Depending on initial conditions, we can distinguish several 

classical cases. 

 

3.3 Hypocycloid trajectories 
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To carry out the experiment, generally the pendulum is moved away from its equilibrium position on 

the x-axis,  with a small angle  𝜃0  and released at 𝑡 = 0 without initial velocity. These conditions can 

be written as follows : 

 

{
𝑎 = 𝐿𝜃0

�̇� = �̇� = 0
} 

 

Introducing them in equation (13), we deduce the following relation : 

 

𝑏 = −𝑎
𝑓

𝑤
 

 

To simplify the calculation we introduce the ratio 

 

𝑛 =
𝑓

𝑤
 

 

And mathematical expression of the solutions are 

 

{
𝑋 = 𝑎[cos 𝑤𝑡 cos 𝑛𝑤𝑡 − 𝑛 sin𝑤𝑡 sin𝑛𝑤𝑡]

𝑌 = 𝑎[cos𝑤𝑡 sin 𝑛𝑤𝑡 + 𝑛 sin𝑤𝑡 cos 𝑛𝑤𝑡]
} 

 

We obtain the relation 

 

{
𝑟1 =

𝑎

2𝑤
(𝑤 − 𝑓)

𝑟1 =
𝑎

2𝑤
(𝑤 + 𝑓)

} 

 

Noting the relation 

 

𝑟1𝑤1 = 𝑟2|𝑤2|       

 

We deduce that the trajectory is one of the hypocycloïd curves, among hem astroïd, deltoïd, etc.. see 

for example [7]. An example of these curves is provided in Figure 3.2 : 
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𝑝 = 2𝜋𝑛 

Figure 3.2  𝑎 = 1, 𝑤 = 1, 𝑛 = 1/7     
 

Mechanical energy is given by 

𝐸𝑀 =
1

2
𝑎2𝑤2(1 − 𝑛2) 

 

 

3.4 Rose trajectories 

 

Consider the case where initial conditions are the following: at the origin of the time the pendulum is 

located at its equilibrium position, i.e. at the origin of the rotational frame. An impulsion is 

transmetted along the x-axis, such the initial velocity is 𝑉0
⃗⃗  ⃗(0, �̇�0, 0). Equations of position leads thus to 

 

𝑎 = 0 

 

And equations of speed lead to the relation 

𝑏 =
�̇�0

𝑤
 

 

Trajectories are thus given by 

 

{
𝑋 = −𝑏 sin𝑤𝑡 sin 𝑓𝑡
𝑌 = 𝑏 sin𝑤𝑡 cos 𝑓𝑡

} 

 

That we can rewrite under a polar form 

 

𝑟 = 𝑏 sin𝑤𝑡 

 

That we can rewrite  
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𝑟 = �̇�0√
𝐿

𝑔 + 𝐿𝑓2 sin
𝑓𝑡

𝑛
 

 

Trajectory is thus a rose curve. An example is provided in Figure 3.2.  

 

 

𝑝 =
2𝜋

𝑛
 

Figure 3.2 Rose curve.  𝑎 = 1, 𝑤 = 1, 𝑛 = 7     
 

As previously, we can obtain the expression of mechanical energy, given by 

𝐸𝑀 =
1

2
𝑏2𝑤2 

The interest of this trajectory is that it is the only one, among the wide variety of hypotrocoïd curves, 

which implies that the pendulum passes through the origin of the system of coordinate, at each 

oscillation. The time interval between each passage to O is given by the following relation 

∆𝑇 =
𝜋

𝑤
 

Which leads to 

 

∆𝑇 =
𝜋

√
𝑔
𝐿

+ 𝑓2

 

Pulsation 𝑓 is thus obtained  

 

𝑓 = √[
𝜋

∆𝑇
]
2

−
𝑔

𝐿
 

Therefore, it might be simpler and more accurate to measure this time interval that to measure the 

precession angle, as ikt usually seems to be.  

 

3.5 General case 
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Consider this time that the pendulum is released such it would describe, if the frame were Galilean, a 

Lissajous-Bowditch ellipse. In this case, it will be subjected to a precession of its principal axis, and 

will have one of the orbits presented in the equations (13). Note that it can be interesting to use these 

initial conditions to improve, in certain cases, the precision of the measurements [10]. The trajectory 

will then be, in the case of the small angle approximation, one of the hypocrotoid curves, depending 

on the norm of the coriolis force. We present in Figure 3.3 some of them. Note that the curves are 

closed if n is a rational number. 

 

 

Figure 3.3. Two possible trajectories  𝑛 = −1/7 and 𝑛 = 1/7 

 

Mechanical energy is given here by 

 

𝐸𝑀 =
1

2
𝑤(𝑤(𝑎2 + 𝑏2) + 2𝑎𝑏𝑓) 

 

Two particular cases can be noted :  

 

If 𝑎 = 𝑏 trajectory is a circle centered at the origin of the frame. 

If 𝑤 = ±𝑓 trajectories are two eccentric circles (but it is here a limiting case) (see Figure 3.4) 

 

 
Figure 3.4 : Limiting cases 𝑤 = ±𝑓 
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4. Discussion 

Consider the general solutions presented in this article, about the behavior of harmonic oscillators in 

time varying rotating frames. First of all, it seems that these solutions are entirely original. Naturally, 

these trajectories can be applied to the Foucault pendulum only as a limiting case, if the experiment 

takes place classically, ie on Earth. Indeed, in this case the Euler force is zero. However, these 

trajectories can correspond to the movement of such a pendulum located on a time varying rotating 

frame, theoretically animated by all kinds of variable rotational speeds (we have presented some of 

them). For this reason, it is possible that these solutions are interesting to improve experiments, for 

example to verify gravitational effects, as we have introduced. Indeed, we know that the classic 

experiments would be very long and complex. 

 

Moreover, these results can be applied to other areas, because they describe the theoretical motion of 

harmonic oscillators in rotating frames. Therefore, it is possible that these solutions can be applied, for 

example, in the study of gyroscopic movements, or such as those mentioned in the introduction to the 

article, or others. 

  

5. Conclusion 

 

We have detailed exact trajectories of two-dimensional harmonic oscillator in time varying rotating 

frame. In a second time, we have applied these results to the Foucault Pendulum problem. In 

particular, we suggest that trajectories are hypotrochoid curves, that seem a second original result. A 

simple experiment consists in supplying an impulse in the plane of the oscillations, and in verifying 

that the trajectory is well a rose curve. Later works could extend these results to other problems, such, 

for example, gyroscopic motion. 
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