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Prediction of flatness defects and of the
stable configuration of thin multilayer
assemblies due to chemical shrinkage

N. Mathieua∗, C. Czarnotaa, H. Obeida, S. Merciera

aUniversité de Lorraine, CNRS, Arts et Métiers ParisTech, LEM3, F-57000 Metz, France

Abstract

The manufacturing process of multimaterial and multilayer assemblies involving pre-impregnated
laminates consist of heating the composite structure at high temperature, typically of the order of
200◦C, at which polymerization occurs. During the curing, a permanent deformation, called chemical
shrinkage strain, is generated and may strongly influence the future flatness of the assembly. Moreover,
the cooling generates additional thermal deformations, which also participate into the manifestation
of flatness defects at room temperature. To predict warpage or flatness defects, the chemical shrinkage
strain needs to be precisely determined.

This work proposes an analytical approach dedicated to flatness prediction of multilayer composites
taking into account shrinkage strain generated during processing. Our contribution also aims at
predicting and analyzing stable and unstable solutions of flatness defects. The proposed analytical
model, developed for any multilayer composite, is obtained from an extension of the classical laminate
theory (CLT). Geometrical nonlinearities are also accounted for. The analytical approach relies on
trial fields for strain and displacements, and on total potential energy minimization. The theory
is applied to a bilayer laminate consisting of a cured layer made of epoxy/glass fiber composite
and of a pre-impregnated one of the same material. Results obtained from the analytical modeling
are validated by numerical simulations. Influence of material parameters is also analyzed for this
configuration. Finally, from experimental measurements of curvatures on bilayer composite samples,
an inverse method and a minimization procedure, the proposed analytical development provides an
estimate of the effective shrinkage strain, which is responsible for the flatness defect. Illustration of
this strategy is exemplified by considering a bilayer composite manufactured for this work.

Keywords: Effective shrinkage strain, Flatness defects, Variational principle, Analytical model-
ing, FE simulation

1 Introduction

Because of differences in thermo-mechanical properties between layers, a multimaterial and multilayer
assembly tends to bend in order to equilibrate residual stresses induced for instance during the manufac-
turing process. When the multilayer composite is made of some pre-impregnated laminates (i.e. partially
cured matrix), the heating at sufficiently high temperature induces a permanent deformation (chemical

∗Corresponding author.

E-mail address: norman.mathieu@univ-lorraine.fr (N. Mathieu)

1



and thermal shrinkages) which needs to be accomodated by the elastic strains. A flatness defect thus
emerges in the composite structure. The goal for manufacturing industries is to minimize the warpage
development after processing but also in service operation. This optimization is strongly related to the
chemical and thermal shrinkages. The combined effect of both contributions will be examined in this
paper by referring to the effective shrinkage strain as the permanent strain resulting from the curing step.
This feature has to be precisely determined.

As an application of our analysis, attention is paid in this paper on structures with dimensions and
constituent materials used in the Printed Circuit Board (PCB) industry. For microelectronics, predicting
flatness defects is an important issue. A PCB consists of an assembly of conductive thin copper tracks,
embedded in insulating layers (typically made of epoxy resin or polyimide composite reinforced with glass
fibers). For some specific applications such as aeronautics, aerospace industry or military sector, Printed
Circuit Boards are subjected to severe conditions during their manufacturing process and their service life.

The manufacturing process of PCBs has received particular attention since flatness defects usually
emerge during this stage and pertain during subsequent thermal loadings. It may contain more than 70
steps, depending on the complexity of the multilayer structure (see Schuerink et al., 2013). One of the
key step, which is illustrated in Fig. 1, consists in the assembly of materials of different natures under
thermo-mechanical loading following a four-stage sequence:

1 2 3 4

t (min)

T (◦C)

P0

Tmax

0 t1 t2 t4

P (MPa)chemical

shrinkage

thermal

shrinkage

Troom

t3

Fig. 1 – Schematic time evolution of the imposed temperature (left axis) and pressure (right axis) during manu-
facturing of PCB.

• 1 heating: a pressure P0 (around 2MPa) is imposed and the sample is heated from room temperature
(Troom = 20◦C) to Tmax (around 200◦C);

• 2 curing: the temperature is maintained at Tmax to cure the resin totally. This step leads to an
effective shrinkage strain (permanent deformation at the level of the ply) that is induced by the
curing of the resin and the mechanical interaction with glassfibers;

• 3 cooling: the sample is cooled from Tmax to room temperature (leading to thermal shrinkage);

• 4 demoulding: the pressure is removed at room temperature.

Many authors used the Classical Laminate Theory (CLT ) to determine the final flatness of a multilayer
and multimaterial plate (see Schuerink et al., 2013). Nakagawa and Yokoyama (2012) combined the CLT
with an optimization algorithm in order to find the optimum design of a PCB that minimizes its defor-
mation after reflow process. To go further, Abouhamzeh et al. (2015) proposed a modified CLT model
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to predict the warpage and residual stresses in fiber metal laminates composed of aluminum, epoxy resin
and prepreg layers. In this work, a deformation due to chemical shrinkage was added in the CLT and
the epoxy resin stiffness modulus was assumed to increase during curing. Kravchenko et al. (2016) and
Kravchenko et al. (2017) distinguished two kinds of shrinkage, as also reported in the forming process of
Fig. 1: chemical shrinkage which consists of volume reduction as the result of crosslinking and depends on
the degree of the resin cure; thermal shrinkage which results from cooling. Nawab et al. (2013b) conducted
a literature survey about all techniques used for the characterization of resin effective shrinkage. They
found that the most important issue is to identify the chemical shrinkage of resin without being influenced
by thermal expansion. Among experimental approaches, we may cite Kravchenko et al. (2015) who used
Digital Image Correlation to record in situ stress-free strain fields in a thermosetting polymer submitted
to curing process. This technique allowed to obtain relations between the chemical shrinkage strain and
the dependence of the coefficients of thermal expansion to the degree of cure. Another recent method pro-
posed by Tsai et al. (2019) also relied on in situ measurements using Distributed Optical Sensors (DOS).
The aim was to measure the strain history in pre-impregnated thermoset composites during their curing
process. By coupling experimental data with the laminate theory, the authors identified effective shrinkage
values (−2500µε in the transverse direction against ∼ 0µε in the fiber direction). Note that 1D long fiber
composite was considered. However, only partial determination was obtained since, owing to the DOS
technique, the effective shrinkage (e.g. the combined chemical and thermal shrinkage strains) could only
be captured when the sensor bonds to the epoxy resin (i.e. when the temperature overcomes the glass
transition Tg).

It is also important to stress that for large deformation of the composite, the linear modeling issued
from the CLT is no longer sufficient to evaluate the structure flatness after manufacturing process (see
Cantera et al., 2014). Gigliotti et al. (2004) proved, from a comparison between finite element calculations
and experimental observations, that geometrical nonlinearities have to be accounted for to properly predict
the deformed shape of plates. A so-called Extended Classical Lamination Theory (ECLT), based on the
total potential energy minimization, was then developed to find the nonlinear deformation of a mutlilayer
plate submitted to thermal loading (see the pioneering work of Hyer, 1981). Several authors followed this
way for estimating the final plate curvature and discuss the stability of solutions for manufactured samples
having different stacking sequences (e.g. see Eckstein et al., 2013; Nawab et al., 2013a). Furthermore, mul-
tistability was found to occur for particular laminate designs. For instance, thermally actuated morphing
structures were constructed by Eckstein et al. (2014). They were considering initially curved composite
laminates with temperature dependent properties. In their approach, thermal gradient through thickness
was accounted for. They showed a complex multistability behavior which could not have been obtained
with initially flat laminates.

A second route of flatness investigation has recoursed to Finite Element analyses to model the behavior
of laminates. Li et al. (2014) predicted unstable shapes for hybrid symmetric lay-up laminates. To predict
stable shape, a buckling step followed by a simulation with initial imperfection (deduced from buckling
modes) were implemented by the authors. Lee et al. (2017) highlighted the importance of considering both
orthotropic elastic constitutive law and anisotropic thermal expansion (with a non-zero shear coefficient)
to predict thin package substrate deformation and diagonal warpage which usually emerges as an unsta-
ble solution in CLT approaches. Macurova et al. (2015) predicted stresses and deflection of PCBs after
embedding process. Groh and Pirrera (2018) included Finite Element discretization into numerical con-
tinuation algorithms to study the multistability of [0◦/90◦] laminate during its cool-down. Their approach
was termed extreme mechanics in the sense that the use of arc-length techniques provides bifurcation
detection and several branch-switchings showing possible snapping behavior between five different modes.
Kuang et al. (2021) recently investigated the stability of cylindrical laminated shells. They were subjected
to a central point load, with free and hinged edges. The stability of various configurations (symmetric and
antisymmetric structures) was captured by an asymptotic numerical method.

In this paper, we restrict our attention to flatness defects generated during the manufacturing process
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described in Fig. 1. Layers made of the same material, only differ in the initial resin-state. Some layers are
cured prior to the manufacturing process while others are pre-impregnated materials. For those plies, the
polymerization at elevated temperature leads to permanent deformation. The observed effective shrinkage
strain is the result of the interaction between the B-stage resin cure and the elastic fiberglass. Flatness
defects that may develop in composite laminates due to heterogeneity in material properties (i.e. different
coefficients of thermal expansion and/or elastic properties), are thus not considered in the present work
but could be addressed in a future work.

The paper is organized as follows. In section 2, the theory based on Extended Classical Lamination
Theory is developed for thin multilayer composites submitted to thermal loading. Section 3 presents a
parametric study where the effects of orthotropic elastic stiffness and of effective shrinkage strain tensors
are examined in terms of curvatures and maximum displacement. The occurrence of stable and unstable
solutions is observed. In section 4, the theoretical approach is used to identify effective shrinkage strains
from experimental tests conducted on bilayer samples. The capability of the modeling to predict final sta-
ble shapes is discussed. Path-following algorithms were implemented to analyse the complex multistability
of the bilayer laminate. One of the main outcome of the proposed analytical approach is a new straightfor-
ward experimental method to identify effective shrinkage strains without having recourse to sophisticated
devices. Finally, the analysis developed in this paper furnishes a fundamental tool to study flatness defects
and to investigate stable or unstable solutions. The proposed work may help PCB designers to anticipate
defect development.

The proposed methodology can be transposed to any industrial domains where large composite struc-
tures are frequently used and when the warpage control is crucial.

2 Analytical modeling

2.1 Potential energy minimization

An analytical modeling is proposed to predict the shape of a thin multilayer composite structure under
general thermal loading. Illustration will be conducted with the one of Fig. 1. Cured and pre-impregnated
layers are present in the stack-up sequence. The approach is based on the minimization of the total
potential energy developed in Hyer (1981) (see also Dano and Hyer, 2002; Jun and Hong, 1990; Mattioni
et al., 2009), and is extended by accounting for the effect of permanent effective shrinkage strain.

Consider a thin rectangular laminate (length L, width l and thickness h, with h/L < h/l << 1) in
which the plane z = 0 coincides with the midplane of the plate. The cartesian coordinates of any material
point in the plate are (x, y, z) with −L

2
≤ x ≤ L

2
, − l

2
≤ y ≤ l

2
, −h

2
≤ z ≤ h

2
. The structure is composed

of n layers. The reduced stiffness tensor, which varies from one layer to another, is denoted by Q and the

following vector notation is introduced (see Reddy, 2004, for notation details):

ε =







εxx

εyy

γxy





 , εth =







εth
xx

εth
yy

γth
xy





 and Q =







Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66





 (1)

with ε is the total strain. Due to cure of the resin in some plies and thermal loading, the effective thermal
strain in our analysis εth is decomposed in two parts:

εth = ∆Tα + εsh (2)

where the first term on the right hand side is induced by the temperature variation ∆T = T −T0, T0 being
a reference temperature. The second one mimics the consequence of the volumetric contraction of the
resin due to cure and the associated mechanical interaction with glassfibers (denoted as effective shrinkage
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strain εsh). α is the reduced tensor of thermal expansion coefficients. When the assembly is composed
of layers that have all been cured prior to the forming process, εsh vanishes and the modeling reduces to
approaches found in the literature, see Hyer (1981). Note also that if some layers have not been cured,
the effective thermal strain tensor may vary from one layer to another, even if all layers exhibit identical
coefficients of thermal expansion.

The total potential energy of the composite structure under plane stress condition subjected to a thermal
loading is written as:

Π =
∫ L/2

−L/2

∫ l/2

−l/2

∫ h/2

−h/2

(

1

2
ε · Q · ε − ε · Q · εth

)

dzdydx, (3)

with · being the contracted product.
We assume that strains are linear through the thickness and geometrical nonlinearities are accounted

for so that, using vector notation, the total strain is written as:

ε (x, y, z) = ε0 (x, y) + zκ (x, y) (4)

with ε0 =







ε0xx

ε0yy

γ0xy





 =











∂u0

∂x
+ 1

2

(

∂w0

∂x

)2

∂v0

∂y
+ 1

2

(

∂w0

∂y

)2

∂u0

∂y
+ ∂v0

∂x
+ ∂w0

∂x
∂w0

∂y











and κ =







κxx

κyy

κxy





 =









−∂2w0

∂x2

−∂2w0

∂y2

−2∂2w0

∂x∂y









. (5)

In Eq. (5), u0, v0, w0 denote the midplane displacements, ε0xx
, ε0yy

, γ0xy
the membrane strains and κxx,

κyy, κxy are the curvatures. For ease of reading the dependance in x and y will be intentionally omitted
in the following.

Combining Eqs (3-5), the effective potential energy is expressed in terms of membrane strains ε0 and
curvatures κ:

Π =
∫ L/2

−L/2

∫ l/2

−l/2

∫ h/2

−h/2

[

1

2

(

ε0 · Q · ε0 + 2zε0 · Q · κ + z2κ · Q · κ
)

−

(

ε0 · Q · εth + zκ · Q · εth
)

]

dzdydx.

(6)

Each layer is assumed homogeneous. So the through-thickness integration is replaced by a summation
over the number of layers (see elsewhere in any handbook for the CLT ). The current label of each individual
layer is k (1 ≤ k ≤ n). The global extensional stiffness tensor A, the bending-extensional coupling stiffness
tensor B and the bending stiffness tensor D are classically defined as:

A =
n
∑

k=1

Q
(k)

(zk+1 − zk) , B =
n
∑

k=1

Q
(k) zk+1

2 − zk
2

2
, D =

n
∑

k=1

Q
(k) zk+1

3 − zk
3

3
(7)

with Q
(k)

standing for the reduced stiffness tensor of the kth layer. zk and zk+1 are the positions of the

bottom and top surfaces of layer k.
The thermal forces N th and thermal moments M th per unit surface are given by:

N th =
n
∑

k=1

Q
(k)

· εth(k)
(zk+1 − zk) and M th =

n
∑

k=1

Q
(k)

· εth(k) zk+1
2 − zk

2

2
(8)

with εth(k)
being the global thermal strain related to the kth layer, defined in Eq. (2).

Combining Eqs (6-8), the total potential energy can be written in the condensed form:

Π =
∫ L/2

−L/2

∫ l/2

−l/2





1

2

(

ε0

κ

)T (

A B
B D

)(

ε0

κ

)

−

(

ε0

κ

)T (

N th

M th

)



 dydx. (9)
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For a given composite structure and material parameters, the unknown vectors ε0 and κ are determined
from the minimization of the total potential energy. Since the solution cannot be obtained in a closed-
form expression, a Rayleigh-Ritz method is adopted in the present work, see also Hyer (1981) or Mattioni
et al. (2009). More specifically, the dependency of ε0 and κ upon the position (x, y) is approximated by a
truncated series expansion and the unknown quantities ε0 and κ are expressed in terms of m independent
parameters pi (i = 1, . . . , m):

ε0 = ε0(x, y, p1, p2, ..., pm) and κ = κ(x, y, p1, p2, ..., pm). (10)

Note that the order of the truncated series and the number of independent parameters are not linked.
Adopting the form (10) for the six unknown components (ε0xx

, ε0yy
, γ0xy

of ε0 and κxx, κyy, κxy of κ),
the minimization of Π leads to the following necessary conditions:

∂Π

∂pi

= 0 for i = 1, . . . , m (11)

which bring a system of m nonlinear equations that need to be satisfied simultaneously. Solving (11) pro-
vides the identification of parameters pi (i = 1, . . . , m) which in turns allows to determine each component
of ε0 and κ from Eq. (10). Note that Eq. (11) can define a critical point which may lead to a stable
(minimum) or unstable (maximum) solution. A solution is said to be stable if the following condition on
the Hessian matrix is fulfilled:

(

∂2Π

∂pi∂pj

)

1≤i,j≤m

is definite positive. (12)

The modeling developed here is similar to some approaches of the literature where minimization of the
potential energy is involved and Eqs (9,11-12) can be found for instance in Mattioni et al. (2009). How-
ever, to the best of our knowkledge, none of them has considered the effect of effective shrinkage strain
(permanent deformation due to curing) on the occurrence of flatness defects and on the loss of stability.

2.2 Polynomial approximation of displacements and strains

Various approaches can be found in the literature where polynomial functions were used to expand either
midplane displacements, or membrane strains and curvatures, or combined displacements and strains.

• In the approach of Hyer (1981), the midplane displacements u0, v0, w0 were expressed in terms of
four independent parameters:

u0 = cx −
a2x3

6
−

ab

4
xy2 , v0 = dy −

b2y3

6
−

ab

4
x2y , w0 =

1

2

(

ax2 + by2
)

. (13)

Using Eq. (5), the membrane strains and curvatures are derived:

ε0xx
= c −

ab

4
y2 , ε0yy

= d −
ab

4
x2 , γ0xy

= 0 ,

κxx = −a , κyy = −b , κxy = 0. (14)

In Hyer (1981), four parameters are representing the six components of the mid-plane strain and
of the curvature. With this simple model, the shear strain γ0xy

and the shear curvature κxy are
vanished.
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• In order to introduce non-zero shear strain in the x − y plane, Jun and Hong (1990) proposed a six
parameter formulation for the midplane displacements where:

u0 = cx −
a2x3

6
− exy2 , v0 = dy −

b2y3

6
− fx2y , w0 =

1

2

(

ax2 + by2
)

. (15)

Using Eq. (5), one obtains:

ε0xx
= c − ey2 , ε0yy

= d − fx2 , γ0xy
= −2

(

e + f −
ab

2

)

xy ,

κxx = −a , κyy = −b , κxy = 0. (16)

The approach of Jun and Hong (1990) reduces to the modeling proposed by Hyer (1981) when
e = f = ab/4. Note also that with the proposed trial displacement fields, the predicted curvature
κxy is still zero. Clearly, some configuration of unsymmetric composites present a non vanishing
shear curvature. Such extensions were proposed in the literature.

• From another point of view, Dano and Hyer (2002) proposed a quadratic expansion of the membrane
strains ε0xx

, ε0yy
and of the vertical displacement w0:

ε0xx
= εx00

+ εx20
x2 + εx02

y2 + εx11
xy , ε0yy

= εy00
+ εy20

x2 + εy02
y2 + εy11

xy, (17)

w0 = w20x
2 + w02y

2 + w11xy. (18)

Based on the trial fields (18) and the definition of ε0 in Eq. (5), the in-plane displacements are
found:

u0 =
∫



ε0xx
−

1

2

(

∂w0

∂x

)2


 dx + u01y + u03y
3, (19)

v0 =
∫



ε0yy
−

1

2

(

∂w0

∂y

)2


 dy + v10x + v30x
3, (20)

Dano and Hyer (2002) considered that the in-plane displacements can be well reproduced by a
polynomial expression of order three. The shear strain is obtained from Eq. (5-19-20). This model
involves 14 independent parameters since the condition u01 = v10 is imposed to avoid rigid-body
rotation. From the proposed kinematic description of the composite plate, the curvatures are constant
and given by:

κxx = −2w20 , κyy = −2w02 , κxy = −2w11. (21)

By contrast with the modeling of Jun and Hong (1990), the modification introduced by Dano and
Hyer (2002) leads to a shear curvature κxy which is no longer null.

• Mattioni et al. (2009) complemented the work of Dano and Hyer (2002) by a further enrichment of
the formulation of the out-of-plane displacement for the midplane surface w0:

w0 = w00 + w10x + w01y + w20x
2 + w02y

2 + w11xy + w21x
2y + w12xy2 + w22x

2y2. (22)

From a mathematical point of view, w0 is now searched as a product of two parabolas with axes
lying along the principal directions. The in-plane membrane strains are still given by Eq. (17). This
approach involves 20 independent parameters. In practice, w00 is set to 0 to reflect that the center of
the plate is kept fixed during the loading. In this way, rigid-body translation no more exists. With
such a formulation, the curvatures are varying in the plane according to:

κxx = −2
(

w20 + w21y + w22y
2
)

, κyy = −2
(

w02 + w12x + w22x
2
)

,

κxy = −2 (w11 + 2w12y + 2w21x + 4w22xy) . (23)
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To compare curvature predictions given by Mattioni et al. (2009) and the three previous models
adopted (Hyer (1981), Jun and Hong (1990) and Dano and Hyer (2002)), it is of interest to evaluate

the average curvatures κ̂ = 1
L×l

∫ L/2
−L/2

∫ l/2
−l/2 κ (x, y) dydx. From relationship (23), one obtains:

κ̂xx = −2w20 −
w22

6
l2 , κ̂yy = −2w02 −

w22

6
L2 , κ̂xy = −2w11. (24)

The parameter labels in Eqs (13-24) are the original labels provided by the corresponding authors Hyer
(1981), Jun and Hong (1990), Dano and Hyer (2002) and Mattioni et al. (2009). In the following, to be
consistent with the notation of section 2.1, they will be identified as pi.

Note the progressive enrichment in the description of the deformation from Hyer (1981) to Mattioni
et al. (2009). While in Hyer (1981) the shear strain is set to zero, it is bilinear in Jun and Hong (1990) and
of a quadratic form in Dano and Hyer (2002) and Mattioni et al. (2009). In addition, curvatures κxx and
κyy are homogeneous in Hyer (1981), Jun and Hong (1990) and Dano and Hyer (2002), whereas it varies in
the plane when the modeling of Mattioni et al. (2009) is adopted. In particular, regarding curvature κxy,
the approach of Mattioni et al. (2009) allows to account for the development of inhomogeneous curvature
that may occur for some specific cases (e.g. a moment applied to a plate edge generates local variation of
curvature). It provides also the ability to consider general boundary conditions (not only free surfaces) or
compound plates i.e. different stacking sequences joined side by side.

Obviously, the degree of complexity of the solving procedure increases as the number of parameters
raises. If one can easily solve Eq. (11) up to 14 independent parameters, using tools available in numerical
softwares (e.g. Matlab here or Mathematica in Dano and Hyer, 2002), the 20 parameter model needs ad-
vanced numerical strategies to capture the solution. The latter is obtained through a procedure combining
arc-length method and deflation technique. Appendix A provides details of various procedures we have
implemented to identify parameters pi (i = 1, . . . , m) with m = 4, 6, 14 or 20. In addition, a validation
of the theoretical approach and solving procedure is proposed in Appendix B where results calculated
with the model of Mattioni et al. (2009) are compared against finite element simulations obtained using
Abaqus/Standard.

In our work, the four sets of parameters involved in the polynomial interpolations have been considered
to predict the plate deflection due to effective thermal strain and more specifically the role of shrinkage
strain. The following section compares results obtained from the above cited approaches. They will be
referred to as 4p-model, 6p-model, 14p-model and 20p-model for the model of Hyer (1981) (Eqs 13-14), Jun
and Hong (1990) (Eqs 15-16), Dano and Hyer (2002) (Eqs 17-18) and Mattioni et al. (2009) (Eqs 17,22-23)
respectively.

2.3 Effect of the enrichment in the polynomial kinematic trial fields

The influence of shrinkage process on the final flatness of manufactured thin multilayer plates is explored in
this section. The adopted configuration consists in a bilayer rectangular plate of initial length L = 470mm,
width l = 300mm and thickness h = 0.6mm, as displayed in Fig. 2. The bottom and top layers, made of the
same material, differ from their initial state, the first one being already cured prior to the manufacturing
process.

The two layers have the same thickness (t = 0.3mm). The constituents of the bilayer structure have an
orthotropic elastic behavior. The stacking of the assembly is [0◦/0◦] (no misorientation between the two
layers). As we consider the manufacturing process described in Fig. 1, the sole permanent deformation
originates from the curing at Tmax. As the two layers have the same in-plane coefficients of thermal
expansion, it appears that the four-stage process does not need to be accounted for and the analysis can
be restricted to a single step of virtual cure where instantaneous shrinkage is admitted to occur at room
temperature. This assumption has been verified with numerical simulations (results not shown here) where
the simplified virtual cure approach has led to the same final state in terms of stresses, strains and shape
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y

Fig. 2 – Thin bilayer composite. The geometrical configuration adopted in the present work is : L = 470mm,
l = 300mm, h = 0.6mm.

as the one obtained considering the complete four-stage process. Since virtual cure will be considered,
only values of Young’s moduli, Poisson’s ratios and shear moduli at room temperature are relevant for
this study. Table 1 provides material parameters adopted in this work, which are representative of the
configuration tested in section 5. Material characterization was performed on an electrodynamic tensile
machine using a contactless strain measurement technique(DIC), see Girard et al. (2018) for more details.
The out-of-plane properties are not needed in the present CLT based approach but have been used in Finite
Element simulations. They were obtained following the numerical homogenization procedure developed in
Girard et al. (2018).

Tab. 1 – In-plane elastic properties of the fiberglass reinforced epoxy laminate at room temperature (20◦C).

Ex [GPa] Ey [GPa] νxy Gxy[GPa]
20.20 22.71 0.160 4.75

The bilayer plate is thus submitted to a virtual cure at T = T0 = Troom so ∆T = 0◦C in Eq. (2) and
the effective thermal strain reduces to the effective shrinkage strain. Since only the top layer is uncured
prior to the loading, the effective thermal strain is expressed as:

εth = εsh =

















0
0
0





 for −
h

2
≤ z ≤ 0 ;







εsh
xx

εsh
yy

γsh
xy





 for 0 ≤ z ≤
h

2











. (25)

In this section, calculations are performed with εsh
xx = εsh

yy = εsh, γsh
xy = 0 and εsh is varying in the range

[−10−4, 0]. Depending on the adopted modeling and prescribed value of εsh, the bilayer composite can
deform into one of the five shapes illustrated in Fig. 3 (the notations S1 to S5 are introduced).

Figs 3(a-b-c) display the deformed shape with κxy = 0. The vertical displacement w0 is maximum
at the four corners. More specifically, Fig. 3(a) depicts situations where |κxx| ≃ |κyy| while Fig. 3(b)
(respectively Fig. 3(c)) is related to cases where |κxx

κyy

| ≫ 1 (respectively |κxx

κyy

| ≪ 1). To some extent, S2

of Fig. 3(b) and S3 of Fig. 3(c) can be seen as ’orthogonal’ shapes. Figs 3(d-e) reflect cases where the
maximal vertical displacement is located at two opposite corners with κxy > 0 in Fig. 3(d), κxy < 0 in
Fig. 3(e). Note that shapes S4 and S5 cannot be predicted by the 4p-model and the 6p-model for which
κxy = 0 by construction.

Fig. 4 shows the evolution of curvatures κxx, κyy and κxy as a function of |εsh| calculated from the four
approaches presented in section 2.2. For the 20p-model, average values given in Eq.(24) are considered.
Stable solutions (i.e. minimum of total potential energy) are represented with solid lines whereas unstable
solutions (i.e. maximum) are displayed with dashed lines. It first appears from Fig. 4(a) to Fig. 4(g) that
results are not depending on the adopted modeling route for values of |εsh| up to 10−5. In that range, there
is only one (stable) solution with κxx/κyy ≃ 1 so the deformed configuration corresponds to shape S1 as
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Fig. 3 – Deformed shapes of the bilayer plate at the end of the virtual cure process when εsh
xx = εsh

yy = εsh = −10−4,

γsh
xy = 0. Material parameters are provided in Table 1. The plate dimension is L = 470mm, l = 300mm,

h = 0.6mm. The 20p-model is used.

depicted in Fig. 3(a). When |εsh| is raised, κxx is shown to increase in magnitude (κxx being negative),
while κxy = 0.

As |εsh| is increased, other shapes can emerge depending on the adopted modeling strategy. Let us first
concentrate on the 4p-model, see Figs 4(a) and 4(b). Following the continuous evolution starting from the
lowest value of |εsh|, the curvature κxx is negative and tends to increase in magnitude until |εsh| reaches
approximately 2 10−5. For larger values of |εsh|, the curvature decreases in magnitude to asymptotically
reach a zero value for large shrinkage strain. This reflects that the plate tends to adopt an alternative shape
once |εsh| is larger than a critical value. In fact, one observes that three different shapes are obtained for
a value of |εsh| around 3 10−5. Two shapes (S2 and S3) are stable solutions for which Eq. (12) is satisfied,
while the shape (S1) is unstable. Note that this last solution was stable for smaller values of |εsh|.

Figs 4(a) and 4(b) reveal that the 6p-model provides similar solutions in terms of numbers, shapes and
stability. The main differences lie in (i) the critical value of εsh where ∂κxx/∂|εsh| = 0 (|εsh| ≃ 2 10−5 for
the 4p-model and |εsh| = 3 10−5 for the 6p-model) and (ii) the value of εsh from which several solutions
emerge (|εsh| = 3 10−5 for the 4p-model and |εsh| = 5 10−5 for the 6p-model).

An interesting feature induced by a further enrichment in the modeling is illustrated in figures 4(c)-4(d)
by comparing the predictions of the 6p-model and the 14p-model. Due to non vanishing shear curvature
for the 14p-model, two additional shapes are found when |εsh| is close to the critical value |εsh| = 3 10−5.
These shapes, corresponding to S4 and S5 of Fig. 3, are defined by an identical value of κxx, a ratio
κxx/κyy close to unity but two opposite values for κxy, see Fig 4(g). Obviously, these solutions do not
exist in 6p-model where κxy = 0 is imposed by construction of the model. More important is that these
’two symmetric’ solutions (in the sense that wS4

0 (x, y) = wS5
0 (−x, y) and wS4

0 (x, y) = wS5
0 (x, −y)) are the

unique stable solutions among the various possible shapes predicted by the approach. As a consequence,
the 14p-model predicts a unique family of stable solutions (if one considers S4 and S5 as similar shapes) for
the whole range of shrinkage values tested in the present work. Figs 4(e-f-g) compare results obtained with
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Fig. 4 – Evolution of curvatures as a function of the shrinkage strain |εsh|. Note that the average curvature
predicted by the 20p-model is displayed in Figs. e-g). Material parameters are provided in Table 1.
Dimensions of the bilayer plate are those of Fig. 3.
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(d) Shear curvature κxy for shape S5.
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Fig. 5 – Variation of curvatures in the plate (obtained by 20p-model). Stable solutions are represented in figs.(a)
and (b) with solid lines whereas unstable solutions are displayed with dashed lines. The effective shrinkage
strain is set to εsh = −10−4. The plate dimensions are those of Fig. 3.

the 14p-model and 20p-model in terms of curvatures. One notices very similar predictions. The only major
difference lies in the threshold value of |εsh| at which unstable shapes S1 and S2 occur: |εsh| = 5 10−5 for
the 14p-model against |εsh| = 5.6 10−5 for the 20p-model.

With the 20p-model, more information on the curvature can be obtained as the displacement description
includes higher order terms. The variation of curvature along the plate length and width is displayed in
Fig. 5. Evaluation is provided by the 14p and 20p-models for the configuration of Fig. 3 with |εsh| = 10−4.
As previously shown in Fig. 4, stable solutions S4 and S5 obtained from the two models coincide when
the average curvatures κ̂xx, κ̂yy and κ̂xy are considered, see Eq. (24). This founds explanation in Figs 5(a)
and 5(b) where the local curvatures for the stable solutions predicted by the 20p-model are shown to slightly
vary within the plate. By contrast, unstable solutions S1, S2 and S3 exhibit heterogeneous curvatures,
with a particular marked effect for the shape S3. In that case, κxx ≃ −10−4mm−1 for the 14p-model, close
to the value κxx(y = 0) predicted by the 20p-model at the plate center. For the same case, the amplitude
of the curvature is twice larger at the edges with κxx(y = ± l

2
) ≃ −2 10−4mm−1. Similar observations are

made for κyy in Fig. 5(b) with still a strong heterogeneity (even slightly larger). Recall that the hypothesis
of constant curvatures has been removed in the 20p-model developed by Mattioni et al. (2009) to account
for other boundary conditions than free edges. Therefore, if the focus is only made on the stable solution
for the deformed plate, 20p-model does not bring a real added value for the resolution of our problem
where edges are stress free. To be convinced, Figs 5(c) and 5(d) present a contour plot of the shear
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curvature κxy through the plate for shapes S4 and S5. Recall that these shapes are symmetrical with
wS4

0 (x, y) = wS5
0 (−x, y) which implies that κS4

xy (x, y) = −κS5
xy (−x, y). Similarly, wS4

0 (x, y) = wS5
0 (x, −y)

implies that κS4
xy (x, y) = −κS5

xy (x, −y). It appears that the average shear curvature κ̂xy (±3.52 10−4mm−1)
is a good approximation of the local curvature at the center (saddle point) but also over a large area of
the plate. Iso-curvature contours, shown as solid lines, confirm that the maximum deviation to the mean
is observed in the corners of the plate. Nevertheless, the deviation remains limited with less than 10%
difference between the value at the corners and the average value κ̂xy.

Fig. 6 presents the maximal vertical displacement of the plate, denoted by wmax
0 , as a function of |εsh|.
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Fig. 6 – Evolution of maximal vertical displacement as a function of shrinkage strain |εsh|. Stable solutions are
represented with solid lines whereas unstable solutions are displayed with dashed lines.

Predictions of the four models are compared. For all possible solutions S1 to S5, the maximal value is
located at the plate corners as illustrated in Fig. 3. Configurations S4 and S5 which stand for symmetric
solutions, are superimposed in Fig. 6 and display the highest value of wmax

0 (e.g. 3 − 4 times greater than
the one of shape S3). It also appears from Fig. 6 that, for a given shape S2 to S5, wmax

0 is less dependent
on the chosen approach when |εsh| becomes large. Note that this observation does not hold for the shape
S1 which presents enhanced deflection when the 20p-model is adopted, see Fig. 6(c). Fig. 6 confirms that
the 14p-model is sufficient to describe the stable solution in terms of maximum deflection of the plate, at
least with our adopted geometrical configuration.

Finally, this section is complemented by results obtained with the 20p-model up to a large shrinkage
strain of |εsh| = 5 10−4. Fig. 7 shows that no additional deformed configuration appears at least for
|εsh| < 5 10−4. In addition, for the stable solution, the three curvatures and the maximum displacement
evolve linearly with the magnitude of |εsh| in the range [5 10−5; 5 10−4]. This result is of great interest
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and is one of the main outcome of the paper. Indeed, for this stable configuration, the measurement of
the curvature can lead to a direct estimate of the effective shrinkage strain.
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Fig. 7 – Evolution of average curvatures a) κ̂xx, b) κ̂yy, c) κ̂xy (see Eq. 24) and d) maximal displacement for
the 20p-model as a function of shrinkage strain. The range of variation of |εsh| is

[

0; 5 10−4
]

. Stable
solutions are represented with solid lines whereas unstable solutions are displayed with dashed lines.

3 Influence of material parameters

In the previous section, analytical results were obtained considering the geometrical configuration of Fig. 2
with layer orientations [0◦/0◦] and given material parameters: elastic moduli of Table 1 and effective
shrinkage strains εsh

xx = εsh
yy = εsh, γsh

xy = 0. We have seen previously that shapes S4 and S5 present a
non-vanishing shear curvature together with principal curvatures of similar amplitude. We propose to
investigate first the role of elastic orthotropy on curvature predictions. In a second part, curvatures are
evaluated when the curing process induces different directional shrinkage strains. Only the 20p-model will
be considered in this section.

3.1 Influence of elastic stiffness ratio (Ex/Ey)

The stiffness ratio Ex/Ey is varied in Fig. 8 between 0.5 and 2.0 to observe the influence of elastic
orthotropy on the plate deflection (while holding Ex = 20.2GPa). Results of section 2.3 (Ex/Ey = 0.89)
are reported on graphs using magenta dots. In this section, we keep |εsh

xx| = |εsh
yy| = 10−4.

Fig. 8 presents the evolution of average curvatures a) κ̂xx, b) κ̂yy, c) κ̂xy and d) maximal vertical
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Fig. 8 – Evolution of curvatures a) κ̂xx, b) κ̂yy, c) κ̂xy and d) maximal vertical displacement as a function of
the elastic orthotropy ratio Ex/Ey for |εsh

xx| = |εsh
yy| = 10−4. In Figs a-c), dashed lines correspond to

the average value of the curvature for an unstable solution. Stable solution is visualized with a solid
line. Average curvatures are represented by a thick blue line while the minimal and maximal curvature
values are displayed with thin black lines. Magenta dots are identifying the case Ex/Ey = 0.89 studied
in section 2.3. In all calculations, Ex = 20.20GPa.

displacement wmax
0 in terms of the stiffness ratio Ex/Ey. Clearly, one observes that the number of solutions

evolves when Ex/Ey is varied. Four domains can be identified. In domain 1 of Fig. 8, when Ex/Ey < 0.63,
the unstable shape S3 (with κ̂xy = 0) and stable shapes S4 (κ̂xy > 0) and S5 (κ̂xy < 0) are present. Note
that S4 and S5 configurations have same κ̂xx, κ̂yy and wmax

0 so only one blue solid line is visible in figs 8 a),
b) and d). When Ex/Ey = 0.63 (i.e. at the frontier between two domains), the additional unstable solution
S2 appears which in turns gives rise to the unstable shape S1 as Ex/Ey becomes larger than 0.63. In

region 2 , where 0.63 < Ex/Ey < 1.70, five solutions exist: two of them are stable with κ̂xy 6= 0 and
three are unstable with κ̂xy = 0. These various stable and unstable solutions have been illustrated in the
previous section for the case of Ex/Ey = 0.89. Note that the unstable solution S1 finally merges with

S3 when Ex/Ey = 1.70. The third domain 3 (Ex/Ey > 1.70) exhibits three shapes: unstable shape
S2 with κ̂xy = 0 and two stable solutions S4 and S5 with κ̂xy 6= 0. If the elastic stiffness ratio keeps
increasing, the three remaining solutions finally merge when Ex/Ey = 1.89, the lower limit of domain

4 . As an important outcome from the analysis is that a unique stable solution exists for large values of
Ex/Ey: shape S2 or coil set (preponderant curvature κxx, with κxy = 0). It is important to emphasize
that curvatures are gradually evolving with the stiffness ratio so that, in general, mixed shapes (e.g. shape
S3−S4 with κ̂xx << κ̂yy and κ̂xy 6= 0) are likely to occur. Regarding the maximum displacement, one can
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see from Fig. 8(d) that the highest value of wmax
0 is always obtained for stable solutions. In addition, as

observed for curvatures, the evolution of the maximal vertical displacement for unstable solutions shows
two nose points.

Recall that with the 20p-model, all curvatures are depending on the position within the plate, see
Eq. (23). In order to examine the level of heterogeneity developed for the stable solutions, thin black
lines standing for the minimum and maximum values of each curvature within the plate are displayed on
respective graphs. It appears from Fig. 8 that stable solutions provide relatively homogeneous curvatures
for κxx(y) and κyy(x), and a very limited heterogeneity for κxy(x, y). In fact, it is observed that the 14p-
model provides very similar evolutions for the stable solutions over the total range of stiffness ratio tested
here (see Fig. S2 in supplementary material). This result confirms that the 14p-model, which relies on a
constant value of curvatures, is sufficient to describe stable solutions in terms of curvatures and maximum
displacement, at least for the studied configurations.

In order to have a clear view on the evolution of stable solutions over the range of Ex/Ey studied here,
a movie showing the evolution of the shape in terms of Ex/Ey is provided in supplementary material. The
investigation over a larger range of stiffness ratio has revealed that no additional solutions appeared. Note
also that for very small ratio Ex/Ey (domain 1 ) and for very large value of Ex/Ey (domain 4 ), the
curvatures and maximal displacement reach plateau values. This is illustrated in Fig. S1 of supplementary
material. For small and large values of the stiffness ratio, the configuration is representative somehow of
laminates with longitudinal fibers. So the coil set configuration is expected. Nevertheless, it is expected
for real materials that the effective shrinkage strain would be smaller in the direction of large Young’s
modulus.

3.2 Influence of the effective shrinkage ratio (εsh
xx/εsh

yy)

In most laminates used in industry (as in the PCB industry), the size and shape of the fill and warp yarns
are usually different, see for instance Girard et al. (2018). Therefore, the elastic behavior is orthotropic.
Thus, it is mostly that the effective shrinkage strains in the fill or warp direction may differ. We propose
in this section to illustrate the role of the difference in shrinkage strains on the deformed configuration of
the bilayer materials. For that, the ratio εsh

xx/εsh
yy is varied with still εsh

xy = 0. The effective shrinkage strain
in the longitudinal direction is fixed, εsh

xx = −10−4, and the ratio εsh
xx/εsh

yy is varied in the range [0.2, 5]. The
elastic properties of the layers are still given in Table 1, so the stiffness ratio is Ex/Ey = 0.89. Fig. 9 shows
the evolution of the three curvatures and the maximal vertical displacement as a function of the effective
shrinkage ratio. A semi-log plot is proposed.

Five domains for the number of possible solutions can be identified. For effective shrinkage ratio
between 0.79 and 1.26 (domain 3 ), five solutions exist for the plate deflection problem, two being stable
with non-zero shear curvature. This domain includes the case of εsh

xx/εsh
yy = 1 explored in section 2.3

(magenta points). Outside this interval (domains 2 and 4 ), two unstable shapes disappear. If the
shrinkage ratio is lower than 0.79 and keeps decreasing, then the three remaining solutions (two stables
and one unstable) will tend to merge into the crossbow shape S3. This unique configuration exists in

domain 1 when εsh
xx/εsh

yy < 0.52. On the other hand, if the shrinkage ratio is greater than 1.26 and further

increases, a coil set (shape S2) will emerge and becomes the unique possible solution in the domain 5
when εsh

xx/εsh
yy > 2.11. Of particular note from Fig. 9 is the high sensitivity of κ̂xx and κ̂xy to a slight

variation in the shrinkage ratio near the frontier between domains 1 and 2 . This implies that the
final shape of two almost identical plates, i.e. made of materials exhibiting a small contrast in terms of
effective shrinkage ratio, may reveal relatively marked differences. Recall also that mixed shapes may exist
in a region close to boundaries of various domains where the switching from one shape to another one
is occurring. The dependence of the number of unstable solutions on the effective shrinkage ratio is also
reflected in Fig. 9(d) showing the evolution of wmax

0 . Again, the largest maximal vertical displacement is
found for the stable solution.
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Fig. 9 – Evolution of curvatures a) κ̂xx, b) κ̂yy, c) κ̂xy and d) maximal vertical displacement as a function of
effective shrinkage strain ratio εsh

xx/εsh
yy for |εsh

xx| = 10−4 (semi-log scale). Results are obtained considering
the 20p-model for which the average values of curvatures are in blue line. Magenta points are identifying
the case εsh

xx = εsh
yy studied in section 2.3.

It has been checked that the level of curvature heterogeneity for the stable solutions is still consistent
with trends observed in Fig. 8. Stable solutions have relatively homogeneous curvatures for κxx(y) and
κyy(x), and a very limited fluctuation for κxy(x, y) (results not presented here).

4 Identification of effective shrinkage strains

As a practical application, the theoretical modeling is used to identify in-plane effective shrinkage strains
for a bilayer laminate made of materials used in the PCB industry. Such information is missing in the
literature and so the prediction of the PCB warpage could be improved with the proposed work. In this
section, experimental data are first presented. A minimization procedure is next introduced.

4.1 Bilayer samples and experimental deflection

Four bilayer composite structures following the configuration of Fig. 2 were manufactured according to
the process described in Fig. 1. The two layers are made of epoxy resin reinforced with woven glass
fibers. One layer is already cured and the second one is still in a pre-impregnated stage (the resin being
in B-stage). As reported by Wijskamp et al. (2003), this elemental configuration is found to be a good
testing structure to accurately estimate the effective shrinkage caused by the polymerisation of the resin
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at elevated temperature.
After processing, all plates exhibited at room temperature similar deformation illustrated in Fig. 10.

More specifically, two specimens, labeled N o1 and N o3 in the following, deformed into the shape S4
(κxy > 0) and two others, N o2 and N o4, were deflecting according to the shape S5 (κxy < 0). Experimental
configurations, where the maximal vertical displacement is located at two opposite corners, correspond to
stable solutions predicted by the analytical approach (with the 14p-model and 20p-model). As a matter
of fact, 4p- and 6p-models, for which the shear curvature is zero, are not able to predict experimental
observations.

(a) (b)

Fig. 10 – View of a deformed bilayer sample (specimen No1). The maximum deflection (around 15mm for this
specimen) is located at two opposite corners. The specific sample presents a S4 shape.

The deflection of each specimen was assessed with a Vic3D measurement system (digital image cor-
relation using a pair of stereo-mounted cameras) after preparation of a speckle pattern made of a spray
paint. Samples were observed in an upright position and the spatial position of each material point was
measured with respect to a reference point (RP) located at the plate center, see Fig. 11.

Experimental data for each sample reduce to a point cloud which is approximated by the second order
polynomial function in x and y of the form proposed by Mattioni et al. (2009), see Eq. (22). Fig. 12
illustrates the accuracy of the approximations for samples N o1 and N o2 with corresponding coefficients of
determination R2 close to one (see Table 2).

Table 2 contains, for all specimens, average curvatures deduced from polynomial approximations of
the deformed shape. One notices that the four samples present almost same curvatures along x and
y with κ̂xx being negligible with respect to the others and κ̂yy ≃ −10−3 mm−1. Table 2 also reveals a
discrepancy in the shear curvature κ̂xy with an amplitude almost three times higher for specimen N o4 when
compared to specimen N o3. One would expect that samples would reveal closer similarities. However,
one should also note that even if all samples are identical in their composition and have followed the
same manufacturing process, some small differences may exist at various scales, which in turn may lead to
different sets of effective shrinkage strains εsh

xx and εsh
yy. These differences are believed to be at the origin

of the measurement mismatch between shear curvatures. Indeed, in Fig. 9(c), the shear curvature κ̂xy was
shown to be highly sensitive to a slight variation in the effective shrinkage ratio. This trend was observed
for some specific values of εsh

xx/εsh
yy (close to 0.5 when the value of εsh

xx is taken equal to −10−4).

4.2 Determination of effective shrinkage strains

The determination of the effective shrinkage strains of the composite material is carried out considering all
samples. We assume that the effective shrinkage strain εsh

xy is playing a minor role and a vanishing value is
assumed for this parameter. Indeed, as the fill and warp yarns are perpendicular for materials used in the
PCB industry (see for instance Girard et al. (2018) for microtomography views of the internal structure of
similar materials), it is expected that the curing of the resin will generate only effective shrinkage strains
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Fig. 11 – Configuration for the deflection measurement. The spatial position of each material point within the
deformed plate is measured, using DIC technique, with respect to a reference point located at the plate
center. From all positions, the surface profile is approximated by a polynomial expansion as proposed
in Mattioni et al. (2009).
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εsh
xx and εsh

yy. Thus only these two components are left to be identified.
An optimization procedure relying on the minimization of a dimensionless cost function f cost which is

written in a least squares sense as:

f cost
(

εsh
xx, εsh

yy

)

=
r
∑

i=1

βi

[

zexp
i (xi, yi) − w0

(

xi, yi, εsh
xx, εsh

yy

)]2
, (26)

is adopted to evaluate the two unknown shrinkage strains εsh
xx and εsh

yy. zexp
i is the value of the polynomial

approximation at a position (xi, yi) of a regular grid attached to the L× l plate (15×15 points are used in
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(a) specimen No1 (b) specimen No2

Fig. 12 – Comparison between measured points and polynomial approximation (meshgrid)

Tab. 2 – Curvatures of the bilayer samples calculated from polynomial approximation of the measured point cloud

Sample
Coefficient of

κ̂xx [mm−1] κ̂yy [mm−1] κ̂xy [mm−1]
determination R2

N o1 0.9953 8.65 10−6 −9.93 10−4 2.23 10−4

N o2 0.9974 −4.30 10−5 −9.00 10−4 −5.40 10−4

N o3 0.9973 1.78 10−5 −1.03 10−3 2.11 10−4

N o4 0.9988 −8.85 10−5 −8.50 10−4 −6.42 10−4

this work) and w0 is the vertical displacement as defined in the 20p-model. r is the number of grid points
(r = 225 for the adopted 15x15 grid) and βi is a weighting factor. Various expressions could have been
adopted for the family (βi). As all points of the grid seem to have similar importance for the evaluation
of the deformed shape, we adopt identical values for βi:

βi =
1

∑r
j=1[z

exp
j (xj, yj)]2

(27)

The minimization is realized for each sample using a built-in Matlab function to identify shrinkage
strains (lsqnonlin function with Levenberg-Marquardt algorithm). Identified values of εsh

xx and εsh
yy as well

as amplitudes of the cost function at the end of the optimization procedure, are listed in Table 3.

Tab. 3 – Identified effective shrinkage strains and cost function values at the end of the minimization procedure.

Sample
Cost Identified Identified

function εsh
xx εsh

yy

N o1 6.18% −1.90 10−4 −3.64 10−4

N o2 1.06% −1.84 10−4 −3.22 10−4

N o3 0.74% −1.93 10−4 −3.70 10−4

N o4 0.86% −1.94 10−4 −3.15 10−4

It appears that parameters
(

εsh
xx, εsh

yy

)

identified for each sample are hardly dispersed, which means

that the determination of the shrinkage strains is satisfactory. Note that the ratio εsh
xx/εsh

yy obtained
by the optimization procedure is close to 0.5. This may explain the large fluctuation in κxy measured
experimentally. Indeed recall that Fig. 9(c) shows that a slight change in the effective shrinkage ratio

(in the vicinity of the frontier between domains 1 and 2 ) may generate a large change in κxy. Final
estimations of the two effective shrinkage strains are obtained using the mean and related standard errors
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(adjusted using a Student’s correction factor of 1.2):

(

εsh
xx

)identified
= −1.90 10−4 ± 2.7 10−6 ;

(

εsh
yy

)identified
= −3.43 10−4 ± 1.7 10−5 . (28)

To confirm the validity of the identification process, identified shrinkage strains of Table 3 are used in
the 20p-model. Analytical predictions obtained for samples N o1 to N o4 are compared with experimental
curvatures in Fig. 13 and in Table 4.

(a) Sample No1 (b) Sample No2

(c) Sample No3 (d) Sample No4

Fig. 13 – Comparison between experimental (blue points) and theoretical (surface) plate deflections. Theoretical
results have been obtained using the 20p-model and shrinkage values of Table 3.

Tab. 4 – Comparison of curvatures from measured points and from predictions using 20p-model and shrinkage
values of Table 3. Results with mean values of Eq. (28) are also reported for comparison.

Sample Method κ̂xx [mm−1] κ̂yy [mm−1] κ̂xy [mm−1]
N o1 Measure 8.65 10−6 −9.93 10−4 2.23 10−4

N o1 Prediction −1.46 10−5 −9.74 10−4 2.15 10−4

N o2 Measure −4.30 10−5 −9.00 10−4 −5.40 10−4

N o2 Prediction −7.08 10−5 −8.37 10−4 −4.77 10−4

N o3 Measure 1.78 10−5 −1.03 10−3 2.11 10−4

N o3 Prediction −1.32 10−5 −9.93 10−4 2.05 10−4

N o4 Measure −8.85 10−5 −8.50 10−4 −6.42 10−4

N o4 Prediction −1.21 10−4 −7.94 10−4 −6.13 10−4

Prediction (using Eq. 28) −5.35 10−5 −9.01 10−4 ± − 4.28 10−4

Even if some discrepancy can be noticed, the negligible amplitude of the curvature κ̂xx is restituted,
while theoretical values of κ̂yy and κ̂xy are in a close agreement with experiments. It appears that the
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theoretical prediction of each curvature calculated using the effective shrinkage strains of Eq. 28 falls close
to the corresponding mean value calculated from all specimens. More specifically, the average value κ̂xx

and κ̂yy calculated from analytical results of each specimen is −5.49 10−5mm−1 and −8.99 10−4mm−1

respectively. These values fall close to the theoretical predictions −5.35 10−5mm−1 and −9.01 10−4mm−1

deduced from the mean effective shrinkage strains of Eq. 28, see Table 4.
To the best of authors’ knowledge, effective shrinkage strains for the material tested in this paper are

not available in the literature. With the present method, an efficient methodology is proposed, which
opens the possibility to investigate precisely the development of warpage in thin complex multimaterial
composites.

5 Conclusion

An analytical modeling, extending CLT approaches, has been developed to analyze flatness defects occuring
during the assemby of multilayer composites. The warpage originates from difference in coefficients of
thermal expansion and in effective chemical shrinkage strains between layers. The theory was applied
to a symmetric bilayer structure under virtual cure, but is general enough to be used for any multilayer
composites submitted to more general plane stress thermo-mechanical loadings. Validation, conducted
from a comparison with finite element calculations, was proposed to check the predictive capabilities of
our analytical approach. Even if some discrepancies were noticed in the level of heterogeneity of curvatures
obtained in numerical simulations, the plate deflection was well captured by the modeling.

To detect all possible stable and unstable configurations of the laminates by analytical means, trial
fields for the displacement and strain available in the literature were adopted. It was seen that for limited
effective shrinkage, the stable solution is representative of a coil shape and all trial fields are salient for this
case. It has been shown as the magnitude of the effective shrinkage strain is enlarged, only the modeling
route with enriched expressions of the trial fields can capture configurations with varying curvature in
the plane. As expected, models with a limited number of parameters cannot give access to all possible
configurations. In the case of trial fields with 14 or 20 parameters, all configurations S1 to S5 are found.
It could be of interest to define additional enrichments of the trial fields so that another configurations
could be obtained. It could be also of interest to account for non-vanishing shear curvatures which seem
to be responsible of additional stable solutions. As the number of parameters becomes large, the solution
is obtained through an in-house numerical solving procedure combining arc-length method and deflation
technique.

The combined effects of stiffness and effective shrinkage ratio have been examined by performing a
parametric analysis. The relationship between material properties and curvatures of the plate, intimately
related to flatness defects, have been uncovered for a bilayer laminate. The existence and stability of
solutions are depending on the material properties. Interestingly, asymptotic behavior was observed for
large mismatch in the stiffness ratio or in the effective shrinkage strain ratio.

The analysis developed in this paper furnishes a fundamental tool to study flatness defects, investigate
stable or unstable solutions. In line with this concern, an inverse identification method was implemented
to identify effective shrinkage strains from a series of manufactured samples. Values identified show only
a slight variation between samples. This result also participates to the validation of our modeling.

In the future, the model could be extended to account for the effect of the ply misorientation and
stacking of a general laminate. In addition, of prime interest for PCB manufacturers is to analyze the
thermo-mechanical response of multilayer structures containing holes. This can be envisioned with the
development of finite element calculations of a more complex assembly, for which effective shrinkage strains
identified in this work would be used as input parameters to model the manufacturing step.
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A Numerical resolution of the total potential energy minimiza-

tion problem

This appendix details how the system of nonlinear equations (11) was numerically treated to obtain the
solution of the total potential energy minimization problem presented in section 2. Matlab software was
used in this work but another software could have been used.

Let us first mention that for Hyer (1981), Jun and Hong (1990) and Dano and Hyer (2002) models
(respectively 4, 6 and 14 parameters), one can use vpasolve function to solve the symbolic system (11)
for a given shrinkage strain tensor εsh. This procedure brings directly all the solutions which ensure the
gradient nullity. As seen in section 2.3, there can be one, three or five solutions for the deformed bilayer
plate, depending on the adopted modeling and the value of the components of εsh. For illustrative purpose,
results in the Appendix are obtained with ∆T = 0◦C, γsh

xy = 0 and εsh is varying in the range [−10−4, 0].

A.1 Arc-length method

For the Mattioni et al. (2009) approach (20 parameters), an alternate approach was needed due to the large
size of the system (20 unknowns). Therefore, we have developed our own procedure. As results exhibit
critical points (bifurcation and nose points) and disconnected branches, we have chosen an arc-length
method (continuation method originally developed by Keller, 1977; Riks, 1972) which is recommended
for the analysis of load-deflection structure equilibrium. Continuation methods are also widely used for
the computation of bifurcation points in fluid mechanics, see Cadou et al. (2006) for instance. A load
coefficient λ is introduced in Eq. (2) which, under the condition ∆T = 0 considered in the results section,
is written as follows:

εth(k)
= λ εsh(k)

with λ ∈ [0; 1] . (29)

This leads to a slightly modified total potential energy expression:

Π =
∫ L/2

−L/2

∫ l/2

−l/2





1

2

(

ε0

κ

)T (

A B
B D

)(

ε0

κ

)

− λ

(

ε0

κ

)T (

N th

M th

)



 dydx = Π
(

p, λ
)

. (30)

p standing for the vector of parameters pi, i = 1, . . . , m. In above relationships, εsh(k)
is the prescribed

shrinkage. N th and M th are thermal forces and thermal moments per unit surface associated to εsh(k)
, see

Eq. (8).
The minimization of Π is now expressed as:

∂Π
(

p, λ
)

∂pi

= 0 for i = 1, . . . , m rewritten as f
(

p, λ
)

= 0

where f : IRm+1 → IRm. (31)

In Newton-Raphson algorithms, only p is unknown and λ is linearly evolving from 0 to 1 to reach the
solution. By contrast, in continuation methods both p and λ are unknowns and simultaneously varied.
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For the path-following technique, an arc-length parameter s is then introduced to control the evolution of
p and λ:

p = p (s) and λ = λ (s) . (32)

Assume now that the point
(

p
k
, λk

)

=
(

p (s = sk) , λ (s = sk)
)

, with k ∈ IN, satisfies the system of

nonlinear equations (31). Continuation method consists of finding
(

p
k+1

, λk+1

)

such as:







f
(

p
k+1

, λk+1

)

= 0
(

p
k+1

− p
k

)T
· ṗ

k
+ (λk+1 − λk) λ̇k = ∆s

(33)

where ˙(•) = ∂(•)
∂s

. The second equation (arc-length equation) complements the system which is now
composed of (m + 1) equations for (m + 1) unknowns.

The resolution of system (33) requires three steps: tangent vector determination, prediction and cor-
rection.

i. Considering that the initial tangent vector (i.e. for k = 0) is defined as:







fp
0

ṗ
0

+ fλ0
λ̇0 = 0

‖ṗ
0
‖2 + λ̇2

0 = 1
(34)

the tangent vector
(

ṗ
k
, λ̇k

)

, k 6= 0, is first determined from the following incremental relationship:







fp
k

ṗ
k

+ fλk
λ̇k = 0

ṗ
k−1

T · ṗ
k

+ λ̇k−1 λ̇k = 1
such as ‖ṗ

k
‖2 + λ̇2

k = 1 (normalization), (35)

with fp
k

=
∂f

∂p

(

p
k
, λk

)

and fλk
=

∂f

∂λ

(

p
k
, λk

)

;

ii. Then an increment of arc-length parameter is imposed as ∆sk = sk+1 − sk (adaptative increment
size) and the tangent predictor is built as follows :

p
k+1

(0) = p
k

+ ∆sk ṗ
k

and λk+1
(0) = λk + ∆sk λ̇k ; (36)

iii. Finally, an incremental correction step is carried out, based on the Newton’s method:

p
k+1

(j+1) = p
k+1

(j) + ∆p
k+1

(j) and λk+1
(j+1) = λk+1

(j) + ∆λk+1
(j), (37)

where ∆p
k+1

(j) and ∆λk+1
(j) are obtained from solving the following system:





fp
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(j) fλk+1
(j)

ṗ
k

T λ̇k





(

∆p
k+1

(j)

∆λk+1
(j)

)

= −





f
(

p
k+1

(j), λk+1
(j)
)

ṗ
k

T ·
(

p
k+1

(j) − p
k

)

+ λ̇k

(

λk+1
(j) − λk

)

− ∆sk



 . (38)

Iterations end when ‖∆p
k+1

(j)‖2 +
(

∆λk+1
(j)
)2

≤ η2, η being a given precision threshold.

In practice, a conjugate gradient method is used to solve system (34) whereas the bordering algorithm
is employed for resolution of systems (35,38) (see Keller, 1983, for details about this algorithm). In our
calculations, the value adopted for the precision threshold in the correction step was η = 10−10. This
procedure was applied from the starting point

(

p
0

= 0, λ0 = 0
)

to get the first solution branch of system

(31) (see Fig. 14). Note that this first branch could have been also determined with a classical Newton-
Raphson algorithm.
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Fig. 14 – First continuation branch obtained by numerical resolution of system (31), a) average curvature κ̂xx,
b) average curvature κ̂yy versus shrinkage strain |εsh

xx|

A.2 Disconnected branches

The analytical model shows that beyond certain shrinkage values, several different shapes appear and
some solutions become unstable. These multiple solutions are classically obtained by bifurcation point
detection (nullity of a test function at this point) and branch switching performance (with continuation
on each detected branch). But, in some cases, there is no bifurcation point and the solution branches are
disconnected (as seen in Fig. 4 for instance). It is therefore impossible to detect others branches using
the approach described in section A.1. To overcome this difficulty, deflation technique is considered (see
Farrell et al., 2016, for details on the so-called deflated continuation). This method can find multiple
solutions from only one single initial point, even when this point is not a bifurcation point. This approach
thus is well adapted to our problem. Its principle is based on the modification of the system of nonlinear
equations. We assume that a solution

(

p
1
, λ1

)

is already known (end of the first continuation branch for

instance). The initial problem f
(

p, λ1

)

= 0 is replaced by:

g
(

p
)

= M
(

p, p
1

)

f
(

p, λ1

)

= 0 (39)

where M is a m × m diagonal matrix defined by:

M
(

p, p
1

)

=

(

1

‖p − p
1
‖q

+ σ

)

1, (40)

1 being the second-order identity tensor. σ is a shift parameter (used to improve convergence) and || • ||
is the 2-norm of a vector.

The Newton-Raphson method is chosen to find another solution p
2

of g
(

p
)

= 0. Hence, from Eq. (39),

p
2

is also solution of Eq. (31) (since f
(

p
2
, λ1

)

= 0). Arc-length continuation is then conducted to solve

system (31) from the new solution
(

p
2
, λ1

)

, in the range λ ∈ [0; 1]. This procedure (deflated continuation)
is repeated until no other solution can be found.

Fig. 15 illustrates the sequence of alternating continuation and deflation steps after determination of
the first continuation branch using the arc-length method of section A.1. From the end point of the
continuation branch, represented in Fig. 15(a) by a plain square, the deflation technique is applied and
a second solution is found (plain cercle in Fig. 15(a)). The arc-length method is next used to build the
second continuation branch (from the plain circle to the triangle). One notes that this new branch presents
a nose point so that classical Newton-Raphson algorithms are not able to capture this path entirely. An
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additional solution is obtained from the deflation technique, using Eq. (39) and the third solution (triangle)
as the initial point. This solution is represented by a plain diamond in Fig. 15(b) and becomes the starting
point of a new continuation branch which needs to be determined using an arc-length method. Indeed,
the third point leads to two distinct solutions (plain and hollow diamonds) in the shear curvature κ̂xy and
an examination of the diagram inserted in Fig. 15(b) reveals a bifurcation point (hollow cercle). Finally, a
last deflation step is run with the hollow diamond as a starting point. No additional solution is achieved
and the numerical resolution of system (31) is stopped.
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Fig. 15 – Second (a) and third (b) continuation branches obtained with the deflation technique.

B Numerical simulation and validation of the proposed model

To verify the proposed analytical model of plate deformation due to shrinkage, finite element calculations
have been carried out with the commercial software Abaqus/Standard (6.13-2 version). First, the meshing
strategy is discussed in section B.1 and comparison is exemplified in section B.2.

B.1 Finite Element modeling

Tab. 5 – Out-of-plane elastic properties of the fiberglass reinforced epoxy laminate at room temperature (20◦C).

Ez [GPa] νxz νyz Gxz[GPa] Gyz[GPa]
16.34 0.451 0.451 2.71 2.71

The bilayer thin structure [0◦/0◦] of Fig. 2 is adopted for the analysis. Both layers have orthotropic
elastic behavior with moduli listed in Table 1 and in Table 5. The structure is loaded during one step
of virtual cure for which the theoretical approach predicts flatness defects due to shrinkage. Geometrical
nonlinearities are included in the calculation. A Fortran user-subroutine UEXPAN has been written to
reproduce the shrinkage occurring in the upper layer (see Kpobie et al., 2016, for details). Boundary
conditions consist in considering that the center of the plate is clamped (no translation and rotation).
Because of aspect ratio of the studied structure (h << L, l) and of bending phenomenon that occurs,
the plate is discretized using composite shell finite elements. Simpson method is chosen for numerical
integration through thickness (with 15 points in each layer). Triangular and quadrilateral elements with
linear and quadratic interpolation were tested. Following the designation used in Abaqus, these elements
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are S3R (three noded triangular element), S4R (four noded quadrilateral element), STRI65 (six noded
triangular element) and S8R (eight noded quadrilateral element). The laminate is meshed with 96x60,
48x32, 48x30 and 24x16 elements (element aspect ratio close to one) when having adopted element type
S3R, STRI65, S4R, and S8R. Note that mesh size independence has been checked.

Fig. 16 shows the deformed plate for εsh
xx = εsh

yy = −10−4 and εsh
xy = 0 (results are obtained using the four

meshes specified above). Note that from our analytical modeling, the stable configuration is a S5 shape,
see Fig. 3. From Fig. 16, it is observed that results are not depending on the degree of interpolation but
differ from triangular to quadrangular elements. Fig. 16 reveals that a structure meshed with triangular
elements S3R or STRI65 deforms into shape S5 (maximal vertical displacement at two opposite corners and
κxy < 0), while a coil set deformation (shape S2) is obtained when quadrangular elements S4R or S8R are
used. In fact, the shape reached with quadrangular elements may be an artifact of the mesh structuring
which, in this configuration, is aligned with principal directions of curvatures. This is confirmed from
additional calculations conducted with a bias introduced in the mesh made of quadrangular elements
which yield identical results as that obtained using triangular elements, see Fig. 16. As a consequence,
it is believed that results obtained with the structured mesh using quadrangular elements suffer from
a lack of physical meaning and this configuration is rejected for the comparative analysis. In addition,
it has been proved that numerical simulations of the plate considered in this work do not benefit from
a quadratic interpolation. Based on the above analysis, linear triangular elements S3R are selected to
conduct a comparison between analytical and numerical results.

(a) Elements types S3R, STRI65, S4R-bias (Abaqus) (b) Elements types S4R, S8R (Abaqus)

Fig. 16 – Plate deformation obtained from numerical simulations using various types of finite elements a) shape
S5, b) shape S2. U3 corresponds to the vertical displacement in millimeters.

B.2 Comparison between analytical and numerical results

Fig. 17 shows a comparison of the average curvatures and maximum vertical displacement between nu-
merical simulation (FEM ) and analytical modeling (stable and unstable solutions) obtained with the
20p-model. Curvatures, based on the FEM are obtained from second order derivative of the plate deflec-
tion and further approximated by the same second-order polynomial as in Mattioni et al. (2009). A very
good agreement is observed for κ̂xx, while differences remain for κ̂yy, κ̂xy and wmax

0 . In fact, the critical
value of εsh corresponding to the occurrence of a new solution (different shape), is larger in FEM which
creates a minor offset in the evolution of average curvatures. The difference in the critical value of εsh may
be explained by the complex form of local curvatures within the plate.

Fig. 18 depicts the variation of curvature κyy (respectively κxx) along the plate length (respectively
the plate width), when εsh = −10−4. As it was already highlighted in Figs. 5(a) and 5(b), the 20p-
model leads to quasi homogeneous curvatures for the stable solution, while the numerical simulation is
shown to predict curvatures that significantly change with the position in the plate. In addition, in the
analytical 20p-model, κxx (respectively κyy) is depending on y (respectively x) only, and is approximated
using a quadratic form. By contrast, curvatures obtained from finite element calculations behave in a
more complex manner. Moreover, one observes that results from FEM are not necessarily symmetric with
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Fig. 17 – Evolution of curvatures a) κ̂xx, b) κ̂yy, c) κ̂xy and d) maximal vertical displacement as a function of
shrinkage strain. Comparison of the predictions obtained from analytical modeling and finite element
calculations.
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Fig. 18 – Evolution of curvatures in the plate, a) curvature κxx, b) curvature κyy. Comparison of the predictions
obtained from analytical modeling (20p-model) and finite element calculations.

respect to the x-axis and the y−axis while by construction, results are symmetric in the 20p-model. It
thus appears that the analytical approach is too restrictive in terms of curvature approximation and so
trial fields need to be enriched to reflect higher order dependencies. Finally, results are quite similar to
those obtained from FEM which illustrates the good predictive capabilities of the proposed modeling.

28



Fig. 19 displays a comparison between the predicted deflections w0(x, y). It is seen that the difference
∆w0 (x, y) = wanalytical

0 (x, y) − wF EM
0 (x, y) between the two predictions of the plate deflection is limited

and a maximum of 1mm difference is found in the vicinity of the four corners. A 6.6% accuracy is thus
predicted for the deflection of the four corners.
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Fig. 19 – a) Comparison of the two plate deflections captured by the analytical approach and the simulations. b)

Map of the difference between the two predictions ∆w0 (x, y) = wanalytical
0 (x, y) − wF EM

0 (x, y)

Data availability

The raw and processed data required to reproduce these findings cannot be shared at this time as the data
also forms part of an ongoing study.
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