
HAL Id: hal-04085831
https://hal.science/hal-04085831v1

Submitted on 6 May 2023 (v1), last revised 2 Sep 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameterizing Path Partitions
Henning Fernau, Florent Foucaud, Kevin Mann, Utkarsh Padariya, K. N.

Rajath Rao

To cite this version:
Henning Fernau, Florent Foucaud, Kevin Mann, Utkarsh Padariya, K. N. Rajath Rao. Parameterizing
Path Partitions. 13th International Conference on Algorithms and Complexity (CIAC 2023), Jun 2023,
Larnaca, Cyprus. pp.187-201, �10.1007/978-3-031-30448-4_14�. �hal-04085831v1�

https://hal.science/hal-04085831v1
https://hal.archives-ouvertes.fr


Parameterizing Path Partitions

Henning Fernau1[0000−0002−4444−3220], Florent Foucaud2[0000−0001−8198−693X]⋆,
Kevin Mann1[0000−0002−0880−2513], Utkarsh Padariya3[0000−0003−3422−6940], and

Rajath Rao K.N.3[0000−0003−3422−6940] ⋆⋆

1 Universität Trier, Fachbereich IV, Informatikwissenschaften, Germany
{fernau,mann}@uni-trier.de

2 Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne,
Clermont-Auvergne-INP, LIMOS, 63000 Clermont-Ferrand, France

florent.foucaud@uca.fr
3 International Institute of Information Technology Bangalore, India

{utkarsh.prafulchandra,rajath.rao}@iiitb.ac.in

Abstract. We study the algorithmic complexity of partitioning the ver-
tex set of a given (di)graph into a small number of paths. The Path
Partition problem (PP) has been studied extensively, as it includes
Hamiltonian Path as a special case. The natural variants where the
paths are required to be either induced (Induced Path Partition,
IPP) or shortest (Shortest Path Partition, SPP), have received
much less attention. Both problems are known to be NP-complete on
undirected graphs; we strengthen this by showing that they remain so
even on planar bipartite directed acyclic graphs (DAGs), and that SPP
remains NP-hard on undirected bipartite graphs. When parameterized by
the natural parameter “number of paths”, both problems are shown to be
W[1]-hard on DAGs. We also show that SPP is in XP both for DAGs and
undirected graphs for the same parameter (IPP is known to be NP-hard
on undirected graphs, even for two paths). On the positive side, we show
that for undirected graphs, both problems are in FPT, parameterized
by neighborhood diversity. When considering the dual parameterization
(graph order minus number of paths), all three variants, IPP, SPP and
PP, are shown to be in FPT for undirected graphs.

Keywords: Path Partitions · NP-hardness · Parameterized Complexity
· Neighborhood Diversity · Vertex Cover Parameterization

1 Introduction

Graph partitioning and graph covering problems are among the most studied
problems in graph theory and algorithms. There are several types of graph
partitioning and covering problems including covering the vertex set by stars
(Dominating Set), covering the vertex set by cliques (Clique Covering),
⋆ Research financed by the French government IDEX-ISITE initiative 16-IDEX-0001

(CAP 20-25) and by the ANR project GRALMECO (ANR-21-CE48-0004).
⋆⋆ Research funded by a DAAD-WISE Scholarship 2022.



2 H. Fernau, F. Foucaud, K. Mann, U. Padariya, and R. Rao K.N.

partitioning the vertex set by independent sets (Coloring), and covering the
vertex set by paths or cycles [22]. In recent years, partitioning and covering
problems by paths have received considerable attention in the literature because
of their connections with well-known graph-theoretic theorems and conjectures
like the Gallai-Milgram theorem and Berge’s path partition conjecture. Also,
these studies are motivated by applications in diverse areas such as code opti-
mization [1], machine learning / AI [32], transportation networks [33], parallel
computing [26], and program testing [25]. There are several types of paths that
can be considered: unrestricted paths, induced paths, shortest paths, or directed
paths (in a directed graph). A path P is an induced path in G if the subgraph
induced by the vertices of P is a path. An induced path is also called a chordless
path; isometric path and geodesic are other names for shortest path. Various
questions related to the complexity of these path problems, even in standard
graph classes, remained open for a long time (even though they have uses in
various fields), a good motivation for this project.

In this paper, we mainly study the problem of partitioning the vertex set
of a graph (undirected or directed) into the minimum number of disjoint paths,
focussing on three problems, Path Partition (PP), Induced Path Partition
(IPP) and Shortest Path Partition (SPP) — formal definitions are given
in section 2. A path partition (pp) of a graph G is a partitioning of the vertex
set into unrestricted paths. The path partition number of G is the smallest size
of a pp of G. Similar definitions apply to ipp and spp. PP is studied extensively
under the names of Path Cover and also Hamiltonian Completion on many
graph classes [4, 6, 16]. We give a wide range of results in this paper including
complexity (NP- or W[1]-hardness) and algorithms (polynomial time or FPT); see
Table 1. The types of graphs we consider are general directed, directed acyclic
(DAG), general undirected and bipartite undirected graphs. We also consider
some structural parameters like neighborhood diversity and vertex cover number.

The three problems considered are all NP-hard. PP can be seen as an ex-
tension of Hamiltonian Path and is thus NP-hard, even for one path. IPP is
NP-hard, even for two paths [20]. Recently, SPP was proved to be NP-hard [23].
On trees, the three problems are equivalent, and are solvable in polynomial time.
For a detailed survey on these types of problems (both partitioning and cover-
ing versions), see [22]. The covering version of SPP (where the paths need not
necessarily be disjoint) was recently studied, see [8] for an XP algorithm, [2] for
NP-hardness on chordal graphs and approximation algorithms for chordal graphs
and other classes, and [32] for a log n-factor approximation algorithm.

The versions of these problems where covering is not required (and the end-
points of the solution paths are prescribed in the input) are studied as Disjoint
Paths (DP) [27], Disjoint Induced Paths (DIP) and Disjoint Shortest
Paths (DSP) [21]. DP in particular has been extensively studied, due to its con-
nections to the Graph Minor theorem [27]. Robertson and Seymour showed that
DP is in FPT, parameterized by the number of paths [27], contrasting (D)PP.
Recently, DSP was shown to have an XP algorithm and to be W[1]-hard when
parameterized by the number of paths [21], solving a 40-year-old open problem.



Parameterizing Path Partitions 3

parameter PP SPP IPP
none (UG) NP-c. [15] NP-c. [23] NP-c. [20]

none (bipartite UG) NP-c. [18, 20] NP-c. open
solution size k (UG) paraNP-h. [15] in XP paraNP-h. [20]

solution size k (DAG) polynomial
[3, Problem 26-2]

NP-c.
W[1]-h.
in XP

NP-c.
W[1]-h.

neighborhood diversity (UG) FPT [14] FPT FPT
dual n− k (UG) FPT FPT FPT

Table 1: Summary of known results concerning path partitioning problems.
The abbreviations c. and h. refer to completeness and hardness, respectively.
In parentheses, we put further input specifications, with UG referring to undi-
rected graphs. Our results are highlighted in bold face.

Our contribution. Table 1 summarizes known results about the three prob-
lems, with our results are highlighted in bold. We fill in most of the hiterto open
questions concerning variations of PP, SPP and IPP, e.g., we show that SPP
has a poly-time algorithm for a fixed number of paths (in undirected, DAGs, and
planar-directed graphs). This is surprising as both PP and IPP are NP-hard for
k = 1 and for k = 2, respectively, see [20]. Many of our results concern our
problems restricted to DAGs. Notice that PP has a polynomial time algorithm
when restricted to DAGs (using Maximum Matching), but the complexity for
IPP and SPP was open for such inputs. We show that IPP and SPP are NP-
hard even when restricted to planar DAGs whose underlying graph is bipartite.
We strengthen this result using a similar construction as in the classic proof
of DP being W[1]-hard on DAGs by Slivkins [29], to show that IPP and SPP
are W[1]-hard on DAGs. The complexity of these problems has not been stud-
ied when parameterized by structural parameters. We show that IPP and SPP
both belong to FPT when parameterized by standard structural parameters like
vertex cover and neighborhood diversity using ILP-techniques. Moreover, when
considering the dual parameterization (graph order minus number of paths), all
three variants, IPP, SPP and PP, are shown to be in FPT for undirected graphs.

It is interesting to note the differences in the complexities of the three prob-
lems on different input classes. For example, SPP can be solved in XP-time
on undirected graphs, while this is not possible for the other two problems. For
DAGs, PP is polynomial-time solvable, but the other two problems are NP-hard.
In a way, IPP can be seen as an intermediate problem between PP and SPP.
Thus it is not too surprising that, when the complexity of the three problems
differs, IPP sometimes behaves like PP, and sometimes, like SPP.

The following combinatorial properties are helpful to connect the problems:
(1) Every shortest path is also an induced path. (2) Every induced path of length
at most two is also a shortest path. (3) In bipartite graphs, an induced path of
length three is a shortest path. (4) If G = (V,E) is a subgraph of H and p is a
shortest path in H with only vertices of V , then p is also a shortest path in G.
Proofs of statements marked with (∗) are omitted due to space constraints; [10].



4 H. Fernau, F. Foucaud, K. Mann, U. Padariya, and R. Rao K.N.

2 Definitions

We are using standard terminology concerning graphs, classical and parame-
terized complexity and we will not iterate this standard terminology here. In
particular, a path P can be described by a sequence of non-repeated vertices
such that there is an edge between vertices that are neighbors in this sequence.
Sometimes, it is convenient to consider P as a set of vertices. We are next defin-
ing the problems considered in this paper. All problems can be considered on
undirected or directed graphs, or also on directed acyclic graphs (DAG). We will
specify this by prefixing U, D, or DAG to our problem name abbreviations.

Disjoint Paths (DP for short)
Input: A graph G, pairs of terminal vertices {(s1, t1), . . . , (sk, tk)}
Problem: Are there pairwise vertex-disjoint paths P1, . . . , Pk such that, for

1 ≤ i ≤ k, the end-points of Pi are si and ti?

A path P is an induced path in G if the induced graph G[P ] is a path; here,
P is considered as a vertex set. Analogously to DP, we can define the problem
Disjoint Induced Paths or DIP for short. A shortest path is a path with end-
points u, v that is shortest among all paths from u to v. The greatest length of
any shortest path in a graph G is also known as its diameter, written as diam(G).
Hence, we can define the problem Disjoint Shortest Paths or DSP for short.

Remark 2.1. (∗) The problems DIP and DP are equivalent when the inputs
are undirected graphs or DAGs, but not for general directed graphs.

Next, we define the corresponding partition problems. The induced and non-
induced versions do no longer coincide as seen above for the set of DP problems.
We say that a sub-graph G′ of G = (V,E) spans G if its vertex set is V .

Path Partition (PP for short)
Input: A graph G, a non-negative integer k

Problem: Are there pairwise vertex-disjoint paths P1, . . . , Pk′ , with k′ ≤ k,
such that, together, these paths span G ?

Asking for shortest or induced paths in the partition similarly gives the prob-
lems Shortest Path Partition, or SPP, and Induced Path Partition, or
IPP, respectively. Contrasting Remark 2.1, the complexities of DAGPP and
DAGIPP differ drastically, see Table 1. As also sketched in [12], these prob-
lems are tightly linked to Hamiltonian Completion, asking to add at most k
(directed) edges to a (di)graph to guarantee the existence of a Hamiltonian path.

Omitting the vertex-disjointness condition, we arrive at covers instead:

Path Cover (PC for short)
Input: A graph G, a non-negative integer k

Problem: Are there paths P1, . . . , Pk′ , with k′ ≤ k, such that, together,
these paths span G ?



Parameterizing Path Partitions 5

Similarly, we can define the problems Shortest Path Cover (SPC) and
Induced Path Cover (IPC).

The neighborhood diversity [19] of a graph G (or just nd(G)) is the number
of equivalency classes of the following equivalence: two vertices u, v ∈ V are
equivalent (we also say that they have the same type) if they have the same
neighborhoods except for possibly themselves, i.e., if N(v) \ {u} = N(u) \ {v}.
The equivalence classes are all cliques, possibly of size one, but one class that
collects all isolated vertices.

3 NP-hardness results

A well-known result related to PC in DAGs is Dilworth’s theorem: the minimal
size of PC equals the maximal cardinality of an anti-chain [7]. Fulkerson [13]
gave a constructive proof of this theorem. Hence, the PC problem in DAGs can
be reduced to a maximum matching problem in a bipartite graph. Even PP can
be solved in polynomial time by reducing it to a matching problem in a bipartite
graph [3, Problem 26-2]. We show that DAGSPP, DAGSPC, DAGIPP and
DAGIPC are NP-hard even when restricted to planar bipartite DAGs.

Theorem 3.1. DAGSPP is NP-hard even when the inputs are restricted to
planar bipartite DAGs of maximum degree 3.

Proof (sketch). Our reduction is adapted from [24, 30]. We reduce from the
Planar 3-Dimensional Matching problem, or Planar 3-DM, which is NP-
complete (see [9]), even when each element occurs in either two or three triples.
A 3-DM instance consists of three disjoint sets X,Y, Z of equal cardinality p
and a set T of triples from X×Y ×Z. Let q = |T |. The question is if there are p
triples which contain all elements of X, Y and Z. We associate a bipartite graph
with this instance. We assume that the four sets T , X, Y and Z are pairwise
disjoint. We also assume that each element of X∪Y ∪Z belongs to at most three
triples. We have a vertex for each element in X,Y, Z and each triple in T . There
is an edge connecting triples to elements if and only if the element belongs to
the triple. This graph G is bipartite with vertex bipartition of T,X ∪Y ∪Z, and
has maximum degree 3. We say the instance is planar if G is planar. Given an
instance of Planar 3-DM, G = (T,X ∪ Y ∪ Z,E), and a planar embedding of
it, we build an instance G′ = (V ′, E′) of DAGSPP.
Construction: We replace each vi = (x, y, z) ∈ T , where x ∈ X, y ∈ Y , z ∈ Z,
with a gadget H(vi) that consists of 9 vertices named lijk where 1 ≤ j, k ≤ 3 and
with edges as shown in Figure 1; if the planar embedding has x, y, z in clockwise
order seen as neighbors of vi, then we add the arcs (li12, x), (li22, z) and (li32, y),
otherwise, we add the arcs (li12, x), (li22, y) and (li32, z).
We observe the following two properties of G′.

Claim 3.2. (∗) G′ is a planar DAG with maximum degree 3 in which every
shortest/induced path is of length at most 3, and the underlying undirected graph
of G′ is bipartite.



6 H. Fernau, F. Foucaud, K. Mann, U. Padariya, and R. Rao K.N.

x y z

li11 li12

li13

li21li22

li23

li31li32

li33

Fig. 1: The vertex gadget as defined in the proof of Theorem 3.1

x y z

li11 li12

li13

li21 li22

li23

li31 li32

li33

x y z

li11 li12

li13

li21 li22

li23

li31 li32

li33

(1) (2)

Fig. 2: Two different vertex partitions of a H(vi) gadget into 3-vertex paths,
corresponding to different triple selections in the construction of Theorem 3.1.

Claim 3.3. (∗) The Planar 3-DM instance has a solution if and only if G′

can be partitioned into p+ 3q shortest paths.

The intuition behind the proof of Claim 3.3 is that each shortest or induced
path in a solution must contain exactly three vertices, and each gadget H(vi) is
partitioned into P3-paths in one of the two ways shown in Figure 2.

The proof above can also be adapted to DAGSPC, DAGIPP and DAGIPC.

Corollary 3.4. DAGSPC, DAGIPP, and DAGIPC are NP-hard even when
restricted to planar bipartite DAGs of maximum degree 3.

Next, we prove that SPP is NP-hard even when the input graph is restricted
to bipartite 5-degenerate graphs with diameter at most 4. To prove this, we
reduce from 4-SPP on bipartite graphs to SPP on bipartite graphs. 4-SPP
asks, given G = (V,E), if there exists a partition P of V such that each set
in P induces a shortest path of length 3 in G. First, we show that 4-SPP is NP-
hard on bipartite graphs (Lemma 3.6) by a reduction from 4-IPP (also known
as Induced P4-Partition) on bipartite graphs. 4-IPP asks if there exists a
partition P of V such that each set in P induces a path of length 3 in G.

Lemma 3.5. [24] 4-IPP is NP-hard for bipartite graphs of maximum degree 3.

Lemma 3.6. (∗) 4-SPP is NP-hard for bipartite graphs of maximum degree 3.



Parameterizing Path Partitions 7

Theorem 3.7. SPP is NP-hard, even for bipartite 5-degenerate graphs with
diameter 4.

Proof. To prove this claim, we use Lemma 3.6. Given an instance of 4-SPP, say,
G = (V,E), with bipartition V = A∪B and |V | = 4k, as the number of vertices
must be divisible by 4, we create an instance G′ = (V ′, E′) of SPP.
Construction: We add 10 new vertices to G, getting

V ′ = V ∪ {x1, x2, x3, x4, x5, y1, y2, y3, y4, y5} .

We add edges from x2 and x4 to all vertices of B∪{y2, y4}. Also, add edges from
y2 and y4 to all vertices of A, add further edges to form paths x1x2x3x4x5 and
y1y2y3y4y5. The remaining edges all stem from G. This describes E′ of G′.

We have the following observations, due to the construction of G′.

Claim 3.8. (∗) G′ = (V ′, E′) is bipartite and 5-degenerate.

We can make the claimed bipartition explicit by writing V ′ = A′∪B′, where
A′ = A ∪ {x2, x4, y1, y3, y5} and B′ = B ∪ {x1, x3, x5, y2, y4}.

Claim 3.9. (∗) Any shortest path of G′, except for x1x2x3x4x5, x1x2y2x4x5,
x1x2y4x4x5 and y1y2y3y4y5, y1y2x2y4y5, y1y2x4y4y5, contains at most four ver-
tices. Hence, G′ has a diameter at most 4.

The arguments leading to the previous claim also give raise to the following one.

Claim 3.10. The only two shortest paths in G′ that have five vertices and that
can simultaneously exist in a path partition are x1x2x3x4x5 and y1y2y3y4y5. ♢

Notice that Claim 3.8 and Claim 3.9 together guarantee the additional prop-
erties of the constructed graph G′ that have been claimed in Theorem 3.7.

Claim 3.11. (∗) Let u, v ∈ V have distance d < 3 in G. Then, they also have
distance d in G′. Hence, if p is a shortest path on at most three vertices in G,
then p is also a shortest path in G′.

Now, we claim that G is a Yes-instance of 4-SPP if and only if G′ has a
shortest path partitioning of cardinality k′ = k + 2, where |V | = 4k. For the
forward direction, let D be any solution of 4-SPP for G, containing k shortest
paths. To construct a solution D′ of SPP for the instance (G′, k′), we just need
to add the two paths x1x2x3x4x5 and y1y2y3y4y5 to D. By Claim 3.11, every
path p ∈ D is in fact a shortest path in G′. Hence, D′ is a set of shortest paths
with cardinality k′ = k + 2 that covers all vertices of G′.

For the backward direction, assume G′ has a solution D′, where |D′| = k′ =
k + 2. As |V ′| = 4k + 10 by construction, we know by Claim 3.9 that D′ con-
tains k paths of length three and two paths of length four. By Claim 3.10,
{x1x2x3x4x5, y1y2y3y4y5} ⊆ D′ and the rest of the paths of D′ are of length three
and consists of vertices from V only. Let D = D′ \ {x1x2x3x4x5, y1y2y3y4y5}.
As the k paths of D are each of length three also in G (by Table 1) and as they
cover V completely, D provides a solution to the 4-SPP instance G.



8 H. Fernau, F. Foucaud, K. Mann, U. Padariya, and R. Rao K.N.

The reduction above can also be used for proving the following result. (A graph
is d-degenerate if every induced subgraph has a vertex of degree at most d.)

Corollary 3.12. SPC is NP-hard, even for bipartite 5-degenerate graphs with
diameter 4.

4 W[1]-hardness results

The natural or standard parameterization of a parameterized problem stemming
from an optimization problem is its solution size. We will study this type of pa-
rameterization in this section for path partitioning problems. More technically
speaking, we are parameterizing these problems by an upper bound on the num-
ber of paths in the partitioning. Unfortunately, our results show that for none
of the variations that we consider, we can expect FPT-results.

Theorem 4.1. SPP (parameterized by solution size) is W[1]-hard on DAGs.

The following reduction is non-trivially adapted from [28].

Proof. We define a parameterized reduction from Clique to SPP on DAGs
(both parameterized by solution size). Let (G, k) be an instance of Clique,
where k ∈ N and G = (V,E). We construct an equivalent instance (G′, k′) of the
SPP problem, where G′ is a DAG and k′ = k·(k−1)

2 + 3k. Let V = [n].
Overview of the construction: We create an array of k×n identical gadgets
for the construction, with each gadget representing a vertex in the original graph.
We can visualize this array as having k rows and n columns. If the SPP instance
(G′, k′) is a Yes-instance, then we show that each row has a so-called selector in
the solution. Here, a selector is a path that traverses all but one gadget in a row,
hence skipping exactly one of the gadgets. The vertices in G corresponding to the
skipped gadgets form a clique of size k in G. To ensure that all selected vertices
form a clique in G, we have so-called verifiers in SPP. Verifiers are the paths
that are used for each pair of rows to ensure that the vertices corresponding to
the selected gadgets in these rows are adjacent in G. This way, we also do not
have to check separately that the selected vertices are distinct.
Construction details: The array of gadgets is drawn with row numbers in-
creasing downward and column numbers increasing to the right. Arcs between
columns go down and arcs within the same row go to the right. To each row i,
with i ∈ [k], we add a start terminal, an arc (si, s

′
i), and an end terminal, an

arc (t′i, ti). Next, add arcs starting from si, s
′
i to tl and t′l, with l > i. Also, for

each row, we have k − i column start terminals, arcs (si,j , s
′
i,j) with i < j, and

i − 1 column end terminals, arcs (tj,i, t
′
j,i) with j ∈ [i − 1]. Also, add arcs from

vertices si,j and s′i,j to all vertices t′j,p with p < j if j > i, and to tl, t′l if l ≥ i.
Gadgets are denoted by Gi,u, i ∈ [k], corresponding to u ∈ V . Each gadget Gi,u

consists of k − 1 arcs (ai,ur , bi,ur ), with r ∈ [k] \ {i}. To each row i ∈ [k], we also
add dummy gadgets Gi,0 and Gi,n+1. Gi,0 consists of two arcs, (ai,01 , ai,02 ) and
(bi,01 , bi,02 ), also add arcs from bi,01 and bi,02 to tm, t′m and tm,h where m < h and i ≤



Parameterizing Path Partitions 9

h. Gi,n+1 consists of a directed Pk+2 and an arc (bi,n+1
1 , bi,n+1

2 ) ; the Pk+2-vertices
are named ai,n+1

j , with j ∈ [k+2], where ai,n+1
k+2 has out-degree zero. We can speak

of T i,u := {ai,ur | r ∈ [k] \ {i}} ∪ {ai,01 , ai,02 , ai,n+1
j | j ∈ [k + 2]} as being on the

top level, while the vertices Bi,u := {bi,ur | r ∈ [k]\{i}}∪{bi,01 , bi,02 , bi,n+1
1 , bi,n+1

2 }
form the bottom level of gadget Gi,u.

Due to the natural ordering of the wires within a gadget, we can also speak of
the first vertex on the top level of a gadget or that last vertex on the bottom level
of a gadget. On both levels, the vertices are connected following their natural
wire ordering. More technically speaking, this means that within gadget Gi,u,
with u ∈ V , there is an arc from the first vertex of the upper level to the second
vertex of the upper level, from the second vertex of the upper level to the third
vertex of the upper level etc., up to an arc from the penultimate vertex of the
upper level to the last vertex of the upper level. Moreover, there is an arc from
the last vertex of the upper level of Gi,u−1 to the first vertex of the upper level
of Gi,u and from the last vertex of the upper level of Gi,u to the first vertex
of the upper level of Gi,u+1. Analogously, the vertices of the lower level of the
gadgets are connected. These notions are illustrated in Figure 3. In the figure,
we omit the superscripts (ar, br) = (ai,ur , bi,ur ), where r ∈ [k − i].

a1 a2 ai−1

si,i+1

ai+1 ak

si,k

b1

t1,i

b2

t2,i

bi−1

ti−1,i

bi+1 bk

Fig. 3: Gadget Gi,u, 0 < u ≤ n, i ∈ [k]

a1 aj ak

b1 bj

bk

Gi,u

a1 ai ak

b1 bi bk

Gj,v

Fig. 4: Gi,u connected to Gj,v, i < j

A selector is a path that starts at si, enters its row at the top level, and exits
it at the bottom level, ending at ti and skipping exactly one gadget Gi,u, with
i ∈ [k] and u ∈ V . In order to implement this, we add the arcs (s′i, a

i,0
1 ) and

(bi,n+1
2 , t′i) for row i, as well as skipping arcs that allow to skip a gadget Gi,u for

u ∈ V . These connect the top level of the last wire of Gi,u−1 to the bottom level
of the first wire of Gi,u+1.
A verifier is a path that routes through one of the wires of the skipped gadget
and connects column terminals si,j to ti,j . In order to implement this, we add
the arcs (s′i,j , a

i,u
j ) and (bi,ui , t′i,j) to every gadget in rows i and j. To connect the

gadget in row i and j, for every edge uv in G, we add an arc between the wires
(bi,uj , aj,vi ) for each i < j, see Figure 4.



10 H. Fernau, F. Foucaud, K. Mann, U. Padariya, and R. Rao K.N.

si s′i

a1 a2 a1 ak a1 ak a1 ak a1 ak+2

b1 b2 b1 bk b1 bk b1 bk b1 b2

t′i ti

Gi,0 Gi,1 Gi,2 Gi,3 Gi,n+1

Fig. 5: The ith row (only the first two skipping arcs are shown), the dashed line
indicates arcs from si, s

′
i to ai,n+1

j , with j ∈ [k + 2]

To force the start and end vertices of paths in the spp of G′ of size k′, we add
the following arcs, called shortest paths enforcers. For every row i, from all the
vertices of gadget Gj,u, where j < i and 0 ≤ u ≤ n, from every vertex sl and s′l
of a start terminal and from every vertex sl,m, s′l,m of a column start terminal,
where l ≤ i and l < m, add arcs to ai,n+1

j , with j ∈ [k + 2].
We are now going to show a number of properties of our construction.
Observe that G′ is a DAG because all arcs either go from left to right or from
top to bottom. Next, using Claim 4.2 and Claim 4.3, we can deduce that, if G′

has an spp of size k′, then the start vertex of each path in the solution is fixed.

Claim 4.2. (∗) G′ has k′ − k vertices with in-degree zero and out-degree zero.

Hence, we know k′ − k start and end vertices of the solution are fixed. The next
claim shows that each row i has one more start vertex of some path, hence fixing
all the starting vertex of all the paths in the solution.

Claim 4.3. (∗) If a solution P of the created SPP instance G′ is of size k′ then,
for each row i ∈ [k], there is a path in P starting from v ∈ T i,u which covers at
least the vertex ai,n+1

1 .

Hence, if G′ has an spp of size k′, then the paths in the solution must start
at: for i ∈ [k], si, bi,01 , v, v ∈ T i,u and si,j , with i < j. Next, we will show
observations about these paths’ ending vertices.

Claim 4.4. (∗) If G′ has an spp of size k′, then a path (in this SPP solution)
starting at si has to end at ti, with i ∈ [k].

With arguments along similar lines, we can show:

Claim 4.5. If G′ has an spp of size k′, then any path in this partition starting
at si,j has to end at ti,j , i < j.

Claim 4.6. If G′ has an spp of size k′, then any path in this partition starting
at v ∈ T i,u has to end at ai,n+1

i , i ∈ [k].



Parameterizing Path Partitions 11

Also, if G′ has an spp of size k′, then for each row i, with i ∈ [k], any path
starting at si has to skip exactly one gadget and end at ti. If we do not skip any
gadget, si,j cannot be connected to ti,j , j > i. Once we skip a gadget, we are at
the bottom level of the row and hence we cannot skip again. To conclude if G
has a shortest path partition of size k′ (then in the solution) the path starting
at si has to end at ti and this path has to skip exactly one gadget. Through this
skipped gadget, si,j is connected to ti,j . The bottom of the row is covered by a
path starting from bi,0 and the top of the row is covered by a path starting at
v ∈ T i,u after the skipped gadget and ending at ai,n+1

k+2 .
Finally, we have the following claim about G′ that follows by construction.

Claim 4.7. There exists a path between si,j and ti,j through two gadgets Gi,u

and Gj,v where i > j if and only if there is an edge uv in the graph G.

Claim 4.8. (∗) G has a k-clique iff G′ has a shortest path partition of size k′.

As the construction is polynomial-time, W[1]-hardness follows.

5 XP Algorithms

We now present our XP algorithms to prove the following result. We note that
the result for USPP also follows from [8] (with a different proof).

Proposition 5.1. USPP and DAGSPP are in XP.

For our XP algorithms, the following combinatorial result is crucial.

Lemma 5.2. (∗) Let G = (V,E) be a directed graph. Then, V can be partitioned
into k vertex-disjoint shortest paths if and only if there are k vertex-disjoint
paths between some si and ti, for 1 ≤ i ≤ k, such that

∑k
i=1 d(si, ti) = |V | − k.

A similar characterization is true for the undirected case.

This lemma allows us to prove Proposition 5.1 by cycling through all possible
X := {(s1, t1), . . . , (sk, tk)}, resulting in an instance of DP. Now, either apply
[11, Theorem 3] for DAGs or [17,27] for undirected graphs to get the XP-result.
Notice that these algorithmic results rule out paraNP-hardness results.

6 Neighborhood Diversity Parameterization

One of the standard structural parameters studied within parameterized com-
plexity is the vertex cover number . As graphs with bounded vertex cover number
are highly restricted, less restrictive parameters that generalize vertex cover are
interesting, as neighborhood diversity is, introduced by Lampis [19].

Crucial to our FPT-results is the following interesting combinatorial fact.

Proposition 6.1. (∗) If G is connected, then diam(G) ≤ nd(G).



12 H. Fernau, F. Foucaud, K. Mann, U. Padariya, and R. Rao K.N.

Similar arguments show that the number of neighborhood diversity equiva-
lence classes that a shortest path P intersects equals its number of vertices if P
contains at least four vertices. In shortest paths on two or three vertices, how-
ever, their endpoints might have the same type. Now, call two shortest paths Pi

and Pj (viewed as sets of vertices) equivalent, denoted by Pi ≡ Pj , in a graph G
with d = nd(G) if |Pi ∩Cl| = |Pj ∩Cl| for all l with 1 ≤ l ≤ d, where C1, . . . , Cd

denote the nd-equivalence classes. Any two equivalent shortest paths have the
same length. Proposition 6.1 and our discussions imply that there are O(2nd(G))
many equivalence classes of shortest paths (+).

Theorem 6.2. USPP is FPT when parameterized by neighborhood diversity.

Proof. As we can solve SPP separately on each connected component, we can
assume in the following that the input graph is connected.

Given that the neighborhood diversity of a graph G = (V,E) is bounded by
an integer d, then there exists a partition of V into d nd-classes C1, . . . , Cd. Hence,
each Ci for i ∈ [d] either induces a clique or an independent set. Such a partition
can be found in linear time with a fast modular decomposition algorithm [31].

Compute the set of all shortest path equivalence classes; this can be repre-
sented by a set P of shortest paths, in which any two shortest paths are not
equivalent. By (+), we know that |P| ∈ O(2nd(G)). Construct and solve the fol-
lowing Integer Linear Program (ILP), with variables zp ≥ 0 corresponding to
p ∈ P. Each p ∈ P is characterized by a vector (p1, . . . , pd) with pj = |Cj ∩ p|.

minimize
∑
p∈P

zp

subject to
∑
p∈P

zp · pj = |Cj | for all j ∈ [d]

The variable zp encodes how many shortest paths equivalent to p are taken in
the solution. Hence, the objective function expresses minimizing the number of
shortest paths used in the partition. The constraints ensure the path partitioning.

Claim 6.3. (∗) There exists a spp of G with k shortest paths if and only if the
objective function attains the value k in the ILP described above.

Notice that the number of variables of the ILP is exactly |P|, which is O(2d),
as observed above. Now, we apply [5, Theorem 6.5] to prove our FPT claim.

The arguments leading to Proposition 6.1 and the subsequent discussions are
all proofs by contradiction that show shortcuts in shortest paths that are ‘too
long’. This also works for induced paths instead of shortest paths, leading to:

Proposition 6.4. The length of a longest induced path in a graph G is upper-
bounded by the neighborhood diversity nd(G).

Theorem 6.5. UIPP is FPT when parameterized by neighborhood diversity.



Parameterizing Path Partitions 13

By using results of Lampis [19], we can immediately infer the following.

Corollary 6.6. USPP, UIPP are FPT, parameterized by vertex cover number.

We have a similar result for UPP, either by a more general approach in [14],
or based on a direct reasoning. It is open if one can get a polynomial-size kernel.

Proposition 6.7. (∗) UPP is FPT when parameterized by vertex cover number,
as it possesses a single-exponential size kernel.

We can also obtain a direct FPT algorithm with running time O∗ (vc(G)! · 2vc(G)
)
.

7 Duals and Distance to Triviality

Given a typical graph problem that is (as a standard) parameterized by solution
size k, it takes as input a graph G of order n and k, then its dual parameter
is kd = n − k. This applies in particular to our problems UPP, UIPP and
USPP. As these problems always have as a trivial solution the number n of
vertices (i.e., n trivial paths), we can also interpret this dual parameterization
as a parameterization led by the idea of distance from triviality. Moreover, all our
problems can be algorithmically solved for each connected component separately,
so that we can assume, w.l.o.g., that we are dealing with connected graphs.
Namely, if (G, k) with G = (V,E) is a graph and C ⊊ V describes a connected
component, then we can solve (G[C], k′) and (G−C, k−k′) independently for all
1 ≤ k′ < k. We now prove that our problems, with dual parameterizations, are
in FPT by providing a kernelization algorithm. The following claims are crucial.

Lemma 7.1. (∗) Let G be a graph of order n. If G has a matching that covers
2k vertices, then (G,n− k) is a Yes-instance of UPP, UIPP and USPP.

The preceding lemma has the following interesting consequence.

Corollary 7.2. (∗) If G = (V,E) is a graph that possesses some X ⊆ V with
|X| ≥ 2k such that deg(v) ≥ 2k for every v ∈ X, then G has a matching of
size k and hence (G,n− k) is a Yes-instance of UPP, UIPP and USPP.

This consequence, as well as the following combinatorial observation, has no
direct bearing on our algorithmic result, but may be of independent interest.

Lemma 7.3. (∗) If G is a connected graph with diam(G) > k, then (G,n − k)
is a Yes-Instance of UPP, UIPP and USPP.

Our combinatorial thoughts, along with Corollary 6.6 and Proposition 6.7,
allow us to show the following algorithmic result, the main result of this section.

Theorem 7.4. (∗) UPP, UIPP and USPP can be solved in FPT time with
dual parameterization.



14 H. Fernau, F. Foucaud, K. Mann, U. Padariya, and R. Rao K.N.

8 Conclusion

We have explored the algorithmic complexity of the three problems PP, IPP and
SPP, and as witnessed by Table 1, our results show some interesting algorithmic
differences between these three problems.

Many interesting questions remain to be investigated. For example, what is
the parameterized complexity of SPP on undirected graphs, parameterized by
the number of paths? Is it W[1]-hard, like for DAGs? This was asked in [8], and
our W[1]-hardness result for DAGs can be seen as a first step towards an answer.

We have seen that PP, IPP and SPP admit FPT algorithms when parame-
terized by neighborhood diversity. Can we obtain such algorithms for other (e.g.,
more general) parameters (as was done for PP and modular-width in [14])?

Moreover, in the light of our FPT algorithms for the dual parameterizations
of PP, IPP and SPP, we can ask whether they admit a polynomial kernel.

References

1. Boesch, F.T., Gimpel, J.F.: Covering points of a digraph with point-disjoint paths
and its application to code optimization. Journal of the ACM 24(2), 192–198 (1977)

2. Chakraborty, D., Dailly, A., Das, S., Foucaud, F., Gahlawat, H., Ghosh, S.K.:
Complexity and algorithms for isometric path cover on chordal graphs and be-
yond. In: Proceedings of the 33rd International Symposium on Algorithms and
Computation, ISAAC 2022. LIPIcs, vol. 248, pp. 12:1–12:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022)

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
Third Edition. The MIT Press, 3rd edn. (2009)

4. Corneil, D.G., Dalton, B., Habib, M.: LDFS-based certifying algorithm for the min-
imum path cover problem on cocomparability graphs. SIAM Journal on Computing
42(3), 792–807 (2013)

5. Cygan, M., Fomin, F., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015)

6. Damaschke, P., Deogun, J.S., Kratsch, D., Steiner, G.: Finding Hamiltonian paths
in cocomparability graphs using the bump number algorithm. Order 8(4), 383–391
(1992)

7. Dilworth, R.P.: A decomposition theorem for partially ordered sets. In: Classic
Papers in Combinatorics, pp. 139–144. Springer (2009)

8. Dumas, M., Foucaud, F., Perez, A., Todinca, I.: On graphs coverable by k shortest
paths. In: Proceedings of the 33rd International Symposium on Algorithms and
Computation, ISAAC 2022. LIPIcs, vol. 248, pp. 40:1–40:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022)

9. Dyer, M.E., Frieze, A.M.: Planar 3DM is NP-complete. Journal of Algorithms 7(2),
174–184 (1986)

10. Fernau, H., Foucaud, F., Mann, K., Padariya, U., Rao, K.N.R.: Parameterizing
path partitions. CoRR ArXiv preprint arXiv:2212.11653 (2022)

11. Fortune, S., Hopcroft, J.E., Wyllie, J.: The directed subgraph homeomorphism
problem. Theoretical Computer Science 10, 111–121 (1980)

12. Franzblau, D.S., Raychaudhuri, A.: Optimal Hamiltonian completions and path
covers for trees, and a reduction to maximum flow. ANZIAM Journal 44, 193–204
(2002)



Parameterizing Path Partitions 15

13. Fulkerson, D.R.: Note on Dilworth’s decomposition theorem for partially ordered
sets. Proceedings of the AMS 7(4), 701–702 (1956)

14. Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-
width. In: Gutin, G.Z., Szeider, S. (eds.) Parameterized and Exact Computation -
8th Intern. Symposium, IPEC. LNCS, vol. 8246, pp. 163–176. Springer (2013)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman (1979)
16. Goodman, S., Hedetniemi, S.: On the Hamiltonian completion problem. In: Graphs

and Combinatorics, pp. 262–272. Springer (1974)
17. Kawarabayashi, K.i., Kobayashi, Y., Reed, B.: The disjoint paths problem in

quadratic time. Journal of Combinatorial Theory, Series B 102(2), 424–435 (2012)
18. Krishnamoorthy, M.S.: An NP-hard problem in bipartite graphs. ACM SIGACT

News 7(1), 26–26 (1975)
19. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica

64(1), 19–37 (2012)
20. Le, H.O., Le, V.B., Müller, H.: Splitting a graph into disjoint induced paths or

cycles. Discrete Applied Mathematics 131(1), 199–212 (2003)
21. Lochet, W.: A polynomial time algorithm for the k-disjoint shortest paths prob-

lem. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA). pp. 169–178. SIAM (2021)

22. Manuel, P.D.: Revisiting path-type covering and partitioning problems. CoRR
ArXiv preprint arXiv:1807.10613 (2018)

23. Manuel, P.D.: On the isometric path partition problem. Discussiones Mathematicae
Graph Theory 41(4), 1077–1089 (2021)

24. Monnot, J., Toulouse, S.: The path partition problem and related problems in
bipartite graphs. Operations Research Letters 35(5), 677–684 (2007)

25. Ntafos, S., Hakimi, S.: On path cover problems in digraphs and applications to
program testing. IEEE Transactions on Software Engineering SE-5(5), 520–529
(1979)

26. Pinter, S.S., Wolfstahl, Y.: On mapping processes to processors in distributed sys-
tems. International Journal of Parallel Programming 16(1), 1–15 (1987)

27. Robertson, N., Seymour, P.: Graph minors XIII. The disjoint paths problem. Jour-
nal of Combinatorial Theory, Series B 63(1), 65–110 (1995)

28. Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM Journal
on Computing 23(4), 780–788 (1994)

29. Slivkins, A.: Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. SIAM Journal of Discrete Mathematics 24(1), 146–157 (2010)

30. Steiner, G.: On the k-path partition of graphs. Theoretical Computer Science
290(3), 2147–2155 (2003)

31. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular de-
composition via recursive factorizing permutations. In: Aceto, L., Damgård, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) Inter-
national Colloquium on Automata, Languages, and Programming, ICALP, Part
I: Tack A: Algorithms, Automata, Complexity, and Games. LNCS, vol. 5125, pp.
634–645. Springer (2008)

32. Thiessen, M., Gaertner, T.: Active learning of convex halfspaces on graphs. In: Ran-
zato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Proceed-
ings of the 35th Conference on Neural Information Processing Systems, NeurIPS
2021. vol. 34, pp. 23413–23425. Curran Associates, Inc. (2021)

33. Wang, C., Song, Y., Fan, G., Jin, H., Su, L., Zhang, F., Wang, X.: Optimizing
cross-line dispatching for minimum electric bus fleet. IEEE Transactions on Mobile
Computing (to appear)


	Parameterizing Path Partitions

