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Abstract. In this paper Piola transformations are found that relate the Eulerian and Lagrangian external loads
which third gradient continua can sustain. As shown by Gabrio Piola and Paul Germain, the most effective
postulation scheme in mechanics is based on the principle of virtual work and therefore continuum mechan-
ics must be mathematically founded based on the theory of distributions and on differential geometry. Us-
ing the principle of virtual work, the set of admissible external loads sustainable by third gradient continua
is seen to include: i) volume force density, ii) surface density of contact force, iii) surface density of contact
double force, iv) surface density of contact triple force, v) line density of edge contact forces, vi) line density
of contact edge double forces and vii) contact forces concentrated on wedge points. Following the nomen-
clature introduced by Paul Germain, forces are dual in virtual work of virtual displacements, surface and line
double forces are dual of the derivatives of virtual displacements in the normal direction(s) of the surfaces
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and edges constituting the boundary of the continuum, and surface triple forces are dual of the second nor-
mal derivatives of virtual displacements. Volume and surface forces transform as in first gradient Cauchy 
continua. Moreover we find that: a) the virtual work expended by Eulerian surface triple force, when trans-
formed into the Lagrangian description, must be represented as the work expended by all the kinds of ex-
ternal Lagrangian loads listed in i)-vii); b) Eulerian surface double force transforms into Lagrangian surface 
double force, surface contact force and edge contact line force; c) Eulerian edge contact line double force 
transforms into Lagrangian edge contact line double forces, edge line forces and point concentrated wedge 
forces; d) Eulerian edge and wedge contact line forces transforms into their Lagrangian counterpart only. The 
Piola transformation formulas deduced in this paper depend on the first, second and third gradients of place-
ment. The presented results allow for the formulation of well-posed boundary condition problems for third 
gradient continua in the Lagrangian description, and are relevant in computational mechanics. In view of 
the obtained Piola transformation formulas, the concept of dead loads needs to be modified. We believe to 
have given an example of how the Mechanics in the French Style, as developed on the ideas by D’Alembert 
and Lagrange, is still a fertile tool of invention.

Résumé. Dans cet article, on trouve les transformations de Piola qui relient les charges externes Eulériennes 
et Lagrangiennes que les milieux continuous de troisième gradient peuvent soutenir. Comme l’ont montré 
Gabrio Piola et Paul Germain, le schéma de postulation le plus efficace en  mé canique es t ba sé su r le 
principe des travaux virtuels et, par conséquent, la mécanique des continuums doit être mathématiquement 
fondée sur la théorie des distributions. En utilisant le principe des travaux virtuels, l’ensemble des charges 
externes admissibles soutenables par les continuums de troisième gradient comprend : i) la densité de force 
volumique, ii) la densité de surface de la force de contact, iii) la densité de surface de la double force de 
contact, iv) la densité de surface de la triple force de contact, v) la densité linéaire des forces de contact de 
bord, vi) la densité linéaire des doubles forces de contact de bord et vii) les forces de contact concentrées sur 
les points de coin. Suivant la nomenclature introduite par Paul Germain, les forces sont duales en travail 
virtuel des déplacements virtuels, les forces doubles de surface et de ligne sont duales des dérivées des 
déplacements virtuels dans la ou les directions normales des surfaces et des bords constituant la frontière 
du continuum et les forces triples de surface sont duales des dérivées secondes normales des déplacements 
virtuels. Les forces de volume et de surface se transforment comme dans les milieux continus de Cauchy 
à premier gradient. En plus, nous trouvons que a) le travail virtuel dépensé par la force triple de surface 
Eulérienne, lorsqu’elle est transformée en description Lagrangienne, doit être représentée comme le travail 
dépensé par tous les types de charges Lagrangiennes externes énumérées aux points i)-vii) ; b) la force 
double de surface Eulérienne se transforme en force double de surface, en force de contact de surface et 
en force de ligne de contact Lagrangiennes, c) la force double de ligne de contact Eulérienne se transforme 
en doubles forces de ligne de contact Lagrangiennes, en forces de ligne et en forces de coin concentrées, 
d) les forces de ligne de contact de bord et de coin Eulériennes se transforment uniquement en leur 
contrepartie Lagrangienne. Les formules de transformation de Piola déduites dans cet article dépendent des 
premier, deuxième et troisième gradients du placement. Les résultats présentés permettent la formulation 
de problèmes de conditions aux limites bien posés pour les milieux continus de troisième gradient dans la 
description Lagrangienne et sont pertinents en mécanique computationnelle. Compte tenu des formules de 
transformation de Piola obtenues, le concept de charges mortes doit être aussi modifié. Nous pensons avoir 
donné un exemple de la façon dont la « Mécanique à la française », telle qu’elle a été développée à partir des 
idées de D’Alembert et de Lagrange, est toujours un outil de découverte fertile.

Keywords. Third-gradient materials, Principle of Virtual Work, Piola Transformation, Eulerian description, 
Lagrangian description, Distribution theory, Differential Geometry.

Mots-clés. Continuum de troisième gradient, Principe des Travaux Virtuels, Transformations de Piola, De-

scription lagrangienne, Description Eulerienne, Théorie des distributions, Géométrie di érentielle.
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1. Introduction

The aim of this paper is to find Piola transformations for admissible sustainable loads in third
gradient continua. The conceptual framework that we accept is that given by the postulation of
continuum mechanics based on the principle of virtual work. This principle has been systemat-
ically used since the most ancient known mathematized mechanical theories were formulated
in the pseudo-Aristotelian Μεκανικά Προβλήματα . In the following centuries, it revealed itself
to be the most reliable guide to invent novel mathematical models for describing physical phe-
nomenology. In mentioned apocryphal collection of exercises of mechanics, included in the Cor-
pus Aristotelicum, sometimes attributed to Archytas of Tarentum [1] and dated, depending on
the commentators, in the period between the IV century BC and the II century BC, one finds the
first “great” unification theory: 35 problems of relevance in Engineering applications, which were
studied separately on the basis of different principles, are discussed using always the same and
unique principle, the principle of virtual work, with the support of the logical structure given by
Euclidean geometry.

The foundational attitude which animated theΜηχανικά Προβλήματα has been revived many
centuries later by the French-Italian school of mechanics headed by D’Alembert, Lagrange and
Gabrio Piola. Albeit the principle of virtual work has been too often considered “controversial”
(see already [2, 3]) it has been recognized many times to be the most effective tools for guiding
the invention of novel mathematical models in mechanical sciences (see [4, 5]).

D’Alembert in his Traité de Dynamique (1768) explicitly states that the range of application of
mechanics must be ”enlarged in reducing the number of the principles on which it is based”. This is
exactly was has been done by Paul Germain, when he extended the the possibilities of application
for continuum mechanics by renouncing to use many balance laws (balance of forces, of torques
of microforces and so on) and by concentrating in the systematic use of the principle of virtual
work for formulating generalized continuum models (see [6–8] and the more recent works [9,10]).

In the present paper, we want to give a further example of the application of the principle
of virtual work to perfect some parts of continuum mechanics, which cannot be developed
by using the postulation based on the balance of forces and torques, and which seems very
promising in their applications to their use for the design of novel metamaterials [11–13]. The
mathematical tools used here are taken from a more modern version of Euclidean geometry:
modern differential geometry, originated from the works of Gauss and Riemann and developed
using absolute tensor calculus by Levi–Civita and Ricci in the form presented in the fundamental
textbook by Lichnerowicz [14].

In this way we want to contribute to substantiate the following statement:
« “Mechanics in the French Style”, as developed on the ideas by D’Alembert and Lagrange,

remains the most powerful and fertile tool of invention in mechanical sciences ».

1.1. Third-gradient continua: summary of main concepts

The virtual work functionals to be used for third-gradient continua are third-order distributions
(see [15] and [6–8]), when virtual displacements are regarded as test functions. Therefore, their
deformation energy density depends on the derivatives of the placement field up to the third
order, see e.g. [15, 16]. Third gradient internal virtual work functional requires a second-order
stress tensor and hyper-stress tensors of order three and four, called double and triple stresses,
see e.g. [17, 18]. By iterated integrations by parts, also extended to the faces, edges and wedges
of the continuum boundary, all regarded as embedded manifolds with boundary [15, 19, 20], the
internal virtual work functional can be represented as the sum of distributions concentrated on
volumes, surfaces, curves and points [15, 21].
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As proven in [15], also for higher-gradient continua a Cauchy representation theorem for
contact loads in terms of hyper-stress tensors can be proven, using an integration by parts
argument. Therefore the class of admissible sustainable external loads for nth gradient continua
is easily determined once the Principle of Virtual Work is accepted. External loads applicable to
third-gradient continua include surface k-forces with k = 1,2,3, line h-forces with k = 1,2 and
wedge forces: well-posed boundary problems for third gradient continua are thus easily deduced
without any ad hoc assumption.

1.2. Meta-materials architectures and higher gradient continuum models

Higher-gradient continua are models suitable to describe the macroscopic behaviour of mechan-
ical systems exhibiting multi-scale structure. We simply cite here few interesting phenomenolog-
ical context plural where size effects, determined by characteristic multiple length scales, play
a relevant role: materials with nano architecture [22], systems where boundary layers [23–25] or
contact lines [26] arise, surface tension in fluids [27].

Rather interestingly, in the present context, it has to be recalled that the homogenized con-
tinua corresponding to a large class of truss micro-architectures have been studied (see [28–30]):
in particular, it has been proven that, by using three length-scales, it is possible to design beams
whose deformation energy depends on the third gradient of transverse displacement. Therefore
the problem of synthesis of third gradient beams has found a positive solution, so further moti-
vating the study of third gradient continua. In fact, we conjecture that, by using the design scheme
of pantographic micro-structures, and replacing the Euler beams with the third gradient beams
synthesized in [29] it will be possible to design third gradient 2D and 3D continua (see e.g. [31]).

The theoretical results about higher gradient continua have been exploited to design exper-
iments involving multi-scale 3D printed micro-architectures: correspondingly suitable multi-
scale Digital Image Correlation procedures have been conceived, both using images of a free sur-
face (2D DIC) or within the bulk (Digital Volume Correlation DVC) (see e.g. [32–35]): this circum-
stance proves the importance in the engineering applications of generalized continuum theories.

Finally, it has to be remarked that, to our knowledge, any result about existence, uniqueness
and stability of third-gradient models has not been yet found, albeit it seems to us that the
methods exploited in [36–38] should be easily generalized: this means that higher gradient
continuum theories can give inspiration to more advanced mathematical investigations.

Although Gabrio Piola, already in [3], introduced higher gradient continua, via an asymptotic
homogenization procedure, only recently the need of such continua in modelling exotic me-
chanical phenomena has been fully recognized. This circumstance is mainly due to the oppo-
sition of Truesdellian school, in which it is often believed that balance laws, using the approach
à la Cauchy, are the only basic principles at the basis of mechanics and that “exotic” h-forces do
nor “exist”, see e.g. [4, 39]. Instead, in the case of nth gradient continua, h-forces appear naturally
(being h ≤ n), by duality in the postulation of mechanics based on the principle of the virtual
work [40] and supply a powerful tool for model formulation.

We expect that the study of continuum mechanics based on the principle of virtual work,
and in particular the presented investigations about third-gradient continua, will pave the way
towards the synthesis of novel metamaterials, exhibiting a larger variety of mechanical behaviour.

1.3. Organization of the paper

In the present paper the results in [20,41] are generalized: we prove that Eulerian external h-forces,
under Piola transformations, originate all the lower order Lagrangian forces on lower dimension
submanifolds of the continuum boundary.
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The paper is organized as follows. In the continuation of this first section we introduce
the used notations and the first kinematical and geometrical concepts. A warning is repeated
here: Lagrangian quantities and indices are chosen to be represented by capital letters, while
Eulerian with lowercase letters. However, in order to decrease the complexity of notations, many
general results from differential geometry are presented with capital letters but are clearly valid
in general.

In Section 2, the class of admissible generalized loadings which can be sustained by third
gradient continua, as found in the literature, is shortly described. The essential nomenclature,
based on that introduced by Germain, is also recalled.

In Section 3, some useful preliminary concepts and results from modern differential geometry
of embedded manifolds with boundaries, as originated from the works of Gauss and Riemann, are
recalled. Also some relationships useful in the sequel are established. The concept of piecewise
regular surfaces is introduced and explained via some figures. In piecewise regular surfaces, the
field of normal unit vectors jumps on a finite number of curves (more technical details about this
point are given in [15]). These surfaces are composed by faces, each of which can be regarded as a
two-dimensional embedded manifold with boundary. The curves of discontinuity of normals are
to be regarded as parts of the boundary of each concurring face, and are called edges. Finally a
finite number of edges are concurring on wedges, where the tangent vectors of concurring curves
are discontinuous.

In Section 4, the problem of finding the irreducible representation of second-order surface
distributions is confronted in the case in which the surface, on which the distribution is concen-
trated is piecewise regular. Also some formulas are found, useful for integration by parts.

In Section 5, the preparatory concepts are concluded by proving the Piola transformations
formulas for the shapes of differential boundaries of reference into current configurations.

In Section 6, finally the Piola transformations of external loads sustainable by third gradient
continua are obtained. They link externally applied loads in the current configuration with those
applied in the reference configuration.

In Section 7, some conclusions and research perspectives are presented. In particular it is
discussed the possibility of extending the present results to the more general case of nth gradient
continua.

1.4. Used notations, kinematical and geometrical concepts

We use tensor indicial Levi–Civita notation, with Einstein convention the sum of repeated indices.
We believe that the distinction between contravariant and covariant components is essential
in the present context, as displacements and velocities are naturally to be identified as having
contravariant components, and therefore forces and stresses need covariant components to
saturate, in work or power expressions, virtual displacements or velocities.

In order to make the used formulas more readable, Eulerian and Lagrangian quantities and
components will be denoted respectively by lowercase and uppercase letters. For instance the
Lagrangian and Eulerian gradient operators components will be denoted respectively by the
symbols ∂

∂X A and ∂
∂xa . As it plays a crucial role in our presentation, the derivative along the

direction of the unit vector N R will be denoted as ∂
∂N := N R ∂

∂X R .

Given a domain D with dimension i (i = 3,2,1), symbol ∂D will denote its differential border,
having dimension (i −1). As the differential border may not be smooth, we will need to consider
the pth order border, which is defined iteratively as follows: ∂(0)Ω := Ω-and ∂(p)D ≡ ∂ ∂(p−1)D .
It has to be remarked that the standard formulation of the so-called Poincaré formula (see [42])
does not hold for the domains having the regularity which we are considering here (see [15] for
more details on this subject).
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Figure 1. Part of the volume boundary ∂Ω constituted of oriented regular faces Σ (with
the positive normals pointing outwards), with their differential boundaries including in
turn piecewise regular edges oriented consistently. The mutually orthogonal, normalized
vectors T, B and N specify a Darboux moving basis along such boundary edges.

We will consider here a continuum having the three-dimensional domain Ω, with non-
vanishing volume and included in the Euclidean space, as reference configuration. The place-
ment Π of the continuum is assumed to be a bijection sufficiently regular that maps every mate-
rial point inΩ into its current position, hence invertible being its inverse equally regular.

The domain Ω is called Lagrangian or material or reference configuration, while the do-
main ω := Π(Ω) is called Eulerian or spatial or current configuration. The domain Ω (a three-
dimensional manifold with piecewise regular differentiable boundary, see [15]) is assumed to be
a differential boundary which is composed by faces, edges and wedges. Faces and edges are two-
dimensional manifolds and one-dimensional manifolds respectively, whose differential bound-
aries are the edges and the wedges respectively. Edges are those curves on which faces are con-
curring and where the faces normals are discontinuous, wedges are those points where edges
concur: the concurring edge tangent vectors of different edges may be different, see Fig. 1.

We denote Σ, L, and P the surfaces, curves and points which are the supports of ∂Ω, ∂∂Ω and
∂∂∂Ω: remark that, a curve, which belongs to the boundary of a face, is also a part of the boundary
of another concurring face. Therefore the same curve has to be regarded as part of two different
boundaries.

Assuming that the placement is sufficiently regular, the domain ω :=Π(Ω) will have the same
differential properties as Ω: in this paper we refrain from the study of the process of edge and
wedge formation in the passage from reference to current configuration. All the faces and edges,
having co-dimension one and two, are oriented consistently with the orientation of the outward
pointing normal field, with respect toΩ, whose components are denoted N R .

1.5. Distinction between Eulerian and Lagrangian fields and quantities: important nota-
tional warning

In this paper we will need to discuss some differential geometry properties of the boundaries for
both Eulerian and Lagrangian configurations of third-gradient continua. Moreover we will con-
sider both Eulerian and Lagrangian fields to establish several relationships among them. In order
to make the presentation less cumbersome we have not formulated in a general formalism all
the needed properties, and subsequently reformulated them in either the Lagrangian or Eulerian
description, when required. Instead we have discussed them in the Lagrangian description, by
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Figure 2. Edge tangent and tangent normal vectors (in the order denoted by symbols T and
B) running along the differential boundary ∂Σ of each oriented regular face Σ. Wedges are
easily recognized as discontinuity points for the tangent (and for the tangent normal).

using the convention that every relevant Lagrangian quantity is denoted with uppercase letters.
The reader will easily reconstruct, when necessary, the required relationships in the Eulerian de-
scription simply by denoting the Eulerian counterparts of every Lagrangian quantity or field by
using the same letter, but lowercase.

For instance in the Eulerian configuration, we denote σ, λ|, and p the surfaces, curves and
points which are the supports of ∂ω, ∂∂ω and ∂∂∂ω.

2. Admissible generalized loadings which can be sustained by third gradient continua

We introduce two different vector bases: one for the reference (denoted {EB }) and one for
the current configuration (denoted {ei }). As always needed when distinguishing contravariant
from covariant components, we also introduce, in both the reference and actual configurations,
Riemannian metric tensors, whose components are denoted in the specified bases by G AB and
gi j , respectively.

Along any curved edge, regarded as part of the boundary of a face having normal N, one can
define the field of bases constituted by the triples T,N and B := T∧N, where T denoted the edge
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tangent: both T and the normal B to the boundary of the face belong to the plane tangent to the
face. The vector B is also called the tangent normal to the edge (see Figs. 1 and 2).

The introduced continuum deformation is specified by the diffeomorphism Π between Ω

and ω: therefore many concepts and results of differential geometry [43–45] will be used in the
following. This diffeomorphism will play an important role also when developing the theory of
generalised continua (see e.g. [18]) where additional kinematic descriptors are needed: in fact
Π allows for the establishment of the correspondence between any Lagrangian field Ψ(X ) (with
X ∈Ω) with the Eulerian fieldΨ(Π−1(x)) (with x ∈ω).

Finally we will denote the placement gradient with the symbol

F = ∂χ/∂X,

and assume that

J := det(F) > 0.

For third-gradient continua (see e.g. [15, 21] and in the linear case [46]), the sustainable
admissible external virtual work functional, in Lagrangian form, has the form:

δW ext =
∫
Ω

F ext
Ω i δΠ

i dΩ (V )+
∫
Σ

F ext
Σ i δΠ

i dΣ (S)

+
∫
Σ

F ext
ΣN i

∂δΠi

∂N
dΣ (SN )+

∫
Σ

F ext
ΣN N i

∂2δΠi

∂N 2 dΣ (SN N )+

+
∫

L
F ext

L i δΠ
i dL (L)+

∫
L

F ext
L N i

∂δΠi

∂N
dL (LN )+

∫
L

F ext
L B i

∂δΠi

∂B
dL (LB)+

+
♯wedge∑

w=1
F ext

P w i δΠ
i (Pw) (W ) .

(1)

Each addend has been labeled with a letter having an obvious meaning: volume lowercase (V )
surface (S), edge (L) and wedge (W ) addend. When the considered load is dual of a first or second
order normal derivative of virtual displacement the corresponding letters N, B, NN have been
added.

The fields F ext
Ω i (X), F ext

Σ i (X), F ext
L i (X) and F ext

P w i map the material particle X or Pw belonging
to the reference configuration into Eulerian vectors. These fields are defined, respectively in the
domain Ω, on its faces, on its edges and on its wedges: they are force densities per unit volume,
per unit surface, per unit length and point forces.

Following (and extending) the nomenclature by Paul Germain (see [6–8])

(1) the vector fields F ext
ΣN i (X) and F ext

ΣN N i (X) can be called external surface double and triple
forces, respectively: they are, respectively, a work (force times length) per unit surface,
and a force times length squared per unit surface;

(2) the vector fields F ext
LN i (X) and F ext

LB i (X) can be called external edge double forces, that are
work (force times length) per unit line.

As the placement is assumed to be a diffeomorphism, the structure of external virtual work
functional, as established by the theorem of Laurent Schwartz (see [47] and also [15]), is the same
in both the Lagrangian and the Eulerian descriptions.

Therefore one can obtain the expression for the Eulerian external work functional from the
equation (1) simply replacing with lowercase letters the uppercase letters, and redefining the
involved quantities in the Eulerian description.

The reader should remark that the equation (1) is a particularization of the general represen-
tation formula for the external virtual work for a nth gradient material, provided in [15].
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3. Some useful preliminary concepts and results from differential geometry

The most important ancillary mathematical theory for continuum mechanics is differential
geometry, as it is obviously understood once that the placement is identified as a diffeomorphism
between reference and current configuration, and that the deformation can be interpreted as a
change of Riemannian metrics in the reference configuration.

In this section, for seek of self consistency, we recall some results which we need in the
development of our presentation. The reader needs to familiarize with them, and with the used
Ricci–Levi–Civita notation, in order to follow the subsequent deductions.

3.1. Definitory properties of faces and edges projectors

The content of this section is illustrated by the Figs. 1 and 2. Because of the accepted regularity
assumptions, at each point of a regular face of ∂Ω, its linear tangential and normal projection
operators are well defined. Denoting them by [M∥]A

B and [M⊥]A
B , respectively, they enjoy the

following properties:[
M∥

]A
B + [M⊥]A

B =G A
B , M∥+M⊥ = 1, (2)

[M⊥]C
A = NC NA , [M⊥] = N⊗N , (3)[

M∥
]C

A =GC
A −NC NA ,

[
M∥

]= 1−N⊗N , (4)[
M∥

]A
B

[
M∥

]B
C = [

M∥
]A

C , M2
∥ = M∥ , (5)

[M⊥]A
B [M⊥]B

C = [M⊥]A
C , M2

⊥ = M⊥ , (6)

where G A
B are the components of the unit operator, coincident with the mixed form of the metric

tensor.
Similarly, at each point of an edge in ∂∂Ω, its linear tangential and normal projection operators

are well defined. These projectors are denoted in the order by the symbols [ML ∥]A
B and [ML⊥]A

B
and enjoy the following properties:[

ML∥
]E

A = T E T A , ML ∥ = T⊗T , (7)

[ML⊥]E
A = B E B A +N E N A , ML⊥ = B⊗B+N⊗N , (8)

GE
A = [

ML∥
]E

A + [ML⊥]E
A = T E T A +B E B A +N E N A , (9)

which can be rewritten as

1 = ML∥+ML⊥ = T⊗T+B⊗B+N⊗N .

3.2. Deformative Riemannian metrics

As already understood by Piola (see [16]), the deformation of a continuum can be mathematically
described by changing the inner product in the reference configuration. The placement-induced
Riemannian metrics defined as

G⋆RS :=g r s (
F−1)R

r

(
F−1)S

s , (10)

G⋆
AB :=

(
g r s (

F−1)A
r

(
F−1)B

s

)−1 = gl mF l
AF m

B , (11)

is sometimes called the pull-back of the Eulerian metric tensor: it is naturally defined in its doubly
contravariant form.
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One obviously has that1 for every co-vector V

G⋆RQVRVQ = ∥∥F−T V
∥∥2

g , (12)

(see [16, 19, 43]), where ∥v∥g = (gab v a vb)
1
2 denotes the Eulerian norm.

It is easy to check that

〈FU,FV〉g = glmF l
AF m

B U AV B =G⋆
RQU RV Q . (13)

In what follows we will need to introduce the following vector associated to V

V ⋆R :=G⋆RSVS . (14)

It is the contravariant vector associated to V by using the pull-back metrics: obviously, in general,
it differs from the contravariant form of the same vector (generated by the usual metrics): V ⋆R ̸=
V R . In particular we will need the previous formula for the normal

N⋆R :=G⋆RS NS . (15)

3.3. The divergence theorem for submanifolds with boundary and a notational warning

This theorem is probably the one which initiated differential geometry, and is essentially due to
Gauss and Stokes. It applies to every Riemannian submanifolds, may it be one-dimensional (as a
compact curve) or two-dimensional (as a surface): the interested reader may consult e.g. [44, 45]
or [15] for further details.

Let us consider a submanifold S embedded in the Euclidean space and let ∂S denote its
differential boundary. Let Q be the parallel projector on the tangent space to S.

Gauss divergence theorem on S states that for every vector field W defined on S the following
equality holds ∫

S
QC

A
∂

∂X C

(
Q A

B W B )
dS =

∫
∂S

QB
AW ADB d∂S, (16)

where the vector D is the vector tangent to S which is orthogonal to ∂S.
The integrand appearing at LHS of the equality defines the surface divergence of the vector

field W sometimes also denoted with the symbol DIVS (W).
In the present paper this theorem is applied in four different instances: for Eulerian or

Lagrangian faces or edges, constituting the differential boundary of the reference or for the
current configurations.

In the present paper we will need to consider domains (in both the reference and current
configuration) whose differential boundary is a piecewise regular surface, which can be regarded
as the union of faces, edges and wedges (see Figs. 1-2). Each face can be regarded as a 2D
submanifold, whose boundary is constituted by all the edges on which the face is concurring.
Each edge can be regarded as part of the differential boundary of all the faces concurring on it:
the limits on the edge of the face normals from every face are, in general, different, as different
are the relative tangent normal vectors (see Figs. 2-3). Therefore, when applying the divergence
theorem to every face of the considered piecewise regular surface, different edge fluxes coming
from every face arise.

1Recalling that the normal to a manifold is naturally recognized as a co-vector, in the literature the Lagrangian co-
vector having components (F−1)R

r NR is denoted F−T N.
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Figure 3. Pairs of boundary faces Σ which share parts of the support of their differential
border ∂Σ. Opposite orientations are induced along each border edge, when regarded as
belonging to the boundary of one face or of the contiguous one. Herein the wedge point
P is shared among three faces, and belongs to three regular edges of their differential
boundaries.

3.4. Some useful identities involving the face parallel projectors

It is easy to prove the following identities, which we will systematically use in the sequel. We
have used a notation involving uppercase letters only: however, the involved properties in the
demonstrations are purely geometrical. The reader will easily transform all formulas in lowercase
letters so obtaining the needed identities in the Eulerian configuration.

3.4.1. Representation for face parallel projector restricted to edges

For the edge tangent vector and the tangent normal to the edge, the following identities hold:[
M∥

]E
A T A = T E ,

[
M∥

]E
A B A = B E . (17)

Therefore, the following representation for face projectors holds:[
M∥

]E
A′ = T E T A′ +B E B A′ . (18)

3.4.2. Surface divergence of surface parallel projector

The surface divergence of the parallel projector can be calculated as follows[
M∥

]S
Q

∂
[
M∥

]K
A

∂X S
=−[

M∥
]S

Q

∂
(
N K NA

)
∂X S

=−[
M∥

]S
Q

(
∂NA

∂X S
N K + ∂N K

∂X S
NA

)
, (19)

and the following definitory identity is very well-known in Riemannian differential geometry:[
M∥

]R
S

∂

∂X R

[
M∥

]S
D =−ND

∂N S

∂X S
=:

2

Rm
ND , (20)

where symbol Rm is called the local mean curvature over the boundary face.
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Figure 4. Darboux basis vectors belonging to the differential boundaries of each face con-
curring to the wedge point P. When considering separately each face with a continuous
normal field, the edge tangent and edge tangent normal vectors, i.e. T and B, are discontin-
uous at the wedge points: instead, when passing from one face to the contiguous one shar-
ing the support of an edge, T, B and also N are discontinuous (in particular, the tangents
equal opposite).

3.4.3. Surface divergence for the fully parallel projection of a two times contravariant tensorAAB
i

It is calculated with the following equality chain:

[
M∥

]S
Q

∂
(
AAB

i

[
M∥

]K
A

[
M∥

]Q
B

)
∂X S

= [
M∥

]S
Q

∂
(
AAB

i δK
A

[
M∥

]Q
B

)
∂X S

− [
M∥

]S
Q

∂
(
AAB

i N K NA
[
M∥

]Q
B

)
∂X S

= [
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

−N K [
M∥

]S
Q

∂
(
AAB

i NA
[
M∥

]Q
B

)
∂X S

− AAB
i NA

[
M∥

]S
B

∂N K

∂X S
.

(21)
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By projecting the equation (21) along the direction normal to the surface, we get

NK
[
M∥

]S
Q

∂
(
AAB

i

[
M∥

]K
A

[
M∥

]Q
B

)
∂X S

= NK
[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

− [
M∥

]S
Q

∂
(
AAB

i NA
[
M∥

]Q
B

)
∂X S

. (22)

By projecting the equation (21) along the direction B , we get

BK
[
M∥

]S
Q

∂
(
AAB

i

[
M∥

]K
A

[
M∥

]Q
B

)
∂X S

= BK
[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

− AAB
i NA

[
M∥

]S
B

∂N K

∂X S
BK . (23)

By projecting the equation (21) along the tangent plane to the surface, we get

[
M∥

]K ′
K

[
M∥

]S
Q

∂
(
AAB

i

[
M∥

]K
A

[
M∥

]Q
B

)
∂X S

=
[

M∥
]K ′

K

[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

− AAB
i NA

[
M∥

]S
B

[
M∥

]K ′
K

∂N K

∂X S

 . (24)

3.4.4. A first useful reduction

The term [
M∥

]K ′
K

[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

+ [
M∥

]K ′
K AAB

i NA
[
M∥

]R
B

∂N K

∂X R

appears in the irreducible representation for a surface second-order distribution, which we will
get in the following as surface dual in work of virtual displacement.

We get the following chain of equalities:

[
M∥

]K ′
K

[
M∥

]S
Q

∂
(
AK B

i [M∥]Q
B

)
∂X S

+AAB
i NA

[
M∥

]R
B

∂N K

∂X R


= [

M∥
]K ′

K

[
M∥

]S
Q

∂
([

M∥
]Q

B

)
∂X S

AK B
i + [

M∥
]S

Q

[
M∥

]Q
B

∂AK B
i

∂X S
+AAB

i NA
[
M∥

]R
B

∂N K

∂X R


= [

M∥
]K ′

K

([
M∥

]S
Q

∂
(−NQ NB

)
∂X S

AK B
i + [

M∥
]S

B

∂AK B
i

∂X S
+AAB

i NA
∂N K

∂X B

)

= [
M∥

]K ′
K

([
M∥

]S
Q NB

∂
(−NQ

)
∂X S

AK B
i + [

M∥
]S

Q NQ ∂ (−NB )

∂X S
AK B

i + [
M∥

]S
B

∂AK B
i

∂X S
+AAB

i NA
∂N K

∂X B

)

= [
M∥

]K ′
K

(
− ∂NQ

∂X Q
AK B

i NB + [
M∥

]S
B

∂AK B
i

∂X S
+AAB

i NA
∂N K

∂X B

)

= [
M∥

]K ′
K

([
M∥

]S
B

∂AK B
i

∂X S
+AAB

i NA
∂N K

∂X B
− ∂NQ

∂X Q
AK B

i NB

)
.

(25)

3.4.5. Another useful reduction

The term [
M∥

]S
Q

∂

∂X S

(
AAB

i NA
[
M∥

]Q
B

)
+NK

[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

appears in the irreducible representation for a surface second-order distribution, which we will
get in the following as surface dual in work of normal derivative of virtual displacement.
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We get the following chain of equalities:

[
M∥

]S
Q

∂

∂X S

(
AAB

i NA
[
M∥

]Q
B

)
+NK

[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

= [
M∥

]S
Q

∂

∂X S

(
AAB

i NA
[
M∥

]Q
B N K

)
NK +NK

[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

= NK
[
M∥

]S
Q

∂
(
AAB

i NA
[
M∥

]Q
B N K +AK B

i

[
M∥

]Q
B

)
∂X S

 .

(26)

3.4.6. Derivatives of the vectors T, B and N

As the vectors T and B have norm equal to one, we have

dT

dS
·T = 0,

dB

dS
·B = 0, (27)

where S denotes the curvilinear abscissa along the boundary edge. Therefore we can deduce that:

T A ∂T E

∂X A
TE = [

ML ∥
]A

E

∂T E

∂X A
= 0. (28)

The reader will remark that, to introduce the gradient of T, it is necessary to smoothly prolong
the field T in an open neighborhood of the curved edge, with constant value in any direction
orthogonal to the edge: this requirement is met in the vicinity of any of its regular points. Using
this constant orthogonal extension (i.e. wrt the edge tangent) and its analogue for the field B, it is
also easy to verify that

B A′
∂T A

′

∂X E
= 0, N A′

∂T A
′

∂X E
= 0, (29)

B E ∂B A
′

∂X E
= 0, N E ∂B A

′

∂X E
= 0. (30)

A similar extension of the normal field to every face is also needed for defining its gradient.
This strategy is used in Riemannian geometry to define the surface curvature tensor. It is simple
to verify that:

∂NA

∂XE
N A = 0,

∂NA

∂XE
N E = 0. (31)

4. Irreducible representation of second order surface distributions and some integra-
tion by parts formulas

When using the principle of virtual work it is essential to get the irreducible representation of
virtual work functionals: i.e., their representation in which the lowest possible order of derivatives
of test functions appears (see [15] and [47]). To this aim it is necessary to apply systematically the
divergence theorem and the integration by parts techniques.

We explicitly warn the reader that the surface on which the distribution is concentrated is a
piecewise regular surface Σ (as defined in the previous sections): therefore when we write ∂Σ

we mean the union of the boundaries of all the m faces Σr ,with r = 1, · · · , constituting Σ (see
Figs. 1-3).

Therefore we will use systematically the following notation∫
∂Σ

(•)d∂Σ :=
m∑

r=1

∫
∂Σr

(•)d∂Σr .
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4.1. Projector-based decomposition of second order surface distributions

In order to get its irreducible representation, we will need repeatedly to integrate by parts two
times the following work functional, which is a second order distribution concentrated on a
surface: ∫

Σ
ARS

i
∂2δΠi

∂X R∂X S
dΣ , (32)

whereARS
i is a generic (symmetric!) tensor field defined in the neighbourhood of the surface Σ.

To do so, we start by decomposing the identity in the space of two times covariant tensors and
considering the tensor product:

δR
Aδ

S
B =

([
M∥

]R
A +N R NA

)([
M∥

]S
B +N S NB

)
= [

M∥
]R

A

[
M∥

]S
B +N R NA

[
M∥

]S
B +NB N S [

M∥
]R

A +NB N S N R NA .
(33)

The work functional (32) can be split as the sum of the three addends:

• completely parallel projection:∫
Σ
AAB

i

[
M∥

]R
A

[
M∥

]S
B

∂2δΠi

∂X R∂X S
dΣ ; (34)

• one time normal and one time parallel projection. This addend, because of the symmetry
ofAAB

i and of the Hessian matrix of the field δΠi , is equal to∫
Σ

(
2AAB

i NA
[
M∥

]R
B

)
N S ∂2δΠi

∂X R∂X S
dΣ , (35)

which, by using the equality

N S ∂2δΠi

∂X R∂X S
= ∂

∂X R

(
N S ∂δΠ

i

∂X S

)
− ∂N S

∂X R

(
∂δΠi

∂X S

)
= ∂

∂X R

(
∂δΠi

∂N

)
− ∂N S

∂X R

(
∂δΠi

∂X S

)
becomes ∫

Σ

(
2AAB

i NA
[
M∥

]R
B

)(
∂

∂X R

(
∂δΠi

∂N

)
− ∂N S

∂X R

(
∂δΠi

∂X S

))
dΣ ; (36)

• completely normal projection:∫
Σ

(
AAB

i NB NA
)

N S N R ∂2δΠi

∂X R∂X S
dΣ . (37)

4.1.1. Irreducible representation of the first addend (34)

To reduce the first addend (34) we need to integrate by parts and to apply the surface diver-
gence theorem two times. We start with the needed chain of equalities, by applying the Leibniz
rule and the surface divergence theorem and recalling idempotence of projectors:∫

Σ

(
AAB

i

[
M∥

]R
A

[
M∥

]Q
B

)[
M∥

]S
Q

∂

∂X S

(
∂δΠi

∂X R

)
dΣ

=
∫
Σ

[
M∥

]S
Q

∂

∂X S

(
AAB

i

[
M∥

]R
A

[
M∥

]Q
B

∂δΠi

∂X R

)
dΣ

−
∫
Σ

[
M∥

]S
Q

∂

∂X S

(
AAB

i

[
M∥

]R
A

[
M∥

]Q
B

)(
∂δΠi

∂X R

)
dΣ

=
∫
∂Σ

(
BBA

AB
i

[
M∥

]R
A

) ∂δΠi

∂X R
d∂Σ−

∫
Σ

[
M∥

]S
Q

∂

∂X S

(
AAB

i

[
M∥

]R
A

[
M∥

]Q
B

)(
∂δΠi

∂X R

)
dΣ=

(38)
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The chain of equalities continues by using the decompositions of identities Eqs. (2) and (9),
namely

=
∫
∂Σ

(
BBA

AB
i

[
M∥

]K
A

)(
T R T K +B R B K +N R N K

) ∂δΠi

∂X R
d∂Σ

−
∫
Σ

[
M∥

]S
Q

∂
(
AAB

i

[
M∥

]K
A

[
M∥

]Q
B

)
∂X S

([
M∥

]R
K +N R NK

)(
∂δΠi

∂X R

)
dΣ

=
∫
∂Σ

(
BBA

AB
i T A

)(∂δΠi

∂X R
T R

)
d∂Σ

+
∫
∂Σ

(
BBA

AB
i B K

)(∂δΠi

∂B

)
d∂Σ

−
∫
Σ

NK
[
M∥

]S
Q

∂
(
AAB

i

[
M∥

]K
A

[
M∥

]Q
B

)
∂X S

(
∂δΠi

∂N

)
dΣ

−
∫
Σ

[
M∥

]S
Q

∂
(
AAB

i

[
M∥

]K
A

[
M∥

]Q
B

)
∂X S

[
M∥

]R
K

∂

∂X R

(
δΠi

)
dΣ

(39)

where we have used the notation ∂δΠi

∂B := ∂δΠi

∂X R B R .
The obtained equality can be further simplified by using the equality (21)

=
∫
∂Σ

(
BBA

AB
i T A

)(∂δΠi

∂X R
T R

)
d∂Σ+

∫
∂Σ

(
BBA

AB
i B K

)(∂δΠi

∂B

)
d∂Σ

−
∫
Σ

NK
[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

− [
M∥

]S
Q

∂
(
AAB

i NA
[
M∥

]Q
B

)
∂X S

(
∂δΠi

∂N

)
dΣ

−
∫
Σ

[
M∥

]R
K ′

∂

∂X R

[
M∥

]K ′
K

[
M∥

]S
Q

∂
(
AAB

i

[
M∥

]K
A

[
M∥

]Q
B

)
∂X S

δΠi

dΣ

+
∫
Σ

[
M∥

]R
K ′

∂

∂X R

[
M∥

]K ′
K

[
M∥

]S
Q

∂
(
AAB

i

[
M∥

]K
A

[
M∥

]Q
B

)
∂X S

δΠi dΣ=

(40)

which becomes through the divergence theorem

=
∫
∂Σ

(
BBA

AB
i T A

)(∂δΠi

∂X R
T R

)
d∂Σ+

∫
∂Σ

(
BBA

AB
i B K

)(∂δΠi

∂B

)
d∂Σ

−
∫
Σ

NK
[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

(
∂δΠi

∂N

)
dΣ

+
∫
Σ

[
M∥

]S
Q

∂
(
AAB

i NA
[
M∥

]Q
B

)
∂X S

(
∂δΠi

∂N

)
dΣ

−
∫
∂Σ

BK
[
M∥

]S
Q

∂
(
AAB

i

[
M∥

]K
A

[
M∥

]Q
B

)
∂X S

δΠi d∂Σ

+
∫
Σ

[
M∥

]R
K ′

∂

∂X R

[
M∥

]K ′
K

[
M∥

]S
Q

∂
(
AAB

i

[
M∥

]K
A

[
M∥

]Q
B

)
∂X S

δΠi dΣ .

(41)
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The reduction of the first addend (34) is then continued by applying the Leibniz rule to the
derivation along the edge and on the surface to get:

=
∫
∂Σ

T R ∂

∂X R

(
BBA

AB
i T AδΠ

i
)

d∂Σ−
∫
∂Σ

T R ∂

∂X R

(
BBA

AB
i T A

)
δΠi d∂Σ

+
∫
∂Σ

(
BBA

AB
i B K

)(∂δΠi

∂B

)
d∂Σ−

∫
Σ

NK
[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

(
∂δΠi

∂N

)
dΣ

+
∫
Σ

[
M∥

]S
Q

∂
(
AAB

i NA
[
M∥

]Q
B

)
∂X S

(
∂δΠi

∂N

)
dΣ

−
∫
∂Σ

BK
[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

− AAB
i NA

[
M∥

]S
B

∂N K

∂X S
BK

δΠi d∂Σ

+
∫
Σ

[
M∥

]R
K ′

∂

∂X R

[
M∥

]K ′
K

[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

− AAB
i NA

[
M∥

]S
B

[
M∥

]K ′
K

∂N K

∂X S

δΠi dΣ=

(42)

which, by applying again divergence theorem on edges and faces, becomes the searched irre-
ducible representation

= ∑
∂∂Σ

(
BBA

AB
i T AδΠ

i
)

−
∫
∂Σ

T R ∂

∂X R

(
BBA

AB
i T A

)
δΠi d∂Σ+

∫
∂Σ

(
BBA

AB
i B K

)(∂δΠi

∂B

)
d∂Σ

−
∫
Σ

NK
[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

(
∂δΠi

∂N

)
dΣ

+
∫
Σ

[
M∥

]S
Q

∂
(
AAB

i NA
[
M∥

]Q
B

)
∂X S

(
∂δΠi

∂N

)
dΣ

−
∫
∂Σ

BK
[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

δΠi d∂Σ+
∫
∂Σ

(
AAB

i NA
[
M∥

]S
B

∂N K

∂X S
BK

)
δΠi d∂Σ

+
∫
Σ

[
M∥

]R
K ′

∂

∂X R

[
M∥

]K ′
K

[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

δΠi dΣ

−
∫
Σ

[
M∥

]R
K ′

∂

∂X R

(
AAB

i NA
[
M∥

]S
B

[
M∥

]K ′
K

∂N K

∂X S

)
δΠi dΣ .

(43)

In the first line of the above equation we have used the following notation

∑
∂∂Σ

(
ϕ

)= l∑
α=q

(
kα∑
β=1

(
lim ϕ

(
eβ,α,Pα

)))
, (44)

where: the symbol Pα denotes theαth wedge among the q wedges in the piecewise regular surface
Σ; the symbol eβ,α denotes the βth edge among the kα concurring in the wedge Pα; symbol
limϕ(eβ,α,Pα) denotes the sum of all the limits of the quantity ϕ calculated along the edge eβ,α

towards the point Pα when eβ,α is regarded as part of the boundary of all faces concurring on it
(see Figs. 3 and 4).
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4.1.2. Irreducible representation of the second addend (Eq. 36)

To complete the irreducible representation of Eq. (32), we must reduce the second addend
in Eq. (36). This is done with the further splitting it into two addends, for which two chains of
equalities can be developed.

The first of these chains of equalities is obtained by applying again and again the integration
by parts and the surface divergence theorem, namely:

∫
Σ

(
2AAB

i NA
[
M∥

]S
B

) ∂

∂X S

(
∂δΠi

∂N

)
dΣ=

∫
Σ

(
2AAB

i NA
[
M∥

]Q
B

[
M∥

]S
Q

∂

∂X S

(
∂δΠi

∂N

))
dΣ

=
∫
Σ

[
M∥

]S
Q

∂

∂X S

{(
2AAB

i NA
[
M∥

]Q
B

)(
∂δΠi

∂N

)}
dΣ+ −

∫
Σ

[
M∥

]S
Q

∂

∂X S

(
2AAB

i NA
[
M∥

]Q
B

)(
∂δΠi

∂N

)
dΣ

=
∫
∂Σ

(
2AAB

i NABB
)(∂δΠi

∂N

)
d∂Σ+ −

∫
Σ

[
M∥

]S
Q

∂

∂X S

(
2AAB

i NA
[
M∥

]Q
B

)(
∂δΠi

∂N

)
dΣ .

(45)

The second chain of equality is, by recalling that ∂N S

∂X R NS = 0,

−
∫
Σ

{(
2AAB

i NA
[
M∥

]R
B

) ∂N S

∂X R

}
∂δΠi

∂X S
dΣ=−

∫
Σ

{(
2AAB

i NA
[
M∥

]R
B

) ∂N S

∂X R

}
NS

∂δΠi

∂N
dΣ+

−
∫
Σ

{(
2AAB

i NA
[
M∥

]R
B

) ∂N S

∂X R

}[
M∥

]Q
S

∂

∂X Q

(
δΠi

)
dΣ

=−
∫
Σ

[
M∥

]Q
S′

∂

∂X Q

{[
M∥

]S′
S

(
2AAB

i NA
[
M∥

]R
B

) ∂N S

∂X R
δΠi

}
dΣ

+
∫
Σ

[
M∥

]Q
S′

∂

∂X Q

{[
M∥

]S′
S

(
2AAB

i NA
[
M∥

]R
B

) ∂N S

∂X R

}
δΠi dΣ

=−
∫
∂Σ

BS

(
2AAB

i NA
[
M∥

]R
B

) ∂N S

∂X R
δΠi d∂Σ

+
∫
Σ

[
M∥

]Q
S′

∂

∂X Q

{[
M∥

]S′
S

(
2AAB

i NA
[
M∥

]R
B

) ∂N S

∂X R

}
δΠi dΣ .

(46)

By adding the final expression for the two previous chains of equalities, we get for the second
addend (36) the following irreducible representation:

∫
Σ

[
M∥

]Q
S′

∂

∂X Q

{[
M∥

]S′
S

(
2AAB

i NA
[
M∥

]R
B

) ∂N S

∂X R

}
δΠi dΣ

+ −
∫
Σ

[
M∥

]S
Q

∂

∂X S

(
2AAB

i NA
[
M∥

]Q
B

)(
∂δΠi

∂N

)
dΣ+

−
∫
∂Σ

BS

(
2AAB

i NA
[
M∥

]R
B

) ∂N S

∂X R
δΠi d∂Σ+

∫
∂Σ

(
2AAB

i NABB
)(∂δΠi

∂N

)
d∂Σ

4.1.3. Irreducible representation of second-order surface distributions

Gathering the results obtained in the previous subsections, we get the following irreducible
representation of a second-order distribution concentrated on a surface:
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∫
Σ
ARS

i
∂2δΠi

∂X R∂X S
dΣ=

=
∫
Σ

(
AAB

i NB NA
) ∂2δΠi

∂N 2 dΣ+
∫
Σ

[
M∥

]R
K ′

∂

∂X R

[
M∥

]K ′
K

[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

δΠi dΣ

−
∫
Σ

[
M∥

]R
K ′

∂

∂X R

(
AAB

i NA
[
M∥

]S
B

[
M∥

]K ′
K

∂N K

∂X S

)
δΠi dΣ

+
∫
Σ

[
M∥

]Q
S′

∂

∂X Q

{[
M∥

]S′
S

(
2AAB

i NA
[
M∥

]R
B

) ∂N S

∂X R

}
δΠi dΣ

+
∫
Σ

[
M∥

]S
Q

∂
(
AAB

i NA
[
M∥

]Q
B

)
∂X S

(
∂δΠi

∂N

)
dΣ−

∫
Σ

[
M∥

]S
Q

∂

∂X S

(
2AAB

i NA
[
M∥

]Q
B

)(
∂δΠi

∂N

)
dΣ

−
∫
Σ

NK
[
M∥

]S
Q

∂
(
AK B

i [M∥]Q
B

)
∂X S

(
∂δΠi

∂N

)
dΣ+

∫
∂Σ

(
AAB

i NA
[
M∥

]S
B

∂N K

∂X S
BK

)
δΠi d∂Σ

−
∫
∂Σ

BS

(
2AAB

i NA
[
M∥

]R
B

) ∂N S

∂X R
δΠi d∂Σ−

∫
∂Σ

BK
[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

δΠi d∂Σ

−
∫
∂Σ

T R ∂

∂X R

(
BBA

AB
i T A

)
δΠi d∂Σ+

∫
∂Σ

(
BBA

AB
i B K

)(∂δΠi

∂B

)
d∂Σ

+
∫
∂Σ

(
2AAB

i NABB
)(∂δΠi

∂N

)
d∂Σ+ ∑

∂∂Σ

(
BBA

AB
i T AδΠ

i
)

.

(47)

By gathering and simplifying one gets:

∫
Σ
ARS

i
∂2δΠi

∂X R∂X S
dΣ

=
∫
Σ

(
AAB

i NB NA
) ∂2δΠi

∂N 2 dΣ+
∫
Σ

[
M∥

]R
K ′

∂

∂X R

[
M∥

]K ′
K

[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

δΠi dΣ

+
∫
Σ

[M∥]Q
S′

∂

∂X Q

{[
M∥

]S′
S A

AB
i NA

[
M∥

]R
B

∂N S

∂X R

}
δΠi dΣ

−
∫
Σ

[
M∥

]S
Q

∂

∂X S

(
AAB

i NA
[
M∥

]Q
B

)(
∂δΠi

∂N

)
dΣ

−
∫
Σ

NK
[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

(
∂δΠi

∂N

)
dΣ

−
∫
∂Σ

(
AAB

i NA
[
M∥

]R
B

) ∂N S

∂X R
BS δΠ

i d∂Σ−
∫
∂Σ

BK
[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

δΠi d∂Σ

−
∫
∂Σ

T R ∂

∂X R

(
BBA

AB
i T A

)
δΠi d∂Σ+

∫
∂Σ

(
BBA

AB
i B K

)(∂δΠi

∂B

)
d∂Σ

+
∫
∂Σ

(
2AAB

i NABB
)(∂δΠi

∂N

)
d∂Σ+ ∑

∂∂Σ

(
BBA

AB
i T AδΠ

i
)

.

(48)
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A final version, obtained using the equation (25), is

∫
Σ
ARS

i
∂2δΠi

∂X R∂X S
dΣ

=
∫
Σ

(
AAB

i NB NA
) ∂2δΠi

∂N 2 dΣ

+
∫
Σ

[
M∥

]R
K ′

∂

∂X R

{[
M∥

]K ′
K

([
M∥

]S
B

∂AK B
i

∂X S
+AAB

i NA
∂N K

∂X B
− ∂NQ

∂X Q
AK B

i NB

)}
δΠi dΣ

−
∫
Σ

NK
[
M∥

]S
Q

∂
(
AAB

i NA
[
M∥

]Q
B N K +AK B

i

[
M∥

]Q
B

)
∂X S


(
∂δΠi

∂N

)
dΣ

−
∫
∂Σ

AAB
i NA

∂N S

∂X B
BS +BK

[
M∥

]S
Q

∂
(
AK B

i

[
M∥

]Q
B

)
∂X S

+T R ∂

∂X R

(
BBA

AB
i T A

)δΠi d∂Σ

+
∫
∂Σ

(
BBA

AB
i B K

)(∂δΠi

∂B

)
d∂Σ+

∫
∂Σ

(
2AAB

i NABB
)(∂δΠi

∂N

)
d∂Σ+ ∑

∂∂Σ

(
BBA

AB
i T AδΠ

i
)

.

(49)

5. Piola Transformations of the shapes of differential boundaries of reference into
current configurations

In this section we recall the Piola transformation formulas for the vectors characterizing the
shapes of the configurations boundaries as needed for third gradient continua: they were already
used in [19, 41].

5.1. The Eulerian-Lagrangian transformation formulas for the edge tangent vector

The regularity assumptions about placement imply that:

t r = F r
R T R

∥FT∥ = F r
R T R ∥∥F−1t

∥∥ , (50)

tr = gr s t s = gr s
F s

R T R

∥FT∥ = gr s
F s

RGRS TS

∥FT∥ . (51)

5.2. The transformation of the normal vector to a boundary face from reference to current
configurations

It is very well-known in the literature (see e.g. [16, 19] also for a detailed reference to the litera-
ture)2 that

nr =
(
F−1

)R
r NR∥∥F−T N

∥∥ = (
F−1)R

r

∥∥FT n
∥∥NR , (52)

nr = g r s ns =
g r s

(
F−1

)R
r gRS

∥F−T N∥ N S . (53)

2For some “ sociological reasons” this formula is attributed to Nanson: in fact, it appears already in the works by
Piola [3]. How it could be possible to attribute to Piola the transformation of Piola-Lagrange stress into Cauchy-Euler
stress and imagine that the transformation formula for the normals to Cauchy cuts was found some decades later is
rather difficult to justify.
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5.3. The transformation of contravariant and covariant edge tangent normal

The Piola transformations for edge tangent normal were found in [19, 41]. They are given by the
formulas:

br =
{(

F−1)R
r BR − G⋆LM BL NM

G⋆RS NS NR

(
F−1)R

r NR

} ∥∥F−T N
∥∥

g∥∥J−1FT
∥∥

g

; (54)

br =
{

F r
R B R − G⋆

LM B LT M

G⋆
RS T R T S

F r
R T R

}
∥FT∥g∥∥JF−T N

∥∥
g

. (55)

One can easily verify the second formula by imposing that br br = 1, br nr = 0, br t r = 1.

6. Piola Transformations of external loads sustainable by third gradient continua

Gabrio Piola was the first to introduce nth gradient continua (see [3, 4, 39]), considering internal
work functionals that later will be recognized as nth order distributions. However he did not
manage to characterize the external loads sustainable by these generalized continua: his last
work [2] was published posthumous.3

In fact, Piola did manage to study the transformations named after him in the case of first
gradient continua: this was necessary to compare his variational deduction with the one, based
on force and torque balance laws, put forward by Cauchy.

Here we present, based on some results from Riemannian differential geometry, the transfor-
mations that gives Lagrangian sustainable external loads in terms of their Eulerian counterparts,
in the case of third gradient continua. The novelty peculiarity of these continua consists in the
fact that they can sustain contact forces concentrated on wedges of their differential boundaries.

6.1. Piola Transformation of external volume and surface-contact forces

As appearing in the representation formula Eq. (1), third gradient continua can sustain external
volume and surface-contact forces. No further difficulties, when comparing the third gradient
Piola transformation with the first gradient one, appear in this cases.

The expression for the Eulerian volume work functional is easily transformed into a corre-
sponding Lagrangian work functional. This can be done without too much difficulties. In fact:∫

ω
f ext
ω i δΠ

i dω=
∫
Ω

J f ext
ω i (Π(X )) δΠi dΩ , (56)

The field f ext
ω i (Π(X )) results to be defined in the Lagrangian configuration: this change of vari-

ables for the Eulerian fields will not be explicitly indicated in what follows.
Hence, Eulerian external volume forces are transformed into Lagrangian volume forces only

F ext
Ω i = J f ext

ω i . (57)

This transformation is exactly the same that has been originally calculated by Piola for first
gradient (or Cauchy) continua.

Also the Eulerian surface external forces are easily transformed into Lagrangian external forces
by using the transformation formula for the area elements (see e.g. [16, 19, 43]), namely

dσ= ∥∥J F−T N
∥∥ dΣ , (58)

3The mathematical genealogy starting from Piola has, indeed, produced Levi-Civita absolute tensor calculus and
some important parts of modern differential geometry, see [48].



22 Francesco dell’Isola and Roberto Fedele

in the expression for external work functional as follows:∫
σ

f ext
σ i δΠ

i dσ=
∫
Σ

∥∥J F−T N
∥∥ f ext

Σ i δΠ
i dΣ . (59)

External Eulerian surface contact forces are transformed into Lagrangian surface contact forces
only

F ext
Σ i = ∥∥J F−T N

∥∥ f ext
σ i . (60)

6.2. Piola Transformation of external surface double force

Among the loads, which can be sustained by third and second gradient continua but not by first
gradient continua, one finds surface external double forces: surface double forces expend work
on the normal derivative of the virtual displacement vector.

The corresponding Eulerian work functional is expressed as:∫
σ

f ext
σn i

∂δΠi

∂n
dσ . (61)

Using the equation (58), the rule for the derivation of composed functions and also Eq. (52),
we obtain that the previous work functional can be represented as follows:

=
∫
Σ

∥∥JF−T N
∥∥ f ext

σn i g r s

(
F−1

)Q
s NQ∥∥F−T N

∥∥ (
F−1)R

r

∂δΠi

∂X R
dΣ.

By simplifying and recalling the definition (15) we get that Eq. (61) can be transformed into:∫
Σ

J f ext
σn i N⋆R ∂δΠ

i

∂X R
dΣ . (62)

The definition (15) clearly indicates that the distribution representing Eulerian surface ex-
ternal double forces does NOT transforms, according to the Lagrangian description, into the
work functional corresponding to a Lagrangian surface external double forces: in fact, in gen-
eral, N⋆R ̸= N R .

To decompose the expression (62), into its “elementary” Lagrangian “lower-order” functionals,
we start recalling that

[M⊥]S
R = N S NR ,

[
M∥

]S
R +N S NR = δS

R , (63)

so that it is equal to ∫
Σ

J f ext
σn i N⋆R

([
M∥

]S
R +N S NR

) ∂δΠi

∂X S
dΣ .

By recalling that N⋆R NR = ∥F−T N∥2, through integration by parts the work functional (61) is equal
to ∫

Σ

∥∥JF−T N
∥∥2

f ext
σn i

∂δΠi

∂N
dΣ+

∫
Σ

[
M∥

]S
R ′

∂

∂X S

{
J f ext
σn i N⋆R δΠi [

M∥
]R

′

R

}
dΣ+

−
∫
Σ

[
M∥

]S
R ′

∂

∂X S

{
J f ext
σn i N⋆R [

M∥
]R

′

R

}
δΠi dΣ .

Applying the divergence theorem to the faces constituting Σ (see e.g. [16, 20, 49]), we finally get∫
σ

f ext
σn i

∂δΠi

∂n
dσ=

∫
Σ

{∥∥JF−T N
∥∥2

f ext
σn i

} ∂δΠi

∂N
dΣ+

∫
∂Σ

{
J f ext
Σn i N⋆R BR

}
δΠi d∂Σ

−
∫
Σ

{[
M∥

]S
R ′

∂

∂X S

(
J f ext
Σn i N⋆R [

M∥
]R

′

R

)}
δΠi dΣ .

In the last three integral expressions, we have grouped in brackets the dual in work of virtual
displacement δΠi (i.e. line and surface densities of force) and the dual in work of the normal
derivative of virtual displacement ∂δΠi

∂N (i .e. surface density of double force).
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We can conclude that the Eulerian double force surface density f ext
σn i external work functional,

when transformed into the Lagrangian description, is equivalent to the triple of work functionals
corresponding to the external actions: i) surface density of double force density, ii) surface density
of force and iii) line density of force.
The Lagrangian external forces corresponding to the Eulerian double force f ext

σn i are given by the
following three identities:

F ext
ΣN

(
f ext
σn

)= ∥∥F−T N
∥∥2

J f ext
σn ;

F ext
Σ

(
f ext
σn

)=− [
M∥

]S
R ′

∂

∂X S

{
J f ext
σn N⋆R [

M∥
]R

′

R

}
;

F ext
L

(
f ext
σn

)= J f ext
σn

(
BR N⋆R)

.

(64)

6.3. Piola Transformation of surface external triple force

In this subsection the Eulerian surface triple external force f ext
σnn i density work functional is

considered. It is peculiar of third or higher gradient continua and expends work on the second
normal derivative of the virtual displacements:∫

σ
f ext
σnni

∂2δΠi

∂n2 dσ . (65)

6.3.1. Eulerian surface triple force functional transformed into Lagrangian coordinates

This work functional, by using the placement induced change of variables, becomes∫
Σ

(∥∥J F−T N
∥∥ f ext

σnni nr ns ∂2δχi

∂xr∂xs

)
dΣ .

We then use the Piola transformation formula for the covariant normal nr to get∫
Σ

(∥∥J F−T N
∥∥ f ext

σnn i g r t

(
F−1

)Q
t NQ∥∥F−T N

∥∥ g sv

(
F−1

)V
v NV∥∥F−T N

∥∥ (
F−1)R

r

(
F−1)S

s

∂2δΠi

∂X R∂X S

)
dΣ .

which, after simplifications and using the definition of N⋆R , becomes:∫
Σ

{
J f ext

σnn i∥∥F−T N
∥∥ N⋆A N⋆B

}
∂2δΠi

∂X A∂X B
dΣ . (66)

Since N⋆R ̸= N R , and exactly as it is true for double forces, we must remark that Eulerian sur-
face triple force work functionals do NOT correspond to Lagrangian triple force work functionals
only.

6.3.2. Application of the general irreducible representation formula (49): Lagrangian generalized
forces associated to applied Eulerian external surface triple force density

By equating

ARS
i = J f ext

σnn i∥∥F−T N
∥∥ N⋆R N⋆S

the general formula Eq. (49) derived above gives the following list of Lagrangian generalized
forces corresponding to the Eulerian triple force surface density f ext

σnn i .

• Lagrangian surface triple force density

F ext
ΣN N

(
f ext
σnn

)= J f ext
σnn∥∥F−T N

∥∥ N⋆R N⋆S NR NS ,

which becomes, by using the identity NR N⋆R = ∥F−T N∥2

F ext
ΣN N

(
f ext
σnn

)= J f ext
σnn

∥∥F−T N
∥∥3

; (67)
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• Lagrangian surface force density

By considering the dual in work of virtual displacement in the surface work functional we get:

F ext
Σ

(
f ext
σnn

)= [
M∥

]R
K ′

∂

∂X R

[
M∥

]K ′
K

[
M∥

]S
B

∂
(

J f ext
σnn∥F−T N∥ N⋆K N⋆B

)
∂X S

+ J f ext
σnn∥∥F−T N

∥∥ N⋆A N⋆B NA
∂N K

∂X B
− ∂NQ

∂X Q

(
J f ext

σnn∥∥F−T N
∥∥ N⋆K N⋆B

)
NB

)}
. (68)

By simplifying we get:

F ext
Σ

(
f ext
σnn

)= [
M∥

]R
K ′

∂

∂X R

[
M∥

]K ′
K

[
M∥

]S
B

∂
(

J f ext
σnn∥F−T N∥ N⋆K N⋆B

)
∂X S

+

+∥∥F−T N
∥∥ N⋆B ∂N K

∂X B
J f ext

σnn −∥∥F−T N
∥∥ ∂NQ

∂X Q

(
J f ext

σnn N⋆K ))}
. (69)

• Lagrangian surface double force density

By considering the dual in work of normal derivative of virtual displacement in the surface work
functional, we get:

F ext
ΣN

(
f ext
σnn

)=
−NK

[
M∥

]S
Q

∂
((

J f ext
σnn∥F−T N∥ N⋆A N⋆B

)
NA

[
M∥

]Q
B N K +

(
J f ext

σnn∥F−T N∥ N⋆K N⋆B
) [

M∥
]Q

B

)
∂X S

 . (70)

By simplifying we get:

F ext
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(
f ext
σnn
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]S
Q

∂
(

J f ext
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∥∥F−T N
∥∥[
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]Q

B N⋆B
(

N K + N⋆K

∥F−T N∥2

))
∂X S

 . (71)

• Lagrangian edge force density

By considering the dual in work of virtual displacement in the edge work functional we get:

F ext
∂Σ

(
f ext
σnn

)=−
(
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. (72)

By simplifying we get
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(
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(
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. (73)

• Lagrangian edge double force densities



Francesco dell’Isola and Roberto Fedele 25

By considering the dual in work of the normal derivatives of virtual displacement along the
directions B and N in the edge work functional we get:

F ext
∂ΣB

(
f ext
σnn

)= J f ext
σnn∥∥F−T N

∥∥ (
N⋆K BK

)2
;

F ext
∂ΣN

(
f ext
σnn

)=2J f ext
σnn

∥∥F−T N
∥∥ N⋆B BB .

• Lagrangian wedge concentrated forces

By considering the dual in work of the virtual displacement in the wedge work functional we get:

F ext
P

(
f ext
σnn

)= ∑
∂∂Σ

T ABB

(
J f ext

σnn∥∥F−T N
∥∥ N⋆A N⋆B

)
.

6.4. Piola transformation of edge contact forces

The Eulerian edge external work functional, relative to the line force density f ext
l i , is easily

transformed directly into the Lagrangian edge work functional. In fact one finds∫
l

f ext
l i δΠi dl =

∫
L
∥FT∥g f ext

l i δΠi dL , (74)

from which we get

F ext
L

(
f ext

l i

) = ∥FT∥g f ext
l .

6.5. Piola Transformation of edge double force f ext
ln i

The Eulerian external work functional relative to the edge double force f ext
ln i can be transformed

as follows: ∫
l

f ext
l n i g r s ns

∂δΠi

∂xr dl =
∫

L
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)Q
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∂X S
dL . (75)

By decomposing the identity as done in (9), applying the divergence theorem for the curved
edge, the above functional becomes:∫

L
∥FT∥g
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(76)

Therefore we can conclude:
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,

where the concentrated force at a single wedge was considered.
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6.6. Piola Transformation of edge double force f ext
lb i

The Eulerian external work functional relative to the edge double force f ext
lb i can be transformed

as follows, by recalling (55) and by decomposing the identity using the orthonormal basis
(TS , NS ,BS ) as follows:∫

l
f ext

lb i br ∂δχ
i

∂xr dl

=
∫

L

∥FT∥2∥∥JF−T N
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The chain of equalities continues by using the orthonormality of (TS , NS ,BS ), integrating by parts
and applying the divergence theorem on the edge:
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where we have used the notation introduced in Eq. (44).
Therefore we have:
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where the concentrated force at a single wedge was considered.

6.7. Piola transformation of wedge forces

The transformation of concentrated wedge forces from the Eulerian to the Lagrangian descrip-
tion trivially leads to the following relationship

F ext
P w

= f ext
p w

, (80)

being Pw and pw = Π(Pw) corresponding points through the placement, and for the virtual
displacements one has δΠi = δxi (Π−1).
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7. Conclusions and research perspectives

The approach to continuum mechanics “imposed” by Cauchy postulation represents a true
straightjacket for the development of the discipline. The scheme that is imposed by the format
used by the entire Truesdellian school assumes that externally applied loads can be forces and
torques, only. As remarked by Paul Germain: i) torques are a kind of double forces, for instance
the tangent part of surface double force are surface contact torques, ii) instead normal surface
double forces, expending work on the normal component of the normal derivative of virtual
displacement, are loads that “tend” to elongate the continuum and do not influence the resultant
force and the resultant torque applied to any of its sub-bodies.

The inability of describing in their scheme this kind of external load led Truesdellians to
deny, for a long time, even the “existence” of higher gradient continua. This statement has some
delicate epistemological implications: in fact they assume an inductivist viewpoint, in which
the physical entities and the mathematical models used for describing them are confused. This
implies that they deny the existence of phenomena which cannot be described by their models
(a complete discussion about this point can be found in [5]). In other words their non sequitur
reasoning is the following: i) higher gradient continua cannot be described in the framework of
Cauchy postulation, ii) every phenomenon must be described by Cauchy postulation, as it has
been induced « experimentally » iii) higher gradient continua, a mathematical model that they
confuse with some really existing physical objects, do not exist.

The French school, as represented by Paul Germain, assumes a more realistic epistemological
viewpoint and bases its analyses on the principle of virtual work, which is recognized to be a very
powerful tool in mathematical models formulation.

Following the indications put forward by Germain (see [7, 8, 50–52]) the development of
continuum mechanics must be based on the theory of distributions, as formulated by Laurent
Schwartz (see [15, 47]).

Therefore, when one decides to develop the theory of those continua, whose deformation
energy depends on the third gradient of placement, the wisest choice is to formulate it based
on D’Alembert–Lagrange postulation of mechanics. In fact we prove in this paper that the Piola
Transformation of Eulerian external loads that can be sustained by third gradient continua
contradicts all beliefs of those scholars using Cauchy postulation scheme.

In fact, in third gradient continua such loads include: i) double and triple forces surface density
to be prescribed over the boundary face, that expend work on the first and second normal
derivatives of the virtual displacements, ii) force and double force line density prescribed over
the boundary edge, expending work on the virtual displacement and its first derivatives, iii)
forces concentrated on wedges. Clearly balance of force and balance of torque are not affected by
double completely normal and triple forces, and, as shown in [53] and [40], the presence of edge
forces implies the existence of double forces in considered continua: as a consequence Cauchy
postulation scheme does not allow for the construction of second and third gradient continuum
models. It has to be remarked that, as discussed in the introduction and the references there cited,
higher gradient continuum models are proving to be able to supply the needed conceptual and
theoretical basis for the development of novel metamaterials, and therefore the aforementioned
theoretical problems do have an immediate impact in applications.

In order to formulate well-posed equilibrium and dynamic problems in the theory of third
gradient solid continua it is necessary to formulate these problems in the Lagrangian description:
therefore Piola transformations are necessarily to be looked for in this generalized framework.

This was the aim of the present paper.
The results are surprising: Eulerian triple forces produce, once transformed into the La-

grangian description, all sustainable types of loads: hence, the type of externally applied loads
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does depend on the description used. This fact has many consequences to be investigated: in
particular, we can question whether the concept of dead load, as used so far, needs to be modi-
fied to have a more general validity.

It is therefore proven, once more, that the most fundamental concept in continuum mechan-
ics is not that of applied load but that of work functional related to a load: work expended by an
externally applied load is invariant under transformation from Lagrangian to Eulerian descrip-
tion.

The mathematical reason, which is at the basis of the fact that the type of applied loads are not
invariant under Piola transformation, is purely related to a differential geometric property: the
normals to a differential boundary are not transported from Lagrangian to Eulerian description
by the gradient of placement, as already established by Piola. This fact has all the mechanical
consequences described in this paper.

Many are the research perspectives: we plan to generalize the presented results to the more
general case of nth gradient continua. Also of interest is the application of the results presented
here to solve, with numerical methods, problems relevant in modern metamaterials theory.
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