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Résumé: Defining a transportation plan for inbound logistics in the automotive industry
represents a major economic challenge for the manufacturers. A three phased algorithm, where
in the second, three mixed integer linear programming models (MILP) are developed for the
problem. To test the performances of the proposed approach, computational experiments are
done on real-world instances, and the results are reported.

Mots-clés: inbound logistics network, optimisation, vehicle routing problem

1 Introduction
In the automotive industry, the Supply Chain (SC) is categorically divided into two major

logistic processes, the inbound and the outbound SC. While, the inbound SC secures the effec-
tive supply of raw materials between suppliers and the plants, the outbound SC includes the
delivery of final products to the clients. Recent increasing in global competition, has prompted
manufacturers to be innovative in order to reduce costs, by optimizing the logistic processes.
This article considers the problem of defining a least-cost inbound transportation plan subject
to various operational and network constraints for a leading automobile manufacturer. The
inbound logistics of the plants involves a significant number of suppliers as many of the parts
needed to produce one vehicle are made by hundreds if not thousands of suppliers, forming
the inbound logistics network. To supply the plants, a fleet of vehicles is used that is generally
do not belong the automotive manufacturers due to, among others, cost reasons [1]. Thus the
SC activities are outsourced to third party logistics (3PLs). A mixed inbound network with
milk-run and indirect strategy transportation strategies is considered. A milk-run is a picked-
up tour starts at one supplier, visits a subset of suppliers exactly once before ending at the
plant. A special case of it, is the direct strategy, where the number of suppliers is equal to one.
Finally, the indirect strategy delivers the plant through an intermediate facility, called cross-
dock. Hence, in our problem, we aim on finding the transportation strategy for each supplier,
and the decision variables related to optimal pick-up sequence, volumes, and frequencies.

This article is organized as follows. Section 2 provides a brief literature review. Section 3
describes in details the problem. Section 4 presents the solution approach. Section 5 presents
the results of computational experiments, and finally, in section 6 conclusions are drawn, and
future works are discussed.

2 Literature review
The studied problem is the transportation planning problem (TPP) with transportation

strategies selection. The decision variables on transportation strategies selection is related to
the class of Designing Transportation networks in the literature. [2] proposes an integrated
mathematical model that addresses the assignment of frequencies, selection of transportation
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strategies, and determination of milk-runs scheduling to mixed inbound networks with three
strategies. Point-to-Point, Area Forwarding services, and milk runs are solved using a standard
solver. [3] considers an inbound logistics planning problem with courier, express services and
milk-runs transportation modes. A MILP is proposed together with valid inequalities to im-
prove the convergence of the model towards optimal solutions. When suppliers are assigned to
direct or milk-run strategies, decisions on pick-up sequence, frequency, and volumes have to be
made for each vehicle route. These decisions are related to the vehicle routing problem (VRP),
and its variants depending on the possible decisions that might be involved. The Flexible
Periodic VRP allows service policies that are flexible with respect to the frequency of visits
and the amount delivered at each visit [4]. The periodic VRP with service choice deals with
flexibility in the minimum visit frequency [5]. The Inventory Routing Problem [6, 7], and the
split-delivery VRP [8] allows flexible service policy on the amount picked-up at each visit. All
these VRP classes find the optimal pickup sequence.

3 Problem description

The TTP is described as a set of destinations called receiving docks d ∈ D, located in
the same plant, which are supplied by a set of geographically dispersed sources s ∈ S called
suppliers. Demand requests rsd exist from d to s expressed by a vector of three measuring units,
lsd in loading meter (LDM), wsd in kilogram (Kg), and cmsd in cubic meter (m3) that can be
transported with a fleet of unlimited homogeneous vehicles V having two loading capacity
constraints Q for LDM and KG for Kg.

To transport rsd, either indirect strategy or milk-run strategy is used. For the indirect stra-
tegy, suppliers are assigned to their respective cross-docks. For the milk-run strategy, the fleet
V is used to transport the demands from suppliers to their respective receiving docks. Each
transportation strategy has its own cost.

On one hand, indirect cost δs for supplier s, is composed of the upstream cost between
supplier s and its respective cross-dock that depends on

∑
d cmsd and the distance s to its

cross-dock, the handling cost of
∑

d cmsd for supplier s inside the cross-dock calculated for
every 1 m3, and the downstream cost between the cross-dock and the plant calculated by first
adding the fixed cost of using one vehicle to the cost of traveling between cross-dock and plant,
then multiplied by the number of vehicles needed. Given rsd, δs is precalculated. On the other
hand, milk-run cost is calculated for every used v ∈ V . It is the sum of the variable cost of
the route between a set of suppliers and the plant, the fixed cost of using one vehicle, and the
fixed cost of the number of stops (suppliers).

We define the TTP on an undirected graph G = (N ,A), where N is the vertex set, and
A = {(si, sj) : si, sj ∈ N , si ̸= sj} is the arcs set that connects the nodes in the graph. Let
N = S ∪ {0}, with S = {s1, ..., s|S|}, and {0} is the plant where docks in D are located. Every
node si ∈ S, is associated with a pick-up vector of rsd to every d ∈ D. Three kinds of arcs
exists, each associated with a cost. Arcs (0, si) between the plant and suppliers have a cost
c0,si = 0 (because the pick-up tour starts at the suppliers), arcs (si, sj) between the suppliers
have a cost csisj ≥ 0, which is the travel cost from si to sj , and arcs (si, 0) connecting the
suppliers and the plant have a cost of csi0 ≥ 0, the travel cost from si to 0. For milk-run
suppliers, the optimal elementary routes that minimize the total costs are obtained for every
v ∈ V . We find the elementary routes, by assuring that it starts and ends at the plant {0},
and visits a set of suppliers exactly once with no cycles. Fig. 1a illustrates an example of a
small graph G, with N = 4, and D = 2, and Fig. 1b shows an example of a feasible solution
for vehicle v in G.

Our objective is therefore to define a transportation plan that satisfies the constraints and
minimizes total milk-run and indirect costs. First, it is assumed that if an indirect strategy
is chosen for a supplier, an explicit route need not be found, and the precomputed cost δs is
applied. For each supplier s and receiving dock d, with rsd > 0, a minimum visit frequency
fsd is imposed in order to have a higher number of small deliveries, and consequently a low
inventory at the plant [9]. In addition, for practical industrial reasons, suppliers are divided



(a) Graph G of an inbound logistics network. (b) A feasible solution of G.

FIG. 1 – An example of a small graph G, with a feasible solution.
into clusters of maximum size MaxC, and one supplier belongs to exactly one cluster. Finally,
for each vehicle v and its associated route, MaxS is the maximum number of stops (suppliers
in the route), MaxD is the maximum number of docks supplied, and the distance between two
consecutive stops cannot exceed MaxQ.

4 Solution Approach
Due to the complexity of the problem, we propose a three-phase approach. In phase 1, the

clustering phase, we generate all possible clusters from the set of suppliers S (c ∈ C), respecting
the distance constraints. For each cluster c ∈ C, the subgraph G ′

c is constructed. In phase 2, the
optimal transportation plan for each cluster is found by a MILP. In phase 3, a Set Partitioning
Problem is solved to find the best set of clusters that minimizes the total cost.

4.1 Phase 1 : Clustering For each subset S ′ ⊆ S such that 1 ≤ |S ′ | ≤ MaxC, the
corresponding cluster c is validated (c ∈ C) if the associated subgraph G ′

c is connected.

4.2 Phase 2 : Routing and Transportation Strategies The optimal transportation
plan cost for each cluster c ∈ C is obtained by determining the transportation strategy for the
suppliers, by solving independently a MILP on each subgraph G ′

c.
Before introducing the MILP, parameters and decision variables are presented. For the pa-

rameters, cij ((i, j) ∈ N ) is the cost of the arc (i, j), δs (s ∈ S) is the cost of assigning supplier
s to indirect strategy, S and F are the fixed cost per stop at a supplier and the fixed cost per
vehicle respectively. A big M quantity is mandatory in the MILP for each supplier s ∈ S :
Ūs = min(Q,

∑
d lsd).

Decision variables are as follows :
xv

ij : 1 if the arc (i, j) ∈ N is visited by vehicle v ∈ V , 0 otherwise ;
yv

s : 1 if supplier s ∈ S is visited by vehicle v ∈ V , 0 otherwise ;
zv

sd : Quantity supplied from supplier s ∈ S to dock d ∈ D by vehicle v ∈ V (zv
sd ∈ R+) ;

tvsd : 1 if supplier s ∈ S and receiving dock d are visited by vehicle v ∈ V , 0 otherwise ;
pv

d : 1 if dock d ∈ D is visited by vehicle v ∈ V , 0 otherwise ;
uv : 1 if vehicle v ∈ V is used, 0 otherwise ;
sv : Number of stops for vehicle v ∈ V (sv ∈ N+) ;
γs : 1 if supplier s ∈ S is assigned to milk-run strategy, 0 for the indirect strategy.

Minimize
∑

i,j∈N

∑
v∈V

xv
ijcij + S

∑
v∈V

sv + F
∑
v∈V

uv +
∑
s∈S

δs(1 − γs) (1)

γs ≤
∑

v

yv
s ∀ s ∈ S (2)∑

s

∑
d

zv
sd ≤ Q ∀ v ∈ V (3)



∑
s

∑
d

wsd

dsd
zv

sd ≤ KG ∀ v ∈ V (4)∑
d

zv
sd ≤ Ūs y

v
s ∀ s ∈ S, v ∈ V (5)∑

v

zv
sd = lsd γs ∀ s ∈ S, d ∈ D (6)∑

s

yv
s ≤ MaxS uv ∀ v ∈ V (7)

uv ≤
∑

s

yv
s ∀ v ∈ V (8)

M pv
d ≥

∑
s

tvsd ∀ d ∈ D, v ∈ V (9)

pv
d ≤

∑
s

tvsd ∀ d ∈ D, v ∈ V (10)∑
d

pv
d ≤ MaxD uv ∀ v ∈ V (11)

zv
sd ≤ Q tvsd ∀ s ∈ S, d ∈ D, v ∈ V (12)
zv

sd ≥ tvsd ∀ s ∈ S, d ∈ D, v ∈ V (13)∑
v

tvsd ≥ fsd γs ∀ s ∈ S, d ∈ D (14)

yv
0 ≥ uv ∀ v ∈ V (15)∑

j∈N
xv

ij = yv
i ∀ i ∈ N , i ̸= j, v ∈ V (16)

∑
i∈N

xv
ij = yv

j ∀ j ∈ N , i ̸= j, v ∈ V (17)
∑
i,j∈I

xv
ij ≤ |I| − 1 ∀ I ⊆ S, i ̸= j, v ∈ V (18)

sv ≥
∑
s∈S

yv
s − 1 ∀ v ∈ V (19)

The objective function (1) minimizes the total milk-run and indirect costs for the given
cluster. Constraint (2) guarantees that if supplier s is not visited in any vehicle v, then it is
assigned to indirect strategy. Constraints (3,4) guarantees that the vehicle capacities in LDM
and Kg respectively are respected. Constraint (5) ensures that if supplier s is visited by vehicle
v, at most Ūs can be collected. Constraint (6) satisfies the total demand request for the pair
(s, d). Constraint(7,8) respects the maximum number of suppliers in vehicle v, and forces uv

to be 1 if at least one supplier is visited. Constraints (9,10) determines when a receiving dock
d is visited by vehicle v. Constraint (11) respects the maximum number of receiving dock
per vehicle v. Constraints (12,13) ensures that if a positive amount of demand for dock d is
collected from supplier s by vehicle v, then vehicle v contains both supplier s and receiving
dock d. Constraint (14) respects the minimum frequency for the pair (s, d). Constraint (15)
guarantees that the plant is visited only if vehicle v is used. Constraints (16,17) guarantee
that for the plant, and for each supplier there’s one sorting, and one entering arc. Constraint
(18) eliminates the sub-tours. Constraint (19) finds the number of stops in vehicle v.

4.3 Phase 3 : Set Partitioning Problem (SPP) The Set Partitioning Problem (SPP),
determines the best subset of clusters C ′ ⊆ C, such that each supplier s ∈ S belongs exactly to
one cluster c ∈ C ′ , and the total cost is minimum. Let αc be the cost of every c ∈ C, parameter
asc = 1 if supplier s is in cluster c, and variable xc = 1 if cluster c is selected in the optimal
solution, 0 otherwise. The integer linear programming model (ILP) for the [SPP] is :

[SPP] Minimize
∑

c ∈ C
αcxc (20)



∑
c ∈ C

asc xc = 1 ∀ s ∈ S (21)

4.4 Enhanced formulation The above model can be further strengthened by using refor-
mulation techniques for some constraints and introducing new ones. The first technique used
is disaggregation. The basic idea is to separate one constraint (big-M type constraints) into
many without changing the meaning of a MIP model. We use this technique to reformulate
constraints 2, 7, and 9. The sub-tour elimination in 18 is also reformulated. It prevents sub-
tours by enumerating all subsets I of size 2 ≤ |I| ≤ |N | − 1, and ensures the number of
arcs selected is less than the number of nodes - 1. However, due to the MaxS constraint, it
is sufficient to only eliminate subsets I : 2 ≤ |I| ≤ MaxS. It can be done by finding cliques
and cycles of size k : 2 ≤ k ≤ MaxS. In addition, the right-hand side of the constraint is
replaced by summing on yv

s where s ∈ ϕ, with ϕ is the subset of all combination of sup-
pliers from I with |ϕ| = |I| − 1 providing a tighter formulation. The new constraint is :∑

(i,j)∈I x
v
ij ≤

∑
s∈ϕ y

v
s ,∀ I ⊆ S, 2 ≤ |I| ≤ MaxS, ϕ ⊆ I, |ϕ| = |I| − 1, v ∈ V . We also intro-

duce a valid inequality. Let ψ be the set of all shortest paths for every pair (s, s′), s, s′ ∈ S
with a number of nodes greater than MaxS − 1. Then : yv

s + yv
s′ ≤ 1,∀ s, s

′ ∈ ψ, s ̸= s
′
, v ∈ V

is valid. In other words, if for every pair (s, s′), supplier s cannot reach supplier s′ in less than
MaxS − 1 stops, then s and s′ cannot be in the same vehicle v. A symmetry break constraint
is also introduced. It imposes that vehicle v + 1 cannot be used if vehicle v is not yet used,
uv ≥ uv+1,∀ v ∈ V .

5 Computational Experiments and Results
To evaluate the performance of the formulations, computational experiments are done on

real-world instances conducted on a personal PC equipped with an 11th generation Intel Core
i7 3.00 GHz , 8 logical processor, and 32GB of random-access memory (RAM). The MILP and
ILP models are solved using the commercial solver CPLEX, with a maximum time limit for
every cluster (TLC) in phase 2, of 180 seconds, and a relative tolerance on the gap between
the best integer objective and the objective of the best node remaining of 0.5% for small and
medium-sized instances, and 1% to large-sized instances. In addition, a maximum time limit
for every instance (TLI) of 7200 seconds (2 hours) for small and medium-sized instances, and
25200 seconds (7 hours) for large-sized instances is also set. Besides, phase 2 of the algorithm
is parallelized on two processors using the Fork/Join framework in Java.

The real-world instances are divided into small, medium and large-sized instances, distinctive
in the size of S, D, N (graph density), C, rsd (number of V). For example, the size of S varies
between 10 and 54, and the minimum, maximum and number of V for clusters are 1 and 85
respectively. The average number of vehicles per cluster varies between, 3.33 and 14.4.

Table 1 shows the results of the enhanced model compared to the original one. The minimum,
maximum and average improvement are 43.16%, 95.91% and 75.06%. In addition, the enhan-
ced model has improved the bound of several clusters, solving them optimally. For example,
for instance number 4, 9 clusters that exceeded the TLC are solved to optimality with the
enhanced model. Finally, the number of unsolved clusters has also been improved. the mini-
mum, maximum and average improvement percentage is, 9.3%, 100% and 23.7% respectively.
In summary, although the enhanced model has improved the computational time of 57% of the
instances, it has limitation on medium and large-sized instances.

6 Conclusions and perspectives
A three-phase approach is proposed for an inbound SC problem, giving good results small

industrial instances. However, solving medium and large-sized instances is challenging because
of the : 1) significant number of clusters, 2) clusters with high volumes are more difficult to be
solved. The weakness of the approach, comes from solving the MILP that jointly finds for every



TAB. 1 – Computational comparison between the two models.

Type I1 S2 D3 N 4 C5 Original model Enhanced model ∆T
9 ∆̸O

10 ∆ ̸S
11

T6 ̸O7 ̸S8 T ̸O ̸S

Small

1 10 4 37 293 28.71 0 0 15.05 0 0 47.58 0 0
2 12 3 51 688 3541.20 2 0 144.66 0 0 95.91 100 0
3 13 2 55 846 89.78 0 0 28.74 0 0 67.99 0 0
4 14 5 91 1470 7651.19 9 0 649.31 0 0 91.51 100 0
5 14 4 46 285 3993.76 3 0 215.37 0 0 94.61 100 0
6 15 7 86 1776 2045.46 1 0 260.96 0 0 87.24 100 0
7 15 5 104 1939 519.66 0 0 130.47 0 0 74.89 0 0

Medium

8 19 4 171 5035 TLI12 8 3505 TLI 0 831 0 100 76.3
9 25 8 276 9617 TLI 11 2225 TLI 11 823 0 0 63.0
10 33 10 217 35243 TLI 4 15587 TLI 3 7646 0 25 50.9
11 34 5 520 51887 TLI 12 31808 TLI 12 27192 0 0 14.5
12 34 6 553 52932 TLI 3 29726 4092.17 0 0 43.16 100 100

Large 13 50 9 687 118788 TLI 12 76145 TLI 11 69041 0 8.33 9.3
14 54 10 721 128147 TLI 6 85793 TLI 1 70222 0 83.33 18.1

1 Instance number, 2 Num. suppliers, 3 Num. receiving docks, 4 Num. edges, 5 Num. of clusters, 6 Computational time in seconds,
7 Num. of clusters exceeded TLC, 8 Num. of clusters unsolved within TLI, 9 Percentage decrease in computational time = (Worst
time - Best time ) / Worst time × 100, 10 Percentage decrease in the number of not optimal clusters, 11 Percentage decrease in the
number of unsolved clusters, 12 Instances exceeded TLI.

supplier the optimal transportation strategy, and for every vehicle the shortest elementary
paths, and its optimal loading plan. Hence, another approach that first directly generates
interesting routes, and then choose the optimal ones has to be considered.
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