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PERIODIC REEB ORBITS ON PREQUANTIZATION BUNDLES

In this paper, we prove that every graphical hypersurface in a prequantization bundle over a symplectic manifold M , pinched between two circle bundles whose ratio of radii is less than ? 2 carries either one short simple periodic orbit or carries at least cuplengthpM q1 simple periodic Reeb orbits.

Introduction

A contact form on a manifold M of dimension 2n ´1 is a differential 1-form α satisfying α ^pdαq n´1 ‰ 0 everywhere. The Reeb vector field R α associated to a contact form α is the unique vector field on M characterized by: ιpR α qdα " 0 and αpR α q " 1.

In this article we are concerned with prequantization bundles E. That is, E is a C-bundle over a symplectic manifold pM, ωq with c 1 pEq " ´rωs P H 2 pM ; Zq. In particular, we assume that the cohomology class rωs of the symplectic form admits an integral lift. A Hermitian connection on E gives rise to a connection 1-form α 0 on the corresponding S 1 -bundle Σ over M . The 1-form α 0 is naturally a contact form. Its Reeb vector field is the infinitesimal generator of the S 1 -action on Σ, see [START_REF] Geiges | An introduction to contact topology[END_REF]Section 7.2] for more details. Moreover, using the Hermitian connection defines circle resp. disk bundles S R resp. D R of radius R ą 0. We will extend α 0 to EzM by pullback.

We call a hypersurface Σ f Ă E graphical if it can be written as the graph of a function f : Σ Ñ R ą0 inside E Σ f " tf pxqx | x P Σu .

(1.1)

Then α f :" f α 0 is a contact form on Σ f . We call Σ f pinched between S R 1 and S R 2 if Σ Ă D R 2 zintD R 1 .

Theorem 1.1. Let E be prequantization bundle over the symplectic manifold pM 2n , ωq. Assume that the graphical hypersurface Σ f Ă E is pinched between S R 1 and S R 2 with R 2 R 1 ă ? 2. Then there exist either infinitely many periodic Reeb orbits of R α f or there are periodic orbits γ 1 , . . . , γ c of R α f with c " cuplengthpM q `1 such that πR 2 1 ă A α f pγ 1 q ă . . . ă A α f pγ c q ă πR 2 2 where A α f pγq :" ş γ α f is the action or period of a Reeb orbit γ. We recall the definition of cuplength.

Definition 1.2. Let M be a manifold. The cuplength of M is defined as cuplengthpM q :" max k P N | Dβ 1 , . . . , β k P H ě1 pM q such that β 1 Y . . . Y β k ‰ 0 ( .

Corollary 1.3. In the context of Theorem 1.1, either the minimal period of periodic Reeb orbits of R α f is less than πR 2 1 or α f carries at least cuplengthpM q `1 simple periodic Reeb orbits.

In short, there is either a short periodic orbit or cuplengthpM q `1 simple periodic Reeb orbits.

Remark 1.4. Amongst other theorems, a similar result to Theorem 1.1 as been obtained by Ely Kerman in [START_REF] Kerman | Rigid constellations of closed Reeb orbits[END_REF], but with the bound for the number of critical points being 1 2 dim M `1. Since the symplectic form is non-degenerate, we have cuplengthpM q `1 ě 1 2 dim M `1 in general.

As a particular case of Corollary 1.3, we also find the following. We recall that S 2n´1 is the S 1 -bundle corresponding to a prequantization bundle over CP n´1 and cuplengthpCP n´1 q " n ´1.

Corollary 1.5 ( [START_REF] Ekeland | On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface[END_REF][START_REF] Berestycki | Existence of multiple periodic orbits on starshaped Hamiltonian surfaces[END_REF]). Let S be a hypersurface in R 2n satisfying xν Σ pxq, xy ą r @x P Σ, (1.2)

where ν Σ pxq is the exterior unit normal vector of Σ at x. Then S is starshaped and we denote by ξ " ker α 0 the standard contact structure on S. Assume there exists a point x 0 P R 2n and numbers 0 ă r ď R with R ă r ? 2 such that:

r ď }x ´x0 } ď R @x P Σ, (1.3) 
Assume also that Then Σ carries at least n geometrically distinct periodic Reeb orbits.

Another proof of this result with the additional assumption that the contact form is non degenerate was given by the second author in [START_REF] Gutt | The positive equivariant symplectic homology as an invariant for some contact manifolds[END_REF].

The study of periodic Reeb orbits can be translated in the study of periodic solutions of Hamiltonian systems and has a long history which, probably, started when Poincaré pointed out their interest. The question of lower bounds on the number of simple periodic Reeb orbits on compact manifold is wide open; it is not even known for the standard sphere in R 2n . In fact, the existence of one periodic Reeb orbit on every compact contact manifold (Weinstein conjecture) is still open in dimension greater than 3 where it was proven by Taubes [START_REF] Taubes | The Seiberg-Witten equations and the Weinstein conjecture[END_REF]. Taubes result was then improved independantly by Cristofaro-Gardiner and Hutchings [START_REF] Cristofaro-Gardiner | From one Reeb orbit to two[END_REF] and by Ginzburg, Hein, Hryniewicz and Macarini [START_REF] Ginzburg | Closed Reeb orbits on the sphere and symplectically degenerate maxima[END_REF], who proved that every contact form on a closed three-manifold has at least two embedded periodic Reeb orbits.

On the sphere, more is known; Hofer, Wysocki and Zehnder [START_REF] Hofer | Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants[END_REF] have shown that on S 3 , every dynamically convex (see [START_REF] Hofer | Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants[END_REF]) contact form carries either 2 or infinitely many periodic Reeb orbits. In dimension greater than 3, the conjecture is that any contact form on the 2n ´1 dimensional sphere defining the standard contact structure admits at least n simple periodic orbits. This conjecture is studied, for instance, in [GG16, LZ02, WHL07, EL80, BLMR85]

For manifolds (of dimension ě 5) other than the sphere, very little is known, we refer to [GG16, GK15, AM15, Kan13] for precise statements but we would like to point out that nothing is known outside some restricted class of prequantization bundles.

Basic constructions

Let pΣ, αq be a prequantization space over pM, ωq. That is, pM, ωq is a closed connected symplectic manifold with integral symplectic form rωs P H 2 pM, Zq. We denote by ℘ : Σ Ñ M the principal S 1 -bundle and by ℘ : E Ñ M the associated complex line bundle with first Chern class c E 1 " ´rωs. We refer to these bundles as prequantizations spaces. There exists an S 1 -invariant 1-form α on Σ, and hence EzM , with the property

dα " ℘ ‹ ω (2.1)
which is a contact form on Σ. For more details we refer to [Gei08, Section 7.2]. If we denote by ρ the radial coordinate on E then the 2-form

Ω :" d `πρ 2 α ˘`℘ ‹ ω " 2πρdρ ^α ``πρ 2 `1˘℘ ‹ ω (2.2)
is a symplectic form on E.

In the following we will work on the symplectization SΣ :" Σ ˆRą0 of Σ which is equipped with the exact symplectic form Ω " dprαq " dr ^α `rdα. Here r is the natural coordinate on R ą0 . The coordinate transformation r " πρ 2 induces an exact symplectomorphism pEzM, πρ 2 αq -pSΣ, rαq. We point out that the Reeb flow θ t of the Reeb vector field R is 1-periodic due to our convention that S 1 " R{Z.

Now we fix the basic Hamiltonian functions and study a certain moduli space which will play a crucial role in the proof.

2.1. The Hamiltonian functions and their periodic orbits. In this paper, the initial choice of the Hamiltonian function plays a crucial role. It is defined as a radial function in the complex line bundle E Ñ M and has a shape similar to the standard ones in symplectic homology, but eventually becoming constant again.

In order to construct this Hamiltonian function, we first fix a number R 0 P R with 1 ă R 0 ă 2 and choose constants A, c P p0, 1q, which in addition satisfy

c ă R 0 ´1 1 ´log R 0 , Ac `exp R 0 ´1 c ´1˘ă 1. (2.3)
The first condition is only needed if R 0 is close to 1 as otherwise, the right hand side of the first equation in (2.3) is larger than 1 and automatically satisfied by c P p0, 1q. The second condition can then be satisfied by choosing A sufficiently small. Then we define the function k : R ą0 Ñ R explicitly by the formula kprq " cr log r ´cr `rp1 ´c log Aq `Ac ´A .

(2.4) Therefore, we have kpAq " 0, k 1 pAq " 1 and

|rk 2 prq| " c ă 1. (2.5) We next set B " A exp R 0 ´1 c . Thus, A ă B « Ac,
where « becomes an equality in the limit c Ñ 1 and R 0 Ñ 2. Moreover, the relations between A, c and R 0 in (2.3) are equivalent to the more readable conditions log A `1 ă log R 0 B (2.6) and cpB ´Aq ă 1.

(2.7)

To define h : R ě0 Ñ R, we fix sufficiently small constants , δ, δ ą 0 and set hprq " kprq for r P rA ´δ, B `δs (2.8) and require h 1 pB `δq " R 0 ` .

(2.9)

For r ď A ´δ, we choose h to be almost linear down to r " δ and then turning to be constant such that ´hp0q R rA, A `cpB ´Aqs `Z. This can be achieved by making δ sufficiently small and keeping the property (2.5). For r ě B `δ, we choose h to be constant with slope R 0 ` ă 2 for some time and then decrease the slope to

h 1 pCq " R 0 at some point r " C ą B.
(2.10)

After this, we keep slope R 0 ´ for a while until we decrease again to h 1 pDq " 1 for some possibly large D ą C. By the same pattern, we decrease the slope further to 1 ´ for some finite interval before we eventually make hprq constant for large r. In the non-linear parts, we make all choices such that the condition (2.5) is satisfied, i.e., the slope decreases more slowly as we move further out.

h 1 prq P r0, R 0 ` s for all r P R ą0 max h 1 prq " R 0 `
h 1 prq " 0 ðñ r P r0, δs or r large

h 1 prq " 1 ðñ r P tA, Du h 1 prq " R 0 ðñ r P tB, Cu hpAq " 0, ´hp0q R rA, A `cpB ´Aqs `Z hpBq " BR 0 ´cB `cA ´A CR 0 ´hpCq R rA, A `cpB ´Aqs `Z D ´hpDq R rA, A `cpB ´Aqs `Z lim rÑ8 hprq R rA, A `cpB ´Aqs `Z h 2 prq ě 0 for r ď R 0 B
|rh 2 prq| ă 1 for all r P R ą0

(2.11) Note that by our choices of R 0 , c and A, the set rA, A `cpB ´Aqs `Z is not all of R as we required cpB ´Aq ă 1 and the conditions on hp0q, C, D and lim rÑ8 hprq can be satisfied.

Most of these conditions are needed to get a good picture of periodic orbits and their action values. But we point out that the last condition is the most important one as it will enable us to get hold of a certain moduli space (in Step 2 of Theorem 2.2). Using this function hprq, 

δ A B C 1 R 0 R 0 R 0 ` D R 0 ´ 1 0 1 ´ Figure 1.

#

hprq if q " px, rq P EzM -Σ ˆRą0 hp0q if q P M (2.12)

The Hamiltonian function H is smooth since hprq is constant for r ă δ. As a next step, we compute the action values of all 1-periodic orbits for this Hamiltonian function H " hprq. Observe that with our conventions, the Hamiltonian vector field is given by X H " h 1 prqR where R is the Reeb vector field on Σ. Moreover, since the Reeb flow is 1-periodic the 1-periodic orbits of X H correspond to values of r with h 1 prq P Z. As we chose R 0 ` ă 2 to be the maximal slope of h, the condition h 1 P Z for 1-periodic orbits turns into h 1 prq P t0, 1u. We get four types of periodic orbits:

(1) Constant orbits for r P r0, δs, where h is constant, (2) 1-periodic Reeb orbits at r " A, where h 1 pAq " 1, (3) 1-periodic Reeb orbits at r " D, where h 1 pDq " 1 and (4) Constant orbits for very large r, where h is again constant.

To compute the action values of these periodic orbits we recall that the Hamiltonian action functional A H on pE, Ωq is defined on a covering ΛE of the component of contractible loops of the free loop space ΛE of E. This covering has π 2 pEq ker Ω -π 2 pM q ker ω as deck transformation group. We denote elements by rγ, γs; i.e. concretely γ is a contractible loop and γ is a disk bounded by γ with the equivalence relation that pγ, γq " pγ 1 , γ1 q if and only if # γ " γ 1 Ωpγ# ´γ 1 q " 0 .

(2.13)

We call γ a capping of γ. i.e. the 1-periodic orbits of X H with some capping γ.

As explained above there are 4 types of orbits, either constant orbits or 1-periodic Reeb orbits, each at certain values for r. We point out that all these orbits have natural cappings. For the constant orbits we choose the capping to be a constant disk. For the 1-periodic Reeb orbits we choose the disk in a fiber of E containing the specific Reeb orbit. Using these natural cappings we abbreviate their action values by A H prq. Then a simple computation (we recall our convention S 1 " R{Z) leads to A H prq " rh 1 prq ´hprq .

(2.16)

The action values of the critical points with other cappings are obtained by changing the natural cappings by an element in π 2 pEq ker Ω -π 2 pM q ker ω . This changes the action value by an integer since ω : π 2 pM q ker ω Ñ Z due to the condition that rωs P H 2 pM ; Zq. We now compute the action values A H prq for the orbits of different types using the properties of h, see (2.11).

' For the orbits in class (1), our choice of h implies A H prq " ´hp0q R rA, A `cpB ´AqsZ for r P r0, δs. ' For orbits in class (2), we fixed the value of the Hamiltonian function to be zero and therefore get A H pAq " A. ' For the orbits in class (3), we required A H pDq " Dh 1 pDq´hpDq R rA, A `cpB ´AqsZ . ' Finally, for class (4), the condition on lim rÑ8 hprq and that h becomes constant for large r imply that the action value A H prq is not in rA, A `cpB ´Aqs `Z. For the second Hamiltonian function L, we consider a rescaled version of h by defining lprq " h ˆr R 0 ˙.

(2.17) and define as above L : E Ñ R by Lpqq :"

# lprq if q " px, rq P EzM -Σ ˆRą0 lp0q if q P M (2.18)
In this case, we have

X L px, rq " 1 R 0 h 1 `r R 0 ˘Rpxq (2.19)
and therefore, to get a periodic orbit, we must have h 1 `r R 0 ˘to be an integer multiple of R 0 .

By the conditions on h, we still get the constant periodic orbits as above for r P r0, R 0 δs and for large r and 1-periodic orbits when r " R 0 B and r " R 0 C.

The action values with the natural cappings are now given by

A L prq " rl 1 prq ´lprq " r R 0 h 1 ˆr R 0 ˙´h ˆr R 0 ˙. (2.20)
Again the action values for the constant orbits are given by the values of h near 0 and near 8 and therefore are not in rA, A `cpB ´Aqs `Z. For the orbits at r " R 0 B, we find A L pR 0 Bq " Bh 1 pBq ´hpBq " BR 0 ´hpBq " A `cpB ´Aq.

(2.21)

Finally, at r " R 0 C, the properties of h imply that

A L pR 0 Cq " Ch 1 pCq ´hpCq R rA, A `cpB ´Aqs `Z. (2.22)
From now on, we restrict our attention to periodic orbits with action in the interval I " rA, A `cpB ´Aqs. These are the orbits at the first time the slope reaches 1, when the Hamiltonian function starts to increase as usually considered in symplectic homology. More concretely, we only have the orbits at r " A for H and at r " R 0 B for L with their natural capping being the fiber disk in the complex line bundle E.

2.2.

The initial moduli space. We now study the moduli space arising in the continuation homomorphism for a monotone homotopy between the Hamiltonian functions H and L coming from a monotone homotopy between hprq and lprq " hp r R 0 q constructed above. For this we define

h s prq " βpsqhprq ``1 ´βpsq ˘h`r R 0 ˘, (2.23) 
where β is a smooth, monotone decreasing cut-off function which is 1 for s ă ´1 and 0 for s ą 0. Moreover, we require that β 1 psq ă 0 for all s P p´1, 0q. Then h s is a monotone homotopy from h to l. Note that the condition |rh 2 s prq| ă 1 is still satisfied for all r ą 0 and s P R as for each s the function h s is a convex combination of h and l which both satisfy the required condition.

Definition 2.1. We fix an almost complex structure J on SΣ which is compatible with ω and of SFT-type. This means that ωp¨, J¨q defines a Riemannian metric on SΣ, that 1 r dr " α ˝J and that J is invariant under the Liouville flow px, rq Þ Ñ px, e t rq for t P R.

As we will use this very explicitly in the technical parts of this paper, we mention here that this implies that J B Br " 1 r R. Using this J, we can now define the moduli space of interest by

M " " u : S 1 ˆR Ñ E | B s u `J`B t u ´Xs puq ˘" 0, lim sÑ˘8 u " γ ˘* , (2.24)
where X s is the Hamiltonian vector field for h s . Moreover, the orbit γ ´is a 1-periodic orbit of X H at r " A and γ `is a 1-periodic orbit of X L at r " R 0 B, both having action in the interval I " rA, cpB ´Aq ´As as computed above. Both Hamiltonian action functionals for H and L are Morse-Bott and the critical manifolds formed by the respective orbits γ ˘are both diffeomorphic to Σ since γ ˘correspond to simple Reeb orbits. We point out that since all Hamiltonian functions are autonomous, the moduli space M carries a free S 1 -action given by rotating solutions, pτ ˚uqps, tq :" ups, t `τ q, τ P S 1 . That this action is free follows from considering the asymptotic limits of u. The main result of this section is the following.

Theorem 2.2. The space M of solutions u to the Floer equation

B s u `J`B t u ´Xs puq ˘" 0 (2.25) with up`8q P γ `P CritA L | A L pγ `q " cpB ´Aq ´A( up´8q P γ ´P CritA H | A H pγ ´q " A ( (2.26)
is compact and carries a free S 1 -action. Moreover, it is S 1 -equivariantly diffeomorphic to Σ

M -S 1 Σ (2.27)
and thus

M{S 1 -M .
(2.28)

Finally, all solutions u P M are Fredholm regular.

Of course, the statement that M is compact follows from the rest of the statement as Σ is compact. Therefore, we do not need to prove compactness separately and it suffices to prove M -Σ.

Even though we will not use it, it is worth pointing out that elements in M are contributions to the continuation homomorphism between the Floer homologies of H and L.

Before proving this theorem, we give an outline of the proof by mentioning the main steps:

Step 1 We first show that all elements in M are contained in a fiber over a closed Reeb orbit γ on Σ of the bundle E Ñ M by an energy estimate. In particular, this shows that a solution to the Floer equation in M can only exists if the asymptotic critical points γ ˘are in the same fiber, i.e., they correspond to the same Reeb orbit γ on Σ.

Step 2 According to Step 1 we write ups, tq " `γ`b ps, tq ˘, F ps, tq ˘P M, where F is the radial coordinate. Then we show that all solutions u P M satisfy bps, tq " t and F ps, tq " F psq for some function F : R Ñ R ą0 , i.e. ups, tq " `γptq, F psq ˘.

Step 3 According to Step 2 the Floer equation for u reduces to an ODE for F . We prove existence and uniqueness of a solution F for any fixed Reeb orbit γ using the asymptotic conditions at both ends. This completes the proof of M -S 1 Σ and the equality of the S 1 -actions by rotation in the fiber.

Step 4 Finally, we prove Fredholm regularity for our solutions.

Proof. As outlined above, the proof is done in several steps.

Step 1: Let u be an element of the moduli space M and define v :" ℘puq, where ℘ : E Ñ M is the bundle projection. By our choice of SFT-type J, the projection ℘ is holomorphic with respect to the complex structures J on E and j on M . As the Reeb vector field (and thus also the Hamiltonian vector field X s ) always point in fiber direction, we have ℘ ‹ X s " 0. Therefore, v solves the unperturbed Cauchy-Riemann equation

B s v `iB t v " 0.
(2.29)

Using ℘ ‹ ω " dα and that γ ˘:" lim sÑ˘8 u satisfies

γ 1 ´ptq " h 1 pAq lo omo on "1 R `γ´p tq ˘and γ 1 `ptq " 1 R 0 h 1 pBq lo omo on "R 0 R `γ`p tq ˘, (2.30) see (2.
19), we compute the energy of v.

Epvq "

ż S 1 ˆR v ‹ ω " ż S 1 ˆR u ‹ ℘ ‹ ω " ż S 1 ˆR u ‹ dα " ż S 1 γ ‹ `α ´żS 1 γ ‹ ´α " 1 ´1 " 0.
(2.31)

This shows that v is constant since it is holomorphic and has vanishing energy. Therefore, u is contained in the fiber over this constant. This completes the proof of Step 1.

Step 2: Since every element in M is contained entirely in a fiber of ℘ : E Ñ M we can use the Reeb direction and the radial direction as a coordinate system. Thus, we can write an element u P M as ups, tq " `γpbps, tqq, F ps, tq ˘, (

where γ is the Reeb orbit in that fiber and F denotes the radial component. The Floer equation (2.25) in these coordinates becomes a system of PDEs for F and b

B s b `1 F B t F " 0 B s F ´F B t b `F h 1 s pF q " 0.
(2.33)

Setting G " log F and dividing the second equation by F , this turns into

B s b `Bt G " 0 B s G ´Bt b `h1 s pe G q " 0.
(2.34)

The following argument is based on an argument by Salamon-Zehnder from [START_REF] Salamon | Morse theory for periodic solutions of Hamiltonian systems and the Maslov index[END_REF]. We are grateful to W. Merry for pointing us to the article [BO09] by Bourgeois-Oancea who use [START_REF] Salamon | Morse theory for periodic solutions of Hamiltonian systems and the Maslov index[END_REF] in a similar fashion. We linearize equation (2.34) in t-direction and set ζ " pζ 1 , ζ 2 q :" pB t b, B t Gq. Due to the Morse-Bott character in Reeb and base direction we work in Banach spaces with exponential weights, see [Fra04, Appendix A] or [START_REF] Bourgeois | A Morse-Bott approach to contact homology[END_REF] for details. Of course, these spaces are isomorphic (multiply with the corresponding weight function e κpsq ) to non-weighted Banach spaces. After applying this isomorphism the function ζ is in the kernel of the linearized Floer equation if and only if it solves the linear system

B s ζ 1 `Bt ζ 2 ´κ1 psqζ 1 " 0 B s ζ 2 ´Bt ζ 1 `eG h 2 s pe G qζ 2 " 0 (2.35)
where κpsq : R Ñ R is a smooth function agreeing with the function s Þ Ñ signpsqκ 0 s for |s| ě 1. Moreover, we require |κ 1 psq| ď κ 0 for all s P R. Combining the two equations above into a vector equation gives

B s ζ `J0 B t ζ `ˆ´κ 1 0 0 F h 2 s pF q ˙ζ " 0.
(2.36)

The constant κ 0 ą 0 has to lie in the spectral gap of the linearized operator and we may choose it as small as we like. The matrix norm is |κ 1 | `}F h 2 s pF q} ă 1 by our choice of the Hamiltonian function, namely |rh 2 s prq| ă 1 for all r and |κ 1 | arbitrarily small. In fact, this condition gives the bound for our choice of κ. This is the setting, of [SZ92, Proposition 4.2], which asserts that ζ is independent of t. Thus (2.35) simplifies to

B t ζ 1 " 0 B t ζ 2 " 0 B s ζ 1 ´κ1 psqζ 1 " 0 B s ζ 2 `F h 2 s pF qζ 2 " 0.
(2.37)

The first and third equation imply that ζ 1 " 0 since for s ě 1 it is of the form s Þ Ñ a 1 e κ 0 s and for s ď ´1 of the form s Þ Ñ a 2 e ´κ0 s , a 1 , a 2 P R, neither of which is an L 2 -function unless ζ 1 " 0.

The second equation says that ζ 2 is independent of t. Since H is a Morse-Bott Hamiltonian, the asymptotic periodic orbit lim sÑ´8 u ": γ ´sits in a critical manifold diffeomorphic to Σ, see above. In particular, the Morse-Bott property implies exponential convergence of u " pγ, F q and all its derivatives to γ ´in normal direction. The normal direction coincides here with the radial direction. In other words F psq converges exponentially fast to r " A and all its derivatives converge exponentially fast to 0. Therefore

ζ 2 " B t G " 1 F B t F also converges to 0, that is lim sÑ´8 ζ 2 " 0. (2.38)
Since ζ 2 is independent of t the last equation in (2.37) is now an ODE for ζ 2 psq. For s Ñ ´8 the coefficient in the 0-th order term F h 2 s pF q becomes s-independent and converges to Ah 2 pAq " c P p0, 1q, see (2.5). Therefore, asymptotically, we have ζ 2 " e ´cs as s Ñ ´8.

(2.39)

Together with the vanishing asymptotic condition for ζ, this implies that ζ 2 " 0.

Going back to the original equation in b and G, we now have found that B t G " ζ 2 " 0. This shows that G, and therefore F " e G , is independent of t.

For b, we now use the first equation in (2.34) to find that B s b " 0. By the above argument, we know that B t b " ζ 1 " const and therefore, we have bps, tq " const ¨t `bp0q.

(2.40)

As u converges to the Reeb orbit γptq, this asymptotic condition implies that bps, tq " t @t.

(2.41)

This completes the proof of Step 2. The details of F will be studied in Step 3.

Step 3: In this step, we prove existence and uniqueness of Floer trajectories in the moduli space M in the fiber over a given Reeb orbit γ.

Step 2 reduces the Floer equation (2.25), see also (2.33), to a 1-dimensional ODE for F

B s F " ´F ph 1 s pF q ´1q lim sÑ´8 F psq " A lim sÑ8 F psq " BR 0 .
(2.42)

We want to show existence and uniqueness for F . For this we use a phase space analysis at the boundaries.

We note that for s ă ´1, the function h s prq " hprq is independent of s and that h 1 prq is increasing on the interval r ď B ` with h 1 pAq " 1. Therefore, for s ă ´1, the function F psq " A is a solution.

Now we show that no other function solves the ODE problem for s ă ´1. By the asymptotic condition at s " ´8, the function F psq is less than B for some s 0 ă ´1 since A ă B.

If F ps 0 q ă A, then h 1 ps 0 q ă 1 and therefore, the coefficient of F in (2.42) is negative. This shows that F is increasing in s. In turn, as s decreases, F psq decreases further and further and this contradicts the asymptotic condition lim sÑ´8 F psq " A.

Similarly, if F ps 0 q ą A, then h 1 ps 0 q ą 1 and therefore, the coefficient of F in (2.42) is positive. This shows that F is decreasing in s. Again in turn, as s decreases, F psq is increasing and this contradicts again the asymptotic condition lim sÑ´8 F psq " A.

Combined, this shows that for s ă ´1, the only solution satisfying the asymptotic condition at ´8 is the constant solution F psq " A. Therefore, we can turn (2.42) into an initial value problem. In particular, there is a unique maximal solution to the ODE with asymptiotic condition lim sÑ´8 F psq " A. It remains to check that this maximal solution is defined on R and satisfies the asymptotic condition as s Ñ 8.

For this we first switch again to G " log F . The ODE for G is then

G 1 psq " 1 ´h1 s pe G q (2.43)
and we have Gpsq " log A for s ď ´1. By construction of the Hamiltonian function, 0 ď h 1 s prq ă 2 for all s and r. In particular, the maximal solution is defined on R.

From here on, we can again use a phase space analysis for the behavior for s ě 0, where h s prq " lprq. Our choice of c and B imply that we have

Gp0q ď log A `1 ă log R 0 B.
(2.44) Therefore, we have F p0q ă R 0 B and therefore, we have h 1 s `F p0q ˘ă 1. This implies that F is increasing and therefore converging to the next value where h 1 prq " 1 which is r " R 0 B. This proves the desired asymptotic behavior of our solution and therefore existence and uniqueness of a Floer trajectory in every fiber and therefore also that M -Σ and compactness of M.

Step 4: It remains to prove Fredholm regularity of the Floer trajectories ups, tq " `γptq, F psq studied above; i.e. we need to show that the Fredholm operator given by the linearized Floer equation is surjective.

The first observation is that our special solution ups, tq " `γptq, F psq ˘is constant in base direction and a simple Reeb orbit in Reeb direction. I.e. the linearizations in base and Reeb directions are linearizations of constant gradient flow lines in a Morse-Bott situation. These linearizations are automatically transverse, that is, these special linearizated operators are always surjective, see [START_REF] Frauenfelder | The Arnold-Givental conjecture and moment Floer homology[END_REF]Appendix A2].

It therefore remains to analyse the radial direction, i.e. the linearization in F . We recall equation (2.33) which due to B t b " 1 reduces to

B t F " 0 B s F ``h 1 s pF q ´1˘F " 0.
(2.45) Therefore, the linearized operator is Xps, tq Þ Ñ ´Bt X, B s X ``h 2 s pF q `h1 s pF q ´1˘X ¯.

(2.46)

Proving that this operator is surjective is equivalent to proving that the formal adjoint is injective. That is, we need to prove that the only solution to the equations

B t X " 0 B s X
´`h 2 s pF q `h1 s pF q ´1˘X " 0 (2.47) is X " 0. Of course, the first equation implies that X is independent of t and we again have an ODE. Now from the definition of h s and the properties of F , see equations (2.23) and

(2.42), we conclude for s very large and positive that

h 2 s pF q `h1 s pF q ´1 " 1 R 2 0 h 2 `F R 0 ˘`1 R 0 h 1 `F R 0 ˘´1 (2.48) converges to 1 R 2 0 h 2 pBq ą 0. (2.49)
In particular, X solves for large s an equation of the form

B s X ´κpsqX " 0 (2.50)
with κpsq ą 0 and lim sÑ8 κpsq ą 0. Thus, for s Ñ 8, X is exponentially growing unless it is constant. Since X is an L 2 -function it necessarily vanishes. Finally, Xpsq solves an ODE and therefore has to vanish identically as we were required to prove. This establishes Fredholm regularity of the unique Floer trajectory in each fiber and completes the proof of Theorem 2.2 2.3. The pinched contact form. We now consider a contact form on Σ induced by the embedding of Σ as graph of a function f : Σ Ñ R ą0 in the complex line bundle E Ñ M . That the contact form is pinched between two multiples of the standard contact form above is reflected by the condition 1 ď f pxq ď R 0 (2.51) for all x P Σ. The function h above is monotone increasing and therefore, this pinching condition also implies that hprq ě h ˆr f pxq ˙ě h ˆr R 0 ˙.

(2.52)

We now want to define a homotopy from hprq to h `r R 0 ˘that is not strictly radial as above, but passes through h `r f pxq ˘instead.

Before that we recall that the cuplength of M is defined as

cuplengthpM q :" max k P N | Dβ 1 , . . . , β k P H ě1 pM q , β 1 Y . . . Y β k ‰ 0 ( (2.53)
and denote k :" cuplengthpM q. Similar to the function β above, we now define three functions β 1 , β ρ 2 , β ρ 3 : R Ñ r0, 1s depending smoothly on a parameter ρ ą 0 such that β 1 psq `βρ 2 psq `βρ 3 psq " 1 @s P R β 1 psq " 1 @s ď ´1 β ρ 2 psq " 1 @s P r0, ρks β ρ 3 psq " 1 @s ě ρk `1.

(2.54) Furthermore, we require β 1 to be monotone decreasing and β ρ 3 to be monotone increasing. For ρ " 0, we choose β 0 2 " 0 and β 1 " β, where β is the function used above for the radial homotopy and β i depend smoothly on ρ. Furthermore, we require the convergence as ρ Ñ 0 to be a C 8 loc -convergence of β ρ i to the specified functions β 0 i . Now consider the homotopy 

H ρ s px, rq " β 1 psqhprq `βρ 2 psqh ˆr f pxq ˙`β ρ 3 psq ˆr R 0 ˙. ( 2 

Proof of Theorem 1.1

Now we are in a position to prove our main theorem. The idea is inspired by previous work of two of the authors in [START_REF] Albers | Cuplength estimates in Morse cohomology[END_REF], which in turn is based on the first authors work in [START_REF] Albers | Cup-length estimates for leaf-wise intersections[END_REF]. To this end, we assume that the Hamiltonian vector field of h `r f pxq ˘has only finitely many periodic orbits. Otherwise, there are infinitely many critical points of the action functional and there is nothing to prove.

The most essential difference to [START_REF] Albers | Cuplength estimates in Morse cohomology[END_REF] is that we do not assume that the symplectic manifold pE, Ωq has any kind of nice behavior concerning bubbling off of holomorphic sphere. In fact, even though pM, ωq satisfies rωs P H 2 pM ; Zq the manifold pE, Ωq is not necessarily semipositive. We will rule out bubbling-off of holomorphic spheres by a simple energy argument instead. The non-compactness of E poses no problem, since it is convex at infinity. Furthermore, we need some additional marking structures to make sure that our moduli spaces have the correct dimension.

Defining the moduli spaces. Let us describe the setup.

The first step is to trivialize the bundle over each of the projections of the finitely many Reeb orbits. Now, we choose a generic θ 0 P S 1 such that all Reeb orbits meet the ray R `¨θ 0 (in the chosen trivialization) in only finitely many points. This is possible for a generic choice of θ 0 . We are interested in the projections of such points to M and denote the collection of these points from all Reeb orbits by p 1 , . . . , p ν P M .

Choose generic Morse functions f ˚, f 1 , . . . , f k on M such that there are critical points x ˘P Critf ˚of f ˚and x i P Critf i of f i for i " 1, . . . , k corresponding to cohomology classes whose cup-product is non-zero. We refer to [START_REF] Schwarz | Morse homology[END_REF] for details on the Morse theoretic cupproduct and note here only that being non-zero implies the stable manifolds of x 1 , . . . , x k have non-empty intersection, i.e., there are Morse trajectories η i converging to x i such that all η i p0q agree and η i p0q P W u px ´, f ˚q X W s px `, f ˚q. We call this a bouquet of gradient flow lines, see Figure 2.

We now start building the moduli space we want to study and add some generic conditions for the functions f i , f ˚. The first step is to consider x M :" " pρ, uq ˇˇˇρ ě 0, u " pγ, F q solves (2.58), Epuq ă 8, F p´8q " A, F p`8q " R 0 B * .

(3.1)

At the boundary of x M, i.e. for ρ " 0, we have

B x M :" x M| ρ"0 " M -Σ, (3.2)
where M is the moduli space studied above, see (2.24) and Theorem 2.2. Indeed, for ρ " 0 the Hamiltonian H 0 s agrees with h s from above, where we have established Fredholm regularity for this moduli space.

We now add the bouquet of gradient flow lines to the picture. Roughly speaking the idea is to single out elements u in x M which lie over the bouquet in a prescribed manner. The Morse bouquet is an intersection of stable and unstable manifolds

W s px `, f ˚q X W u px ´, f ˚q X W s px 1 , f 1 q X ¨¨¨X W s px k , f k q (3.3)
and consists of a finite number of points (in fact, an odd number.) Since stable and unstable manifolds are contractible the C-bundle E resp. S 1 -bundle Σ is trivial over each of these manifolds. We fix trivializations over each of the above stable/unstable manifolds such that over the finitely many points in W s px `, f ˚q X W u px ´, f ˚q X W s px 1 , f 1 q X ¨¨¨X W s px k , f k q all trivializations agree. This is possible since there is no obstruction to extending a trivialization of an S 1 -bundle over finitely many points to a 1-dimensional CW complex. Of course, in general the trivializations over the various stable/unstable manifolds only match up precisely at the finitely many intersection points, the Morse bouquets. Note that generically, the stable manifolds W s px i , f i q do not meet the points p 1 , . . . , p ν as the index and therefore the codimension of the stable manifold of x i is at least one. Furthermore, the stable manifolds meet the projections of the Reeb orbits in finitely many points. We start building the trivializations starting from these finitely many intersection points such that the trivializations at these points agree with the trivialization over the Reeb orbits chosen above. With these choices of trivializations, we have the following properties:

(A) Whenever ℘ `γp0q ˘P W s px i , f i q for some Reeb orbit γ of α f then the trivializations of E over ℘pγq and over the stable manifold W s px i , f i q agree at ℘ `γp0q ˘. Moreover, in this trivialization we have arg γp0q ‰ θ 0 . (B) The intersection (3.3) consists of finitely many points and the trivializations over the stable and unstable manifolds agree over those points.

In fact, talking about stable/unstable manifolds we implicitly chose Riemannian metrics g ˚, g 1 , . . . , g k on M . We assume that these metrics are so that all intersections of stable/unstable manifolds are transverse. This is a generic property for the pairs pf i , g i q and pf ˚, g ˚q. Since we assume that the critical points come from a non-vanishing cup-product the above intersection is a manifold of dimension zero and of odd cardinality. Now we define the moduli space of interest for the proof as

M :" $ ' ' & ' ' % pρ, uq P x M ˇˇˇˇˇˇˇ℘ `upiρ, 0q ˘P W s px i , f i q for i " 1, . . . , k, ℘ `up0, 0q ˘P W u px ´, f ˚q, ℘ ´u`p k `1qρ, 0 ˘¯P W s px `, f ˚q, arg upiρ, 0q " θ 0 for i " 0, . . . , k `1 , / / . / / - . (3.4) up0, 0q x `xx 1 x 2 x k´1 x k ¨¨¨℘ `up0, 0q ℘ Figure 2.
The moduli space at ρ " 0

The angle in the last condition is understood as the angle in the trivialization of the bundle over the stable or unstable manifold from the other conditions, i.e., over W s px i , f i q for i " 1, . . . , k, over W u px ´, f ˚q for i " 0 and over W s px `, f ˚q for i " k `1.

Let us discuss this first for ρ " 0. In this case, up0, 0q " upiρ, 0q " u `pk `1qρ, 0 ˘. Thus, the conditions in (3.4) are picking out those solutions u to the Floer equation (2.58) (which actually for ρ " 0 agrees with (2.25)) which are parametrized such that arg up0, 0q " θ 0 . That such a configuration is Fredholm regular is proved below. For ρ ą 0 both the Hamiltonian term in the Floer equation and the incidence conditions start to change, see Figure 3.

Proposition 3.1. The moduli space BM " M| ρ"0 is Fredholm regular and consist of an odd number of points.

Proof. By Theorem 2.2, M " x M| ρ"0 -Σ consists of Fredholm regular solutions to the Floer equation (2.25) and is equivariantly diffeomorphic to Σ. In addition, the bouquet from Morse gradient flow lines is Fredholm regular by assumption. Moreover, the two conditions

# ℘ `up0, 0q ˘" η `p0q " η 1 p0q " ¨¨¨" η k p0q " η ´p0q arg `up0, 0q ˘" θ 0 (3.5) ups, tq ℘ x `x1 x 2 x k ¨¨¨x ℘`u pρ, 0q ˘℘`u p2ρ, 0q ℘`u p0, 0q ˘℘`u pkρ, 0q ℘`u ppk `1qρ, 0q Figure 
3.
The moduli space at ρ ą 0 single out precisely one solution over each intersection point of the Morse bouquet. So, the full Fredholm problem is Fredholm regular and of index 0 as claimed.

In order to obtain the Reeb orbits claimed in the main Theorem we want to force breaking of Floer trajectories in certain limits. For this, we need to show the following Proposition 3.2. There exists a sequence pρ n , u n q P M such that ρ n Ñ 8.

Proof. Assume that this is not the case and for all sequences pρ n , u n q ( nPN in M, the parameter ρ stays bounded, i.e., we have

sup nPN |ρ n | ă 8.
We first show that in this case, the moduli space is compact. Let pρ n , u n q ( nPN be a sequence in M. Possibly by passing to a subsequence, we can assume ρ n converges to ρ ˚. We would like to apply a result by Schwarz in [Sch95, Proposition 4.3.11] stating that convergence of Floer trajectories in C 8 loc without breaking or bubbling already implies convergence in H 1,p . We already have the C 8 loc -convergence and thus need only to show that there is no bubbling nor breaking.

Since ρ n Ñ ρ ˚, breaking is only possible near the "ends" of the cylinder. There are two possibilities, breaking at `8 or at ´8. At ´8, we have to break on a critical point for hprq with action in rA , cpB ´Aq `As since the homotopy of Hamiltonian functions is monotone. This is impossible as the only such point is the asymptotic orbit γ ´. The argument excluding breaking at `8 is the same using the properties of lprq and the orbit γ `.

Bubbling is prevented since the energy of all elements pρ, uq P M curve is less than 1. Indeed, Epuq ď Apγ `q ´Apγ ´q ă 1 by construction. Therefore there is not enough energy for bubbling-off of holomorphic spheres since on π 2 pEq -π 2 pM q we have Ω `π2 pEq ˘" ω `π2 pM q ˘Ă Z due to the assumption rωs P H 2 pM, Zq.

This shows that under the assumption that ρ stays bounded for all sequences in M, the moduli space M is compact.

By construction, the parametrized moduli space M has only one boundary component BM " M| ρ"0 " M which, as shown above, is Fredholm regular. By compactness, M is still Fredholm regular for small values of ρ. Using an abstract perturbation argument as in [START_REF] Albers | Cuplength estimates in Morse cohomology[END_REF], see also [HWZ14, Theorems 5.5 and 5.13], we can define a perturbed moduli space Ă M, which is a smooth, 1-dimensional compact manifold and agrees with M near ρ " 0, where M is already Fredholm regular.

In particular, then Ă M is a compact, 1-dimensional manifold with only one boundary component. As this cannot exist, we have shown that the assumption at the beginning of this proof is wrong and there exists a sequence pρ n , u n q ( nPN of elements in M with ρ n Ñ 8. As the last step in this section, we also define moduli spaces for bounded values of ρ. Namely, we set M ρ px 1 , . . . , x k , x ´; x `q " tu | pu, ρq P Mu and Mr0, ρs " tu | pu, σq P M @ σ P r0, ρsu .

As in [START_REF] Albers | Cuplength estimates in Morse cohomology[END_REF], also these moduli spaces can be perturbed to be smooth compact manifolds Ă M ρ for ρ P N by an abstract perturbation argument, cf. [HWZ14, Theorems 5.5 and 5.13]. Moreover, as described above, M 0 " BM " M is already Fredholm regular and the perturbations can be done leaving M ρ untouched for small ρ. Then we can also perturb the moduli spaces Mr0, ρs for ρ P N keeping the ends fixed to get smooth manifolds Ă Mr0, ρs.

3.2.

Finding critical points of the action functional. The next step is to use the above moduli spaces to construct cohomology operations. It is rather standard, cf. [START_REF] Albers | Cuplength estimates in Morse cohomology[END_REF][START_REF] Schwarz | Morse homology[END_REF], that the projection of M 0 to M defines the cup product on M by

θ 0 : CM ˚pf 1 q b . . . b CM ˚pf k q b CM ˚pf ˚q Ñ CM ˚pf ˚q x 1 b . . . b x k b x ´Þ Ñ ÿ x `PCritf˚# 2 pr M Ă M 0 px 1 , . . . , x k , x ´;
x `q ¨x`.

(3.6) Here, we use Morse homology and cohomology with coefficients in Z{2Z. Observe that the functions f i and f ˚are defined on M and for ρ " 0, the projection is a standard Morse bouquet as the cylinder projects to a point. Thus all homology and cohomology groups above can be identified with the singular homology and cohomology of M . Then the left hand side corresponds to the homology class `rx 1 s Y . . . Y rx k s ˘X rx ´s.

(3.7) Furthermore, as k " cuplengthpM q, we can choose generic Morse functions such that there are critical points x ˘and x 1 , . . . , x k such that this product is non-zero. In particular, this shows that the moduli space pr M Ă M 0 px 1 , . . . , x k , x ´, x `q is non empty and therefore, we also have Ă M 0 px 1 , . . . , x k , x ´; x `q ‰ H.

(3.8)

As the next step, we define cohomology operations depending on ρ P N by

θ ρ : CM ˚pf 1 q b . . . b CM ˚pf k q b CM ˚pf ˚q Ñ CM ˚pf ˚q x 1 b . . . b x k b x ´Þ Ñ ÿ x `PCritpf˚q # 2 Ă M ρ px 1 , . . . , x k , x ´; x `q ¨x`. (3.9)
As in [AH16, AM10], these operations are chain homotopy equivalent to θ 0 using the moduli spaces Ă Mr0, ρs to define the chain homotopy. In particular, this shows that for all n P N, there are generic Morse functions f i and f ˚, possibly depending on n, with critical points x i and x ˘such that Ă M n px 1 , . . . , x k , x ´; x `q ‰ H.

(3.10)

This implies that also

M n px 1 , . . . , x k , x ´; x `q ‰ H (3.11)
as otherwise also a small perturbation of M n px 1 , . . . , x k , x ´; x `q would be empty, too, and therefore the cohomology operations would vanish. We now run the C 8 loc compactness k times by centering ourselves at each lρ n for l " 1, . . . , k where pρ n , u n q is a sequence guaranteed by Proposition 3.2. This means that we choose u n P M n px 1 , . . . , x k , x ´; x `q and consider the sequences u n,l ps, tq " u n ps `nl, tq.

(3.12)

As in [START_REF] Albers | Cuplength estimates in Morse cohomology[END_REF][START_REF] Albers | Cup-length estimates for leaf-wise intersections[END_REF], these sequences converge to a broken Floer trajectory and we find k `1 critical points pγ i , γ i q such that A h f pγ i , γ i q ą A h f pγ i`1 , γ i`1 q.

We now claim that the inequalities are strict by generic choice of Morse functions. Indeed, if there were an equality, the corresponding Floer trajectory would have zero energy and thus be independent of the s-coordinate, i.e. equal to a Reeb orbit γ of α f . Then the coincidence condition in the definition of the moduli space M shows that we must have ℘ `γp0q ˘P W s px j , f j q and that arg γp0q " θ 0 in the trivialization over W s px j , f j q. This contradicts condition (A) in the construction of our trivializations and generic Morse functions.

Proofs of Corollaries

In this section, we finally prove the statements about Reeb dynamics implied by the Theorem. In detail, we first prove Corollary 1.3 by showing that the critical point of the Hamiltonian function action functional found above correspond to closed Reeb orbits. Then we consider the special case of starshaped hypersurfaces in R 2n . Here, known bounds for the lengths of closed Reeb orbits yield Corollary 1.5. We prove both corollaries for completeness, even though the key points of the proofs are known facts in contact dynamics. 4.1. Closed Reeb orbits. To prove Corollary 1.3, we need to show that the critical points of the action functional found above actually are closed Reeb orbits and that the action bounds given by the pinching condition excludes multiplicities in the absence of a short orbit.

For simplicity of notation, we denote our Hamiltonian function by h f px, rq :" h `r f pxq ˘and let V f the vector field on Σ defined by αpV f q " 0, df pRqα ´df " dαpV f , ¨q, (4.1)

where α is the standard contact form on Σ, i.e., V is contained in the contact distribution, where the second equation uniquely defines the vector field. Furthermore, we denote by Σ f the contact manifold defined by points of the form `x, f pxq ˘P E with the contact form α f " f α.

The first step towards the proof of the corollary is to compute the Hamiltonian vector field of h f and show that 1-periodic Hamiltonian function orbits correspond to closed Reeb orbits.

Lemma 4.1. The Hamiltonian vector field X h f of h f is given by

X h f px, rq " h 1 `r f pxq f pxq 2 ´f pxqRpxq ´Vf pxq `rdf pxqrRpxqsB r ¯. (4.2)
If γptq " `xptq, rptq ˘is a 1-periodic orbit of X h f then rptq " cf `xptq ˘for some constant c and we define the curves zptq :" x `t{h 1 pcq ˘and ζptq :" `zptq, f pzptqq ˘. With these definitions, ζ is a Reeb orbit of R f of period h 1 pcq, where R f is the Reeb vector field on Σ f defined by α f .

Proof. The formula for the Hamiltonian vector field is checked by computing dh f and plugging X h f into ω " dprαq. This definition uses the natural splitting of the tangent space into the radial component, the Reeb direction and the contact distribution. For the 1-form dh f , we have

dh f px, rqrv `aB r s " h 1 ˆr f pxq ˙ˆa f pxq ´r f pxq 2 df pxqrvs ˙,
where v is a tangent vector to Σ and a P R. With px, rq " v`aB r , we now compute i X h f ωpx, rq using the expression for the Hamiltonian vector field as stated.

dprαq `Xh f px, rq, px, rq ˘" pdr ^α `rdαq `Xh f px, rq, v `aB r "

h 1 `r f pxq f pxq 2 pdr ^α `rdαq ´f pxqRpxq ´Vf pxq ´rdf pxqrRpxqsB r , v `aB r q " h 1 `r f pxq f pxq 2 ´rdf pxqrRpxqsαpvq ´f pxqa ´rdαpV f pxq, vq p˚q " h 1 `r f pxq f pxq 2 ´rdf pxqrRpxqsαpvq ´f pxqa ´rdf pxqrRpxqsαpvq `rdf pxqrvs " h 1 `r f pxq f pxq 2 p´f pxqa `rdf pxqrvsq " ´dh f px, rqrv `aB r s,
where p˚q uses the second equation in (4.1). This shows that (4.1) indeed is the Hamiltonian vector field.

Since h f is autonomous, the fact that γ is a 1-periodic orbit of X h f implies that h f `γptq ˘is constant. Thus if γptq " `xptq, rptq ˘then rptq{f `xptq ˘is constant, since h is strictly increasing. Thus γptq " `xptq, cf pxptq ˘for some contant c. Set zptq :" x `t{h 1 pcq ˘and ζptq " `zptq, f pzptq ˘. Then ζptq P Σ f for all t and we claim that ζ is a closed Reeb orbit of R f . For this, we compute

9 zptq " 1 h 1 pcq 9 x `t{h 1 pcq ˘" 1 f `zptq ˘R`z ptq ˘´1 f `zptq ˘2 V f `zptq ˘(4.3)
from (4.2). Thus to complete the proof is suffices to show that, writing

R f `x, f pxq ˘" U pxq `df pxqrU pxqsB r , one has U pxq " 1 f pxq Rpxq ´1 f pxq 2 V f pxq. (4.4)
Note that the above form of R f is determined by the fact that Σ f can be written as a radial graph over Σ. It therefore suffices to determine U . Clearly with U given as in (4.4) one has α Σ pR Σ q " 1. Now

dα Σ pR Σ , ¨q " pdf ^α `f dαq ˆ1 f pxq Rpxq ´1 f pxq 2 V f pxq, ¨" 1 f df pRqα ´1 f df ´1 f 2 df pV f qα `1 f 2 αpV f qdf ´1 f dαpV f , ¨q " ´1 f 2 df pV f q " 0,
where we used both equations in (4.1) again. Furthermore, we used that df pV f q " 0 which can be seen by feeding V f to both sides of the second equation of (4.1).

To prove Corollary 1.3, we study now the Hamiltonian action functional. We denote by A h f : LpM q Ñ R the standard Hamiltonian function action functional Proof. Critical points of A h f are 1-periodic orbits of X h f and the action value follows immediately. The remaining parts of the claim have been proved in the previous lemma. Now Corollary 1.3 follows immediately from this. As the closed orbits we found are ordered by action, the last one cannot be a multiple of the first one by the pinching condition and the bound on the slope of the Hamiltonian function h. Thus, either there is a Reeb orbit such that two of the ones found by the Theorem are both covers of this short one, or the k `1 orbits found above are geometrically distinct and we have at least k `1 closed Reeb orbits. 4.2. Starshaped hypersurfaces in R 2n . In this last part, we study the particular case of R 2n , where we have concrete bounds for the length of Reeb orbits on starshaped hypersurfaces. Note that there is a change in notation in this section to match the "standard" notation used for this theorem in the literature. In particular, we do not need to use the language of the line bundle over the symplectic manifold M in this setting and for a given starshaped hypersurface, we do not use the defining function f any more.

A h f pγq :" ż S 1 γ ‹ prαq ´żS 1 h f `
Therefore, Σ will now denote the starshaped hypersurface of interest, which was denoted by Σ f above. Similarly, we now denote by α the usual contact form on Σ, which was α f before. In computations, we let α x denote the form at the point x P Σ. We reprove below the relation between the largest radius R 1 of a sphere contained in Σ and the action of closed Reeb orbits on Σ. Together with Corollary 1.3, this yields the desired Corollary 1.5. Lemma 4.3. Let γ : r0, T s Ñ Σ be a simple T -periodic Reeb orbit on Σ Ă R 2n such that the largest sphere contained in the domain bounded by Σ has radius R 1 . Assume moreover that for all x P Σ, we have T x Σ X B R 1 px 0 q " H. Then we have T ě πR 2 1 . Remark 4.4. The assumption that T x Σ X B R 1 px 0 q " H for all x P Σ can be reformulated as xν Σ pzq, zy ą R 1 , @z P Σ (4.6)

where ν Σ pzq is the exterior normal vector of Σ at point z and x¨, ¨y denotes the Euclidean scalar product on R 2n . This condition is weaker than convexity which is also a common condition in similar settings.

Proof. We follow a similar argument in [START_REF] Berestycki | Existence of multiple periodic orbits on starshaped Hamiltonian surfaces[END_REF]. Let γ : r0, T s Ñ Σ be a simple periodic Reeb orbit. We first compute a bound for T in terms of the Reeb vector field. The main ingredient is the special form of the contact form which is given as α x pX x q " 1 2 xX x , Jxy. where we use Wirtinger's inequality to get the second inequality.

For any point x in Σ, the norm of the Reeb vector field is bounded by }pR α q x } ď 2 R 1 . Indeed, we have ιpJν Σ qdαpY q " ωpJν Σ , Y q " ´xν Σ , Y y " 0 (4.8) for all Y P T Σ. Therefore, R α is proportional to Jν Σ and we have R α " cJν Σ with |c| " }R α }.

On the other hand, we also use the second defining equation for the Reeb vector field to get 1 " α x pR αx q " 1 2 xc x Jν Σ pxq, Jxy " c x 2 xν Σ pxq, xy (4.9)

and therefore, we find c x " 2 xν Σ pxq,xy ď 2 R 1 . This gives rise to an upper bound for the last line in (4.7). Namely, we have

T 2π ż T 0 }pR α q γptq } 2 dt ď 4 R 2 1 T T 2π (4.10)
and in total, we have shown that 2T ď 2T T πR 2 1 which implies the lemma.

Finally, using this lemma, we can prove Corollary 1.5 to obtain the theorem by Ekeland-Lasry as a cuplength estimate.

Proof of Corollary 1.5. We now view the 2n ´1 sphere as the boundary of the ball blownup at the origin. This point of view gives the sphere as a circle bundle in the tautological complex line bundle Op´1q over CP n´1 . Note that the Reeb dynamics is unaffected by this consideration. Theorem 1.1 gives us the existence of n periodic Reeb orbits on the sphere whose action is "pinched" πR 2 1 ă Apγ 1 q ă . . . ă Apγ n q ă πR 2 2 . The condition R 2 2 ă 2R 2 1 corresponds to the above condition that R 0 ă 2 and therefore, these n Reeb orbits cannot be iterates of one another. The lower bound on the period of closed Reeb orbits on Σ given by Lemma 4.3 above shows that they can also not be iterates of a short orbit. Thus we have n simple periodic Reeb orbit.

  Figure 1. The function h. The numbers at the graph indicate the slope at this point / section.

  The action functional A H : ΛE Ñ R is defined by

	A H prγ, γsq :"	ż	γ˚Ω ´ż 1	H `γptq ˘dt .	(2.14)
		D 2	0		
	An element rγ, γs is a critical point of A H if and only if	
	γ 1 ptq " X H `γptq ˘(2.15)

  γptq ˘dt Corollary 4.2. The critical points of A h f correspond to closed orbits of R Σ . Namely, if γptq is a critical point of A h f , then writing γptq " `xptq, rptq ˘, one has rptq " cf `xptq ˘for some constant c, and if zptq :" x `t{h 1 pcq ˘and ζptq :" `zptq, f pzptq ˘then ζ is a closed orbit of R Σ of period h 1 pcq. Moreover, A h f pγq " ch 1 pcq ´hpcq.

	(4.5)

We adjust the various bits of constant slope, R 0 ˘ , 1 ´ , so that the respective values of h at B, C, D are such that the requirements below are met. To sum this up, we construct hprq such that we get a shape as in Figure 1 with the following properties: