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1 Introduction

Symplectic capacities

Let pX, ωq and pX 1 , ω 1 q be symplectic manifolds of the same dimension, possibly noncompact or with boundary. A symplectic embedding of pX, ωq into pX 1 , ω 1 q is a smooth embedding ϕ : X Ñ X 1 such that ϕ ‹ ω 1 " ω. A basic problem in symplectic geometry is to determine for which pX, ωq and pX 1 , ω 1 q a symplectic embedding exists. This is already a highly nontrivial question when the symplectic manifolds in question are domains in R 2n " C n , with the restriction of the standard symplectic form. Some basic examples of interest are as follows: If a 1 , . . . , a n ą 0, define the ellipsoid Epa 1 , . . . , a n q "

# z P C n ˇˇˇn ÿ i"1 π|z i | 2 a i ď 1 + (1.1)
and the polydisk P pa 1 , . . . , a n q " " z P C n ˇˇˇπ |z i | 2 ď a i , @i " 1, . . . , n * .

(1.2) Also, define the ball Bpaq " Epa, . . . , aq. In the four-dimensional case (n " 2), one can compute when an ellipsoid can be symplectically embedded into an ellipsoid or polydisk, although the answers are complicated; see e.g. [START_REF] Mcduff | The embedding capacity of 4dimensional symplectic ellipsoids[END_REF][START_REF] Cristofaro-Gardiner | Symplectic embeddings of four-dimensional ellipsoids into integral polydisks[END_REF]. The question of when a four-dimensional polydisk can be symplectically embedded into a polydisk or an ellipsoid is only partially understood; for some of the latest results see [START_REF] Hutchings | Beyond ECH capacities[END_REF]. The analogous questions in higher dimensions are more complicated, and much less is understood; see e.g. [START_REF] Guth | Symplectic embeddings of polydisks[END_REF][START_REF] Hind | New obstructions to symplectic embeddings[END_REF].

In general, when studying symplectic embedding problems, one often obstructs the existence of symplectic embeddings using various kinds of symplectic capacities. Definitions of the latter term vary; in this paper we define a symplectic capacity to be a function c which assigns to each symplectic manifold pX, ωq, possibly in some restricted class, a number cpX, ωq P r0, 8s, satisfying the following axioms 1 : (Monotonicity) If pX, ωq and pX 1 , ω 1 q have the same dimension, and if there exists a symplectic embedding pX, ωq Ñ pX 1 , ω 1 q, then cpX, ωq ď cpX 1 , ω 1 q.

(Conformality) If r is a positive real number then cpX, rωq " rcpX, ωq.

For surveys about symplectic capacities, see e.g. [START_REF] Cieliebak | Quantitative symplectic geometry[END_REF][START_REF] Ostrover | When symplectic topology meets banach space geometry[END_REF]. One can easily define symplectic capacities in terms of symplectic embeddings to or from other symplectic manifolds. For example, the Gromov width c Gr pX, ωq is defined to be the supremum over a such that the ball Bpaq can be symplectically embedded into pX, ωq. This trivially satisfies the Monotonicity and Conformality axioms. A related example is the "cube capacity" studied in §1.3 below. However, 1 One can also consider normalized symplectic capacities, which satisfy the additional properties cpBp1qq " cpZp1qq " 1, where we define the cylinder Zpaq " P pa, 8, . . . , 8q. A strong version of a conjecture of Viterbo [START_REF] Viterbo | Metric and isoperimetric problems in symplectic geometry[END_REF] asserts that all normalized symplectic capacities agree on compact convex domains in R 2n . For example, the Gromov width c Gr is normalized; the Ekeland-Hofer capacity c EH k reviewed below is normalized when k " 1, but not normalized when n ą 1 and k ą 1 since then c EH k pBp1qq ă c EH k pZp1qq.

symplectic capacities defined like this are difficult to compute, since they are just encodings of nontrivial symplectic embedding questions.

Other symplectic capacities can be defined using Floer theory or related machinery, and these tend to be more computable. For example, the Ekeland-Hofer capacities [START_REF] Ekeland | Symplectic topology and Hamiltonian dynamics[END_REF] are a nondecreasing sequence of capacities c EH k , indexed by a positive integer k, which are defined for compact star-shaped domains2 in R 2n . The Ekeland-Hofer capacities are defined using calculus of variations for the symplectic action functional on the loop space of R 2n . Computations of these capacities are known in a few examples. To state these, if a 1 , . . . , a n ą 0, let pM k pa 1 , . . . , a n qq k"1,2,... denote the sequence of positive integer multiples of a 1 , . . . , a n , arranged in nondecreasing order with repetitions. We then have:

• [EH90, Prop. 4] The Ekeland-Hofer capacities of an ellipsoid are given by c EH k pEpa 1 , . . . , a n qq " M k pa 1 , . . . , a n q.

(1.3)

• [EH90, Prop. 5] The Ekeland-Hofer capacities of a polydisk are given by c EH k pP pa 1 , . . . , a n qq " k ¨minpa 1 , . . . , a n q.

(1.4)

• Generalizing (1.4), it is asserted in [CHLS07, Eq. (3.8)] that if X Ă R 2n and X 1 Ă R 2n 1 are compact star-shaped domains, then for the (symplectic) Cartesian product X ˆX1 Ă R 2pn`n 1 q , we have c EH k pX ˆX1 q " min i`j"k tc EH i pXq `cEH j pX 1 qu, (1.5)

where i and j are nonnegative integers and we interpret c EH 0 " 0. More recently, embedded contact homology was used to define the ECH capacities of symplectic four-manifolds [START_REF] Hutchings | Quantitative embedded contact homology[END_REF]. ECH capacities can be computed in many examples, such as four-dimensional "concave toric domains" [CCGF `14] and "convex toric domains" [START_REF] Cristofaro-Gardiner | Symplectic embeddings from concave toric domains into convex ones[END_REF][START_REF] Hutchings | Beyond ECH capacities[END_REF], defined in §1.2 below. ECH capacities give sharp obstructions to symplectically embedding a four-dimensional ellipsoid into an ellipsoid [START_REF] Mcduff | The Hofer conjecture on embedding symplectic ellipsoids[END_REF] or polydisk [START_REF] Hutchings | Recent progress on symplectic embedding problems in four dimensions[END_REF], or more generally a four-dimensional concave toric domain into a convex toric domain [START_REF] Cristofaro-Gardiner | Symplectic embeddings from concave toric domains into convex ones[END_REF]. In some other situations, such as for some cases of symplectically embedding a four-dimensional polydisk into an ellipsoid, the ECH capacities do not give sharp obstructions, and the Ekeland-Hofer capacities are better;3 see [ [START_REF] Hutchings | Quantitative embedded contact homology[END_REF]Rmk. 1.8]. The most significant weakness of ECH capacities is that they are only defined in four dimensions, and there is no known analogue of embedded contact homology in higher dimensions which might be used to define capacities.

In this paper we define a new sequence of symplectic capacities for domains in R 2n for any n. The idea is to imitate the definition of ECH capacities, but using positive S 1 -equivariant symplectic homology in place of embedded contact homology. The resulting capacities conjecturally agree with the Ekeland-Hofer capacities, but they satisfy certain axioms which allow them to be computed in many more examples.

To state the axioms, define a nice star-shaped domain in R 2n to be a compact 2n-dimensional submanifold X of R 2n " C n with smooth boundary Y , such that Y is transverse to the radial vector field ρ " 1 2

n ÿ i"1 ˆxi B Bx i `yi B By i ˙.
In this case, the 1-form

λ 0 " 1 2 n ÿ i"1
px i dy i ´yi dx i q (1.6) on C n restricts to a contact form on Y . If γ is a Reeb orbit of λ 0 | Y , define its symplectic action by Apγq " ż γ λ 0 P p0, 8q.

If we further assume that λ 0 | Y is nondegenerate, i.e. each Reeb orbit of λ 0 | Y is nondegenerate, then each Reeb orbit γ has a well-defined Conley-Zehnder4 index CZpγq P Z. In this situation, if k is a positive integer, define A ḱ " mintApγq| CZpγq " 2k `n ´1u P p0, 8q

(we will see in a moment why this is finite), and A k " suptApγq| CZpγq " 2k `n ´1u P p0, 8s.

In §4 we will define the new symplectic capacities c k for nice star-shaped domains in R 2n for each positive integer k.

Theorem 1.1. The capacities c k for nice star-shaped domains in R 2n satisfy the following axioms:

(Conformality) If X is a nice star-shaped domain in R 2n and r is a positive real number, then cprXq " r 2 cpXq.

(Increasing) c 1 pXq ď c 2 pXq ď ¨¨¨ă 8.

(Monotonicity) If X and X 1 are nice star-shaped domains in R 2n , and if there exists a symplectic embedding X Ñ X 1 , then c k pXq ď c k pX 1 q for all k.

(Reeb Orbits) If λ 0 | BX is nondegenerate, then c k pXq " Apγq for some Reeb orbit γ of λ 0 | BX with CZpγq " 2k `n ´1. In particular, A ḱ pXq ď c k pXq ď A k pXq.

(1.7)

Remark 1.2. The numbers c k are also discussed in [GG16, §3.2.1], with applications to multiplicity results for simple Reeb orbits.

Remark 1.3. We extend the capacities c k to functions of star-shaped domains which are not necessarily nice (such as polydisks) as follows: If X is a star-shaped domain in R 2n , then c k pXq " suptc k pX 1 qu where the supremum is over nice star-shaped domains X 1 in R 2n such that there exists a symplectic embedding X 1 Ñ X. It follows from Theorem 1.1 that this extended definition of c k continues to satisfy the first three axioms in Theorem 1.1, and agrees with the previous definition when X is a nice star-shaped domain.

Examples

One can compute the capacities c k for many examples of star-shaped domains in R 2n , using only the axioms in Theorem 1.1.

To describe an important family of examples, let R n ě0 denote the set of x P R n such that x i ě 0 for all i " 1, . . . , n. Define the moment map µ :

C n Ñ R n ě0 by µpz 1 , . . . , z n q " πp|z 1 | 2 , . . . , |z n | 2 q.
If Ω is a domain in R n ě0 , define the toric domain

X Ω " µ ´1pΩq Ă C n .
We will study some special toric domains defined as follows. Given Ω Ă R n ě0 , define p Ω " px 1 , . . . , x n q P R n ˇˇp|x 1 |, . . . , |x n |q P Ω ( .

Definition 1.4. A convex toric domain is a toric domain X Ω such that p Ω is a compact convex domain in R n . Example 1.5. If n " 2, then X Ω is a convex toric domain if and only if Ω " tpx 1 , x 2 q | 0 ď x 1 ď A, 0 ď x 2 ď gpx 1 qu (1.8)
where g : r0, As Ñ R ě0 is a nonincreasing concave function. Some symplectic embedding problems involving these four-dimensional domains were studied in [START_REF] Hutchings | Beyond ECH capacities[END_REF]. A more general notion of "convex toric domain" in four dimensions, where Ω is convex but p Ω is not required to be convex, is considered in [START_REF] Cristofaro-Gardiner | Symplectic embeddings from concave toric domains into convex ones[END_REF].

We now compute the capacities c k of a convex toric domain

X Ω in R 2n . If v P R n ě0
is a vector with all components nonnegative, define 5 }v} Ω " maxtxv, wy | w P Ωu (1.9)

where x¨, ¨y denotes the Euclidean inner product. Let N denote the set of nonnegative integers.

Theorem 1.6. Suppose that X Ω is a convex toric domain in R 2n . Then

c k pX Ω q " min # }v} Ω ˇˇˇv " pv 1 , . . . , v n q P N n , n ÿ i"1 v i " k + .
(1.10)

In fact, (1.10) holds for any function c k defined on nice star-shaped domains in R 2n and satisfying the axioms in Theorem 1.1, extended to general star-shaped domains as in Remark 1.3.

Example 1.7. The polydisk P pa 1 , . . . , a n q is a convex toric domain X Ω , where Ω is the rectangle

Ω " tx P R n ě0 | x i ď a i , @i " 1, . . . , nu. In this case }v} Ω " n ÿ i"1 a i v i .
It then follows from (1.10) that c k pP pa 1 , . . . , a n qq " k ¨minta 1 , . . . , a n u. 5 The reason for this notation is as follows. Let } ¨}Ω denote the norm on R n whose unit ball is p Ω. Then in equation (1.9), } ¨}Ω denotes the dual norm on pR n q ˚, where the latter is identified with R n using the Euclidean inner product.

Example 1.8. The ellipsoid Epa 1 , . . . , a n q is a convex toric domain X Ω , where Ω is the simplex

Ω " # x P R n ě0 ˇˇˇn ÿ i"1 x i a i ď 1 + .
In this case }v} Ω " max i"1,...,n

a i v i .
Then (1.10) gives c k pEpa 1 , . . . , a n qq " min

ř i v i "k max i"1,...,n a i v i .
It is a combinatorial exercise 6 to check that min

ř i v i "k max i"1,...,n a i v i " M k pa 1 , . . . , a n q.
(1.11)

We conclude that c k pEpa 1 , . . . , a n q " M k pa 1 , . . . , a n q.

(1.12)

Comparing the above two examples with equations (1.3) and (1.4) suggests that our capacities c k may agree with the Ekeland-Hofer capacities c EH k :

Conjecture 1.9. Let X be a compact star-shaped domain in R 2n . Then

c k pXq " c EH k pXq
for every positive integer k.

Remark 1.10. More evidence for this conjecture: Theorem 1.6 implies that our capacities c k satisfy the Cartesian product property (1.5) in the special case when X and X 1 are convex toric domains. We do not know whether the capacities c k satisfy this property in general.

We can also compute the capacities c k of another family of examples:

Definition 1.11. A concave toric domain is a toric domain X Ω where Ω is compact and R n ě0 zΩ is convex.

6 To do the exercise, by a continuity argument we may assume that a i {a j is irrational when i ‰ j, so that the positive integer multiples of the numbers a i are distinct. If v P N n and ř i v i " k, then the k numbers ma i where 1 ď i ď n and 1 ď m ď v i are distinct, which implies that the left hand side of (1.11) is greater than or equal to the right hand side. To prove the reverse inequality, if L " M k pa 1 , . . . , a n q, then the numbers v i " tL{a i u satisfy ř i v i " k and max i"1,...,n a i v i " L.

Example 1.12. If n " 2, then X Ω is a concave toric domain if and only if Ω is given by (1.8) where g : r0, As Ñ R ě0 is a convex function with gpAq " 0. Some symplectic embedding problems involving these four-dimensional domains were studied in [CCGF `14].

Remark 1.13. A domain in X Ă R 2n is both a convex toric domain and a concave toric domain if and only if X is an ellipsoid (1.1).

Suppose that X Ω is a concave toric domain. Let Σ denote the closure of the set BΩ X R n ą0 . Similarly to (1.9), if v P R n ě0 , define7 

rvs Ω " min xv, wy ˇˇw P Σ ( .

(1.13)

Theorem 1.14. If X Ω is a concave toric domain in R 2n , then c k pX Ω q " max # rvs Ω ˇˇˇv P N n ą0 , ÿ i v i " k `n ´1+ . (1.14)
In fact, (1.14) holds for any function c k defined on nice star-shaped domains in R 2n and satisfying the axioms in Theorem 1.1, extended to general star-shaped domains as in Remark 1.3.

Note that in (1.14), all components of v are required to be positive, while in (1.10), we only required that all components of v be nonnegative.

Example 1.15. Let us check that (1. 14) gives the correct answer when X Ω is an ellipsoid Epa 1 , . . . , a n q. Similarly to Example 1.8, we have

rvs Ω " min i"1,...,n a i v i .
Thus, we need to check that max

ř i v i "k`n´1 min i"1,...,n a i v i " M k pa 1 , . . . , a n q (1.15)
where, unlike Example 1.8, now all components of v must be positive integers. This can be proved similarly to (1.11).

A quick application of Theorem 1.14, pointed out by Schlenk [Sch17,Cor. 11.5], is to compute the Gromov width of any concave toric domain8 :

Corollary 1.16. If X Ω is a concave toric domain in R 2n , then c Gr pX Ω q " maxta | Bpaq Ă X Ω u.
Proof. Let a max denote the largest real number a such that Bpaq Ă X Ω . By the definition of the Gromov width c Gr , we have c Gr pX Ω q ě a max . To prove the reverse inequality c Gr pX Ω q ď a max , suppose that there exists a symplectic embedding Bpaq Ñ X Ω ; we need to show that a ď a max . By equation (1.12), the monotonicity property of c 1 , and Theorem 1.14, we have

a " c 1 pBpaqq ď c 1 pX Ω q " rp1, . . . , 1qs Ω " min # n ÿ i"1 w i ˇˇˇw P Σ + " a max .

Application to cube capacities

We now use the above results to solve some symplectic embedding problems where the domain is a cube.

Given δ ą 0, define the cube l n pδq " P pδ, . . . , δq Ă C n .

Equivalently,

l n pδq "

" z P C n ˇˇˇm ax i"1,...,n π|z i | 2 ( ď δ * .
Definition 1.17. Given a 2n-dimensional symplectic manifold pX, ωq, define the cube capacity c l pX, ωq " sup tδ ą 0 | there exists a symplectic embedding l n pδq ÝÑ pX, ωqu .

It is immediate from the definition that c l is a symplectic capacity.

Theorem 1.18. Let X Ω Ă C n be a convex toric domain or a concave toric domain. Then c l pX Ω q " maxtδ | pδ, . . . , δq P Ωu.

That is, c l pX Ω q is the largest δ such that l n pδq is a subset of X Ω ; one cannot do better than this obvious symplectic embedding by inclusion.

Since the proof of Theorem 1.18 is short, we will give it now. We need to consider the non-disjoint union of n symplectic cylinders,

L n pδq " " z P C n ˇˇˇm in i"1,...,n π|z i | 2 ( ď δ * .
Lemma 1.19. c k pL n pδqq " δpk `n ´1q.

Proof. Observe that L n pδq " X Ω δ where Ω δ "

" x P R n ě0 ˇˇˇm in i"1,...,n x i ď δ * .
As such, Ω δ is the union of a nested sequence of concave toric domains. By an exhaustion argument, the statement of Theorem 1.14 is valid for X Ω δ . Similarly to Example 1.7, we have

rvs Ω δ " δ n ÿ i"1 v i .
The lemma then follows from equation (1.14).

Proposition 1.20. c l pL n pδqq " δ.

Proof. We have l n pδq Ă L n pδq, so by the definition of c l , it follows that c l pL n pδqq ě δ.

To prove the reverse inequality c l pL n pδqq ď δ, suppose that there exists a symplectic embedding l n pδ 1 q Ñ L n pδq; we need to show that δ 1 ď δ. By the Monotonicity property of the capacities c k , we know that c k pl n pδ 1 qq ď c k pL n pδqq for each positive integer k. By Example 1.7 and Lemma 1.19, this means that kδ 1 ď δpk `n ´1q.

Since this holds for arbitrarily large k, it follows that δ 1 ď δ as desired.

Proof of Theorem 1.18. Let δ ą 0 be the largest real number such that pδ, . . . , δq P Ω. It follows from the definitions of convex and concave toric domain that

l n pδq Ă X Ω Ă L n pδq.
The first inclusion implies that δ ď c l pX Ω q by the definition of c l , while the second inclusion implies that c l pX Ω q ď δ by Proposition 1.20. Thus c l pX Ω q " δ.

Remark 1.21. The proof of Theorem 1.18 shows more generally that any starshaped domain X Ă C n such that

l n pδq Ă X Ă L n pδq (1.16)
satisfies c l pXq " δ.

Remark 1.22. The proof of Theorem 1.18 also shows that if X Ă C n is a starshaped domain satisfying (1.16), then

lim kÑ8 c k pXq k " c l pXq.
(1.17) This is related to the following question of Cieliebak-Mohnke [START_REF] Cieliebak | Punctured holomorphic curves and lagrangian embeddings[END_REF]. Given a domain X Ă R 2n , define the Lagrangian capacity c L pXq to be the supremum over A such that there exists an embedded Lagrangian torus T Ă X such that the symplectic area of every map pD 2 , BD 2 q Ñ pX, T q is an integer multiple of

A. It is asked in [CM14] whether if X Ă R 2n is a convex domain then lim kÑ8 c EH k pXq k " c L pXq. (1.18)
It is confirmed by [CM14, Cor. 1.3] that (1.18) holds when X is a ball.

Observe that if X is any domain in C n , then the Lagrangian capacity is related to the cube capacity by c l pXq ď c L pXq, because if l n pδq symplectically embeds into X, then the restriction of this embedding maps the "corner" µ ´1pδ, . . . , δq Ă l n pδq to a Lagrangian torus T in X such that the symplectic area of every disk with boundary on T is an integer multiple of δ. Thus the asymptotic result (1.17) implies that if X Ă C n is a domain satisfying (1.16), then

lim kÑ8 c k pXq k ď c L pXq.
Assuming Conjecture 1.9, this proves one inequality in (1.18) for these examples.

Liouville domains

Recall that a Liouville domain is a pair pX, λq where X is a compact manifold with boundary, λ is a 1-form on X such that dλ is symplectic, and λ restricts to a contact form on BX, compatibly with the boundary orientation. For example, if X is a nice star-shaped domain in R 2n , then pX, λ 0 | X q is a Liouville domain.

In §4 we extend the symplectic capacities c k for nice star-shaped domains to functions of Liouville domains. These are not quite capacities, because the Monotonicity property only holds under some restrictions: Definition 1.23. Let pX, λq and pX 1 , λ 1 q be Liouville domains of the same dimension. A generalized Liouville embedding pX, λq Ñ pX 1 , λ 1 q is a symplectic embedding ϕ : pX, dλq Ñ pX 1 , dλ 1 q such that

" pϕ ‹ λ 1 ´λq ˇˇBX ‰ " 0 P H 1 pBX; Rq.
Of course, if H 1 pBX; Rq " 0, for example if X is a nice star-shaped domain in R 2n , then every symplectic embedding is a generalized Liouville embedding.

Theorem 1.24. The functions c k of Liouville domains satisfy the following axioms:

(Conformality) If pX, λq is a Liouville domain and r is a positive real number, then cpX, rλq " rcpX, λq.

(Increasing) c 1 pX, λq ď c 2 pX, λq ď ¨¨¨ď 8.

(Restricted Monotonicity) If there exists a generalized Liouville embedding pX, λq Ñ pX 1 , λ 1 q, then c k pX, λq ď c k pX 1 , λ 1 q.

(Contractible Reeb Orbits) If c k pX, λq ă 8, then c k pX, λq " Apγq for some Reeb orbit γ of λ| BX which is contractible9 in X.

Remark 1.25. Monotonicity does not extend from generalized Liouville embeddings to arbitrary symplectic embeddings: in some cases there exists a symplectic embedding pX, dλq Ñ pX 1 , dλ 1 q even though c k pX, λq ą c k pX 1 , λ 1 q. For example, suppose that T Ă X 1 is a Lagrangian torus. Let λ T denote the standard Liouville form on the cotangent bundle T ˚T . By the Weinstein Lagrangian tubular neighborhood theorem, there is a symplectic embedding pX, dλq Ñ pX 1 , dλ 1 q, where X Ă T ˚T is the unit disk bundle for some flat metric on T , and λ " λ T | X . Then pX, λq is a Liouville domain. But λ| BX has no Reeb orbits which are contractible in X, so by the Contractible Reeb Orbits axiom, c k pX, λq " 8 for all k.

Note that the symplectic embedding pX, dλq Ñ pX 1 , dλ 1 q is a generalized Liouville embedding if and only if T is an exact Lagrangian torus in pX 1 , λ 1 q, that is λ 1 | T is exact. The Restricted Monotonicity axiom then tells us that if pX 1 , λ 1 q is a Liouville domain with c 1 pX 1 , λ 1 q ă 8, then pX 1 , λ 1 q does not contain any exact Lagrangian torus.

Remark 1.26. The functions c k are defined for disconnected Liouville domains. However, it follows from the definition in §4 that

c k ˜m ž i"1 pX i , λ i q ¸" max i"1,...,m c k pX i , λ i q.
As a result, Restricted Monotonicity for embeddings of disconnected Liouville domains does not tell us anything more than it already does for their connected components.

Remark 1.27. One can ask whether, by analogy with ECH capacities [Hut11a, Prop. 1.5], the existence of a generalized Liouville embedding

š m i"1 pX i , λ i q Ñ pX 1 , λ 1 q implies that m ÿ i"1 c k i pX i , λ i q ď c k 1 `¨¨¨`km pX 1 , λ 1 q (1.19)
for all positive integers k 1 , ¨¨¨, k m . We have heuristic reasons to expect this when the k i are all multiples of n ´1. However it is false more generally. For example, in 2n dimensions, the Traynor trick [START_REF] Traynor | Symplectic packing constructions[END_REF] can be used to symplectically embed the disjoint union of n 2 copies of the ball Bp1{2 ´εq into the ball Bp1q, for any ε ą 0. If (1.19) is true with all k i " 1, then by (1.12) we obtain

n 2 p1{2 ´εq ď n.
But this is false when n ą 2 and ε ą 0 is small enough.

Acknowledgments. The first author thanks Mike Usher and Daniel Krashen for helpful discussions. The second author thanks Felix Schlenk for helpful discussions.

The rest of the paper. In §2 we prove Theorems 1.6 and 1.14, computing the capacities c k for convex and concave toric domains, using only the axioms in Theorem 1.1. In §3 we state the properties of positive S 1 -equivariant symplectic homology and transfer morphisms that are needed to define the capacities c k . In §4 we define the capacities c k and prove that they satisfy the axioms in Theorems 1.1 and 1.24. In §5 we review the definition of positive S 1 -equivariant symplectic homology. In §6, we prove the properties of positive S 1 -equivariant SH that are stated in §3. In §7 we review the construction of transfer morphisms on positive S 1 -equivariant SH.

Finally, in §8 we prove the properties of transfer morphisms that are stated in §3.

Computations of the capacities c k

We now prove Theorems 1.6 and 1.14, computing the capacities c k for convex and concave toric domains, using only the axioms in Theorem 1.1.

Computation for an ellipsoid

To prepare for the proofs of Theorems 1.6 and 1.14, we first compute the capacities c k for an ellipsoid (without using either of these theorems as in Example 1.8 or 1.15).

Lemma 2.1. The capacities c k of an ellipsoid are given by c k pEpa 1 , . . . , a n qq " M k pa 1 , . . . , a n q.

(2.1)

Proof. By a continuity argument using the Monotonicity and Conformality axioms, cf. [CCGF `14, §2.2], to prove (2.1) we may assume that a i {a j is irrational when i ‰ j. In this case we can compute the capacities c k of the ellipsoid using the Reeb Orbits axiom in Theorem 1.1. For this purpose, we now review how to compute the Reeb orbits on the boundary of the ellipsoid, their actions, and their Conley-Zehnder indices.

The Reeb vector field on the boundary of the ellipsoid Epa 1 , . . . , a n q is given by

R " 2π n ÿ i"1 1 a i B Bθ i (2.2)
where θ i denotes the angular polar coordinate on the i th summand in C n . Since a i {a j is irrational when i ‰ j, it follows from (2.2) that there are exactly n simple Reeb orbits γ 1 , . . . , γ n , where γ i denotes the circle where z j " 0 for j ‰ i. We will also see below that λ 0 | BEpa 1 ,...,anq is nondegenerate. It follows from (2.2) that the actions of the simple Reeb orbits are given by Apγ i q " a i . If m is a positive integer, let γ m i denote the m th iterate of γ i ; then this orbit has symplectic action Apγ m i q " ma i .

(2.3) Let S denote the set of all such symplectic actions, i.e. the set of real numbers ma i where m is a positive integer and i P t1, . . . , nu. These are all distinct, by our assumption that a i {a j is irrational when i ‰ j.

We now compute the Conley-Zehnder indices of the Reeb orbits γ m i . Assume for the moment that n ą 1. Recall that the Conley-Zehnder index of a contractible nondegenerate Reeb orbit γ in a contact manifold pY, λq with c 1 pξq| π 2 pY q " 0 can be computed by the formula CZpγq " CZ τ pγq `2c 1 pγ, τ q.

(2.4)

Here τ is any (homotopy class of) symplectic trivialization of the restriction of the contact structure ξ " Kerpλq to γ; CZ τ pγq denotes the Conley-Zehnder index of the path of symplectic matrices obtained by the linearized Reeb flow along γ with respect to the trivialization τ ; and c 1 pγ, τ q denotes the relative first Chern class with respect to τ of the pullback of ξ to a disk u bounded by γ, see [Hut14, §3.2].

In the present case where Y " BEpa 1 , . . . , a n q, the contact structure ξ on γ m i is the sum of all of the C summands in T C n " C n except for the i th summand. Let us use this identification to define the trivialization τ . By (2.2), the linearized Reeb flow around γ m i is the direct sum of rotation by angle 2πma i {a j in the j th summand for each j ‰ i. It follows that

CZ τ pγ m i q " ÿ j‰i ˆ2 Z ma i a j ^`1 ˙.
On the other hand, c 1 pγ m i , τ q " m, (2.5) essentially because the Hopf fibration over S 2 has Euler number 1. Putting this all together, we obtain

CZpγ m i q " 2m `ÿ j‰i ˆ2 Z ma i a j ^`1 " n ´1 `2 n ÿ j"1 Z ma i a j ^.

Thus

CZpγ m i q " n ´1 `2 |tL P S | L ď ma i u| .

(2.6)

It follows from (2.3) and (2.6) that CZpγ m i q " n ´1 `2k ðñ Apγ m i q " M k pa 1 , . . . , a n q.

(2.7)

Note that this also holds when n " 1, by our convention in §1.1.

In conclusion, it follows from (2.7) that for each positive integer k we have

A ḱ pEpa 1 , . . . , a n qq " M k pa 1 , . . . , a n q " A k pEpa 1 , . . . , a n qq.
The lemma now follows from the Reeb Orbits axiom (1.7).

Remark 2.2. A useful equivalent version of (2.1) is

c k pEpa 1 , . . . , a n qq " min # L ˇˇˇn ÿ i"1 Z L a i ^ě k + .
(2.8)

Remark 2.3. Lemma 2.1, in the form (2.8), extends to the case where some of the numbers a i are infinite, by an exhaustion argument.

Computation for convex toric domains

We now prove Theorem 1.6. We first prove that the left hand side of (1.10) is less than or equal to the right hand side:

Lemma 2.4. If X Ω is a convex toric domain in R 2n then c k pX Ω q ď min # }v} Ω ˇˇˇv " pv 1 , . . . , v n q P N n , n ÿ i"1 v i " k + . Proof. Let v " pv 1 , . . . , v n q P N n with n ÿ i"1 v i " k;
(2.9)

we need to show that c k pX Ω q ď }v} Ω. Write L " }v} Ω. By the definition (1.9) of } ¨}Ω , we have L " xv, wy, where w P Ω such that xv, wy is maximal. Define

Ω 1 " x P R n ě0 ˇˇxv, xy ď L ( . (2.10) 
Then by maximality of xv, wy we have Ω Ă Ω 1 . By the Monotonicity axiom for the capacity c k , it follows that c k pX Ω q ď c k pX Ω 1 q.

Thus it suffices to show that c k pX Ω 1 q ď L.

To do so, suppose first that v i ą 0 for all i " 1, . . . , n. Then X Ω 1 is an ellipsoid,

X Ω 1 " E ˆL v 1 , . . . , L v n ˙.
By equation (2.8), we have

c k pX Ω 1 q " min # L 1 ˇˇˇn ÿ i"1 Z L 1 L{v i ^ě k + . (2.11)
Since the v i are integers, by equation (2.9) we have

L 1 " L ùñ n ÿ i"1 Z L 1 L{v i ^" k.
It follows from this and (2.11) that c k pX Ω 1 q ď L as desired (in fact this is an equality).

The above calculation extends to the case where some of the components v i are zero by Remark 2.3.

We now use a different argument to prove the reverse inequality which completes the proof of Theorem 1.6:

Lemma 2.5. If X Ω is a convex toric domain in R 2n then c k pX Ω q ě min # }v} Ω ˇˇˇv " pv 1 , . . . , v n q P N n , n ÿ i"1 v i " k + .
(2.12)

Proof. If n " 1, then the result follows immediately from Lemma 2.1; thus we may assume that n ą 1.

To start, we perturb Ω to have some additional properties that will be useful. It follows from the Conformality and Monotonicity axioms that the left hand side of (2.12) is continuous with respect to the Hausdorff metric on compact sets Ω, as in [CCGF `14, Lem. 2.3]. The right hand side is also continuous with respect to the Hausdorff metric as in [CCGF `14, Lem. 2.4]. As a result, we may assume the following, where Σ denotes the closure of the set BΩ X R n ą0 : (i) Σ is a smooth hypersurface in R n .

(ii) The Gauss map G : Σ Ñ S n´1 is a smooth embedding, and BX Ω is a smooth hypersurface in R 2n . In particular, X Ω is a nice star-shaped domain.

(iii) If w P Σ and if w i " 0 for some i, then the i th component of Gpwq is positive and small with respect to k.

We now prove (2.12) in four steps.

Step 1. We first compute the Reeb vector field on BX Ω " µ ´1pΣq.

Let w P Σ and let z P µ ´1pwq. Also, write Gpwq " pν 1 , . . . , ν n q. Observe that

ÿ i ν i w i " }Gpwq} Ω.
We now define local coordinates on a neighborhood of z in C n as follows. For i " 1, . . . , n, let C i denote the i th summand in C n . If z i " 0, then we use the standard coordinates x i and y i on C i . If z i ‰ 0, then on C i we use local coordinates µ i and θ i , where µ i " πpx 2 i `y2 i q, and θ i is the angular polar coordinate. In these coordinates, the standard Liouville form (1.6) is given by

λ 0 " 1 2 ÿ w i "0 px i dy i ´yi dx i q `1 2π ÿ w i ‰0 µ i dθ i .
Also, the tangent space to BX Ω at z is described by

T z BX Ω " à w i "0 C i ' # ÿ w i ‰0 ˆai B Bµ i `bi B Bθ i ˙ˇˇˇÿ w i ‰0 ν i a i " 0 + .
It follows from the above three equations that the Reeb vector field at z is given by

R " 2π }Gpwq} Ω ÿ w i ‰0 ν i B Bθ i . (2.13)
For future reference, we also note that the contact structure ξ at z is given by

ξ z " à w i "0 C i ' # ÿ w i ‰0 ˆai B Bµ i `bi B Bθ i ˙ˇˇˇÿ w i ‰0 ν i a i " 0, ÿ w i ‰0 w i b i " 0 + . (2.14)
Step 2. We now compute the Reeb orbits and their basic properties.

It is convenient here to define a (discontinuous) modification r G : Σ Ñ R n of the Gauss map G by setting a component of the output to zero whenever the corresponding component of the input is zero. That is, for i " 1, . . . , n we define

r Gpwq i " " Gpwq i , w i ‰ 0, 0, w i " 0. (2.15)
Continuing the discussion from Step 1, observe from (2.13) that the Reeb vector field R is tangent to µ ´1pwq. Let Zpwq denote the number of components of w that are equal to zero; then µ ´1pwq is a torus of dimension n ´Zpwq. It follows from (2.13) that if r

Gpwq is a scalar multiple of an integer vector, then µ ´1pwq is foliated by an pn ´Zpwq ´1q-dimensional Morse-Bott family of Reeb orbits; otherwise µ ´1pwq contains no Reeb orbits.

Let V denote the set of nonnegative integer vectors v such that v is a scalar multiple of an element ṽ of the image of the modified Gauss map r G. Given v P V , let dpvq denote the greatest common divisor of the components of v. Let Ppvq denote the set of dpvq-fold covers of simple Reeb orbits in the torus µ ´1 ´r G ´1 pṽq ¯.

Then it follows from the above discussion that the set of Reeb orbits on BX Ω equals \ vPV Ppvq. Moreover, condition (iii) above implies that v P V whenever ř i v i ď k. Equation (2.13) implies that each Reeb orbit γ P Ppvq has symplectic action Apγq " }v} Ω.

Also, we can define a trivialization τ of ξ| γ from (2.14), identifying ξ z for each z P γ with a codimension two subspace of R 2n with coordinates x i , y i for each i with w i " 0, and coordinates a i , b i for each i with w i ‰ 0. Then, similarly to (2.5), we have

c 1 pγ, τ q " n ÿ i"1 v i .
(2.16)

Step 3. We now approximate the convex toric domain X Ω by a nice star-shaped domain X 1 such that λ 0 | BX 1 is nondegenerate.

Given v P V with dpvq " 1, one can perturb BX Ω in a neighborhood of the n Źpvq dimensional torus swept out by the Reeb orbits in Ppvq, using a Morse function f on the n ´Zpvq ´1 dimensional torus Ppvq, to resolve the Morse-Bott family Ppvq into a finite set of nondegenerate Reeb orbits corresponding to the critical points of f (possibly together with some additional Reeb orbits of much larger symplectic action). Owing to the strict convexity of Σ, each such nondegenerate Reeb orbit γ will have Conley-Zehnder index with respect to the above trivialization τ in the range Zpvq ď CZ τ pγq ď n ´1.

(2.17)

It then follows from (2.16) that

Zpvq `2 n ÿ i"1 v i ď CZpγq ď n ´1 `2 n ÿ i"1 v i .
(2.18)

In particular,

CZpγq " 2k `n ´1 ùñ k ď n ÿ i"1 v i ď k `n ´1 ´Zpvq 2 . (2.19)
Moreover, even if we drop the assumption that dpvq " 1, then after perturbing the orbits in Ppv{dpvqq as above, the family Ppvq will still be replaced by nondegenerate orbits each satisfying (2.18) (possibly together with additional Reeb orbits of much larger symplectic action), as long as dpvq is not too large with respect to the perturbation. Now choose ε ą 0 small and choose

R ą max # }v} Ω ˇˇˇv P N n , ÿ i v i ď k `n ´1 2 + .
We can then perturb X Ω to a nice star-shaped domain X 1 with λ 0 | BX 1 nondegenerate such that for each v P V with }v} Ω ă R, the Morse-Bott family Ppvq is perturbed as above; each nondegenerate orbit γ arising from each such Ppvq has symplectic action satisfying Apγq ě }v} Ω ´ε;

(2.20) and there are no other Reeb orbits of symplectic action less than R.

Step 4. We now put together the above inequalities to complete the proof. It follows from (2.19) and (2.20) that

A ḱ pX 1 q ě min # }v} Ω ´ε ˇˇˇv P N n , k ď n ÿ i"1 v i ď k `n ´1 ´Zpvq 2 + .
Thus by the Reeb Orbits axiom (1.7), we have

c k pX 1 q ě min # }v} Ω ´ε ˇˇˇv P N n , k ď n ÿ i"1 v i ď k `n ´1 ´Zpvq 2 + .
Taking ε Ñ 0 and a sequence of perturbations X 1 converging in C 0 to X Ω , and using Conformality and Monotonicity as at the beginning of the proof of this lemma, we obtain

c k pX Ω q ě min # }v} Ω ˇˇˇv P N n , k ď n ÿ i"1 v i ď k `n ´1 ´Zpvq 2 + .
In fact, in the above minimum, we can restrict attention to v with

ř i v i " k, because if ř i v i ą k
, then we can decrease some components of v to obtain a new vector v 1 P N n with ř i v 1 i " k, and by equation (1.9) we will have }v 1 } Ω ď }v} Ω. This completes the proof of (2.12).

Computation for concave toric domains

We now prove Theorem 1.14. The proof is very similar to the above proof of Theorem 1.6, but with the direction of some inequalities switched, and other slight changes.

Lemma 2.6. If X Ω is a concave toric domain in R 2n , then

c k pX Ω q ě max # rvs Ω ˇˇˇv P N n ą0 , ÿ i v i " k `n ´1+ . Proof. Let v P N n ą0 with ÿ i v i " k `n ´1; (2.21)
we need to show that c k pX Ω q ě rvs Ω . Write L " rvs Ω . By the definition (1.13), we have L " xv, wy, where w P Σ is such that xv, wy is minimal. If we define Ω 1 as in (2.10), then by minimality of xv, wy we have Ω 1 Ă Ω. By monotonicity of the capacity c k , we then have

c k pX Ω 1 q ď c k pX Ω q.
So it suffices to show that c k pX Ω 1 q ě L. We again have equation (2.11), namely

c k pX Ω 1 q " min # L 1 ˇˇˇn ÿ i"1 Z L 1 L{v i ^ě k + .
Since the v i are integers, by equation (2.21) we have

L 1 ă L ùñ n ÿ i"1 Z L 1 L{v i ^ď k ´1.
It follows that c k pX Ω 1 q ě L as desired (in fact this is an equality).

Lemma 2.7. If X Ω is a concave toric domain in R 2n , then

c k pX Ω q ď max # rvs Ω ˇˇˇv P N n ą0 , ÿ i v i " k `n ´1+ . (2.22)
Proof. As in the proof of Lemma 2.5, we may assume that n ą 1 and that:

(i) Σ is a smooth hypersurface in R n .
(ii) The Gauss map G : Σ Ñ S n´1 is a smooth embedding, and BX Ω is a smooth hypersurface in R 2n , so that X Ω is a nice star-shaped domain.

(iii) If w P Σ and w i " 0 for some i, then Gpwq is close (with respect to k) to the set of ν P S n´1 such that ν j " 0 whenever w j ‰ 0.

Similarly to (2.13), the Reeb vector field again preserves each torus µ ´1pwq, on which now

R " 2π rGpwqs Ω ÿ w i ‰0 ν i B Bθ i (2.23)
where Gpwq " pν 1 , . . . , ν n q. Continuing to define the modified Gauss map r G by equation (2.15), and defining V and Ppvq as before, it follows that the set of Reeb orbits on BX Ω is again given by \ vPV Ppvq. Condition (iii) above implies that v P V whenever ř i v i is not too large, and equation (2.23) implies that each Reeb orbit in Ppvq has action rvs Ω .

As in Step 3 of the proof of Lemma 2.5, we can perturb the concave toric domain X Ω to a nice star-shaped domain X 1 such that the contact form λ 0 | X 1 is nondegenerate; up to large symplectic action, the Reeb orbits come from the tori Ppvq where ř i v i is not too large; and a Reeb orbit γ coming from Ppvq has action

Apγq ď rvs Ω `ε (2.24)
where ε ą 0 can be chosen arbitrarily small. If any component of v is zero, then the Conley-Zehnder index of γ will be very large, by condition (iii) above. Otherwise, to compute the Conley-Zehnder index of γ, we use a homotopy class τ of trivialization of ξ γ defined as in the proof of Lemma 2.5. Equation (2.16) still holds, while the inequalities (2.17) are replaced by 0 ď ´CZ τ pγq ď n ´1.

(Here the sign of CZ τ pγq is switched because Σ is concave instead of convex.) Thus we obtain

1 ´n `2 n ÿ i"1 v i ď CZpγq ď 2 n ÿ i"1 v i .
In particular, we obtain

CZpγq " 2k `n ´1 ùñ k `n ´1 2 ď n ÿ i"1 v i ď k `n ´1. (2.25)
It follows from (2.24) and (2.25) that

A k pX 1 q ď max # rvs Ω `ε ˇˇˇv P N n ą0 , k `n ´1 2 ď n ÿ i"1 v i ď k `n ´1+ .
As in Step 4 of the proof of Lemma 2.5, we deduce that

c k pX Ω q ď max # rvs Ω ˇˇˇv P N n ą0 , k `n ´1 2 ď n ÿ i"1 v i ď k `n ´1+
In the above maximum, we can restrict attention to v with ř i v i " k `n ´1, since increasing some components of v will not decrease rvs Ω . This completes the proof of (2.22).

Input from positive S 1 -equivariant symplectic homology

We now state the properties of positive S 1 -equivariant symplectic homology, and transfer morphisms defined on it, that are needed to define the capacities c k and establish their basic properties. These properties are stated in Propositions 3.1 and 3.3 below, which are proved in §6 and §8 respectively. We say that a Liouville domain pX, λq is nondegenerate if the contact form λ| BX is nondegenerate. In this case we can define the positive S 1 -equivariant symplectic homology SH S 1 ,`p X, λq, see §5.4. This is a Q-module10 . To simplify notation, we often denote SH S 1 ,`p X, λq by CHpX, λq below11 . Proposition 3.1. The positive S 1 -equivariant symplectic homology CHpX, λq has the following properties:

(Free homotopy classes) CHpX, λq has a direct sum decomposition

CHpX, λq " à Γ CHpX, λ, Γq
where Γ ranges over free homotopy classes of loops in X. We let CHpX, λ, 0q denote the summand corresponding to contractible loops in X.

(Action filtration) For each L P R, there is a Q-module CH L pX, λ, Γq which is an invariant of pX, λ, Γq. If L 1 ă L 2 , then there is a well-defined map

ı L 2 ,L 1 : CH L 1 pX, λ, Γq ÝÑ CH L 2 pX, λ, Γq. (3.1)
These maps form a directed system, and we have the direct limit

lim LÑ8 CH L pX, λ, Γq " CHpX, λ, Γq.
We denote the resulting map CH L pX, λ, Γq Ñ CHpX, λ, Γq by ı L . We write CH L pX, λq " À Γ CH L pX, λ, Γq.

(U map) There is a distinguished map U : CHpX, λ, Γq ÝÑ CHpX, λ, Γq, which respects the action filtration in the following sense: For each L P R there is a map which commute with all of the above maps.

U L : CH L pX, λ, Γq ÝÑ CH L pX, λ, Γq. If L 1 ă L 2 then U L 2 ˝ıL 2 ,L 1 " ı L 2 ,L 1 ˝UL 1 . The map U is the direct limit of the maps U L , i.e. ı L ˝UL " U ˝ıL . (3.2) (Reeb Orbits) If L 1 ă L 2 ,
(Star-Shaped Domains) If X is a nice star-shaped domain in R 2n and λ 0 is the restriction of the standard Liouville form (1.6), then:

(i) CHpX, λ 0 q and CH L pX, λ 0 q have canonical Z gradings. With respect to this grading, we have

CH ˚pX, λ 0 q » " Q, if ˚P n `1 `2N, 0, otherwise. (3.3) (ii)
The map δ sends a generator of CH n´1`2k pX, λ 0 q to a generator of H 2n pX, BX; Qq tensor a generator of H 2k´2 pBS 1 ; Qq.

(iii) The U map has degree ´2 and is an isomorphism

CH ˚pX, λ 0 q » ÝÑ CH ˚´2 pX, λ 0 q, except when ˚" n `1.
(iv) If λ 0 | BX is nondegenerate and has no Reeb orbit γ with Apγq P pL 1 , L 2 s and CZpγq " n ´1 `2k, then the map

ı L 2 ,L 1 : CH L 1 n´1`2k pX, λ 0 q Ñ CH L 2 n´1`2k pX, λ 0 q is surjective.
Remark 3.2. One can presumably refine the "Reeb Orbits" property to show that in the nondegenerate case, CH L pX, λ, Γq is the homology of a chain complex (with noncanonical differential) which is generated by the good Reeb orbits γ of λ| BX in the free homotopy class Γ with symplectic action Apγq ď L. (A Reeb orbit γ is called bad if it is an even multiple cover of a Reeb orbit γ 1 such that the Conley-Zehnder indices of γ and γ 1 have opposite parity; otherwise it is called good.) Moreover, if L 1 ă L 2 , then one can take the differential for L 1 to be the restriction of the differential for L 2 , and the map ı L 2 ,L 1 is induced by the inclusion of chain complexes. This is shown in [GG16, Prop. 3.3] using a different definition of equivariant symplectic homology.

Now suppose that pX 1 , λ 1 q is another nondegenerate Liouville domain and ϕ : pX, λq Ñ pX 1 , λ 1 q is a generalized Liouville embedding (see Definition 1.23) with ϕpXq Ă intpX 1 q. One can then define a transfer morphism Φ : CHpX 1 , λ 1 q ÝÑ CHpX, λq, see §7.

Proposition 3.3. The transfer morphism Φ has the following properties:

(Action) Φ respects the action filtration in the following sense: For each L P R there are distinguished maps

Φ L : CH L pX 1 , λ 1 q ÝÑ CH L pX, λq such that if L 1 ă L 2 then Φ L 2 ˝ıL 2 ,L 1 " ı L 2 ,L 1 ˝ΦL 1 , (3.4)
and Φ is the direct limit of the maps Φ L , i.e.

ı L ˝ΦL " Φ ˝ıL .

(3.5) (Commutativity with U ) For each L P R, the diagram

CH L pX 1 , λ 1 q Φ L ÝÝÝÑ CH L pX, λq § § đU L § § đU L CH L pX 1 , λ 1 q Φ L ÝÝÝÑ CH L pX, λq (3.6) commutes. (Commutativity with δ) The diagram CHpX 1 , λ 1 q Φ ÝÝÝÑ CHpX, λq § § đδ § § đδ H ˚pX 1 , BX 1 ; Qq b H ˚pBS 1 ; Qq ρb1 ÝÝÝÑ H ˚pX, BX; Qq b H ˚pBS 1 ; Qq (3.7)
commutes. Here ρ : H ˚pX 1 , BX 1 ; Qq Ñ H ˚pX, BX; Qq denotes the composition

H ˚pX 1 , BX 1 ; Qq ÝÑ H ˚pX 1 , X 1 zϕpintpXqq; Qq » ÝÑ H ˚pϕpX q, ϕpBXq; Qq " H ˚pX, BX; Qq
where the first map is the map on relative homology induced by the triple pX 1 , X 1 zϕpintpXqq, BX 1 q, and the second map is excision. (c) If pX, λq and pX 1 , λ 1 q are nondegenerate Liouville domains, and if there exists a generalized Liouville embedding ϕ : pX, λq Ñ pX 1 , λ 1 q with ϕpXq Ă intpX 1 q, then c k pX, λq ď c k pX 1 , λ 1 q.

(d) If pX, λq is a nondegenerate Liouville domain, and if c k pX, λq ă 8, then c k pX, λq " Apγq for some Reeb orbit γ of λ| BX which is contractible in X.

Proof. (a) This follows from the Scaling axiom in Proposition 3.1. (b) Suppose that α P CH L pX, λq satisfies (4.1). We need to show that there exists α 1 P CH L pX, λq such that δU k´2 ı L α 1 " rXs b rpts.

By equation (3.2), we can take α 1 " U L α.

(c) Suppose that α 1 P CH L pX 1 , λ 1 q satisfies

δU k´1 ı L α 1 " rX 1 s b rpts. (4.2)
We need to show that there exists α P CH L pX, λq satisfying δU k´1 ı L α " rXs b rpts.

We claim that we can take α " Φ L α 1 where Φ L is the filtered transfer map from Proposition 3.3(a). To see this, we observe that

δU k´1 ı L Φ L α 1 " δı L U k´1 L Φ L α 1 " δı L Φ L U k´1 L α 1 " δΦı L U k´1 L α 1 " pρ b 1qδU k´1 ı L α 1 " pρ b 1qprX 1 s b rptsq " rXs b rpts.
Here the first equality holds by (3.2), the second equality follows from (3.6), the third equality holds by (3.5), the fourth equality uses (3.7) and (3.2) again, and the fifth equality follows from the hypothesis (4.2).

(d) Suppose that c k pX, λq " L ă 8. Suppose to get a contradiction that there is no Reeb orbit of action L which is contractible in X. Since λ| BX is nondegenerate, there are only finitely many Reeb orbits of action less than 2L. It follows that we can find ε ą 0 such that there is no Reeb orbit which is contractible in X and has action in the interval rL ´ε, L `εs, and such that there exists α `P CH L`ε pX, λq with δU k´1 ı L`ε α `" rXs b rpts.

By the last part of the "δ map" property in Proposition 3.1, we can assume that α `P CH L`ε pX, λ, 0q. By the "Reeb Orbits" property, there exists α ´P CH L´ε pX, λ, 0q with ı L`ε,L´ε α ´" α `. It follows that

δU k´1 ı L´ε α ´" rXs b rpts.
This implies that c k pX, λq ď L ´ε, which is the desired contradiction.

Arbitrary Liouville domains

We now extend the definition of c k to an arbitrary Liouville domain pX, λq. To do so, we use the following procedure to perturb a possibly degenerate Liouville domain to a nondegenerate one. First recall that there is a distinguished Liouville vector field V on X characterized by ı V dλ " λ. Write Y " BX. The flow of V then defines a smooth embedding p´8, 0s ˆY ÝÑ X, (4.3) sending t0u ˆY to Y in the obvious way, such that if ρ denotes the p´8, 0s coordinate, then B ρ is mapped to the vector field V . This embedding pulls back the Liouville form λ on X to the 1-form e ρ pλ| Y q on p´8, 0s ˆY . The completion of pX, λq is the pair p p X, p λq defined as follows. First, p X " X Y Y pr0, 8q ˆY q, glued using the identification (4.3). Observe that p X has a subset which is identified with R ˆY , and we denote the R coordinate on this subset by ρ. The 1-form λ on X then extends to a unique 1-form p λ on p X which agrees with e ρ pλ| Y q on R ˆY .

Now if f : Y Ñ R is any smooth function, define a new Liouville domain pX f , λ f q, where X f " p Xztpρ, yq P R ˆY | ρ ą f pyqu,
and λ f is the restriction of p λ to X f . For example, if f " 0, then pX f , λ f q " pX, λq. In general, there is a canonical identification

Y ÝÑ BX f , y Þ ÝÑ pf pyq, yq P R ˆY. Under this identification, λ f | BX f " e f λ| Y .
We now consider c k of nondegenerate perturbations of a possibly degenerate Liouville domain. 

sup f ´ă0 c k pX f ´, λ f ´q " inf f `ą0 c k pX f `, λ f `q.
(4.4)

Here the supremum and infimum are taken over functions f ´: Y Ñ p´8, 0q and f `: Y Ñ p0, 8q respectively such that the contact form e f ˘pλ| Y q is nondegenerate.

(b) If pX, λq is nondegenerate, then the supremum and infimum in (4.4) agree with c k pX, λq.

As a result of Lemma 4.3, it makes sense to extend Definition 4.1 as follows:

Definition 4.4. If pX, λq is any Liouville domain, define c k pX, λq to be the supremum and infimum in (4.4).

The proof of Lemma 4.3 will use the following simple fact:

Lemma 4.5. If pX f ´, λ f ´q is nondegenerate, and if f `" f ´`ε for some ε P R, then pX f `, λ f `q is also nondegenerate and

c k pX f `, λ f `q " e ε c k pX f ´, λ f ´q.
Proof. We have that pX f `, λ f `q is nondegenerate because scaling the contact form on the boundary by a constant (in this case e ε ) scales the Reeb vector field and preserves nondegeneracy.

The time ε flow of the Liouville vector field V on p X restricts to a diffeomorphism

X f ´Ñ X f `which pulls back λ f `to e ε λ f ´. It follows that c k pX f `, λ f `q " c k pX f ´, e ε λ f ´q " e ε c k pX f ´, λ f ´q,
where the second equality holds by the conformality in Lemma 4.2(a).

Proof of Lemma 4.3. (a) If f ´, f `: Y Ñ R satisfy f ´ă f `, then inclusion defines a Liouville embedding ϕ : pX f ´, λ f ´q Ñ pX f `, λ f `q with ϕpX f ´q Ă intpX f `q. It then follows from the monotonicity in Lemma 4.2(c) that

c k pX f ´, λ f ´q ď c k pX f `, λ f `q.
This shows that the left hand side of (4.4) is less than or equal to the right hand side.

To prove the reverse inequality, for any ε ą 0 we can find a function f `: Y Ñ p0, εq such that the contact form e f `pλ| Y q is nondegenerate. Now define f ´: Y Ñ p´ε, 0q by f ´" f `´ε. By Lemma 4.5 we have

c k pX f `, λ f `q " e ε c k pX f ´, λ f ´q.

It follows that inf

f `ą0 c k pX f `, λ f `q ď e ε sup f ´ă0 c k pX f ´, λ f ´q.
Since ε ą 0 was arbitrary, we conclude that the right hand side of (4.4) is less than or equal to the left hand side.

(b) In this case, for any ε ą 0 we can take f ˘" ˘ε in (4.4), so using Lemma 4.5 we have sup

f ´ă0 c k pX f ´, λ f ´q ě c k pX ´ε, λ ´εq " e ´εc k pX, λq, inf f `ą0 c k pX f `, λ f `q ď c k pX ε , λ ε q " e ε c k pX, λq.
Taking ε Ñ 0, we obtain sup

f ´ă0 c k pX f ´, λ f ´q ě c k pX, λq ě inf f `ą0 c k pX f `, λ f `q.
The result now follows from the first half of part (a). To prove the Restricted Monotonicity property, suppose that there exists a generalized Liouville embedding ϕ : pX, λq Ñ pX 1 , λ 1 q. Let f ´: BX Ñ p´8, 0q and f `: BX 1 Ñ p0, 8q be smooth functions such that pX f ´, λ f ´q and pX 1 f `, λ 1 f `q are nondegenerate. Then we can restrict ϕ to X f ´, and compose with the inclusion X 1 Ñ X 1 f `, to obtain a generalized Liouville embedding r ϕ :

pX f ´, λ f ´q Ñ pX 1 f `, λ 1 f `q
with r ϕpX f ´q Ă intpX 1 f `q. By the monotonicity in Lemma 4.2(c), we have

c k pX f ´, λ f ´q ď c k pX 1 f `, λ 1 f `q.
It follows that sup

f ´ă0 c k pX f ´, λ f ´q ď inf f `ą0 c k pX 1 f `, λ 1 f `q,
which means that c k pX, λq ď c k pX 1 , λ 1 q.

The Contractible Reeb Orbit axiom follows from the corresponding property in Lemma 4.2(d) and a compactness argument.

Nice star-shaped domains

We now study c k of nice star-shaped domains and complete the proofs of Theorems 1.1 and 1.24.

Proof of Theorems 1.1 and 1.24. By Proposition 4.6, it is enough to show the functions c k , restricted to nice star-shaped domains, satisfy the axioms in Theorem 1.1.

The Conformality and Increasing axioms follow immediately from the corresponding properties in Proposition 4.6. The Monotonicity axiom in Theorem 1.1 follows from the Restricted Monotonicity axiom in Proposition 4.6, because if X and X 1 are nice star-shaped domains in R 2n , then any symplectic embedding X Ñ X 1 is automatically a generalized Liouville embedding since H 1 pBXq " 0. Finally, the Reeb Orbits axiom follows from Lemma 4.7(b) below.

Lemma 4.7. Let X be a nice star-shaped domain in R 2n . Suppose that λ 0 | BX is nondegenerate. Then: (a) c k pX, λ 0 q is the infimum over L such that the degree n ´1 `2k summand in CHpX, λ 0 q is in the image of the map ı L : CH L pX, λ 0 q Ñ CHpX, λ 0 q.

(b) c k pX, λ 0 q " Apγq for some Reeb orbit γ of λ 0 | BX with CZpγq " n ´1 `2k. 5 Definition of positive S 1 -equivariant SH Our remaining goal is to prove Propositions 3.1 and 3.3. We now review what we need to know about positive S 1 -equivariant symplectic homology for this purpose.

(Positive) symplectic homology was developed by Viterbo [START_REF] Viterbo | Functors and computations in Floer homology with applications[END_REF], using works of Cieliebak, Floer, and Hofer [START_REF] Floer | Symplectic homology. I. Open sets in[END_REF][START_REF] Cieliebak | Symplectic homology. II. A general construction[END_REF]. The S 1 -equivariant version of (positive) symplectic homology was originally defined by Viterbo [START_REF] Viterbo | Functors and computations in Floer homology with applications[END_REF], and an alternate definition using family Floer homology was given by Bourgeois-Oancea [BO16, §2.2], following a suggestion of Seidel [START_REF] Seidel | A biased view of symplectic cohomology[END_REF]. We will use the family Floer homology definition here, because it is more amenable to computations. We follow the treatment in [START_REF] Gutt | The positive equivariant symplectic homology as an invariant for some contact manifolds[END_REF], with some minor tweaks which do not affect the results.

We will only consider (positive, S 1 -equivariant) symplectic homology for Liouville domains, even though it can be defined for more general compact symplectic manifolds with contact-type boundary. We restrict to Liouville domains in order to be able to define transfer morphisms.

Symplectic homology

Let pX, λq be a Liouville domain with boundary Y . Let R λ denote the Reeb vector field associated to λ on Y . Below, let SpecpY, λq denote the set of periods of Reeb orbits, and let ε " 1 2 min SpecpY, λq. (1) The restriction of H to S 1 ˆX is negative, autonomous (i.e. S 1 -independent), and C 2 -small (so that there are no non-constant 1-periodic orbits). Furthermore, H ą ´ε (5.1) on S 1 ˆX.

(2) There exists ρ 0 ě 0 such that on S 1 ˆrρ 0 , 8q ˆY we have Hpθ, ρ, yq " βe ρ `β1 (5.2) with 0 ă β R SpecpY, λq and β 1 P R. The constant β is called the limiting slope of H.

(3) There exists a small, strictly convex, increasing function h : r1, e ρ 0 s Ñ R such that on S 1 ˆr0, ρ 0 s ˆY , the function H is C 2 -close to the function sending pθ, ρ, xq Þ Ñ hpe ρ q. The precise sense of "small" and "close" that we need here is explained in Remarks 5.2 and 5.6.

(4) The Hamiltonian H is nondegenerate, i.e. all 1-periodic orbits of X H are nondegenerate.

We denote the set of admissible Hamiltonians by H adm .

Remark 5.2. Condition (1) implies that the only 1-periodic orbits of X H in X are constants; they correspond to critical points of H. The significance of condition (2) is as follows. On S 1 ˆr0, 8q ˆY , for a Hamiltonian of the form H 1 pθ, ρ, yq " h 1 pe ρ q, we have

X θ H 1 pρ, yq " ´h1 1 pe ρ qR λ pyq.
Hence for such a Hamitonian H 1 with h 1 increasing, a 1-periodic orbit of X H 1 maps to a level tρu ˆY , and the image of its projection to Y is the image of a (not necessarily simple) periodic Reeb orbit of period h 1 1 pe ρ q. In particular, condition (2) implies that there is no 1-periodic orbit of X H in rρ 0 , 8q ˆY .

Condition (3) ensures that for any non-constant 1-periodic orbit γ H of X H , there exists a (not necessarily simple) periodic Reeb orbit γ of period T ă β such that the image of γ H is close to the image of γ in tρu ˆY where T " h 1 pe ρ q.

Definition 5.3. An S 1 -family of almost complex structures J : S 1 Ñ EndpT p

Xq is admissible if it satisfies the following conditions:

• J θ is p ω-compatible for each θ P S 1 .
• There exists ρ 1 ě 0 such that on rρ 1 , 8q ˆY , the almost complex structure J θ does not depend on θ, is invariant under translation of ρ, sends ξ to itself compatibly with dλ, and satisfies J θ pB ρ q " R λ .

(5.3)

We denote the set of all admissible J by J .

Given J P J , and γ If J is generic and u P Mpγ ´, γ `; Jq, then x Mpγ ´, γ `; Jq is a manifold near u whose dimension is the Fredholm index of u defined by indpuq " CZ τ pγ `q ´CZ τ pγ ´q.

Here CZ τ denotes the Conley-Zehnder index computed using trivializations τ of γ ‹ ˘T p X that extend to a trivialization of u ‹ T p X. Note that R acts on x Mpγ ´, γ `; Jq by translation of the domain; we denote the quotient by Mpγ ´, γ `; Jq. Definition 5.4. Let H P H adm , and let J P J be generic. Define the Floer chain complex pCF pH, Jq, Bq as follows. The chain module CF pH, Jq is the free Q-module12 generated by the set of 1-periodic orbits PpHq. If γ ´, γ `P PpHq, then the coefficient of γ `in Bγ ´is obtained by counting Fredholm index 1 points in Mpγ ´, γ `; Jq with signs determined by a system of coherent orientations as in [START_REF] Floer | Coherent orientations for periodic orbit problems in symplectic geometry[END_REF]. (The chain complexes for different choices of coherent orientations are canonically isomorphic.)

Let HF pH, Jq denote the homology of the chain complex pCF pH, Jq, Bq. Given H, the homologies for different choices of generic J are canonically isomorphic to each other, so we can denote this homology simply by HF pHq.

The construction of the above canonical isomorphisms is a special case of the following more general construction. Given two admissible Hamiltonians H 1 , H 2 P H adm , write H 1 ď H 2 if H 1 pθ, xq ď H 2 pθ, xq for all pθ, xq P S 1 ˆp X. In this situation, one defines a continuation morphism HF pH 1 q Ñ HF pH 2 q as follows; cf. [Gut15, Thm. 4.5] and the references therein. Choose generic J 1 , J 2 P J so that the chain complexes CF pH i , J i q are defined for i " 1, 2. Choose a generic homotopy tpH s , J s qu sPR such that H s satisfies equation (5.2) for some β, β 1 depending on s; J s P J for each s P R; B s H s ě 0; pH s , J s q " pH 1 , J 1 q for s ăă 0; and pH s , J s q " pH 2 , J 2 q for s ąą 0. One then defines a chain map CF pH 1 , J 1 q Ñ CF pH 2 , J 2 q as a signed count of Fredholm index 0 maps u : R ˆS1 Ñ p X satisfying the equation and the asymptotic conditions lim sÑ´8 ups, ¨q " γ 1 and lim sÑ8 ups, ¨q " γ 2 . The induced map on homology gives a well-defined map HF pH 1 q Ñ HF pH 2 q. If H 2 ď H 3 , then the continuation map HF pH 1 q Ñ HF pH 3 q is the composition of the continuation maps HF pH 1 q Ñ HF pH 2 q and HF pH 2 q Ñ HF pH 3 q.

Bu

Definition 5.5. We define the symplectic homology of pX, λq to be the direct limit SHpX, λq :" lim ÝÑ HPH std HF pHq with respect to the partial order ď and continuation maps defined above.

Positive symplectic homology

Positive symplectic homology is a modification of symplectic homology in which constant 1-periodic orbits are discarded.

To explain this, let H : S 1 ˆp X Ñ R be a Hamiltonian in H adm . The Hamiltonian action functional A H : C 8 pS 1 , p Xq Ñ R is defined by

A H pγq :" ´żS 1 γ ‹ p λ ´żS 1 H `θ, γpθq ˘dθ.
If J P J , then the differential on the chain complex pCF pH, Jq, Bq decreases the Hamiltonian action A H . As a result, for any L P R, we have a subcomplex CF ďL pH, Jq of CF pH, Jq, generated by the 1-periodic orbits with Hamiltonian action less than or equal to L.

To see what this subcomplex can look like, note that the 1-periodic orbits of H P H adm fall into two classes: (i) constant orbits corresponding to critical points in X, and (ii) non-constant orbits contained in r0, ρ 0 s ˆY .

If x is a critical point of H on X, then the action of the corresponding constant orbit is equal to ´Hpxq. By (5.1), this is less than ε.

By Remark 5.2, a non-constant 1-periodic orbit of X H is close to a 1-periodic orbit of ´h1 pe ρ qR λ located in tρu ˆY for ρ P r0, ρ 0 s with h 1 pe ρ q P SpecpY, λq. The Hamiltonian action of the latter loop is given by ´żS 1 e ρ λp´h 1 pe ρ qR λ qdθ ´żS 1 hpe ρ qdθ " e ρ h 1 pe ρ q ´hpe ρ q.

(5.6)

Since h is strictly convex, the right hand side is a strictly increasing function of ρ.

Remark 5.6. In Definition 5.1, we assume that h is sufficiently small so that the right hand side of (5.6) is close to the period h 1 pe ρ q, and in particular greater than ε. We also assume that H is sufficiently close to hpe ρ q on S 1 ˆr0, ρ 0 s ˆY so that the Hamiltonian actions of the 1-periodic orbits are well approximated by the right hand side of (5.6), so that:

(i) The Hamiltonian action of every 1-periodic orbit of X H corresponding to a critical point on X is less than ε; and the Hamiltonian action of every other 1-periodic orbit is greater than ε.

(ii) If γ is a Reeb orbit of period T ă β, and if γ 1 is a 1-periodic orbit of X H in r0, ρ 0 s ˆY associated to γ, then

|A H pγ 1 1 q ´T | ă min β ´1, 1 3 gappβq ( .
Here gappβq denotes the minimum difference between two elements of SpecpY, λq that are less than β.

as a Reeb orbit of period e ρ h 1 pρq. Since H is autonomous, every Reeb orbit γ with period less than β gives rise to an S 1 family of 1-periodic orbits of X H , which we denote by S γ . An admissible Morse-Bott Hamiltonian as in Definition 5.8 can be deformed into an admissible Hamiltonian as in Definition 5.1, which will be time-dependent and have nondegenerate 1-periodic orbits: Lemma 5.9. ([CFHW96, Prop. 2.2] and [BO09, Lem. 3.4]) An admissible Morse-Bott Hamiltonian H can be perturbed to an admissible Hamiltonian H 1 whose 1periodic orbits consist of the following: (i) Constant orbits at the critical points of H.

(ii) For each Reeb orbit γ with period less than β, two nondegenerate orbits p γ and q γ. Given a trivialization τ of ξ|γ, their Conley-Zehnder indices are given by ´CZ τ pp γq " CZ τ pγq `1 and ´CZ τ pq γq " CZ τ pγq.

Remark 5.10. The references [START_REF] Cieliebak | Applications of symplectic homology. II. Stability of the action spectrum[END_REF] and [START_REF] Bourgeois | Symplectic homology, autonomous Hamiltonians, and Morse-Bott moduli spaces[END_REF] use the notation γ min instead of p γ, and γ Max instead of q γ. The motivation is that these orbits are distinguished in their S 1 -family as critical points of a perfect Morse function on S 1 .

S 1 -equivariant symplectic homology

Let pX, λq be a Liouville domain with boundary Y . We now review how to define the S 1 -equivariant symplectic homology SH S 1 pX, λq, and the positive S 1 -equivariant symplectic homology SH S 1 ,`p X, λq.

The S 1 -equivariant symplectic homology SH S 1 pX, λq is defined as a limit as N Ñ 8 of homologies SH S 1 ,N pX, λq, where N is a nonnegative integer. To define the latter, fix the perfect Morse function f N : CP N Ñ R defined by f N `rw 0 : . . . :

w n s ˘" ř N j"0 j|w j | 2 ř N j"0 |w j | 2 . Let r f N : S 2N `1 Ñ R denote the pullback of f N to S 2N `1.
We will consider gradient flow lines of Ă f N and f N with respect to the standard metric on S 2N `1 and the metric that this induces on CP N .

Remark 5.11. The family of functions f N has the following two properties which are needed below. We have two isometric inclusions i 0 , i 1 : CP N Ñ CP N `1 defined by i 0 prz 0 : . . . : z N sq " rz 0 : . . . : z N : 0s and i 1 prz 0 : . . . : z N sq " r0 : z 0 : . . . : z N s. Then:

(1) The images of i 0 and i 1 are invariant under the gradient flow of f N `1.

(2) We have f N " f N `1 ˝i0 " f N `1 ˝i1 `constant, so that the gradient flow of f N `1 pulls back via i 0 or i 1 to the gradient flow of f N . Now choose a "parametrized Hamiltonian"

H : S 1 ˆp X ˆS2N`1 ÝÑ R (5.7)
which is S 1 -invariant in the sense that Hpθ `ϕ, x, ϕzq " Hpθ, x, zq @θ, ϕ P S 1 " R{Z, x P p X, z P S 2N `1.

Here the action of S 1 " R{Z on S 2N `1 Ă C N `1 is defined by ϕ ¨z " e 2πiϕ z.

Definition 5.12. A parametrized Hamiltonian H as above is admissible if:

(i) For each z P S 2N `1, the Hamiltonian H z " Hp¨, ¨, zq : S 1 ˆp X ÝÑ R satisfies conditions (1), (2), and (3) in Definition 5.1, with β and β 1 independent of z.

(ii) If z is a critical point of r f N , then the 1-periodic orbits of H z are nondegenerate.

(iii) H is nondecreasing along downward gradient flow lines of r f N .

Let P S 1 p fN , Hq denote the set of pairs pz, γq, where z P S 2N `1 is a critical point of fN , and γ is a 1-periodic orbit of the Hamitonian H z . Note that S 1 acts freely on the set P S 1 p fN , Hq by ϕ ¨pz, γq " `ϕ ¨z, γp¨´ϕq ˘.

If p " pz, γq P P S 1 p fN , Hq, let S p denote the orbit of pz, γq under this S 1 action. Next, choose a generic map

J : S 1 ˆS2N`1 Ñ J , pθ, zq Þ Ñ J θ z , (5.8)
which is S 1 -invariant in the sense that J θ`ϕ ϕ¨z " J θ z for all ϕ, θ P S 1 and z P S 2N `1.

Let p ´" pz ´, γ ´q and p `" pz `, γ `q be distinct elements of (5.9)

Here the middle equation is a modification of Floer's equation (5.4) which is "parametrized by η". Note that R acts on the set x MpS p ´, S p `; Jq by reparametrization: if σ P R, then σ ¨pη, uq " `ηp¨´σq, up¨´σ, ¨q˘.

In addition, S 1 acts on the set x MpS p ´, S p `; Jq as follows: if τ P S 1 , then τ ¨pη, uq :" `τ ¨η, up¨, ¨´τ q ˘.

Let M S 1 pS p ´, S p `; Jq denote the quotient of the set x MpS p ´, S p `; Jq by these actions of R and S 1 .

If J is generic, then M S 1 pS p ´, S p `; Jq is a manifold near pη, uq of dimension indpη, uq " pindpf N , z ´q ´CZ τ pγ ´qq ´pindpf N , z `q ´CZ τ pγ `qq ´1.

Here indpf N , z ˘q denotes the Morse index of the critical point z ˘of f N , and CZ τ denotes the Conley-Zehnder index with respect to a trivialization τ of pγ ˘q‹ T p X that extends over u ‹ T p X.

Definition 5.13. [BO16, §2.2] Define a chain complex ´CF S 1 ,N pH, Jq, B S 1 ¯as follows. The chain module CF S 1 ,N pH, Jq is the free Q module13 generated by the orbits S p . If S p ´, S p `are two such orbits, then the coefficient of S p `in B S 1 S p ´is a signed count of elements pη, uq of M S 1 pS p ´, S p `; Jq with indpη, uq " 1.

We denote the homology of this chain complex by HF S 1 ,N pHq. This does not depend on the choice of J, by the usual continuation argument; one defines continuation chain maps using a modification of (5.9) in which the second line is replaced by an "η-parametrized" version of Floer's continuation equation (5.5).

We now define a partial order on the set of pairs pN, Hq, where N is a nonnegative integer and H is an admissible parametrized Hamiltonian (5.7), as follows. Let r i 0 : S 2N `1 Ñ S 2N `3 denote the inclusion sending z Þ Ñ pz, 0q. (This lifts the inclusion i 0 defined in Remark 5.11.) Then pN 1 , H 1 q ď pN 2 , H 2 q if and only if:

• N 1 ď N 2 , and

• H 1 ď p r i 0 ‹ q N 2 ´N1 H 2 pointwise on S 1 ˆp X ˆS2N 1 `1.
In this case we can define a continuation map HF S 1 ,N 1 pH 1 q Ñ HF S 2 ,N 2 pH 2 q using an increasing homotopy from H 1 to p r i 0

‹ q N 2 ´N1 H 2 on S 1 ˆp X ˆS2N 1 `1.
Definition 5.14. Define the S 1 -equivariant symplectic homology

SH S 1 ˚pX, λq :" lim ÝÑ N,H HF S 1 ,N ˚pH q.
It is sometimes useful to describe S 1 -equivariant symplectic homology in terms of individual Hamiltonians on S 1 ˆp X, rather than S 2N `1-families of them, by the following procedure.

Remark 5.15. [Gut14, §2.1.1] Fix an admissible Hamiltonian H 1 : S 1 ˆp X Ñ R and a nonnegative integer N . Consider a sequence of admissible parametrized Hamiltonians tH k u k"0,...,N as in (5.7), where H k is defined on S 1 ˆp X ˆS2k`1 , with the following properties:

• For each k " 0, . . . , N ´1, the pullbacks r i ‹ 0 H k`1 and r i ‹ 1 H k`1 agree with H k up to a constant. Here r i 1 : S 2k`1 Ñ S 2k`3 denotes the lift of i 1 sending z Þ Ñ p0, zq.

• For each k " 0, . . . , N and each z P Critp fk q, we have

H k pθ, x, zq " H 1 `θ ´φpzq, x ˘`c.
(5.10)

Here c is a constant depending on k and z; and the map φ : Critp fk q Ñ S 1 sends a critical point p0, . . . , 0, e 2πiψ , 0, . . . , 0q Þ Ñ ψ.

Next, choose a sequence of families of almost complex structures J k : S 1 ˆS2k`1 Ñ J p p Xq for k " 0, . . . , N such that:

• J k is generic so that the chain complex ´CF S 1 ,k pH k , J k q, B S 1 ¯is defined.

• r i ‹ 0 J k`1 " r i ‹ 1 J k`1 " J k .
The chain complex ´CF S 1 ,N pH N , J N q, B S 1 ¯can now be described as follows. By

(5.10), we can identify the chain module as

CF S 1 ,N pH N , J N q " Qt1, u, . . . , u N u b Q CF pH 1 , J 0 q. (5.11)
This identification sends a pair pz, γq, where z P Critp r f N q is a lift of an index 2k critical point of f N and γ is a reparametrization of a 1-periodic orbit γ 1 of H 1 , to

u k b γ 1 .
Since the sequences tH k u and tJ k u respect the inclusions r i 1 , the differential has the form

B S 1 pu k b γq " k ÿ i"0 u k´i b ϕ i pγq (5.12)
where the operator ϕ i on CF pH 1 , J 0 q does not depend on k. In particular, ϕ 0 is the differential on CF pH 1 , J 0 q. We can also formally write

B S 1 " N ÿ i"0 u ´i b ϕ i
where it is understood that u ´i annihilates terms of the form u j b γ with i ą j.

The usual continuation arguments show that the homology of this chain complex does not depend on the choice of sequences tH k u and tJ k u satisfying the above assumptions. We denote this homology by HF S 1 ,N pH 1 q.

Since in the above construction we assume that the sequences tH k u and tJ k u respect the inclusions r i 0 , it follows that when N 1 ď N 2 we have a well-defined map HF S 1 ,N 1 pH 1 q Ñ HF S 1 ,N 2 pH 1 q induced by inclusion of chain complexes.

As before, if H 1 1 ď H 1 2 , then there is a continuation map HF S 1 ,N pH 1 1 q Ñ HF S 1 ,N pH 1 2 q satisfying the usual properties.

As in [BO16, §2.3], we now have:

Proposition 5.16. The S 1 -equivariant homology of pX, λq is given by

SH S 1 ˚pX, λq " lim ÝÑ N PN, H 1 PH adm HF S 1 ,N pH 1 q.

Positive S 1 -equivariant symplectic homology

Like symplectic homology, S 1 -equivariant symplectic homology also has a positive version in which constant 1-periodic orbits are discarded. Definition 5.17. Let H : S 1 ˆp X ˆS2N`1 Ñ R be an admissible parametrized Hamiltonian. The parametrized action functional

A H : C 8 pS 1 , p Xq ˆS2N`1 ÝÑ R is defined by A H pγ, zq :" ´żγ p λ ´żS 1 H `θ, γpθq, z ˘dθ.
(5.13) Lemma 5.18. If H is an admissible parametrized Hamiltonian, and if J is a generic S 1 -invariant family of almost complex structures as in (5.8), then the differential B S 1 on CF S 1 ,N pH, Jq does not increase the parametrized action (5.13).

Proof. Given a solution pη, uq to the equations (5.9), one can think of η as fixed and regard u as a solution to an instance of equation (5.5), where J s and H s in (5.5) are determined by η. By condition (iii) in Definition 5.12, this instance of (5.5) corresponds to a nondecreasing homotopy of Hamiltonians. Consequently, the action is nonincreasing along this solution of (5.5) as before.

It follows from Lemma 5.18 that for any L P R, we have a subcomplex CF S 1 ,N,ďL pH, Jq of CF S 1 ,N pH, Jq, spanned by S 1 -orbits of pairs pz, γq where z P Critp fN q and γ is a 1-periodic orbit of H z with A H pz, γq ď L.

As in §5.2, if the S 1 -orbit of pz, γq is a generator of CF S 1 ,N pH, Jq, then there are two possibilities: (i) γ is a constant orbit corresponding to a critical point of H z on X, and A H pz, γq ă ε; or (ii) γ is close to a Reeb orbit in tρu ˆY with period ´h1 pe ρ q, and A H pz, γq is close to this period; in particular A H pz, γq ą ε. Definition 5.19. Consider the quotient complex

CF S 1 ,N,`p H, Jq :" CF S 1 ,N pH, Jq CF S 1 ,N,ďε pH, Jq . (5.14) 
As in Definition 5.7, the homology of the quotient complex is independent of J, so we can denote this homology by HF S 1 ,N,`p Hq; and we have continuation maps HF S 1 ,N 1 ,`p H 1 q Ñ HF S 1 ,N 2 ,`p H 2 q when pN 1 , H 1 q ď pN 2 , H 2 q. We now define the positive S 1 -equivariant symplectic homology by

SH S 1 ,`p X, λq :" lim ÝÑ N,H
HF S 1 ,N,`p Hq.

(5.15)

Returning to the situation of Remark 5.15, define HF S 1 ,N,`p H 1 q to be the homology of the quotient of the chain complex (5.11) by the subcomplex spanned by u k b γ where γ is a critical point of H 1 in X. We then have the following analogue of Proposition 5.16: Proposition 5.20. The positive S 1 equivariant homology of pX, λq is given by

SH S 1 ,`p X, λq " lim ÝÑ N PN, H 1 PH adm HF S 1 ,N,`p H 1 q.
6 Properties of positive S 1 -equivariant SH Let pX, λq be a Liouville domain. We now show that the positive S 1 -equivariant homology SH S 1 ,`p X, λq defined in §5, which we denote by CHpX, λq for short, satisfies all of the properties in Proposition 3.1.

Free homotopy classes

Given an admissible Hamiltonan, H, we can decompose the complex CF S 1 ,N,ďL pH, Jq into a direct sum CF S 1 ,N,ďL pH, Jq " à Γ CF S 1 ,N,ďL pH, J, Γq.

Here Γ ranges over free homotopy classes of loops in X, and CF S 1 ,N,ďL pH, J, Γq denotes the subset of CF S 1 ,N,ďL pH, Jq generated by S 1 -orbits of pairs pz, γq where γ represents the free homotopy class Γ. The differentials and continuation maps defined in §5 all count certain cylinders, and thus respect the above direct sum decomposition. As a result, we obtain a corresponding direct sum decomposition in (5.14) and (5.15), so that we can decompose

CHpX, λq " à Γ CHpX, λ, Γq,
where CHpX, λ, Γq is defined like CHpX, λq but only using loops in the free homotopy class Γ. Similar remarks apply to all of the constructions to follow; we will omit the free homotopy class Γ below to simplify notation.

Action filtration

Given L P R, we now define a version of positive S 1 -equivariant symplectic homology "filtered up to action L", which we denote by CH L pX, λq. This will only depend on the largest element of SpecpY, λq which is less than or equal to L. Thus we can assume without loss of generality that L R SpecpY, λq.

As in Definition 5.19, we can consider the quotient complex CF S 1 ,N,`,ďL pH, Jq :" CF S 1 ,N,ďL pH, Jq CF S 1 ,N,ďε pH, Jq .

As in Definition 5.7, the homology of the quotient complex is independent of J, so we can denote this homology by HF S 1 ,N,`,ďL pHq. If pN 1 , H 1 q ď pN 2 , H 2 q, then the continuation chain map induces a well-defined map HF S 1 ,N 1 ,`,ďL pH 1 q Ñ HF S 1 ,N 2 ,`,ďL pH 2 q. Definition 6.1. We define the positive S 1 -equivariant symplectic homology filtered up to action L to be CH L pX, λq :" SH S 1 ,`,ďL pX, λq :" lim

ÝÑ N,H
HF S 1 ,N,`,ďL pHq.

It follows from Remark 5.6(ii) that if L R SpecpY, λq, then CH L pX, λq depends only on the largest element of SpecpY, λq that is less than L.

Given an admissible parametrized Hamiltonian H, a nonnegative integer N , a generic parametrized almost complex structure J as in (5.8), and real numbers L 1 ă L 2 , we have an inclusion of chain complexes CF S 1 ,N,`,ďL 1 pH, Jq ÝÑ CF S 1 ,N,`,ďL 2 pH, Jq.

(6.1)

The usual continuation map argument shows that the induced map on homology, HF S 1 ,N,`,ďL 1 pHq ÝÑ HF S 1 ,N,`,ďL 2 pHq, (

does not depend on the choice of J, and commutes with the continuation map for pN 1 , H 1 q ď pN 2 , J 2 q. Definition 6.2. We define the map

ı L 2 ,L 1 : CH L 1 pX, λq ÝÑ CH L 2 pX, λq (6.3) 
to be the direct limit over pairs pN, Hq of the maps (6.2).

We then have the required property lim LÑ8 CH L pX, λq " CHpX, λq, (

because we can compute the direct limit lim ÝÑ N,H,L HF S 1 ,N,`,ďL pHq either by first taking the limit over pairs pN, Hq, which gives the left hand side of (6.4), or by first taking the limit over L, which gives the right hand side of (6.4). Remark 6.3. One can equivalently define CH L pX, λq by repeating the definition of CHpX, λq, but using appropriate admissible Hamiltonians where the limiting slope is equal to L.

U map

We now define the U map on CHpY, λq, similarly to [BO16, §2.4].

Recall from Remark 5.15 that given an admissible Hamiltonian H 1 : S 1 ˆp X Ñ R and a nonnegative integer N , we can choose a pair pH N , J N q so that the chain complex ´CH S 1 ,N pH N , J N q, B S 1 ¯has the nice form given by (5.11) and (5.12).

It follows from (5.12) that the operation of "multiplication by u ´1", sending a chain complex generator u i b γ to u i´1 b γ when i ą 0 and to 0 when i " 0, is a chain map. This induces a map on the homology HF S 1 ,N pH 1 q, which we denote by U N,H 1 . A priori this map also depends on the choice of pair pH N , J N q, but the usual continuation map argument shows that it does not. In addition, if pN 1 , H 1 1 q ď pN 2 , H 1 2 q, then the continuation map HF S 1 ,N 1 pH 1 1 q Ñ HF S 1 ,N 2 pH 1 2 q fits into a commutative diagram

HF S 1 ,N 1 pH 1 1 q ÝÝÝÑ HF S 1 ,N 2 pH 1 2 q U N 1 ,H 1 1 § § đ § § đ U N 2 ,H 1 2
HF S 1 ,N 1 pH 1 1 q ÝÝÝÑ HF S 1 ,N 2 pH 1 2 q. It then follows from Proposition 5.16 that we obtain a well-defined map

U " lim ÝÑ N,H 1 U N,H 1 on SH S 1
˚pX, λq. Since the U map is induced by chain maps which respect (in fact preserve) the symplectic action filtration, it also follows from Proposition 5.20 that we obtain a well-defined U map on CHpY, λq. Similarly we obtain a well-defined U map on CH L pY, λq. This completes the proof of the "U map" property.

For use in §6.7 below, we also note that there is the following Gysin-type exact sequence: Proposition 6.4. If pX, λq is a Liouville domain, then there is a long exact sequence ¨¨¨/ / SH `pX, λq / / CHpX, λq U / / CHpX, λq / / SH `pX, λq / / ¨¨( 6.5)

Proof. With the above definition of U , this follows as in [BO16, Prop. 2.9]. This was also shown earlier in [START_REF] Bourgeois | The Gysin exact sequence for S 1 -equivariant symplectic homology[END_REF] using a slightly different definition of positive S 1equivariant symplectic homology.

Reeb Orbits

Let L 1 ă L 2 such that there does not exist a Reeb orbit γ of λ| BX having action Apγq in the interval pL 1 , L 2 s. As in §6.2, we can also assume without loss of generality that L 1 R SpecpY, λq. Then for every triple pN, H, Jq, if the limiting slope of H is sufficiently large, then the inclusion of chain complexes (6.1) is the identity map. It follows that the map (6.2) is an isomorphism, and consequently the direct limit map (6.3) is an isomorphism as desired.

δ map

To define the delta map, we have the following: Proposition 6.5. Let pX, λq be a Liouville domain. Then there is a canonical long exact sequence

H ˚pX, BXq b H ˚pBS 1 q / / SH S 1 pX, λq v v SH S 1 ,`p X, λq δ i i . (6.6)
Proof. For any triple pN, H, Jq as in Definition 5.19, by definition we have a short exact sequence of chain complexes 0 ÝÑ CF S 1 ,N,ďε pH, Jq ÝÑ CF S 1 ,N pH, Jq ÝÑ CF S 1 ,N,`p H, Jq ÝÑ 0. (6.7)

Since continuation maps respect symplectic action, we can take the direct limit of the resulting long exact sequences on homology to obtain a canonical long exact sequence ¨¨¨ÝÑ SH S 1 ,ďε pX, λq ÝÑ SH S 1 pX, λq ÝÑ SH S 1 ,`p X, λq ÝÑ ¨¨¨(6.8)

where we define SH S 1 ,ďε pX, λq " lim ÝÑ N,H

HF S 1 ,N,ďε pH, Jq. (6.9)

To compute (6.9), note that we have a canonical isomorphism HF S 1 ,N,ďε pH, Jq " H ˚pX, BXq b Qt1, u, . . . , u N u. (6.10)

For proofs of counterparts of this isomorphism for different definitions of S 1 -equivariant symplectic homology, see [Vit99, Proposition 1.3] and [BO13, Lemma 4.8]. In our context, the isomorphism (6.10) holds because if we compute the left hand side as in Remark 5.15, then the chain complex comes from the critical points of H 1 on X, so that we have CF S 1 ,N,ďε pH, Jq " C Morse pX, H 1 q b Qt1, u, . . . , u N u. (6.11)

Here C Morse pX, H 1 q denotes the chain complex for the Morse cohomology of H 1 , whose differential counts upward gradient flow lines; and u i represents the index 2i critical point of f N . The differential on the left side of (6.11) agrees on the right side with the tensor product of the Morse differential and the identity on Qt1, u, . . . , u N u.

Since the gradient of H 1 points out of X along BX, the Morse cohomology agrees with the relative homology H ˚pX, BXq. This proves (6.10), and taking the direct limit over pairs pN, Hq gives a canonical isomorphism SH S 1 ,ďε pX, λq " H ˚pX, BXq b H ˚pBS 1 q. (6.12)

Putting this into (6.8) proves the proposition.

The map δ vanishes on CHpX, λ, Γq for every free homotopy class Γ ‰ 0, because the maps in the long exact sequence (6.8) preserve the free homotopy class, and the homology (6.12) is entirely supported in the summand corresponding to Γ " 0.

Scaling

If p p X, p λq is the completion of pX, λq, then the completion of pX, rλq is naturally identified with the same manifold p X, with the 1-form r p λ. If H : S 1 ˆp X Ñ R is an S 1 -dependent Hamiltonian, and if X H denotes the (S 1dependent) Hamiltonian vector field for H defined using p ω, then the Hamiltonian vector field for H defined using rp ω is r ´1X H . It follows that if H is an admissible Hamiltonian for pX, λq, then rH is an admissible Hamiltonian for pX, rλq, with the same 1-periodic orbits. Note here that SpecpY, rλq " r SpecpY, λq, so the conditions involving the action spectrum are preserved. In particular, if ε " 1 2 min SpecpY, λq as usual, then rε " 1 2 min SpecpY, rλq.

Likewise, if H : S 1 ˆp X ˆS2N`1 Ñ R is an admissible parametrized Hamiltonian for pX, λq, then rH is an admissible parametrized Hamiltonian for pX, rλq.

If J is an admissible parametrized almost complex structure (5.8) as needed to define the (positive) S 1 -equivariant symplectic homology of pX, λq, then J is not quite admissible for pX, rλq, because the condition (5.3) only holds up to a constant. However one can still define (positive) S 1 -equivariant symplectic homology using parametrized almost complex structures that satisfy this weaker version of admissibility, cf. [Oan04, §1.3.2], and a continuation argument shows that the resulting (positive) S 1 -equivariant symplectic homology will be canonically isomorphic.

Putting this together, we have a canonical isomorphism of chain complexes CF S 1 ,N,ďL pH, Jq " CF S 1 ,N,ďrL prH, Jq.

We then have a canonical isomorphism of quotient chain complexes CF S 1 ,N,ďL pH, Jq CF S 1 ,N,ďε pH, Jq " CF S 1 ,N,ďrL prH, Jq CF S 1 ,N,ďrε prH, Jq .

Taking the direct limit over pairs pN, Hq gives the desired canonical isomorphism CH L pX, λq " CH rL pX, rλq.

We can also take L " `8, giving the desired canonical isomorphism CHpX, λq " CHpX, rλq.

These scaling isomorphisms preserve the U and δ maps since the holomorphic curves counted are the same.

Star-Shaped Domains

When X is a nice star-shaped domain, the chain complex CF S 1 ,N pH, Jq has a canonical Z grading, in which the grading of a pair pz, γq is indpzq ´CZpγq. Here indpzq denotes the Morse index of the corresponding critical point of f N , while CZpγq denotes the Conley-Zehnder index of γ, computed using a global trivialization of T X.

With respect to this grading, the long exact sequence (6.6) has the form

H ˚`n pX, BXq b H ˚pBS 1 q / / SH S 1 ˚pX q x x SH S 1 ,`p Xq r´1s δ i i . (6.13)
For a nice star-shaped domain X, we have SH S 1 ˚pX q " 0; see [Gut14, §1.3.2]. Assertions (i) and (ii) in the Star-Shaped Domains property follow. (The computation (3.3) also follows from [Gut15, Thm. 1.1] together with the description of the Reeb orbits on the boundary of an ellipsoid in the proof of Lemma 2.1.)

To prove assertion (iii), note that for a nice star-shaped domain, the Gysin-type sequence (6.5) with gradings has the form

¨¨¨/ / SH k pXq / / CH k pXq U / / CH k´2 pXq / / SH k´1 pXq / / ¨¨¨.
On the other hand, if X is a nice star-shaped domain then

SH `pX q " # Q if ˚" n `1 0 otherwise , see [Gut14, §1.2.4].
Therefore the U map CH ˚pX, λq Ñ CH ˚´2 pX, λq is an isomorphism except when ˚" n `1.

Finally, we need to prove assertion (iv). Suppose that λ 0 | BX is nondegenerate and has no Reeb orbit γ with action Apγq P pL 1 , L 2 s and Conley-Zehnder index CZpγq " n ´1 `2k. We need to show that the map ı L 2 ,L 1 : CH L 1 n´1`2k pX, λ 0 q ÝÑ CH L 2 n´1`2k pX, λ 0 q (6.14) is surjective. As in §6.2, we can assume without loss of generality that L 1 , L 2 R SpecpY, λq.

To prove that (6.14) is surjective, we compute positive S 1 -equivariant symplectic homology using an admissible Hamiltonian H 1 : S 1 ˆp X Ñ R as in Remark 5.15. Furthermore, we assume that H 1 is perturbed from an admissible Morse-Bott Hamiltonian as in Lemma 5.9, with boundary slope β ą L 2 . As a result, if L ă β is not close to the action of a Reeb orbit, then the chain complex CF S 1 ,N,`,ďL pH N , J N q is generated by symbols u k b q γ and u k b p γ where 0 ď k ď N and γ is a Reeb orbit with action Apγq ď L. Furthermore, the grading of a generator is given by

|u k b q γ| " CZpγq `2k, |u k b p γ| " CZpγq `2k `1.
Now fix N , H N , and J N . The differential on the chain complex CF S 1 ,N,`,ďL pH N , J N q does not increase the symplectic action of Reeb orbits. This means that we can define an integer-valued filtration F on the chain complex as follows: Denote the real numbers in the action spectrum SpecpY, λq by a 1 ă a 2 ă ¨¨¨.

If γ is a Reeb orbit with action Apγq " a j , then we define the filtration Fpu i b q γq " Fpu i b p γq " j.

Let F j CF ďL denote the subcomplex of CF S 1 ,N,`,ďL pH N , J N q spanned by generators with filtration ď j. Let G j CF ďL " F j CF ďL {F j´1 CF ďL denote the associated graded complex. It is shown in [Gut15, §3.2] that the homology of À j G j CF ďL is generated by u 0 b q γ and u N b p γ where γ ranges over the good Reeb orbits with action less than L. It follows that if N is sufficiently large with respect to k and L, then the grading n ´1 `2k part of À j G j CF ďL is generated by u 0 b q γ where γ is a good Reeb orbit with action less than L and Conley-Zehnder index equal to n ´1 `2k. Therefore, the inclusion of chain complexes CF S 1 ,N,`,ďL 1 pH N , J N q ÝÑ CF S 1 ,N,`,ďL 2 pH N , J N q (6.15) induces an injection

G j CF ďL 1 ÝÑ G j CF ďL 2
for each j. Furthermore, under our assumption on k, L 1 , and L 2 , if N is sufficiently large, then the above injection in grading n ´1 `2k is an isomorphism

G j CF ďL 1 n´1`2k » ÝÑ G j CF ďL 2 n´1`2k
for each j. It now follows from the algebraic Lemma 6.6 below that the inclusion (6.15) induces a surjection on the degree n ´1 `2k homology

HF S 1 ,N,`,ďL 1 n´1`2k pH N , J N qÝÑHF S 1 ,N,`,ďL 2 n´1`2k
pH N , J N q. (6.16) Lemma 6.6. Let

0 " F 0 C ˚Ă F 1 C ˚Ă ¨¨¨Ă F J C ˚" C ˚, 0 " F 0 C 1 ˚Ă F 1 C 1 ˚Ă ¨¨¨Ă F J C 1 ˚" C 1 be filtered chain complexes. Denote the associated graded chain complexes by G j C ˚" F j C ˚{F j´1 C ˚and G j C 1 ˚" F j C 1 ˚{F j´1 C 1 ˚. Let φ : C ˚Ñ C 1
˚be a map of filtered chain complexes. For a given grading k, suppose that for each j, the map φ induces a surjection H k pG j C ˚q Ñ H k pG j C 1 ˚q and an injection H k´1 pG j C ˚q Ñ H k´1 pG j C 1 ˚q.

Then φ induces a surjection

H k C ˚Ñ H k C 1 ˚and an injection H k´1 C ˚Ñ H k´1 C 1 ˚.
Proof. Since the filtrations are bounded, it is enough to prove by induction on j that φ induces a surjection H k pF j C ˚q Ñ H k pF j C 1 ˚q and an injection H k´1 pF j C ˚q Ñ H k´1 pF j C 1 ˚q. Assume that the claim holds for j ´1. We then have a commutative diagram with exact rows

H k pF j´1 C ˚q ÝÝÝÑ H k pF j C ˚q ÝÝÝÑ H k pG j C ˚q ÝÝÝÑ H k´1 pF j´1 C ˚q § § đ surj § § đ § § đ surj § § đ inj H k pF j´1 C 1 ˚q ÝÝÝÑ H k pF j C 1 ˚q ÝÝÝÑ H k pG j C 1 ˚q ÝÝÝÑ H k´1 pF j´1 C 1 ˚q
where the vertical arrows are induced by φ. Surjectivity of the second vertical arrow then follows from chasing this diagram. (This is one of the two "four-lemmas" that imply the "five lemma".) Likewise, the injectivity claim for j follows by chasing the commutative diagram with exact rows

H k pG j C ˚q ÝÝÝÑ H k´1 pF j´1 C ˚q ÝÝÝÑ H k´1 pF j C ˚q ÝÝÝÑ H k´1 pG j C ˚q § § đ surj § § đ inj § § đ § § đ inj H k pG j C 1 ˚q ÝÝÝÑ H k´1 pF j´1 C 1 ˚q ÝÝÝÑ H k´1 pF j C 1 ˚q ÝÝÝÑ H k´1 pG j C 1 ˚q.
Since (6.16) is a surjection, by taking the direct limit over N and H 1 , and using an action-filtered version of Proposition 5.20, we conclude that the map (6.14) is surjective as desired.

Definition of transfer morphisms

Let pV, λ V q and pW, λ W q be Liouville domains. Let ϕ : V Ñ W be a Liouville embedding, i.e. a smooth embedding such that ϕ ‹ λ W " λ V . Assume also as in §3 that ϕpV q Ă intpW q. In this situation one can define a "transfer morphism" φ pS 1 ,`q V,W : SH pS 1 ,`q pW, λ W q ÝÑ SH pS 1 ,`q pV, λ V q.

(7.1)

Here the superscript 'pS 1 , `q' means that the superscripts 'S 1 ' and '`' are optional (but the same in all three places).

A transfer morphism for symplectic homology was defined by Viterbo [START_REF] Viterbo | Functors and computations in Floer homology with applications[END_REF], and extended by the first author in his PhD thesis [START_REF] Gutt | The positive equivariant symplectic homology as an invariant for some contact manifolds[END_REF] for (positive) equivariant symplectic homology. We now review what we need to know about the definition of the transfer morphisms (7.1), and then explain how to extend the construction to generalized Liouville embeddings as in Definition 1.23.

Transfer morphisms for (positive) symplectic homology

To construct transfer morphisms, we introduce a special class H stair pV, W q of Hamiltonians on S 1 ˆx W called "admissible stair Hamiltonians". The transfer morphism is defined as a direct limit of continuation morphisms between an admissible Hamiltonian H 1 P H adm pW q and an admissible stair Hamiltonian H 2 P H stair pV, W q.

Below, identify V with its image under the Liouville embedding ϕ. Given δ ą 0 small, there is a unique neighbourhood U of BV in W z intpV q, together with a symplectomorphism pU, ω W q » `r0, δs ˆBV, dpe ρ λ V q ˘, such that the Liouville vector field for λ W on the left hand side corresponds to B ρ on the right hand side. Here ρ denotes the r0, δs coordinate.

Definition 7.1. A Hamiltonian H 2 : S 1 ˆx W Ñ R is in H stair pV, W q if and only if

(1) The restriction of H 2 to S 1 ˆV is negative, autonomous (i.e. S 1 -independent), and C 2 -small (so that there are no non-constant 1-periodic orbits). Furthermore, H ą ´ε (7.2) on S 1 ˆV , where ε " 1 2 min SpecpBV, λ V q Y SpecpBW, λ W q ( .

(2) On S 1 ˆU -S 1 ˆr0, δs ˆBV , with ρ denoting the r0, δs coordinate, we have:

• There exists 0 ă ρ 0 ă δ 4 such that for ρ 0 ď ρ ď δ ´ρ0 we have H 2 pθ, ρ, yq " βe ρ `β1 , (7.3) where 0 ă β R SpecpBV, λ V q Y SpecpBW, λ W q and β 1 P R. • There exists a strictly convex increasing function h 1 : r1, e ρ 0 s Ñ R such that on S 1 ˆr0, ρ 0 sˆY , the function H 2 is C 2 -close to the function sending pθ, ρ, pq Þ Ñ h 1 pe ρ q. Here and in the rest of this definition, the meanings of "close" and "small" are as in Remarks 5.2 and 5.6.

• There exists a small, strictly concave, increasing function h 2 : re δ´ρ 0 , e δ s Ñ R such that h 2 pe δ q ´h2 is small, and on S 1 ˆrδ ´ρ0 , δs ˆY , the function H 2 is C 2 -close to the function sending pθ, ρ, yq Þ Ñ h 2 pe ρ q.

(3) On S 1 ˆW zpV Y U q, the function H 2 is C 2 -close to a constant.

(4) On S 1 ˆr0, `8q ˆBW , with ρ 1 denoting the r0, 8q coordinate, we have:

• There exists ρ 1 1 ą 0 such that for ρ 1 ě ρ 1 1 we have

H 2 pθ, ρ 1 , pq " µe ρ 1 `µ1 , with 0 ă µ R SpecpBV, λ V q Y SpecpBW, λ W q, µ ă βpe δ ´1q e δ
, and µ 1 P R.

• There exists a strictly convex, increasing function h 3 : r1, e ρ 1 1 s Ñ R such that h 3 ´h3 p1q is small, and on S 1 ˆr0, ρ 1 1 sˆY , the function H 2 is C 2 -close to the function sending pθ, ρ 1 , yq Þ Ñ h 3 pe ρ 1 q.

(5) The Hamiltonian H 2 is nondegenerate, i.e. all 1-periodic orbits of X H 2 are nondegenerate.

I The 1-periodic orbits in region I correspond to critical points of H 2 on V .

II In region II, the 1-periodic orbits are associated to Reeb orbits of λ V on BV as in Remark 5.6.

III In region III, the 1-periodic orbits are likewise associated to Reeb orbits of λ V on BV .

IV The 1-periodic orbits in region IV correspond to critical points H 2 on W zpV Y U q.

V In region V, the 1-periodic orbits are associated to Reeb orbits of λ W on BW .

The Hamiltonian actions of the 1-periodic are ordered as follows:

ApIV q ă ApV q ă 0 ă ApIq ă ApIIq.

This means that every 1-periodic orbit in region IV has Hamiltonian action less than every 1-periodic orbit in region V, and so forth. We now consider the Floer chain complex CF pH 2 , J 2 q where J 2 : S 1 Ñ EndpT x W q is an S 1 -family of almost complex structures on x W . As in Definition 5.3, we assume that J θ 2 is p ω W -compatible for each θ P S 1 , and that J θ 2 pB ρ 1 q " R λ W on rρ 1 1 , 8q ˆBW . This is enough to give a well-defined chain complex CF pH 2 , J 2 q, cf. [Oan03, §1.2.3]. We also assume that J θ 2 pB ρ q " R λ V (7.4) on rρ 0 , δ ´ρ0 s ˆBV . Let C I,III,IV,V pH 2 , J 2 q denote the subcomplex of CF pH 2 , J 2 q generated by 1periodic orbits lying in regions I, III, IV, and V. Let C III,IV,V pH 2 , J 2 q denote the subcomplex of CF pH 2 , J 2 q generated by 1-periodic orbits lying in regions III, IV and V. These are subcomplexes because the action decreases along Floer trajectories, and [CO, Lem. 2.3] shows that there does not exist any Floer trajectory from region III to region I or II. We then have quotient chain complexes C I,II pH 2 , J 2 q " C I,II,III,IV,V pH 2 , J 2 q{ C III,IV,V pH 2 , J 2 q C II pH 2 , J 2 q " C I,II,III,IV,V pH 2 , J 2 q{ C I,III,IV,V pH 2 , J 2 q .

Given H 2 and J 2 as above, let H V 2 P H adm pV q denote the admissible Hamiltonian for V which agrees with H 2 on V Y pr0, δ ´ρ0 s ˆBV q, and which agrees with the right hand side of (7.3) on rρ 0 , 8q ˆBV . Let J V 2 denote the admissible S 1 -family of almost complex structures on p V which agrees with J 2 on V Y pr0, δ ´ρ0 s ˆBV q, and which satisfies (7.4) on rρ 0 , 8q ˆBV . Observe that we have canonical identifications of chain modules C I,II pH 2 , J 2 q " CF `HV 2 , J V 2 ˘, C II pH 2 , J 2 q " CF ``H V 2 , J V 2 ˘, (7.5) because the generators on both sides correspond to the same 1-periodic orbits in V Y pr0, δ ´ρ0 s ˆBV q.

Proposition 7.2. [Gut15, Proposition 4.4] The canonical identifications (7.5) induce isomorphisms on homology H `CI,II pH 2 , J 2 q, B ˘" HF `HV 2 , J V 2 ˘, H `CII pH 2 , J 2 q, B ˘" HF ``H V 2 , J V 2 ˘.

Given H 2 and J 2 as above, suppose that H 1 P H adm pW q satisfies H 1 ď H 2 pointwise. Let J 1 be an admissible S 1 -family of almost complex structures on x W . We then have a well-defined continuation map HF pH 1 , J 1 q ÝÑ HF pH 2 , J 2 q (7.6) defined as in (5.5).

Definition 7.3. We define the transfer morphism on Floer homology to be the composition φ H V 2 ,H 1 : HF pH 1 , J 1 q ÝÑ HF pH 2 , J 2 q ÝÑ H `CI,II pH 2 , J 2 q ˘" HF pH V 2 , J V 2 q.

Here the first arrow is the continuation map (7.6), the second map is induced by projection onto the quotient chain complex, and the equality sign on the right is the canonical isomorphism from Proposition 7.2. Concretely, this map counts solutions of equation (5.5) going from a 1-periodic orbit of X H 1 to a 1-periodic orbit of X H 2 lying in region I or II.

Since the continuation map decreases action, it follows that in the above composition, we can start with the homology of the quotient by CF ďε pH 1 , J 1 q, to obtain a transfer map on positive Floer homology, φ HV 2 ,H 1 : HF `pH 1 , J 1 q ÝÑ H ˆCF pH 2 , J 2 q CF ďε pH 2 , J 2 q ˙ÝÑ H `CII pH 2 , J 2 q ˘" HF `pH V 2 , J V 2 q.

The above transfer maps φ H V 2 ,H 1 and φ HV 2 ,H 1 depend only on H 1 and H V 2 , and more generally commute with continuation maps for increasing H 1 and H V 2 ; see [START_REF] Gutt | The positive equivariant symplectic homology as an invariant for some contact manifolds[END_REF]Prop. 4.7]. Consequently, we can define a transfer morphism on (positive) symplectic homology by taking direct limits:

φ V,W " lim ÝÑ H 1 ,H V 2 φ H V 2 ,H 1 : SHpW, λ W q ÝÑ SHpV, λ V q, φ V,W " lim ÝÑ H 1 ,H V 2
φ HV 2 ,H 1 : SH `pW, λ W q ÝÑ SH `pV, λ V q.

7.2 Transfer morphisms for (positive) S 1 -equivariant symplectic homology

Recall that to define (positive) S 1 -equivariant symplectic homology, we modify the definition of (positive) symplectic homology, by replacing the notion of admissible Hamiltonians H : S 1 ˆp X Ñ R in Definition 5.1 by the notion of admissibile parametrized Hamiltonians H : S 1 ˆp X ˆS2N`1 in Definition 5.12. In an analogous way, one can modify the definition of admissible stair Hamiltonians H 2 : S 1 ˆx W Ñ R in Definition 7.1, to define a notion of "admissible parametrized stair Hamiltonians" H 2 : S 1 ˆx W ˆS2N`1 Ñ R. We can then repeat the constructions in §7.1 to obtain transfer maps

φ S 1 H V
2 ,H 1 : HF S 1 ,N pH 1 q ÝÑ HF S 1 ,N pH V 2 q, φ S 1 ,H V 2 ,H 1 : HF S 1 ,N,`p H 1 q ÝÑ HF S 1 ,N,`p H V 2 q. (7.7)

We can then take the direct limit over H 1 , H V 2 , and N to define transfer morphisms φ S 1 V,W : SH S 1 pW, λ W q ÝÑ SH S 1 pV, λ V q, φ S 1 ,V ,W : SH S 1 ,`p W, λ W q ÝÑ SH S 1 ,`p V, λ V q.

Remark 7.4. One can also describe the transfer morphism (7.7) for fixed N in the context of Remark 5.15 and Proposition 5.20. Here one starts with an admissible stair Hamiltonian H 1 2 : S 1 ˆx W Ñ R and an admissible Hamiltonian H 1 1 : S 1 p X Ñ R with H 1 1 ď H 1 2 . Recall that the homology HF S 1 ,N,`p H 1 1 q appearing in Proposition 5.20 is the homology of a chain complex generated by symbols u k b γ, where k P t0, . . . , N u and γ is a nonconstant 1-periodic orbit of X H 1 1 . The differential has the form

B S 1 1 pu k b γq " k ÿ i"0
u k´i b ϕ 1,i pγq.

Let β : r0, δs Ñ R be a smooth function with βpρq " 0 for ρ close to 0 and βpρq " 1 for ρ close to δ. We can then take

λ 1 W " $ & % λ V on V ,
x λ V `dpβgq on r0, δs ˆBV , λ W on W zV δ .

Now given a generalized Liouville embedding as above, let λ 1 W be a 1-form on W provided by Lemma 7.5. We then have an honest Liouville embedding ϕ : pV, λ V q ÝÑ pW, λ 1 W q. As explained in §7.1 and §7.2, this induces transfer maps SH pS 1 ,`q pW, λ 1 W q ÝÑ SH pS 1 ,`q pV, λ V q.

(7.9)

The construction in §5 of (positive, S 1 -equivariant) symplectic homology of pW, λ W q depends only on the contact form λ W | BW on the boundary, and the symplectic form ω W " dλ W on the interior. Indeed, replacing the Liouville form λ W by another Liouville form λ 1 W with the same exterior derivative and restriction to the boundary does not change any of the chain complexes or maps in the definition of (positive, S 1 -equivariant) symplectic homology 14 , since the classes of admissible Hamiltonians used are determined by the restriction to the boundary, and the Hamiltonian vector fields are determined by the symplectic form. (For stronger results on invariance of symplectic homology see [Gut15, §4.3].) Thus we have a canonical isomorphism SH pS 1 ,`q pW, λ W q " SH pS 1 ,`q pW, λ 1 W q. (7.10)

We can now finally make the following definition:

Definition 7.6. Suppose ϕ : pV, λ V q Ñ pW, λ W q is a generalized Liouville embedding with ϕpV q Ă intpW q. Let λ 1 W be a 1-form provided by Lemma 7.5. Define the transfer morphism φ pS 1 ,`q V,W : SH pS 1 ,`q pW, λ W q ÝÑ SH pS 1 ,`q pV, λ V q (7.11) to be the composition of the canonical isomorphism (7.10) with the map (7.9).

The transfer morphism (7.11) does not depend on the choice of λ 1 W , because the admissible Hamiltonians, chain complexes, and chain maps in the definition of the transfer morphism depend only on the symplectic form on each Liouville domain and the contact form on the boundary of each Liouville domain. 14 One might worry that the Hamiltonian action of a noncontractible loop can change if λ W ´λ1 W is not exact. However for the Hamiltonians that we are using, the only noncontractible 1-periodic orbits are associated to Reeb orbits and their action does not change.

Properties of transfer morphisms

Let ϕ : pX, λq Ñ pX 1 , λ 1 q be a generalized Liouville embedding with ϕpXq Ă intpX 1 q. Let Φ : CHpX 1 , λ 1 q ÝÑ CHpX, λq denote the transfer map φ S 1 ,X ,X 1 defined in §7. We now prove that this map satisfies the properties in Proposition 3.3.

Action

The transfer map Φ is a direct limit over H 1 , H X 2 , and N of continuation maps HF S 1 ,N,`p H 1 q ÝÑ HF S 1 ,N,`p H X 2 q (8.1)

where H 1 and H X 2 are appropriate parametrized Hamiltonians for X 1 and X respectively. Since the continuation map (8.1) is induced by a chain map which decreases symplectic action, it is the direct limit over L of maps HF S 1 ,N,`,ďL pH 1 q ÝÑ HF S 1 ,N,`,ďL pH X 2 q. (8.2)

We now define Φ L : CH L pX 1 , λ 1 q ÝÑ CHpX, λq to be the direct limit over H 1 , H X 2 , and N of the maps (8.2). Here, as in §6.2, we assume without loss of generality that L R SpecpBX 1 , λ 1 q Y SpecpBX, λq. The required properties (3.4) and (3.5) follow from Definition 6.2.

Commutativity with U

We now show that the transfer map Φ commutes with the U map defined in §6.3.

Recall that the map Φ can be computed as a direct limit of maps (7.8) from Remark 7.4. And recall from §6.3 that in this setup, the U map is the direct limit of chain maps given by "multiplication by u ´1". So it is enough to prove that for each nonnegative integer N , we have a commutative diagram of chain maps CF S 1 ,N,`p H 1 1 q ψ ÝÝÝÑ CF S 1 ,N,``p H 1 2 q V ȗ´1 § § đ § § đu

´1

CF S 1 ,N,`p H 1 1 q ψ ÝÝÝÑ CF S 1 ,N,``p H 1 2 q V ˘.

Here the chain complexes depend on S 2N `1-families of Hamiltonians and almost complex structures as in Remark 5.15, which we are omitting from the notation.

The above commutative diagram gives rise to a morphism of long exact sequences on homology. One square of this is the commutative diagram HF S 1 ,N,`p H 1 , J 1 q ÝÝÝÑ H ˚pX 1 , BX 1 q b Qt1, u, . . . , u N u φ S 1 ,H X 2 ,H 1 § § đ § § đ ρb1 HF S 1 ,N,`p H X 2 , J X 2 q ÝÝÝÑ H ˚pX, BXq b Qt1, u, . . . , u N u. Here the horizontal arrows are the connecting homomorphisms which, in the direct limit, give the δ maps for X 1 and X. Thus taking the direct limit over N , H 1 , and H X 2 , we obtain the desired commutative diagram (3.7).
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  Definition of the capacities c k 4.1 Nondegenerate Liouville domains We first define the capacities c k for nondegenerate Liouville domains, imitating the definition of ECH capacities in [Hut11a, Def. 4.3]. Definition 4.1. Let pX, λq be a nondegenerate Liouville domain and let k be a positive integer. Define c k pX, λq P p0, 8s to be the infimum over L such that there exists α P CH L pX, λq satisfying δU k´1 ı L α " rXs b rpts P H ˚pX, BXq b H ˚pBS 1 q. (4.1) We now show that the function c k satisfies most of the axioms of Theorem 1.24 (restricted to nondegenerate Liouville domains): Lemma 4.2. (a) If pX, λq is a nondegenerate Liouville domain and r ą 0, then c k pX, rλq " rc k pX, λq. (b) If pX, λq is a nondegenerate Liouville domain and k ą 1 then c k´1 pX, λq ď c k pX, λq.

  Lemma 4.3. (cf. [Hut11a, Lem. 3.5]) (a) If pX, λq is any Liouville domain, then

  Proposition 4.6. The function c k of Liouville domains satisfies the Conformality, Increasing, Restricted Monotonicity, and Contractible Reeb Orbit axioms in Theorem 1.24. Proof. The Conformality and Increasing axioms follow immediately from the corresponding properties in Lemma 4.2(a),(b).

  Proof. (a) This follows immediately from the definition of c k and the Star-Shaped Domains property in Proposition 3.1. (b) This follows from (a), similarly to the proof of Lemma 4.2(d). Remark 4.8. If one is only interested in nice star-shaped domains, then one can take the characterization of c k in Lemma 4.7(a) as the definition of c k .
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 1 Figure 1: [Gut15] Graph of an admissible stair Hamiltonian H 2 on S 1 ˆx W
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  and if there does not exist a Reeb orbit γ of λ| BX in the free homotopy class Γ with action Apγq P pL 1 , L 2 s, then the map (3.1) is an isomorphism.

(δ map) There is a distinguished map δ : CHpX, λ, Γq ÝÑ H ˚pX, BX; Qq b H ˚pBS 1 ; Qq which vanishes whenever Γ ‰ 0. (Scaling) If r is a positive real number then there are canonical isomorphisms CHpX, λ, Γq » ÝÑ CHpX, rλ, Γq, CH L pX, λ, Γq » ÝÑ CH rL pX, rλ, Γq

  P S 1 p fN , Hq. Define x MpS p ´, S p `; Jq to be the set of pairs pη, uq, where η : R Ñ S 2N `1 and u : R ˆS1 Ñ

	p X, satisfying the following equations:	
	$ '		9 η ` ∇ fN pηq " 0,
	'			
	&	B s u `Jθ ηpsq	˝u`B θ u ´XH θ ηpsq	˝u˘" 0,
	' ' %		lim sÑ˘8 `ηpsq, ups,	¨q˘P S p

˘.

In this paper, a "domain" in a Euclidean space is the closure of an open set.

The best currently known obstructions to symplectically embedding a four-dimensional polydisk into an ellipsoid are obtained using more refined information from embedded contact homology going beyond capacities[START_REF] Hutchings | Beyond ECH capacities[END_REF].

In the special case n " 1, we have Y » S 1 , and we define CZpγq to be twice the number of times that γ covers Y .

Unlike (1.9), the function r¨s Ω is not a norm; instead it satisfies the reverse inequality rv`v 1 s Ω ě rvs Ω `rv 1 s Ω .

The four-dimensional case of this was shown using ECH capacities in [CCGF `14, Cor. 1.10].

Here Apγq denotes the symplectic action of γ, which is defined by Apγq " ş γ λ.

It is also possible to define positive S 1 -equivariant symplectic homology with integer coefficients. However the torsion in the latter is not relevant to the construction of the capacities c k , and it will simplify our discussion to discard it.

 11 The reason for this notation is that positive S 1 -equivariant symplectic homology can be regarded as a substitute for linearized contact homology which can be defined without transversality difficulties [BO16, §3.2].

It is also possible to use Z coefficients here, but we will use Q coefficients in order to later establish the Reeb Orbits property in Proposition 3.1, which leads to the Reeb Orbits property of the capacities c k . In special cases when the Conley-Zehnder index of a 1-periodic orbit is unambiguously defined, for example when all 1-periodic orbits are contractible and c 1 pT Xq| π2pXq " 0, the chain complex is graded by minus the Conley-Zehnder index.

It is also possible to define SH S 1 ,`, using Z coefficients, as with SH.

We denote the set of admissible stair Hamiltonians by H stair pV, W q.

The graph of an admissible stair Hamiltonian H 2 is shown schematically in Figure 1.

The 1-periodic orbits of H 2 lie either in the interior of V (which we call region I), in r0, ρ 0 s ˆBV (region II), in rδ ´ρ0 , δs ˆBV (region III), in W zpV Y U q (region IV), or in r0, ρ 1 1 s ˆBW (region V).

We can now define positive symplectic homology.

Definition 5.7. Let pX, λq be a Liouville domain, let H be a Hamiltonian in H adm , and let J P J .

Consider the quotient complex CF `pH, Jq :" CF pH, Jq CF ďε pH, Jq .

The homology of the quotient complex is independent of J, so we can denote this homology by HF `pH q. More generally, if H 1 ď H 2 , then the chain map used to define the continuation map HF pH 1 q Ñ HF pH 2 q descends to the quotient, since the Hamiltonian action is nonincreasing along a solution of (5.5) when the homotopy is nondecreasing. Thus we obtain a well-defined continuation map HF `pH 1 q Ñ HF `pH 2 q satisfying the same properties as before.

We now define the positive symplectic homology of pX, λq to be the direct limit SH `pX, λq :" lim ÝÑ HPH adm HF `pH q.

Positive symplectic homology can sometimes be better understood using certain special admissible Hamiltonians obtained as follows.

Definition 5.8. [START_REF] Bourgeois | Symplectic homology, autonomous Hamiltonians, and Morse-Bott moduli spaces[END_REF] Let pX, λq be a Liouville domain. An admissible Morse-Bott Hamiltonian is an autonomous Hamiltonian H : p X Ñ R such that:

(1) The restriction of H to X is a Morse function which is negative and C 2 -small (so that the Hamiltonian vector field has no non-constant 1-periodic orbits).

(2) There exists ρ 0 ě 0 such that on rρ 0 , 8q ˆY we have Hpρ, xq " βe ρ `β1 with 0 ă β R SpecpY, λq and β 1 P R.

(3) On r0, ρ 0 q ˆY we have Hpρ, xq " hpe ρ q where h is as in Definition 5.1, and moreover h 2 ´h1 ą 0.

We denote the set of admissible Morse-Bott Hamiltonians by H MB .

Given H P H MB , each 1-periodic orbit of X H is either: (i) a constant orbit corresponding to a critical point of H in X, or (ii) a non-constant 1-periodic orbit, with image in tρu ˆY for ρ P p0, ρ 0 q, whose projection to Y has the same image Likewise, the homology HF S 1 ,N,`p pH 1 2 q V q is the homology of a chain complex generated by symbols u k b γ, where k P t0, . . . , N u and γ is a nonconstant 1-periodic orbit of X pH 1 2 q V . The differential has the form

We now construct the transfer map (7.7) using continuation maps for homotopies which respect the inclusions r ı 0 and r ı 1 as in Remark 5.15. This transfer map will then be induced by a chain map having the form

u k´i b ψ i pγq.

(7.8)

Transfer morphisms for generalized Liouville embeddings

We now extend the definition of transfer morphisms for a generalized Liouville embedding ϕ : pV, λ V q Ñ pW, λ W q with ϕpV q Ă intpW q.

Lemma 7.5. Let ϕ : pV, λ V q ãÑ pW, λ W q be a generalized Liouville embedding with ϕpV q Ă intpW q. Then there exists a 1-form λ 1 W on W such that 1.

As in [MS17, Thm. 3.3.1], if δ is sufficiently small then we can extend ϕ to a symplectic embedding ϕ δ : pV δ , x ω V q ÝÑ pW, ω W q.

Now use the map ϕ δ to identify V δ with its image in W . Then the 1-form λ W ´x λ V is closed on V δ . By hypothesis, the de Rham cohomology class of this 1-form restricted to r0, δsB V is zero. Thus there is a function g : r0, δs ˆBV such that dg " pλ W ´x λ V q ˇˇr0,δsˆBV .

It is enough to check this commutativity on a generator u k b γ. If k " 0, then both compositions are zero, since ψ does not increase the exponent of k. If k ą 0, then the lower left composition is given by

while the upper right composition is given by

These are equal, and this completes the proof that ΦU " U Φ.

To prove that Φ L U L " U L Φ L , as before we can assume without loss of generality that L R SpecpBX 1 , λ 1 qYSpecpBX, λq. We then repeat the above argument, restricted to orbits with action less than L.

Commutativity with δ

To conclude, we now prove the commutativity with δ in Proposition 3.3. Note that a closely related result was proved in [Vit99, Thm. 5.2], and our proof will use some of the same ideas.

Recall that the δ map is defined starting from the short exact sequence of chain complexes (6.7). If H 1 and H X 2 are Hamiltonians as in the definition of the transfer map in §7.2, then we have a commutative diagram

Here the rows are from the short exact sequences of chain complexes (6.7) for X 1 and X. The center vertical arrow is the continuation chain map which, in the direct limit, gives the transfer morphism φ S 1 X,X 1 . The right vertical arrow is the continuation chain map which, in the direct limit, gives the transfer morphism Φ " φ S 1 ,X ,X 1 . The left vertical arrow is the restriction of the center vertical arrow. As in the proof of [Vit99, Thm. 5.2], this left arrow simply discards critical points in X 1 zX (here we are identifying X with its image in X 1 under the symplectic embedding), and is the Morse continuation map from H 1 | X to H 2 | X .