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Generalized Conley-Zehnder index

The Conley-Zehnder index associates an integer to any continuous path of symplectic matrices starting from the identity and ending at a matrix which does not admit 1 as an eigenvalue. Robbin and Salamon define a generalization of the Conley-Zehnder index for any continuous path of symplectic matrices; this generalization is half integer valued. It is based on a Maslov-type index that they define for a continuous path of Lagrangians in a symplectic vector space (W, Ω), having chosen a given reference Lagrangian V . Paths of symplectic endomorphisms of (R 2n , Ω0) are viewed as paths of Lagrangians defined by their graphs in (W = R 2n ⊕ R 2n , Ω = Ω0 ⊕-Ω0) and the reference Lagrangian is the diagonal. Robbin and Salamon give properties of this generalized Conley-Zehnder index and an explicit formula when the path has only regular crossings. We give here an axiomatic characterization of this generalized Conley-Zehnder index. We also give an explicit way to compute it for any continuous path of symplectic matrices.

Résumé

L'indice de Conley-Zehnder associe un nombre entier à tout chemin de matrices symplectiques partant de l'identité et se terminant en une matrice n'admettant pas 1 comme valeur propre. Robbin et Salamon ont défini une généralisation de l'indice de Conley-Zehnder, définie pour tout chemin continu de matrices symplectiques; cette généralisation est à valeur demi entière. Elle est basée sur un indice de type Maslov qu'ils définissent pour un chemin continu de Lagrangiens dans un espace symplectique (W, Ω) ayant fixé un Lagrangien de référence V . Les chemins d'endomorphismes symplectiques de (R 2n , Ω 0 ) sont vus comme les chemins de Lagrangiens définis par leur graphe dans (W = R 2n ⊕ R 2n , Ω = Ω 0 ⊕-Ω 0 ). Le lagrangien de référence est la diagonale. Robbin et Salamon donnent des propriétés de cet indice de Conley-Zehnder généralisé et une formule explicite lorsque le chemin ne possède que de croisements réguliers. Nous donnons ici une caractérisation explicite de cet indice de Conley-Zehnder généralisé. Nous donnons également une manière explicite de calculer cet indice pour tout chemin de matrices symplectiques.

Introduction

The Conley-Zehnder index [START_REF] Conley | Morse-type index theory for flows and periodic solutions for Hamiltonian equations[END_REF] associates an integer to any continuous path ψ defined on the interval [0, 1] with values in the group Sp R 2n , Ω 0 = 0 Id -Id 0 of 2n×2n symplectic matrices, starting from the identity and ending at a matrix which does not admit 1 as an eigenvalue. This index is used in the definition of the grading of Floer homology theories. If the path ψ were a loop with values in the unitary group, one could define an integer by looking at the degree of the loop in the circle defined by the (complex) determinant -or an integer power of it. The construction of the Conley-Zehnder index is based on this idea. One uses a continuous map ρ from the symplectic group Sp(R 2n , Ω 0 ) into S 1 and an "admissible" extension of ψ to a path ψ : [0, 2] → Sp(R 2n , Ω 0 ) in such a way that ρ 2 • ψ : [0, 2] → S 1 is a loop. The Conley-Zehnder index of ψ is defined as the degree of this loop µ CZ (ψ) := deg(ρ 2 • ψ).

We recall this construction in section 2 with the precise definition of the map ρ. The value of ρ(A) involves the algebraic multiplicities of the real negative eigenvalues of A and the signature of natural symmetric 2-forms defined on the generalized eigenspaces of A for the non real eigenvalues lying on S 1 . We give alternative ways to compute this index.

In [START_REF] Robbin | The Maslov index for paths[END_REF], Robbin and Salamon define a Maslov-type index for a continuous path Λ from the interval [a, b] to the space L (W,Ω) of Lagrangian subspaces of a symplectic vector space (W, Ω), having chosen a reference Lagrangian L. They give a formula of this index for a path having only regular crossings. A crossing for Λ is a number t ∈ [a, b] for which dim Λ t ∩ L = 0, and a crossing t is regular if the crossing form Γ(Λ, L, t) is nondegenerate. We recall the precise definitions in section 3.

In the same paper, Robbin and Salamon define the index of a continuous path of symplectic matrices ψ : [0, 1] → Sp(R 2n , Ω 0 ) : t → ψ t as the index of the corresponding path of Lagrangians in (W := R 2n × R 2n , Ω = -Ω 0 × Ω 0 ) defined by their graphs, Λ = Gr ψ : [0, 1] → L (W,Ω) : t → Gr ψ t = {(x, ψ t x)|x ∈ R 2n }.

The reference Lagrangian is the diagonal ∆ = {(x, x)|x ∈ R 2n }. They prove that this index coincide with the Conley-Zehnder index on continuous paths of symplectic matrices which start from the identity and end at a matrix which does not admit 1 as an eigenvalue. To be complete, we include this in section 4. They also prove that this index vanishes on a path of symplectic matrices with constant dimensional 1-eigenspace.

We use the normal form of the restriction of a symplectic endomorphism to the generalized eigenspace of eigenvalue 1 obtained in [START_REF] Gutt | Normal forms for symplectic matrices[END_REF] to construct special paths of symplectic endomorphisms with a constant dimension of the eigenspace of eigenvalue 1. This leads in section 5 to a characterization of the generalized half-integer valued Conley-Zehnder index defined by Robbin and Salamon :

Theorem 1. The Robbin-Salamon index for a continuous path of symplectic matrices is characterized by the following properties:

• (Homotopy) it is invariant under homotopies with fixed endpoints;

• (Catenation) it is additive under catenation of paths;

• (Zero) it vanishes on any path ψ : [a, b] → Sp(R 2n , Ω) of matrices such that dim Ker ψ(t) -Id = k is constant on [a, b]; • (Normalization) if S = S τ ∈ R 2n×2n is a symmetric matrix with all eigen- values of absolute value < 2π and if ψ(t) = exp(J 0 St) for t ∈ [0, 1] , then µ RS (ψ) = 1 2 Sign S
where Sign S is the signature of S. The naturality property of this index (i.e. for any φ : [0, 1] → Sp(R 2n , Ω 0 ), we have µ RS (φψφ -1 ) = µ RS (ψ)) follows from the other properties.

The same techniques lead in section 6 to a new formula for this index. As in Conley and Zehnder [START_REF] Conley | Morse-type index theory for flows and periodic solutions for Hamiltonian equations[END_REF], we extend a given path of matrices to a path ending into W + := -Id or W -:= diag(2, -1, . . . , -1, 1 2 , -1, . . . , -1). We also use the function ρ, or, more generally, any continuous map ρ : Sp(R 2n , Ω 0 ) → S 1 with the following properties:

1. ρ coincides with the (complex) determinant det C on U (n) = O R 2n ∩ Sp R 2n , Ω 0 ; 2. ρ(W -) ∈ {±1}; 3. deg (ρ 2 • ψ 2-) = n -1 for ψ 2-: t ∈ [0, 1] → exp tπJ 0   0 0 -log 2 π 0 0 Idn-1 0 0 -log 2 π 0 0 0 0 0 0 Idn-1   . Theorem 2. Let ψ : [0, 1] → Sp(R 2n , Ω 0 ) be a path of symplectic matrices. Decompose ψ(0) = ψ (0) ⊕ ψ (1) (0) and ψ(1) = ψ (1) ⊕ ψ (1)
(1) where ψ (•) does not admit 1 as eigenvalue and ψ (1) (•) is the restriction of ψ(•) to its generalized eigenspace of eigenvalue 1. Consider a continuous extension

Ψ : [-1, 2] → Sp(R 2n , Ω 0 ) of ψ, i.e. Ψ(t) = ψ(t) for t ∈ [0, 1], such that • Ψ -1 2 = ψ (0) ⊕ e -1 Id 0 0 e Id and Ψ(t) = ψ (0) ⊕ φ 0 (t)
where φ 0 (t) has only real positive eigenvalues for t ∈ -1 2 , 0 ;

• Ψ 3 2 = ψ (1) ⊕ e -1 Id 0 0 e Id and Ψ(t) = ψ (1) ⊕ φ 1 (t)
where φ 1 (t) has only real positive eigenvalues for t ∈ 1, 3 2 ; • Ψ(-1) = W ± , Ψ(2) = W ± and Ψ(t) does not admit 1 as an eigenvalue for t ∈ -1, -1 2 and for t ∈ 3 2 , 2 . Then the Robbin-Salamon index is given by

µ RS (ψ) = deg(ρ 2 • Ψ) + 1 2 k≥1 Sign Q(ψ(0)) k -1 2 k≥1 Sign Q(ψ(1))
k with ρ as above, and with

QA k : Ker (A -Id) 2k × Ker (A -Id) 2k → R (v, w) → Ω (A -Id) k v, (A -Id) k-1 w .
In the theorem above, we have used the notation A ⊕ B for the symplectic direct sum of two symplectic endomorphisms with the natural identification of Sp(V , Ω ) × Sp(V , Ω ) as a subgroup of Sp(V ⊕ V , Ω ⊕ Ω ). This writes in symplectic basis as

A ⊕ B := A1 0 A2 0 0 B1 0 B2 A3 0 A4 0 0 B3 0 B4 for A = A1 A2 A3 A4 , B = B1 B2 B3 B4 .
This paper is organized as follows. We recall the definition of the Conley-Zehnder index in section 2, with a new way of computing this index. In sections 3 and 4, we present known results about the Robbin-Salamon index of a path of Lagrangians and the Robbin-Salamon index of a path of symplectic matrices, including the fact that it is a generalization of the Conley-Zehnder index; we stress the fact that another Maslov index introduced by Robbin and Salamon does not coincide with this generalization of the Conley-Zehnder index. In section 5, we give a characterization of the generalization of the Conley-Zehnder index (stated above as Theorem 1). Section 6 gives a new formula to compute this index (stated above as Theorem 2).

The Conley-Zehnder index

The Conley-Zehnder index is an application which associates an integer to a continuous path of symplectic matrices starting from the identity and ending at a matrix in the set Sp (R 2n , Ω 0 ) of symplectic matrices which do not admit 1 as an eigenvalue.

Definition 3 ([CZ84]

). We consider the set SP(n) of continuous paths of matrices in Sp(R 2n , Ω 0 ) linking the matrix Id to a matrix in Sp (R 2n , Ω 0 ) :

SP(n) := ψ : [0, 1] → Sp(R 2n , Ω 0 )
ψ(0) = Id and 1 is not an eigenvalue of ψ(1) .

Definition 4 ([SZ92, AD10]). Let ρ : Sp(R 2n , Ω 0 ) → S 1 be the continuous map defined as follows. Given A ∈ Sp(R 2n , Ω), we consider its eigenvalues {λ i }.

For an eigenvalue λ = e iϕ ∈ S 1 \ {±1}, let m + (λ) be the number of positive eigenvalues of the symmetric non degenerate 2-form Q defined on the generalized eigenspace E λ by

Q : E λ × E λ → R : (z, z ) → Q(z, z ) := Im Ω 0 (z, z ).
Then ρ(A) := (-1)

1 2 m - λ∈S 1 \{±1} λ 1 2 m + (λ) (1) 
where m -is the sum of the algebraic multiplicities m λ = dim C E λ of the real negative eigenvalues.

Proposition 5 ([SZ92, AD10]). The map ρ : Sp(R 2n , Ω 0 ) → S 1 has the following properties:

1.

[determinant] ρ coincides with det C on the unitary subgroup

ρ(A) = det C A if A ∈ Sp(R 2n , Ω 0 ) ∩ O(2n) = U(n); 2.
[invariance] ρ is invariant under conjugation :

ρ(kAk -1 ) = ρ(A) ∀k ∈ Sp(R 2n , Ω 0 ); 3.
[normalisation] ρ(A) = ±1 for matrices which have no eigenvalue on the unit circle;

4.

[multiplicativity] ρ behaves multiplicatively with respect to direct sums : if m) , Ω 0 ) and ⊕ expressing as before the obvious identification of Sp(R 2m , Ω 0 )×Sp(R 2(n-m) , Ω 0 ) with a subgroup of Sp(R 2n , Ω 0 ) then

A = A ⊕ A with A ∈ Sp(R 2m , Ω 0 ), A ∈ Sp(R 2(n-
ρ(A) = ρ(A )ρ(A ).
The construction of the Conley-Zehnder index is based on the two following facts [START_REF] Conley | Morse-type index theory for flows and periodic solutions for Hamiltonian equations[END_REF]:

• Sp (R 2n , Ω 0 ) has two connected components, one containing W + = -Id, the other containing W -= diag(2, -1, . . . , -1, 1 2 , -1, . . . , -1); • any loop in Sp (R 2n , Ω 0 ) is contractible in Sp(R 2n , Ω 0 ). Thus any path ψ : [0, 1] → Sp(R 2n , Ω 0 ) in SP(n) can be extended to a path ψ[0, 2] → Sp(R 2n , Ω 0 ) so that • ψ(t) = ψ(t) for t ≤ 1; • ψ(t) is in Sp (R 2n , Ω 0 ) for any t ≥ 1; • ψ(2) = W ± .
Observe that ρ(Id) 2 = 1 and ρ(W ± ) 2 = 1 so that ρ 2 • ψ : [0, 2] → S 1 is a loop in S 1 and the contractibility property shows that its degree does not depend on the extension chosen.

Definition 6. The Conley-Zehnder index of ψ in SP(n) is defined by:

µ CZ : SP(n) → Z : ψ → µ CZ (ψ) := deg(ρ 2 • ψ) (2)
for an extension ψ of ψ as above.

Remark 7. In the original paper [START_REF] Conley | Morse-type index theory for flows and periodic solutions for Hamiltonian equations[END_REF], the index is first defined on paths in SP(n) of the form ψ S (t) = exp tJS for a symmetric matrix S so that the purely imaginary eigenvalues of JS are all distinct. It is then shown that in any component of SP(n) there exists such a path ψ S and that the index of two such paths ψ S and ψ S are equal if and only if the paths are homotopic. The index is then defined to be constant on any connected component of SP(n). We have chosen in this presentation to start with the equivalent definition 6 given in [START_REF] Salamon | Morse theory for periodic solutions of Hamiltonian systems and the Maslov index[END_REF].

Proposition 8 ([Sal99, AD10]). The Conley-Zehnder index has the following properties:

1. (Naturality) For all path φ : [0, 1] → Sp(R 2n , Ω 0 ) we have

µ CZ (φψφ -1 ) = µ CZ (ψ);
2. (Homotopy) The Conley-Zehnder index is constant on the components of SP(n);

3. (Zero) If ψ(s) has no eigenvalue on the unit circle for s > 0 then

µ CZ (ψ) = 0; 4. (Product) If n + n = n, , if ψ is in SP(n ) and ψ in SP(n ), then µ CZ (ψ ⊕ ψ ) = µ CZ (ψ ) + µ CZ (ψ ); with the identification of Sp(R 2n , Ω 0 ) × Sp(R 2n , Ω 0 ) with a subgroup of Sp(R 2n , Ω 0 ); 5. (Loop) If φ : [0, 1] → Sp(R 2n , Ω 0 ) is a loop with φ(0) = φ(1) = Id, then µ CZ (φψ) = µ CZ (ψ) + 2µ(φ)
where µ(φ) is the Maslov index of the loop φ, i.e. µ(φ) = deg(ρ • φ);

6. (Signature) If S = S τ ∈ R 2n×2n is a symmetric non degenerate matrix with all eigenvalues of absolute value < 2π ( S < 2π) and if ψ(t) = exp(J 0 St) for t ∈ [0, 1] , then µ CZ (ψ) = 1 2 Sign(S) (where Sign(S) is the signature of S). ]). The properties 2, 5 and 6 of homotopy, loop and signature characterize the Conley-Zehnder index.

(Determinant

) (-1) n-µ CZ (ψ) = sign det Id -ψ(1) 8. (Inverse) µ CZ (ψ -1 ) = µ CZ (ψ τ ) = -µ CZ (ψ) Proposition 9 ([Sal99, AD10 
Proof.

Assume µ : SP(n) → Z is a map satisfying those properties. Let ψ : [0, 1] → Sp(R 2n , Ω 0 ) be an element of SP(n); Since ψ is in the same component of SP(n) as its prolongation ψ : [0, 2] → Sp(R 2n , Ω 0 ) we have µ (ψ) = µ ( ψ).
Observe that W + = exp π(J 0 S + ) and W -= exp π(J 0 S -) with

S + = Id S -=   0 0 -log 2 π 0 0 Idn-1 0 0 -log 2 π 0 0 0 0 0 0 Idn-1   . (3) 
The catenation of ψ and ψ - 2 (the path ψ 2 in the reverse order, i.e followed from end to beginning) when

ψ 2 : [0, 1] → Sp(R 2n , Ω 0 ) t → exp tπJ 0 S ± is a loop φ.
Hence ψ is homotopic to the catenation of φ and ψ 2 , which is homotopic to the product φψ 2 .

Thus we have µ (ψ) = µ (φψ 2 ). By the loop condition µ (φψ 2 ) = µ (ψ 2 ) + 2µ(φ) and by the signature condition µ (ψ 2 ) = 1 2 Sign(S ± ). Thus

µ (ψ) = 2µ(φ) + 1 2 Sign(S ± ).
Since the same is true for µ CZ (ψ), this proves uniqueness.

Remark 10. Let ψ ∈ SP(n) and let ψ : [0, 2] → Sp(R 2n , Ω 0 ) be an extension as before. The Conley-Zehnder index of ψ is equal to the integer given by the degree of the map ρ2 • ψ : [0, 2] → S 1 :

µ CZ (ψ) := deg(ρ 2 • ψ) (4) 
for any continuous map ρ : Sp(R 2n , Ω 0 ) → S 1 which coincide with the (complex)

determinant det C on U (n) = O R 2n ∩ Sp R 2n , Ω 0 , such that ρ(W -) = ±1, and such that deg (ρ 2 • ψ 2-) = n -1 for ψ 2-: t ∈ [0, 1] → exp tπJ 0 S -.
This is a direct consequence of the fact that the map defined by deg(ρ 2 • ψ) has the homotopy property, the loop property (since any loop is homotopic to a loop of unitary matrices where ρ and det C coincide) and we have added what we need of the signature property to characterize the Conley-Zehnder index, i.e.. the value of the Conley-Zehnder index on the paths

ψ 2± : t ∈ [0, 1] → exp tπJ 0 S ± . Indeed 1 2 Sign S -= n -1, S + = Id 2n , 1 2 Sign S + = n and exp tπJ 0 S + = exp tπ 0 -Idn Idn 0 = cos πt Idn -sin πt Idn sin πt Idn cos πt Idn is in U (n) so that ρ2 exp tπ 0 -Idn Idn 0 = e 2πint and deg(ρ 2 • ψ 2+ ) = n.
Example 11. In particular, the Conley-Zehnder index of a path ψ ∈ SP(n) is given by

µ CZ (ψ) := deg(det C 2 • U • ψ) (5) 
where U : Sp(R 2n , Ω 0 ) → U (n) is the projection defined by the polar decomposition U (A) = AP -1 with P the unique symmetric positive definite matrix such that P 2 = A τ A. The map ρ := det C • U is indeed continuous, coincides obviously with det C on U (n) and we have that

exp tπJ 0 0 -log 2 π -log 2 π 0 = 2 t 0 0 2 -t is a pos- itive symmetic matrix so that U (exp tπJ 0 S -) = 1 0 0 0 0 cos πt Idn-1 0 -sin πt Idn-1 0 0 1 0 0 sin πt Idn-1 0 cos πt Idn-1 ; hence det 2 C • U (exp tπJ 0 S -) = e 2πi(n-1)t and deg(det C 2 • U • ψ 2-) = n -1.
An equivalent version of formula (5) already appears in [START_REF] Conley | Morse-type index theory for flows and periodic solutions for Hamiltonian equations[END_REF].

Example 12. One obtains a new formula for the Conley-Zehnder index of a path ψ ∈ SP(n) using the parametrization of the symplectic group introduced by Rawnsley:

µ CZ (ψ) := deg(ρ 2 • ψ) (6)
where ρ : Sp(R 2n , Ω 0 ) → S 1 is the normalized complex determinant of the Clinear part of the matrix:

ρ(A) = det C 1 2 (A -J 0 AJ 0 ) det C 1 2 (A -J 0 AJ 0 ) . ( 7 
)
Let us observe that this is well defined : for any A ∈ Sp(R 2n , Ω 0 ), the element C A := 1 2 (A -J 0 AJ 0 ), which clearly defines a complex linear endomorphism of C n since it commutes with J 0 , is invertible. Indeed, for any non-zero v ∈ V , one has

4Ω 0 (C A v, J 0 C A v) = 2Ω 0 (v, J 0 v) + Ω 0 (Av, J 0 Av) + Ω 0 (AJ 0 v, J 0 AJ 0 v) > 0. If A ∈ U (n), then C A = A so that ρ(A) = det C (A), hence ρ is a continuous map which coincide with det C on U (n). Furthermore 1 2 2 t 0 0 2 -t -J 0 2 t 0 0 2 -t J 0 = 1 2 2 t +2 -t 0 0 2 t +2 -t
hence its complex determinant is equal to 1 2 (2 t + 2 -t ) and its normalized complex determinant is equal to 1 so that ρ(exp tπJ 0 S -) = e πi(n-1)t and deg(ρ

2 • ψ 2-) = n -1.

The Robbin-Salamon index for a path of Lagrangians

A Lagrangian in a symplectic vector space (V, Ω) of dimension 2n is a subspace L of V of dimension n such that Ω| L×L = 0. Given any Lagrangian L in V, there exists a Lagrangian M (not unique!) such that L ⊕ M = V. With the choice of such a supplementary M any Lagrangian L in a neighborhood of L (any Lagrangian supplementary to M ) can be identified to a linear map α :

L → M through L = {v + α(v) | v ∈ L}, with α such that Ω α(v), w + Ω v, α(w) = 0 ∀v, w ∈ L.
Hence it can be identified to a symmetric bilinear form α :

L×L → R : (v, v ) → Ω v, α(v ) .
In particular the tangent space at a point L to the space L (V,Ω) of Lagrangians in (V, Ω) can be identified to the space of symmetric bilinear forms on L.

If Λ : [a, b] → L n := L (R 2n ,Ω0) : t → Λ t is a smooth curve of Lagrangian subspaces in (R 2n , Ω 0 ) , we define Q(Λ t0 , Λt0
) to be the symmetric bilinear form on Λ t0 defined by

Q(Λ t0 , Λt0 )(v, v ) = d dt α t (v, v ) t0 = d dt Ω v, α t (v ) t0 (8) 
where α t : Λ t0 → M is the map corresponding to Λ t for a decomposition R 2n = Λ t0 ⊕ M with M Lagrangian. Then [START_REF] Robbin | The Maslov index for paths[END_REF] :

• the symmetric bilinear form Q(Λ t0 , Λt0 ) : Λ t0 × Λ t0 → R is independent of the choice of the supplementary Lagrangian M to Λ t0 ; • if ψ ∈ Sp(R 2n , Ω 0 ) then Q(ψΛ t0 , ψ Λt0 )(ψv, ψv ) = Q(Λ t0 , Λt0 )(v, v ) ∀v, v ∈ Λ t0 . (9) 
Let us choose and fix a Lagrangian

L in (R 2n , Ω 0 ). Consider a smooth path of Lagrangians Λ : [a, b] → L n . A crossing for Λ is a number t ∈ [a, b] for which dim Λ t ∩ L = 0. At each crossing time t ∈ [a, b] one defines the crossing form Γ(Λ, L, t) = Q Λ t , Λt Λt∩L . ( 10 
)
A crossing t is called regular if the crossing form Γ(Λ, L, t) is nondegenerate. In that case Λ s ∩ L = {0} for s = t in a neighborhood of t.

Definition 13 ([RS93]

). For a curve Λ : [a, b] → L n with only regular crossings the Robbin-Salamon index is defined as

µ RS (Λ, L) = 1 2 Sign Γ(Λ, L, a) + a<t<b t crossing Sign Γ(Λ, L, t) + 1 2 Sign Γ(Λ, L, b). (11)
Robbin and Salamon show (Lemmas 2.1 and 2.2 in [START_REF] Robbin | The Maslov index for paths[END_REF]) that two paths with only regular crossings which are homotopic with fixed endpoints have the same Robbin-Salamon index and that every continuous path of Lagrangians is homotopic with fixed endpoints to one having only regular crossings. The Robbin-Salamon index of a continuous path Λ of Lagrangians is defined as the Robbin-Salamon index of a path which has only regular crossings and which is homotopic to Λ with fixed endpoints.

This index depends on the choice of the reference Lagrangian L. Robbin and Salamon show ([RS93], Theorem 2.3): Theorem 14 ( [START_REF] Robbin | The Maslov index for paths[END_REF]). The index µ RS has the following properties:

1. (Naturality) For ψ ∈ Sp(R 2n , Ω) µ RS (ψΛ, ψL) = µ RS (Λ, L). 2. (Catenation) For a < c < b, µ RS (Λ, L) = µ RS (Λ | [a,c] , L) + µ RS (Λ | [c,b] , L). 3. (Product) If n + n = n, identify L n × L n as a submanifold of L n in the obvious way. Then µ RS (Λ ⊕ Λ , L ⊕ L ) = µ RS (Λ , L ) + µ RS (Λ , L ). 4. (Localization) If L = R n × {0} and Λ(t) = Gr(A(t))
where A(t) is a path of symmetric matrices, then the index of Λ is given by

µ RS (Λ, L) = 1 2 Sign A(b) -1 2 Sign A(a). 5. (Homotopy) Two paths Λ 0 , Λ 1 : [a, b] → L n with Λ 0 (a) = Λ 1 (a) and Λ 0 (b) = Λ 1 (b)
are homotopic with fixed endpoints if and only if they have the same index.

(Zero) Every path

Λ : [a, b] → Σ k (V ), with Σ k (V ) = { M ∈ L n | dim M ∩ L = k }, has index µ RS (Λ, L) = 0.
4 The Robbin-Salamon index for a path of symplectic matrices

Generalized Conley-Zehnder index

Consider the symplectic vector space (R 2n × R 2n , Ω = -Ω 0 × Ω 0 ). Given any linear map ψ : R 2n → R 2n , its graph

Gr ψ = {(x, ψx)|x ∈ R 2n } is a 2n-dimensional subspace of R 2n × R 2n which is Lagrangian if and only if ψ is symplectic ψ ∈ Sp(R 2n , Ω 0 ) .
A particular Lagrangian is given by the diagonal

∆ = Gr Id = {(x, x)|x ∈ R 2n }. (12) 
Remark that Gr(-ψ) is a Lagrangian subspace which is always supplementary to Gr ψ for ψ ∈ Sp(R 2n , Ω 0 ). In fact Gr φ and Gr ψ are supplementary if and only if φ -ψ is invertible.

Definition 15. The Robbin-Salamon index of a continuous path of symplectic matrices ψ :

[0, 1] → Sp(R 2n , Ω 0 ) : t → ψ t is defined as the Robbin-Salamon index of the path of Lagrangians in (R 2n × R 2n , Ω), Λ = Gr ψ : [0, 1] → L 2n : t → Gr ψ t
when the fixed Lagrangian is the diagonal ∆:

µ RS (ψ) := µ RS (Gr ψ, ∆). ( 13 
)
Note that this index is defined for any continuous path of symplectic matrices but can have half integer values. It is used in the definition of the grading of some homologies, for instance Morse-Bott symplectic homology.

A crossing for a smooth path Gr ψ is a number t ∈ [0, 1] for which 1 is an eigenvalue of ψ t and Gr

ψ t ∩ ∆ = { (x, x) | ψ t x = x } is in bijection with Ker(ψ t -Id).
The properties of homotopy, catenation and product of theorem 14 imply that [START_REF] Robbin | The Maslov index for paths[END_REF] • µ RS is invariant under homotopies with fixed endpoints,

• µ RS is additive under catenation of paths and

• µ RS has the product property µ RS (ψ ⊕ ψ ) = µ RS (ψ ) + µ RS (ψ ) as in proposition 8.
The zero property of the Robbin-Salamon index of a path of Lagrangians becomes:

Proposition 16. If ψ : [a, b] → Sp(R 2n , Ω) is a path of matrices such that dim Ker(ψ(t) -Id) = k for all t ∈ [a, b] then µ RS (ψ) = 0. Indeed, Gr ψ t ∩ ∆ = {v ∈ R 2n |ψ t v = v} so dim(Gr ψ t ∩ ∆) = k if and only if dim Ker(ψ(t) -Id) = k.
Proposition 17 (Naturality). Consider two continuous paths of symplectic matrices ψ, φ : [0, 1] → Sp(R 2n , Ω 0 ) and define ψ = φψφ -1 . Then

µ RS (ψ ) = µ RS (ψ) Proof. One has Λ t := Gr ψ t = {(x, φ t ψ t φ -1 t x) | x ∈ R 2n } = {(φ t y, φ t ψ t y) | y ∈ R 2n } = (φ t × φ t ) Gr ψ t = (φ t × φ t )Λ t and (φ t × φ t )∆ = ∆. Furthermore (φ t × φ t ) ∈ Sp(R 2n × R 2n , Ω).
Hence t ∈ [0, 1] is a crossing for the path of Lagrangians Λ = Gr ψ if and only if dim Gr ψ t ∩ ∆ = 0 if and only if dim(φ t × φ t )(Gr ψ t ∩ ∆) = 0 if and only if t is a crossing for the path of Lagrangian Λ = Gr ψ.

By homotopy with fixed endpoints, we can assume that Λ has only regular crossings and φ is locally constant around each crossing t so that

d dt (φψφ -1 )(t) = φ t ψt φ -1 t .
Then at each crossing

Γ(Gr ψ , ∆, t) = Q(Λ t , Λ t )| Gr ψ t ∩∆ = Q((φ t × φ t )Λ t , (φ t × φ t ) Λt )| (φt×φt) Gr ψt∩∆ = Q(Λ t , Λt )| Gr ψt∩∆ • (φ -1 t × φ -1 t ) ⊗ (φ -1 t × φ -1 t )
in view of (9), so that Sign Γ(Gr ψ , ∆, t) = Sign Γ(Gr ψ, ∆, t).

Definition 18. For any smooth path ψ of symplectic matrices, define a path of symmetric matrices S through

ψt = J 0 S t ψ t .
This is indeed possible since ψ t ∈ Sp(R 2n , Ω 0 ) ∀t, thus ψ -1 t ψt is in the Lie algebra sp(R 2n , Ω 0 ) and every element of this Lie algebra may be written in the form J 0 S with S symmetric.

The symmetric bilinear form Q Gr ψ, d dt Gr ψ is given as follows. For any t 0 ∈ [0, 1], write R 2n × R 2n = Gr ψ t0 ⊕ Gr(-ψ t0 ). The linear map α t : Gr ψ t0 → Gr(-ψ t0 ) corresponding to Gr ψ t is obtained from: (x, ψ t x) = (y, ψ t0 y) + α t (y, ψ t0 y) = (y, ψ t0 y) + ( α t y, -ψ t0 α t y) if and only if (Id + α t )y = x and ψ t0 (Id -α t )y = ψ t x, hence ψ -1 t0 ψ t (Id + α t ) = Id -α t and

α t = (Id +ψ -1 t0 ψ t ) -1 (Id -ψ -1 t0 ψ t ) ; d dt α t t0 = -1 2 ψ -1 t0 ψt0 . Thus Q Gr ψ t0 , d dt Gr ψ t0 (v, ψ t0 v), (v , ψ t0 v ) = d dt Ω (v, ψ t0 v), α t (v , ψ t0 v ) t0 = d dt Ω (v, ψ t0 v), ( α t v , -ψ t0 α t v ) t0 = -2Ω 0 v, d dt α t t0 v = Ω 0 (v, ψ -1 t0 ψt0 v ) = Ω 0 (ψ t0 v, J 0 S t0 ψ t0 v ).
Hence the restriction of Q to Ker(ψ t0 -Id) is given by 

Q Gr ψ t0 , d dt Gr ψ t0 (v, ψ t0 v), (v , ψ t0 v ) = v τ S t0 v ∀v, v ∈ Ker(ψ t0 -Id). A crossing t 0 ∈ [0,
µ RS (ψ) = 1 2 Sign Γ(ψ, 0) + t crossing, t ∈]0, 1[ Sign Γ(ψ, t) + 1 2 Sign Γ(ψ, 1). ( 14 
) Proposition 21 ([RS93]). Let ψ : [0, 1] → Sp(R 2n
, Ω 0 ) be a continuous path of symplectic matrices such that ψ(0) = Id and such that 1 is not an eigenvalue of ψ(1) (i.e. ψ ∈ SP(n)). The Robbin-Salamon index of ψ defined by (13) coincides with the Conley-Zehnder index of ψ In particular, for a smooth path ψ ∈ SP(n) having only regular crossings, the Conley-Zehnder index is given by

µ CZ (ψ) = 1 2 Sign Γ(ψ, 0) + t crossing, t ∈]0, 1[ Sign Γ(ψ, t) = 1 2 Sign(S 0 ) + t crossing, t ∈]0, 1[ Sign Γ(ψ, t) (15) 
with S 0 = -J 0 ψ0 .

Proof. Since the Robbin-Salamon index for paths of Lagrangians is invariant under homotopies with fixed endpoints, the Robbin-Salamon index for paths of symplectic matrices is also invariant under homotopies with fixed endpoints. Its restriction to SP(n) is actually invariant under homotopies of paths in SP(n) since for any path in SP(n), the starting point ψ 0 = Id is fixed and the endpoint ψ 1 can only move in a connected component of Sp * (R 2n , Ω 0 ) where no matrix has 1 as an eigenvalue.

To show that this index coincides with the Conley-Zehnder index, it is enough, in view of proposition 9, to show that it satisfies the loop and signature properties.

Let us prove the signature property. Let ψ t = exp(tJ 0 S) with S a symmetric nondegenerate matrix with all eigenvalues of absolute value < 2π, so that Ker(exp(tJ 0 S) -Id) = {0} for all t ∈]0, 1]. Hence the only crossing is at t = 0, where ψ 0 = Id and ψt = J 0 Sψ t so that S t = S for all t and µ CZ (ψ) = 1 2 Sign S 0 = 1 2 Sign S.

To prove the loop property, note that µ RS is additive for catenation and invariant under homotopies with fixed endpoints. The path (φψ) is homotopic to the catenation of φ and ψ; it is thus enough to show that the Robbin-Salamon index of a loop is equal to 2 deg(ρ • φ). Since two loops φ and φ are homotopic if and only if deg(ρ

• φ) = deg(ρ • φ ), it is enough to consider the loops φ n defined by φ n (t) := cos 2πnt -sin 2πnt sin 2πnt cos 2πnt ⊕ a(t) Id 0 0 a(t) -1 Id with a : [0, 1] → R + a smooth curve with a(0) = a(1) = 1 and a(t) = 1 for t ∈]0, 1[. Since ρ φ n (t) = e 2πint , we have deg(φ n ) = n.
The crossings of φ n arise at t = m n with m an integer between 0 and n. At such a crossing, Ker φ n (t) is R 2 for 0 < t < 1 and is R 2n for t = 0 and t = 1. We have φn (t) =

0 -2πn 2πn 0 ⊕ ȧ(t) a(t) Id 0 0 - ȧ(t) a(t) Id φ n (t)
so that, extending ⊕ to symmetric matrices in the obvious way,

S(t) = ( 2πn 0 0 2πn ) ⊕ 0 - ȧ(t) a(t) Id - ȧ(t) a(t) Id 0 .
Thus Sign Γ(φ n , t) = 2 for all crossings t = m n , 0 ≤ m ≤ n. From equation ( 14) we get

µ RS (φ n ) = 1 2 Sign Γ(φ n , 0) + 0<m<n Sign Γ φ n , m n + 1 2 Sign Γ(φ n , 1) = 1 + 2(n -1) + 1 = 2n = 2 deg(ρ • φ n )
and the loop property is proved. Thus the Robbin-Salamon index for paths in SP(n) coincides with the Conley-Zehnder index.

The formula for the Conley-Zehnder index of a path ψ ∈ SP(n) having only regular crossings, follows then from (14). Indeed, we have Ker(ψ 1 -Id) = {0}, while Ker(ψ 0 -Id) = R 2n and Γ(ψ, 0) = S 0 . Definition 22. A symplectic shear is a path of symplectic matrices of the form 

ψ t = Id B(t)
µ RS (ψ) = 1 2 Sign B(0) -1 2 Sign B(1).
Proof. We write

B(t) = A(t) τ D(t)A(t) with A(t) ∈ O(R n ) and D(t) a diagonal matrix. The matrix φ t = A(t) τ 0 0 A(t)
is in Sp(R 2n , Ω 0 ) and

ψ t := φ t ψ t φ -1 t = Id D(t) 0 Id
.

By proposition 17 µ RS (ψ) = µ RS (ψ ); by the product property it is enough to show that µ

RS (ψ) = 1 2 Sign d(0) -1 2 Sign d(1) for the path ψ : [0, 1] → Sp(R 2 , Ω 0 ) : t → ψ t = 1 d(t) 0 1
. Since µ RS is invariant under homotopies with fixed endpoints, we may assume

ψ t = a(t) d(t) c(t) a(t) -1 1+d(t)c(t)
with a and c smooth functions such that a(0) = 1, a(1) = 1, ȧ(0) = 0, ȧ(1) = 0 and a(t) > 1 for 0 < t < 1; c(0) = c(1) = 0, c(t)d(t) ≥ 0 ∀t and ċ(t) = 0 (resp.= 0) when d(t) = 0 (resp.= 0) for t = 0 or 1. The only crossings are t = 0 and t = 1 since the trace of ψ(t) is > 2 for 0 < t < 1. Now, at those points ( t = 0 and t = 1) ψt = ȧ(t)

ḋ(t) ċ(t) -ȧ(t)+d(t) ċ(t) so that S t = -J 0 ψt ψ -1 t = ċ(t) -ȧ(t) -ȧ(t) ȧ(t)d(t)-ḋ(t)
. Clearly, at the crossings, we have Ker ψ t = R 2 iff d(t) = 0 and Ker ψ t is spanned by the first basis element iff d(t) = 0, so that from definition 19

Γ(ψ, t) = ċ(t) when d(t) = 0 and Γ(ψ, t) = 0 -ȧ(t) -ȧ(t) 0 when d(t) = 0.
Hence both crossings are regular and Sign Γ(ψ, t) = Sign ċ(t) when d(t) = 0 and Sign Γ(ψ, t) = 0 when d(t) = 0. Since d(t)c(t) ≥ 0 for all t, we clearly have Sign ċ(0) = Sign d(0) and Sign ċ(1) = -Sign d(1). Proposition 20 then gives µ RS (ψ) = 1 2 Γ(ψ, 0) + 1 2 Sign Γ(ψ, 1) = 1 2 Sign d(0) -1 2 Sign d(1). Remark 24. Robbin and Salamon introduce another index µ RS , called Maslov index, for paths of symplectic matrices built from their index for paths of Lagrangians. It is associated to the choice of a Lagrangian. Considering the fixed Lagrangian L = {0} × R n in (R 2n , Ω 0 ), and observing that AL is Lagrangian for any A ∈ Sp(R 2n , Ω 0 ), they define, for ψ :

[0, 1] → Sp(R 2n , Ω 0 ) µ RS (ψ) := µ RS (ψL, L). (16) 
They prove the following properties for this Maslov index.

• It is invariant under homotopies with fixed endpoints and two paths with the same endpoints are homotopic with fixed endpoints if and only if they have the same µ RS index;

• it is additive under catenation of paths;

• it has the product property µ RS (ψ ⊕ ψ ) = µ RS (ψ ) + µ RS (ψ );

• it vanishes on a path whose image lies in

{A ∈ Sp(R 2n , Ω 0 ) | dim AL ∩ L = k}
for a given k ∈ {0, . . . , n};

• µ RS (ψ) = 1 2 Sign B(0) -1 2 Sign B(1) when ψ t = Id B(t) 0 Id
. They show that those properties characterize this index.

Remark that this Maslov index, being associated to a path of symplectic matrices and the choice of a Lagrangian, is not invariant by conjugaison. Indeed, consider the path ψ :

[0, 1] → Sp(R 2n , Ω 0 ) : t → ψ t = Id 0 C(t) Id . Since ψ t L ∩ L = L ∀t, µ RS2 (ψ) = 0. On the other hand, if φ = 0 Id -Id 0 and ψ = φψφ -1 , then ψ t = Id -C(t) 0 Id and µ RS (ψ ) = 1 2 Sign C(1) -1 2 Sign C(0) which is in general different from µ RS (ψ).
Hence the two indices µ RS and µ RS defined on paths of symplectic matrices DO NOT coincide in general. The index µ RS vanishes on a path whose image lies into one of the (n + 1) strata defined by {A ∈ Sp(R 2n , Ω 0 ) | dim AL ∩ L = k} for 0 ≤ k ≤ n, whereas the index µ RS vanishes on a path whose image lies into one of the (2n + 1) strata defined by the set of symplectic matrices whose eigenspace of eigenvalue 1 has dimension k (for 0 ≤ k ≤ 2n).

Remark however, that the two indices µ RS and µ RS coincide on symplectic shears.

Characterization of the Robbin-Salamon index

In this section, we prove theorem 1 stated in the introduction. Before proving this theorem, we show that the Robbin-Salamon index is characterized by the fact that it extends Conley-Zehnder index and has all the properties stated in the previous section. This is made explicit in Lemma 26. We then use the characterization of the Conley-Zehnder index given in Proposition 9 to give in Lemma 27 a characterization of the Robbin-Salamon index in terms of six properties. We use explicitly the normal form of the restriction of a symplectic endomorphism to its generalized eigenspace of eigenvalue 1 that we have proven in [START_REF] Gutt | Normal forms for symplectic matrices[END_REF] and that we summarize in the following proposition Proposition 25 (Normal form for A |V [λ] for λ = ±1.). Let λ = ±1 be an eigenvalue of A ∈ Sp(R 2n , Ω 0 ) and let V [λ] be the generalized eigenspace of eigenvalue λ. There exists a symplectic basis of V [λ] in which the matrix associated to the restriction of A to V [λ] is a symplectic direct sum of matrices of the form

J(λ, r j ) -1 C(r j , d j , λ) 0 J(λ, r j ) τ
where C(r j , d j , λ) := J(λ, r j ) -1 diag 0, . . . , 0, d j with d j ∈ {0, 1, -1}. If d j = 0, then r j is odd. The dimension of the eigenspace of eigenvalue 1 is given by

2 Card{j | d j = 0} + Card{j | d j = 0}.
For any integer k ≥ 1, the bilinear form on Ker (A -λ Id) 2k defined by

Qk : Ker (A -λ Id) 2k × Ker (A -λ Id) 2k → R (v, w) → Ω((A -λ Id) k v, (A -λ Id) k-1 w) (17) 
is symmetric and we have

j d j = λ k≥1 Signature( Qk ) (18) 
Lemma 26. The Robbin-Salamon index is characterized by the following properties:

1. (Generalization) it is a correspondence µ RS which associates a half integer to any continuous path ψ : [a, b] → Sp(R 2n , Ω 0 ) of symplectic matrices and it coincides with µ CZ on paths starting from the identity matrix and ending at a matrix for which 1 is not an eigenvalue;

2. (Naturality) if φ, ψ : [0, 1] → Sp(R 2n , Ω 0 ), we have µ RS (φψφ -1 ) = µ RS (ψ); = exp tJ 0 ( 0 0 0 B ) with B symmetric, it is equal to µ RS (ψ) = 1 2 Sign B. Proof. We have seen in the previous section that the index µ RS defined by Robbin and Salamon satisfies all the above properties. To see that those properties characterize this index, it is enough to show (since the group Sp(R 2n , Ω 0 ) is connected and since we have the catenation property) that those properties determine the index of any path starting from the identity. Since it must be a generalization of the Conley-Zehnder index and must be additive for catenations of paths, it is enough to show that any symplectic matrix A which admits 1 as an eigenvalue can be linked to a matrix B which does not admit 1 as an eigenvalue by a continuous path whose index is determined by the properties stated. From proposition 25, there is a basis of R 2n such that A is the symplectic direct sum of a matrix which does not admit 1 as eigenvalue and matrices of the form A (1) rj ,dj := J(1,rj ) -1 J(1,rj ) -1 diag(0,...,0,dj ) 0 J(1,rj ) τ ; with d j equal to 0, 1 or -1. The dimension of the eigenspace of eigenvalue 1 for A

(1) rj ,dj is equal to 1 if d j = 0 and is equal to 2 if d j = 0. In view of the naturality and the product property of the index, we can consider a symplectic direct sum of paths with the constant path on the symplectic subspace where 1 is not an eigenvalue and we just have to build a path in Sp(R 2rj , Ω 0 ) from A

(1) rj ,dj to a matrix which does not admit 1 as eigenvalue and whose index is determined by the properties given in the statement. This we do by the catenation of three paths : we first build the path ψ 1 : [0, 1] → Sp(R 2rj , Ω 0 ) defined by ψ 1 (t) := D(t,rj ) -1 D(t,rj ) -1 diag c(t),0,...,0,d(t) and this last matrix does not admit 1 as eigenvalue.

0 D(t,rj ) τ with D(t, r j ) =      1 
Clearly dim ker ψ 1 (t) -Id = 2 for all t ∈ [0, 1] when d j = 0; we now prove that dim ker(ψ 1 (t) -Id) = 1 for all t ∈ [0, 1] when d j = 0. Hence the index of ψ 1 must always be zero by the zero property. To prove that dim ker(ψ 1 (t) -Id) = 1 we have to show the non vanishing of the determinant of the 2r j -1 × 2r j -1 matrix 

                   E t
                  
where E t := D(t, r j ) -1 is upper triangular. This determinant is equal to

(-1) rj +1 c(t)(e -t -1) rj -1 (e t -1) rj -1 + (-1) rj -1 d(t)(1 -t) rj -1 det E (t)
where E (t) is obtained by deleting the first column and the last line in E(t)-Id so given by the (r j -1) × (r j -1) matrix

          
(t-1)e -t (t-1) 2 e -2t ... ... (t-1) r j -1 e -(r j -1)t e -t -1 (t-1)e -2t (t-1) 2 e -3t ... (t-1) r j -2 e -(r j -1)t 0 e -t -1 (t-1)e -2t

. . . 

e -t -1 (t-1)e -2t (t-1 2 )e -3t 0 ... 0 e -t -1 (t-1)e -2t            . Thus det E (t) = (t -1)(e -t -(e -t -1)) det F rj -2 (t)
where

F m (t) :=             (t-1)e -2t (t-1) 2 e -3t ... ... (t-1) r j -2 e -(r j -1)t e -t -1 (t-1)e -2t . . . ... (t-1) r j -3 e -(r j -2)t 0 e -t -1 (t-1)e -2t
. . .

(t-1) r j -3 e -(r j -2)t . . . . . . . . . . . . . . . . . . . . . . . . e -t -1 (t-1)e -2t (t-1 2 )e -3t 0 ... 0 e -t -1 (t-1)e -2t             . and we have det F m (t) = ((t -1)e -2t -(e -t -1)(t -1)e -t ) det F m-1 (t) = (t -1)e -t det F m-1 (t) so that, by induction on m, det F m (t) = (t -1) m e -(m+1)t
hence the determinant we have to study is (-1) rj -1 c(t)(2 -e t -e -t ) rj -1 + d(t)(t -1) rj det F rj -2 (t) which is equal to (-1) rj -1 c(t)(2 -e t -e -t ) rj -1 + d(t)(t -1) rj (t -1) rj -2 e -(rj -1)t hence to c(t)(e t + e -t -2) rj -1 + d(t)(1 -t) 2rj -2 e -(rj -1)t which never vanishes if c(t) = td j and d(t) = (1 -t)d j since e t + e -t -2 and (1 -t) are ≥ 0.

We then construct a path ψ 2 : [0, 1] → Sp(R 2rj , Ω 0 ) which is constant on the symplectic subspace where 1 is not an eigenvalue and which is a symplectic shear on the first two dimensional symplectic vector space, i.e.

ψ 2 (t) := 1 (1-t)dj 0 1 ⊕ e -1 Idr j -1 0 0 e Idr j -1 ; then the index of ψ 2 is equal to 1 2 Sign d j . Observe that ψ 2 is constant if d j = 0; then the index of ψ 2 is zero. In all cases ψ 2 (1) = Id 2 ⊕ e -1 Idr j -1 0 0 e Idr j -1 . We then build ψ 3 : [0, 1] → Sp(R 2rj , Ω 0 ) given by ψ 3 (t) := e -t 0 0 e t ⊕ e -1 Idr j -1 0 0 e Idr j -1
which is the direct sum of a path whose Conley-Zehnder index is known and a constant path whose index is zero. Clearly 1 is not an eigenvalue of ψ 3 (1).

of the form ( 0 0 0 B ) where B is symmetric and may be degenerate. The index of the path ψ t = exp tJ 0 S is equal to the index of the path ψ t = exp tλJ 0 S for any λ > 0. Hence the signature and shear conditions, in view of the product condition, can be simultaneously written as: if S = S τ ∈ R 2n×2n is a symmetric matrix with all eigenvalues of absolute value < 2π and if ψ(t) = exp(J 0 St) for t ∈ [0, 1] , then µ RS (ψ) = 1 2 Sign S. This is the normalization condition stated in the theorem.

From Lemma 27, we just have to prove that the product property is a consequence of the other properties. We prove it for paths with values in Sp(R 2n , Ω 0 ) by induction on n, the case n = 1 being obvious. Since ψ ⊕ ψ is homotopic with fixed endpoints to the catenation of ψ ⊕ ψ (0) and ψ (1) ⊕ ψ , it is enough to show that the index of A ⊕ ψ is equal to the index of ψ for any fixed A ∈ Sp(R 2n , Ω 0 ) with n < n and any continuous path ψ : [0, 1] → Sp(R 2n , Ω 0 ) with n < n.

Using the proof of lemma 26, any symplectic matrix A can be linked by a path φ(s) with constant dimension of the 1-eigenspace to a matrix of the form exp(J 0 S ) with S a symmetric n × n matrix with all eigenvalues of absolute value < 2π. The index of A ⊕ ψ is equal to the index of exp(J 0 S ) ⊕ ψ; indeed A ⊕ ψ is homotopic with fixed endpoints to the catenation of the three paths φ s ⊕ ψ(0), exp(J 0 S ) ⊕ ψ and the path φ s ⊕ ψ(1) in the reverse order, and the index of the first and third paths are zero since the dimension of the 1-eigenspace does not vary along those paths.

Hence it is enough to show that the index of exp(J 0 S ) ⊕ ψ is the same as the index of ψ. This is true because the map µ sending a path ψ in Sp(R 2n , Ω 0 ) (with n < n) to the index of exp(J 0 S ) ⊕ ψ has the four properties stated in the theorem, and these characterize the Robbin-Salamon index for those paths by induction hypothesis. It is clear that µ is invariant under homotopies, additive for catenation and equal to zero on paths ψ for which the dimension of the 1-eigenspace is constant. Furthermore µ(exp t(J 0 S)) which is the index of exp(J 0 S ) ⊕ exp t(J 0 S) is equal to 1 2 Sign S, because the path exp tJ 0 (S ⊕ S) whose index is 1 2 Sign(S ⊕ S) = 1 2 Sign S + 1 2 Sign S is homotopic with fixed endpoints with the catenation of exp t(J 0 S ) ⊕ Id = exp tJ 0 (S ⊕ 0), whose index is 1 2 Sign S , and the path exp(J 0 S ) ⊕ exp t(J 0 S).

A formula for the Robbin-Salamon index

Let ψ : [0, 1] → Sp(R 2n , Ω 0 ) be a path of symplectic matrices. The symplectic transformation ψ(1) of V = R 2n decomposes as

ψ(1) = ψ (1) ⊕ ψ (1) (1)
where ψ (1) does not admit 1 as eigenvalue and ψ (1) (1) is the restriction of ψ(1) to the generalized eigenspace of eigenvalue 1

ψ(1)| V [1] .
Theorem 28. Let ψ : [0, 1] → Sp(R 2n , Ω 0 ) be a path of symplectic matrices. Decompose ψ(0) = ψ (0) ⊕ ψ (1) (0) and ψ(1) = ψ (1) ⊕ ψ (1) (1) where ψ (0) (resp. ψ (1)) does not admit 1 as eigenvalue and ψ (1) (0) (resp. ψ (1) (1)) is the restriction of ψ(0) (resp. ψ(1)) to the generalized eigenspace of eigenvalue 1 of ψ(0) (resp. ψ(1)). Consider a prolongation Ψ : [-1, 2] → Sp(R 2n , Ω 0 ) of ψ such that

• Ψ(t) = ψ(t) ∀t ∈ [0, 1];

• Ψ -1 2 = ψ (0) ⊕ e -1 Id 0 0 e Id and Ψ(t) = ψ (0) ⊕ φ 0 (t) where φ 0 (t) has only real positive eigenvalues for t ∈ -1 2 , 0 ;

• Ψ 3 2 = ψ (1) ⊕ e -1 Id 0 0 e Id and Ψ(t) = ψ (1) ⊕ φ 1 (t) where φ 1 (t) has only real positive eigenvalues for t ∈ 1, 3 2 ;

• Ψ(-1) = W ± , Ψ(2) = W ± and Ψ(t) ∈ Sp (R 2n , Ω 0 ) for t ∈ -1, -

1 2 ∪ 3 2 , 2 . Then µ RS (ψ) = deg(ρ 2 • Ψ) + 1 2 d (0) i -1 2 d (1) j . 
Remark that we can replace in the formula above ρ by ρ as in proposition 10. By proposition 25, we have theorem 2 : Remark 29. The advantage of this new formula is that to compute the index of a path whose crossing with the Maslov cycle is non transverse we do not need to perturb the path. The drawback is that we have to extend the initial path.

0

  Id with B(t) symmetric. Proposition 23. The Robbin-Salamon index of a symplectic shear ψ t = Id B(t) 0 Id , with B(t) symmetric, is equal to

3.

  (Homotopy) it is invariant under homotopies with fixed endpoints; 4. (Catenation) it is additive under catenation of paths; 5. (Product) it has the product property µ RS (ψ ⊕ ψ ) = µ RS (ψ ) + µ RS (ψ ); 6. (Zero) it vanishes on any path ψ : [a, b] → Sp(R 2n , Ω) of matrices such that dim Ker(ψ(t) -Id) = k is constant on [a, b]; 7. (Shear)on a symplectic shear , ψ : [0, 1] → Sp(R 2n , Ω 0 ) of the form ψ t = Id -tB 0 Id = exp t 0 -B 0 0

,

  and with c(t) = td j , d(t) = (1 -t)d j . Observe that ψ 1 (0) = A (1)rj ,dj and ψ 1 (1) is the symplectic direct sum of 1 c(1

(t- 1 )

 1 r j -3 e -(r j -2)t

µ

  RS (ψ) = deg(ρ 2 • Ψ) +

  1] is thus regular for the smooth path Gr ψ if and only if the restriction of S t0 to Ker(ψ t0 -Id) is nondegenerate.Definition 19 ([RS93]). Let ψ : [0, 1] → Sp(R 2n , Ω 0 ) : t → ψ t be a smooth path of symplectic matrices. Write ψt = J 0 S t ψ t with t → S t a path of symmetric matrices. A number t ∈ [0, 1] is called a crossing if det(ψ t -Id) = 0. For t ∈ [0, 1],the crossing form Γ(ψ, t) is defined as the quadratic form which is the restriction of S t to Ker(ψ t -Id). A crossing t 0 is called regular if the crossing form Γ(ψ, t 0 ) is nondegenerate.

Proposition 20 ([RS93]

). For a smooth path ψ : [0, 1] → Sp(R 2n , Ω 0 ) : t → ψ t having only regular crossings, the Robbin-Salamon index introduced in definition 15 is given by
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Combining the above with the characterization of the Conley-Zehnder index, we now prove:

Lemma 27. The Robbin-Salamon index for a path of symplectic matrices is characterized by the following properties:

• (Homotopy) it is invariant under homotopies with fixed endpoints;

• (Catenation) it is additive under catenation of paths;

• (Zero) it vanishes on any path ψ : [a, b] → Sp(R 2n , Ω) of matrices such that dim Ker(ψ(t

is a symmetric non degenerate matrix with all eigenvalues of absolute value < 2π and if ψ(t) = exp(J 0 St) for t ∈ [0, 1] , then µ RS (ψ) = 1 2 Sign S where Sign S is the signature of S;

Remark first that the invariance by homotopies with fixed endpoints, the additivity under catenation and the zero property imply the naturality; they also imply the constancy on the components of SP(n). The signature property stated above is the signature property which arose in the characterization of the Conley-Zehnder index given in proposition 9. To be sure that our index is a generalization of the Conley-Zehnder index, there remains just to prove the loop property. Since the product of a loop φ and a path ψ starting at the identity is homotopic to the catenation of φ and ψ, it is enough to prove that the index of a loop φ with φ(0) = φ(1) = Id is given by 2 deg(ρ • φ). Since two loops φ and φ are homotopic if and only if deg(ρ

n , it is enough to show, using the homotopy, catenation, product and zero properties that the index of the loop given by φ(t) = cos 2πt -sin 2πt sin 2πt cos 2πt

for t ∈ [0, 1] is equal to 2. This is true, using the signature property, writing φ as the catenation of the path ψ 1 (t) := φ( t 2 ) = exp tJ 0 ( π 0 0 π ) for t ∈ [0, 1] whose index is 1 and the path ψ 2 (t) := φ( t 2 ) = exp tJ 0 ( π 0 0 π ) for t ∈ [1, 2]. We introduce the path in the reverse direction ψ - 2 (t) := exp -tJ 0 ( π 0 0 π ) for t ∈ [0, 1] whose index is -1; since the catenation of ψ - 2 and ψ 2 is homotopic to the constant path whose index is zero, the index of φ 1 is given by the index of ψ 1 minus the index of ψ - 2 hence is equal to 2.

We are now ready to prove the characterization of the Robbin-Salamon index stated in the introduction.

Proof of theorem 1. Observe that any symmetric matrix can be written as the symplectic direct sum of a non degenerate symmetric matrix S and a matrix S By proposition 25, there exists a symplectic matrix A such that Aψ (1) (1)A -1 is equal to

with each d

(1)

, Ω 0 ) such that ϕ(0) = Id and ϕ(1) = A. We define

It is a path from ψ(1) to the matrix defined in 19. Clearly, µ RS (ψ I ) = 0 and ρ is constant on ψ I . Let ψ II : [0, 1] → Sp(R 2n , Ω 0 ) be the path from ψ I (1) to

defined as in the proof of lemma 26 in each block by

j ,0,...,0,(1-t)d . Note that µ RS (ψ III ) = 1 2 j d

(1) j by proposition 23 and ρ is constant on ψ III . Finally, consider ψ IV :

which is given by ψ (1) ⊕ e -t 0 0 e t ⊕ e -1 Id 0 0 e Id . Note that µ RS (ψ IV ) = 0, ρ is constant on ψ IV and ψ IV (1) is in Sp (R 2n , Ω 0 ). Since two paths of matrices with fixed ends are homotopic if and only if their image under ρ are homotopic, the catenation of the paths ψ III and ψ IV is homotopic to any path from ψ I (1) to ψ (1) ⊕ e Id 0 0 e -1 Id of the form ψ (1) ⊕ ) ⊕ φ 1 (t) where φ 1 (t) has only real positive eigenvalues. We proceed similarly for ψ(0) and we get