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Normal Forms for Symplectic Matrices

We give a self contained and elementary description of normal forms for symplectic matrices, based on geometrical considerations. The normal forms in question are expressed in terms of elementary Jordan matrices and integers with values in {-1, 0, 1} related to signatures of quadratic forms naturally associated to the symplectic matrix.

Hence the eigenvalues of A arise in "quadruples"

We find a symplectic basis of V C so that A is a symplectic direct sum of blockupper-triangular matrices of the form

Here, J(λ, k) is the elementary k × k Jordan matrix corresponding to an eigenvalue λ, D(k, s) is the diagonal k × k matrix

Introduction

Let V be a real vector space of dimension 2n with a non degenerate skewsymmetric bilinear form Ω. The symplectic group Sp(V, Ω) is the set of linear transformations of V which preserve Ω: Sp(V, Ω) = { A : V → V | A linear and Ω(Au, Av) = Ω(u, v) for all u, v ∈ V } .

A symplectic basis of the symplectic vector space (V, Ω) of dimension 2n is a basis {e 1 , . . . , e 2n } in which the matrix representing the symplectic form is Ω 0 = 0 Id -Id 0 . In a symplectic basis, the matrix A representing an element A ∈ Sp(V, Ω) belongs to

Sp(2n, R) = A ∈ M at(2n × 2n, R) | A τ Ω 0 A = Ω 0
where (•) τ denotes the transpose of a matrix. Given an element A in the symplectic group Sp(V, Ω), we want to find a symplectic basis of V in which the matrix A representing A has a distinguished form; to give a normal form for matrices in Sp(2n, R) means to describe a distinguished representative in each conjugacy class. In general, one cannot find a symplectic basis of the complexified vector space for which the matrix representing A has Jordan normal form.

The normal forms considered here are expressed in terms of elementary Jordan matrices and matrices depending on an integer s ∈ {-1, 0, 1}. They are closely related to the forms given by Long in [START_REF] Long | Normal forms of symplectic matrices[END_REF][START_REF] Long | Index theory for symplectic paths with applications[END_REF] ; the main difference is that, in those references, some indeterminacy was left in the choice of matrices in each conjugacy class, in particular when the matrix admits 1 as an eigenvalue. We speak in this case of quasi-normal forms. Other constructions can be found in [START_REF] Wimmer | Normal forms of symplectic pencils and the discretetime algebraic Riccati equation[END_REF][START_REF] Laub | Canonical forms for symplectic and Hamiltonian matrices[END_REF][START_REF] Lin | Canonical forms for Hamiltonian and symplectic matrices and pencils[END_REF][START_REF] Spence | m-symplectic matrices[END_REF][START_REF] Müller | Normal forms of involutive complex Hamiltonian matrices under the real symplectic group[END_REF] but they are either quasi-normal or far from Jordan normal forms. Closely related are the constructions of normal forms for real matrices that are selfadjoint, skewadjoint or unitary with respect to an indefinite inner product where sign characteristics are introduced; they have been studied in many sources; for instance -mainly for selfadjoint and skewadjoint matrices-in the monograph of I. Gohberg, P. Lancaster and L. Rodman [START_REF] Gohberg | Indefinite Linear Algebra and Applications[END_REF], and for unitary matrices in the papers [START_REF] Au-Yeung | H-unitary and Lorentz matrices : a review[END_REF][START_REF] Gohberg | On H-unitary and block-Toeplitz H-normal operators[END_REF][START_REF] Mehl | On classification of polynomially normal matrices in indefinite inner product spaces[END_REF][START_REF] Rodman | Similarity vs unitary similarity : Complex and real indefinite inner products[END_REF]. Normal forms for symplectic matrices have been given by C. Mehl in [START_REF] Mehl | Essential decomposition of normal matrices in real indefinite inner product spaces[END_REF] and by V. Sergeichuk in [START_REF] Sergeichuk | Classification problems for systems of forms and linear mappings[END_REF] ; in those descriptions, the basis producing the normal form is not required to be symplectic.

We construct here normal forms using elementary geometrical methods. The choice of representatives for normal (or quasi normal) forms of matrices depends on the application one has in view. Quasi normal forms were used by Long to get precise formulas for indices of iterates of Hamiltonian orbits in [START_REF] Long | Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics[END_REF]. The forms obtained here were useful for us to give new characterisations of Conley-Zehnder indices of general paths of symplectic matrices [START_REF] Gutt | Generalized Conley-Zehnder index[END_REF]. We have chosen to give a normal form in a symplectic basis. The main interest of our description is the natural interpretation of the signs appearing in the decomposition, and the description of the decomposition for matrices with 1 as an eigenvalue. It also yields an easy natural characterization of the conjugacy class of an element in Sp(2n, R). We hope it can be useful in other situations.

Assume that V decomposes as a direct sum V = V 1 ⊕V 2 where V 1 and V 2 are Ω-orthogonal A-invariant subspaces. Suppose that {e 1 , . . . , e 2k } is a symplectic basis of V 1 in which the matrix representing A| V1 is A =

A 1 A 2 A 3 A 4
. Suppose also that {f 1 , . . . , f 2l } is a symplectic basis of V 2 in which the matrix representing

A| V2 is A = A 1 A 2 A 3 A 4
. Then {e 1 , . . . , e k , f 1 , . . . , f l , e k+1 , . . . , e 2k , f l+1 , . . . , f 2l } is a symplectic basis of V and the matrix representing A in this basis is

    A 1 0 A 2 0 0 A 1 0 A 2 A 3 0 A 4 0 0 A 3 0 A 4     .
The notation A A is used in Long [START_REF] Long | Precise iteration formulae of the Maslov-type index theory and ellipticity of closed characteristics[END_REF] for this matrix. It is "a direct sum of matrices with obvious identifications". We call it the symplectic direct sum of the matrices A and A .

We C-linearly extend Ω to the complexified vector space V C and we C- with s an integer in {-1, 0, 1}. Each s ∈ {±1} is called a sign and the collection of such signs appearing in the decomposition of a matrix A is called the sign characteristic of A.

linearly extend any A ∈ Sp(V, Ω) to V C . If v λ
More precisely, on the real vector space V , we shall prove:

Theorem 1 (Normal forms for symplectic matrices) Any symplectic endomorphism A of a finite dimensional symplectic vector space (V, Ω) is the direct sum of its restrictions

A |V [λ] to the real A-invariant symplectic subspace V [λ]
whose complexification is the direct sum of the generalized eigenspaces of eigenvalues λ, 1 λ , λ and 1 λ :

V C [λ] := E λ ⊕ E 1 λ ⊕ E λ ⊕ E 1 λ .
We distinguish three cases : λ / ∈ S 1 , λ = ±1 and λ ∈ S 1 \ {±1}.

Normal form for A |V

[λ] for λ / ∈ S 1 : Let λ / ∈ S 1 be an eigenvalue of A. Let k := dim C Ker(A -λ Id) (on V C
) and q be the smallest integer so that (A -λ Id) q is identically zero on the generalized eigenspace E λ .

• If λ is a real eigenvalue of A (λ / ∈ S 1 so λ = ±1), there exists a symplectic basis of V [λ] in which the matrix representing the restriction of A to V [λ] is a symplectic direct sum of k matrices of the form

J(λ, q j ) -1 0 0 J(λ, q j ) τ with q = q 1 ≥ q 2 ≥ • • • ≥ q k and J(λ, m) is the elementary m × m Jordan matrix associated to λ J(λ, m) =      λ 1 λ 1 0 λ 1 . . . . . . 0 λ 1 λ 1 λ      .
This decomposition is unique, when λ has been chosen in {λ, λ -1 }. It is determined by the chosen λ and by the dimension dim Ker(A -λ Id) r for each r > 0.

• If λ = re iφ / ∈ (S 1 ∪ R) is a complex eigenvalue of A, there exists a symplectic basis of V [λ] in which the matrix representing the restriction of A to V [λ] is a symplectic direct sum of k matrices of the form

J R re -iφ , 2q j -1 0 0 J R re -iφ , 2q j τ with q = q 1 ≥ q 2 ≥ • • • ≥ q k and J R (re iφ , k) is the 2m × 2m block upper triangular matrix defined by J R (re iφ , 2m) :=         R(re iφ ) Id R(re iφ ) Id 0 R(re iφ ) Id . . . . . . 0 R(re iφ ) Id R(re iφ ) Id R(re iφ )        
with R(re iφ ) = r cos φ -r sin φ r sin φ r cos φ . This decomposition is unique, when λ has been chosen in {λ, λ -1 , λ, λ -1 }.

It is is determined by the chosen λ and by the dimension dim Ker(Aλ Id) r for each r > 0.

Normal form for A |V [λ] for λ = ±1 : Let λ = ±1 be an eigenvalue of A. There exists a symplectic basis of V [λ] in which the matrix representing the restriction of A to V [λ] is a symplectic direct sum of matrices of the form

J(λ, r j ) -1 C(r j , s j , λ) 0 J(λ, r j ) τ
where C(r j , s j , λ) := J(λ, r j ) -1 diag 0, . . . , 0, s j with s j ∈ {0, 1, -1}. If s j = 0, then r j is odd. The dimension of the eigenspace of the eigenvalue λ is given by

2 Card{j | s j = 0} + Card{j | s j = 0}.
The number of s j equal to +1 (resp. -1) arising in blocks of dimension 2k (i.e. with corresponding r j = k) is equal to the number of positive (resp. negative) eigenvalues of the symmetric 2-form

Qλ 2k : Ker (A -λ Id) 2k × Ker (A -λ Id) 2k → R (v, w) → λ Ω (A -λ Id) k v, (A -λ Id) k-1 w .
The decomposition is unique up to a permutation of the blocks and is determined by λ, by the dimension dim Ker(A -λ Id) r for each r ≥ 1, and by the rank and the signature of the symmetric bilinear 2-form Qλ 2k for each k ≥ 1. Normal form for A |V [λ] for λ ∈ S 1 \ {±1} : Let λ ∈ S 1 , λ = ±1 be an eigenvalue of A. There exists a symplectic basis of V [λ] in which the matrix representing the restriction of A to V [λ] is a symplectic direct sum of 4k j × 4k j matrices (k j ≥ 1) of the form

   J R (λ,2kj ) -1 0 . . . 0 ••• ••• 0 . . . 0 sj V 1 k j (φ) sj V 2 k j (φ) ) 0 J R (λ,2kj ) τ    (2) 
and (4k j + 2) × (4k j + 2) matrices (k j ≥ 0) of the form

          J R (λ,2kj ) -1 sj U 2 k j (φ) 0 . . . 0 ••• ••• 0 . . . 0 s j 2 V 2 k j (φ) -s j 2 V 1 k j (φ) U 1 k j (φ) 0 cos φ 0 ... 0 1 0 sj sin φ 0 0 . . . 0 J R (λ,2kj ) τ 0 . . . 0 0 -sj sin φ 0 ... 0 0 -sj cos φ           (3) 
where J R (e iφ , 2k) is defined as above, where

V 1 kj (φ) V 2 kj (φ) is the 2k j ×2 matrix defined by V 1 kj (φ) V 2 kj (φ) =    (-1) kj -1 R(e ikj φ ) . . . R(e iφ )    (4) 
with R(e iφ ) = cos φ -sin φ sin φ cos φ

, where

U 1 kj (φ) U 2 kj (φ) = V 1 kj (φ) V 2 kj (φ) R(e iφ ) (5) 
and where s j = ±1. The complex dimension of the eigenspace of the eigenvalue λ in V C is given by the number of such matrices. The number of s j equal to +1 (resp. -1) arising in blocks of dimension 2m in the normal decomposition given above is equal to the number of positive (resp. negative) eigenvalues of the Hermitian 2-form Qλ m defined on Ker (A -λ Id) m by:

Qλ m : Ker (A -λ Id) m × Ker (A -λ Id) m → C (v, w) → 1 λ Ω (A -λ Id) k v, (A -λ Id) k-1 w if m = 2k (v, w) → i Ω (A -λ Id) k v, (A -λ Id) k w if m = 2k + 1.
This decomposition is unique up to a permutation of the blocks, when λ has been chosen in {λ, λ}. It is determined by the chosen λ, by the dimension dim Ker(A -λ Id) r for each r ≥ 1 and by the rank and the signature of the Hermitian bilinear 2-form Qλ m for each m ≥ 1.

The normal form for A |V [λ] is given in Theorem 9 for λ / ∈ S 1 , in Theorem 10 for λ = ±1, and in Theorem 15 for λ ∈ S 1 \ {±1}. The characterisation of the signs is given in Proposition 12 for λ = ±1 and in Proposition 17 for λ ∈ S 1 \ {±1}.

A direct consequence of Theorem 1 is the following characterization of the conjugacy class of a matrix in the symplectic group.

Theorem 2

The conjugacy class of a matrix A ∈ Sp(2n, R) is determined by the following data:

• the eigenvalues of A which arise in quadruples [λ] = {λ, λ -1 , λ, λ -1 };

• the dimension dim Ker(A -λ Id) r for each r ≥ 1 for one eigenvalue in each class [λ];

• for λ = ±1, the rank and the signature of the symmetric form Qλ 2k for each k ≥ 1 and for an eigenvalue λ in S 1 \ {±1} chosen in each [λ], the rank and the signature of the Hermitian form Qλ m for each m ≥ 1, with

Qλ m : Ker (A -λ Id) m × Ker (A -λ Id) m → C (v, w) → 1 λ Ω (A -λ Id) k v, (A -λ Id) k-1 w if m = 2k (v, w) → i Ω (A -λ Id) k v, (A -λ Id) k w if m = 2k + 1.
1 Preliminaries

Lemma 3 Consider A ∈ Sp(V, Ω) and let 0 = λ ∈ C. Then Ker(A -λ Id) j in V C is the symplectic orthogonal complement of Im(A -1 λ Id) j .
Proof:

Ω (A -λ Id)u, Av = Ω(Au, Av) -λΩ(u, Av) = Ω(u, v) -λΩ(u, Av) = -λΩ u, A -1 λ Id v
and by induction

Ω (A -λ Id) j u, A j v = (-λ) j Ω u, A -1 λ Id j v . (6) 
The result follows from the fact that A is invertible.

Corollary 4 If E λ denotes the generalized eigenspace of eigenvalue λ, i.e E λ := v ∈ V C | (A -λ Id) j v = 0 for an integer j > 0 , we have Ω(E λ , E µ ) = 0 when λµ = 1.
Indeed the symplectic orthogonal complement of E λ = ∪ j Ker(A -λ Id) j is the intersection of the Im(A -1 λ Id) j . By Jordan normal form, this intersection is the sum of the generalized eigenspaces corresponding to the eigenvalues which are not 1 λ .

If v = u + iu is in Ker(A -λ Id) j with u and u in V then v = u -iu is in Ker(A -λ Id) j so that E λ ⊕ E λ is the complexification of a real subspace of V .
From this remark and corollary 4 the space

W [λ] := E λ ⊕ E 1 λ ⊕ E λ ⊕ E 1 λ (7)
is the complexification of a real and symplectic A-invariant subspace V [λ] and

V = V [λ1] ⊕ V [λ2] ⊕ . . . ⊕ V [λ K ] (8) 
where we denote by [λ] the set {λ, λ, 1 λ , 1 λ } and by [λ 1 ] , . . . , [λ K ] the distinct such sets exhausting the eigenvalues of A. We denote by A [λi] the restriction of A to V [λi] . It is clearly enough to obtain normal forms for each A [λi] since A will be a symplectic direct sum of those.

We shall construct a symplectic basis of W [λ] (and of V [λ] ) adapted to A for a given eigenvalue λ of A. We assume that (A -λ Id) p+1 = 0 and (A -λ Id) p = 0 on the generalized eigenspace E λ . Since A is real, this integer p is the same for λ. By lemma 3, Ker(A -λ Id) j is the symplectic orthogonal complement of Im A -1 λ Id j for all j, thus dim Ker(A -λ Id) j = dim Ker A -1 λ Id j ; hence the integer p is the same for λ and 1 λ . We decompose W [λ] (and

V [λ] ) into a direct sum of A-invariant symplectic subspaces. Given a symplectic subspace Z of V [λ] which is A-invariant , its orthogonal complement (with respect to the symplectic 2-form) V := Z ⊥Ω is again symplectic and A-invariant. The generalized eigenspace for A on V C are E µ = V C ∩ E µ ,

and the smallest integer p for which (

A -λ Id) p +1 = 0 on E λ is such that p ≤ p.
Hence, to get the decomposition of W [λ] (and

V [λ]
) it is enough to build a symplectic subspace of W [λ] which is A-invariant and closed under complex conjugation and to proceed inductively. We shall construct such a subspace, containing a well chosen vector v ∈ E λ so that (A -λ Id) p v = 0.

We shall distinguish three cases; first λ / ∈ S 1 then λ = ±1 and finally λ ∈ S 1 \ {±1}.

We first present a few technical lemmas which will be used for this construction.

A few technical lemmas

Let (V, Ω) be a real symplectic vector space. Consider A ∈ Sp(V, Ω) and let λ be an eigenvalue of A in V C . Lemma 5 For any positive integer j, the bilinear map

Q j : E λ /Ker(A -λ Id) j × E 1 λ /Ker A -1 λ Id j → C [v], [w] → Q j [v], [w] := Ω (A -λ Id) j v, w v ∈ E λ , w ∈ E 1 λ ( 9 
)
is well defined and non degenerate. In the formula, [v] denotes the class containing v in the appropriate quotient.

Proof: The fact that Q j is well defined follows from equation ( 6); indeed, for any integer j, we have

Ω (A -λ Id) j u, v = (-λ) j Ω A j u, A -1 λ Id j v . ( 10 
)
The map is non degenerate because

Q j [v], [w] = 0 for all w if and only if (A -λ Id) j v = 0 since Ω is a non degenerate pairing between E λ and E 1 λ , thus if and only if [v] = 0. Similarly, Q j [v], [w] = 0 for all v if and only if w is Ω-orthogonal to Im(A -λ Id) j , thus if and only if w ∈ Ker A -1 λ Id j hence [w] = 0.
Lemma 6 For any v, w ∈ V , any λ ∈ C \ {0} and any integers i ≥ 0, j > 0 we have:

Ω (A -λ Id) i v, A -1 λ Id j w = - 1 λ Ω (A -λ Id) i+1 v, A -1 λ Id j w (11) - 1 λ 2 Ω (A -λ Id) i+1 v, A -1 λ Id j-1 w .
In particular, if λ is an eigenvalue of A, if v ∈ E λ is such that p ≥ 0 is the largest integer for which (A -λ Id) p v = 0, we have for any integers k, j ≥ 0:

Ω (A -λ Id) p+k v, w = (-λ 2 ) j Ω (A -λ Id) p+k-j v, A -1 λ Id j w (12) so that Ω (A -λ Id) p v, w = (-λ 2 ) p Ω v, A -1 λ Id p w (13) 
and

Ω (A -λ Id) k v, A -1 λ Id j w = 0 if k + j > p. (14) 
Proof: We have:

Ω (A -λ Id) i v, A -1 λ Id j w = - 1 λ Ω A -λ Id -A (A -λ Id) i v, A -1 λ Id j w = - 1 λ Ω (A -λ Id) i+1 v, A -1 λ Id j w + 1 λ Ω A(A -λ Id) i v, A -1 λ Id A -1 λ Id j-1 w = - 1 λ Ω (A -λ Id) i+1 v, A -1 λ Id j w + 1 λ Ω (A -λ Id) i v, A -1 λ Id j-1 w - 1 λ 2 Ω A(A -λ Id) i v, A -1 λ Id j-1 w
and formula [START_REF] Mehl | Essential decomposition of normal matrices in real indefinite inner product spaces[END_REF] follows.

For any integers k, j ≥ 0 and any v such that (A -λ Id) p v = 0, we have, by [START_REF] Lin | Canonical forms for Hamiltonian and symplectic matrices and pencils[END_REF],

(-λ) j Ω (A -λ Id) p+k+1-j v, A -1 λ Id j w = Ω (A -λ Id) p+k+1 v, A j w = 0.
Hence, applying formula [START_REF] Mehl | Essential decomposition of normal matrices in real indefinite inner product spaces[END_REF] with a decreasing induction on j, we get formula [START_REF] Müller | Normal forms of involutive complex Hamiltonian matrices under the real symplectic group[END_REF]. The other formulas follow readily.

Definition 7 For λ ∈ S 1 an eigenvalue of A and v ∈ E λ a generalized eigenvector, we define

T i,j (v) := 1 λ i λ j Ω (A -λ Id) i v, (A -λ) j v . (15) 
We have, by equation ( 11) :

T i,j (v) = -T i+1,j (v) -T i+1,j-1 (v), (16) 
and also,

T i,j (v) = -T j,i (v). ( 17 
)
Lemma 8 Let λ ∈ S 1 be an eigenvalue of A and v ∈ E λ be a generalised eigenvector such that the largest integer p so that (A -λ Id) p v = 0 is odd, say, p = 2k -1. Then, in the A-invariant subspace E v λ of E λ generated by v, there exists a vector v generating the same A-invariant subspace

E v λ = E v λ , so that (A -λ Id) p v = 0 and so that T i,j (v ) = 0 for all i, j ≤ k -1.
If λ is real (i.e. ±1), and if v is a real vector (i.e. in V ), the vector v can be chosen to be real as well.

Proof: Observe that 17) is real and can be put to d = ±1 by rescaling the vector. We use formulas [START_REF] Mehl | Essential decomposition of normal matrices in real indefinite inner product spaces[END_REF] and (17) and we proceed by decreasing induction on i + j as follows:

T k,k-1 (v) = -T k,k (v) -T k-1,k (v) by (11) = -T k-1,k (v) by (14) = T k,k-1 (v) by (
• if T k-1,k-1 (v) = α 1 , this α 1 is purely imaginary, we replace v by v := v - α 1 2λd (A -λ Id)v; clearly E v λ = E v λ and T i,j (v ) = T i,j (v) for i + j ≥ 2k -1 but now T k-1,k-1 (v ) = α 1 - α 1 2d T k,k-1 (v) - α 1 2d T k-1,k (v) = 0; so we can now assume T k-1,k-1 (v) = 0; observe that if λ is real and v is in V , then α 1 = 0 and v = v; • if T k-2,k-1 (v) = α 2 = -T k-1,k-2 (v), this α 2 is real and we replace v by v - α 2 2λ 2 d (A -λ Id) 2 v;
the space E v λ does not change and the quantities T i,j (v) do not vary for i + j ≥ 2k -2; now

T k-2,k-1 (v ) = α 2 - α 2 2d T k,k-1 (v) - α 2 2d T k-2,k+1 (v) = 0, hence also T k-1,k-2 (v ) = 0; observe that if λ is real and v is in V , then v is in V .
• we now assume by induction to have a J > 0 so that T i,j (v) = 0 for all 0 ≤ i, j ≤ k -1 so that i + j > 2k -1 -J;

• if T k-J,k-1 (v) = α J , then T k-J,k-1 (v) = (-1) J-1 T k-1,k-J (v) so that α J
is real when J is even and is imaginary when J is odd; we replace v by

v - α J 2λ J d (A -λ Id) J v;
the space E v λ does not change and the quantities T i,j (v) do not vary for i + j ≥ 2k -J; but now

T k-J,k-1 (v ) = α J - α J 2d T k,k-1 (v) - α J 2d T k-J,k+J-1 (v) = α J - α J 2 -(-1) J α J 2 = 0. Hence also T k-J+1,k-2 (v ) = 0, . . . T k-1,k-J+1 (v ) = 0; so the induction proceeds. Observe that if λ is real and v is in V then v is in V .
We shall use repeatedly that a n × n block triangular symplectic matrix is of the form

A = B C 0 D ∈ Sp(2n, R) ⇔ B = (D τ ) -1 C = (D τ ) -1 S with S symmetric. ( 18 
)
2 Normal forms for

A |V [λ] when λ / ∈ S 1 .
As before, p denotes the largest integer such that (A -λ Id) p does not vanish identically on the generalized eigenspace E λ . Let us choose an element v ∈ E λ and an element w ∈ E 1 λ such that

Q p [v], [w] = Ω (A -λ Id) p v, w = 0.
Let us consider the smallest A-invariant subspace E v λ of E λ containing v; it is of dimension p + 1 and a basis is given by

a 0 := v, . . . , a i := (A -λ Id) i v, . . . , a p := (A -λ Id) p v .
Observe that Aa i = (A -λ Id)a i + λa i so that Aa i = λa i + a i+1 for i < p and Aa p = a p .

Similarly, we consider the smallest A-invariant subspace E w

1 λ of E 1
λ containing w; it is also of dimension p + 1 and a basis is given by b 0 := w, . . . , b j := A -1 λ Id j w, . . . b p := A -1 λ Id p w .

One has

Ω(a i , a j ) = 0 and Ω(b i , b j ) = 0 because Ω(E λ , E µ ) = 0 if λµ = 1;
Ω(a i , b j ) = 0 if i + j > p by equation [START_REF] Sergeichuk | Classification problems for systems of forms and linear mappings[END_REF] ;

Ω(a i , b p-i ) = -1 λ 2
p-i Ω A-λ Id p v, w by equation ( 12) and is non zero by the choice of v, w.

The matrix representing Ω in the basis {b p , . . . , b 0 , a 0 , . . . , a p } is thus of the form

      0 0 . . . 0 0 * 0 . . . * * * * . . . 0 * 0 0 . . . 0 0       with non vanishing * . Hence Ω is non degenerate on E v λ ⊕ E w 1 λ
which is thus a symplectic A-invariant subspace.

We now construct a symplectic basis b p , . . . , b 0 , a 0 , . . . , a p of

E v λ ⊕ E w 1 λ
, extending {a 0 , . . . , a p }, using a Gram-Schmidt procedure on the b i 's. This gives a normal form for

A on E v λ ⊕ E w 1 λ
.

If λ is real, we take v, w in the real generalized eigenspaces E R λ and E R In the symplectic basis b p , . . . , b 0 , a 0 , . . . , a p the matrix representing A is

B 0 0 J(λ, p + 1) τ where J(λ, m) =      λ 1 λ 1 0 λ 1 . . . . . . 0 λ 1 λ 1 λ      (19) 
is the elementary m × m Jordan matrix associated to λ. Since the matrix is symplectic, B is the transpose of the inverse of J(λ, p + 1) τ by (18), so B = J(λ, p + 1) -1 . This is the normal form for A restricted to

E v λ ⊕ E w 1 λ . If λ = re iφ / ∈ R we consider the symplectic basis {b p , . . . , b 0 , a 0 , . . . , a p } of E v λ ⊕ E w 1 λ
as above and the conjugate symplectic basis {b p , . . . , b 0 , a 0 , . . . , a p } of

E v λ ⊕ E w 1 λ
. Writing b j = 1 √ 2 (u j + iv j ) and a j = 1 √ 2 (w j -ix j ) for all 0 ≤ j ≤ p with the vectors u j , v j , w j , x j in the real vector space V, we get a symplectic basis {u p , v p . . . , u 0 , v 0 , w 0 , x 0 . . . , w p , x p } of the real subspace of V whose complexification is

E v λ ⊕ E w 1 λ ⊕ E v λ ⊕ E w 1 λ
. In this basis, the matrix representing

A is J R λ, 2(p + 1) -1 0 0 J R λ, 2(p + 1)
τ where J R (re iφ , 2m) is the 2m × 2m matrix written in terms of 2 × 2 matrices as

J R (re iφ , 2m) :=         R(re iφ ) Id R(re iφ ) Id 0 R(re iφ ) Id . . . . . . 0 R(re iφ ) Id R(re iφ ) Id R(re iφ )         (20)
with R(re iφ ) = r cos φ -r sin φ r sin φ r cos φ . By induction, we get Theorem 9 (Normal form for A |V [λ] for λ / ∈ S 1 .) Let λ / ∈ S 1 be an eigenvalue of A. Denote k := dim C Ker(A -λ Id) (on V C ) and p the smallest integer so that (A -λ Id) p+1 is identically zero on the generalized eigenspace E λ .

• If λ = ±1 is a real eigenvalue of A, there exists a symplectic basis of V [λ] in which the matrix representing the restriction of A to V [λ] is a symplectic direct sum of k matrices of the form J(λ, p j + 1) -1 0 0 J(λ, p j + 1) τ with p = p 1 ≥ p 2 ≥ • • • ≥ p k and J(λ, k) defined by (19). To eliminate the ambiguity in the choice of λ in [λ] = {λ, λ -1 } we can consider the real eigenvalue such that λ > 1. The size of the blocks is determined knowing the dimension dim (Ker(A -λ Id) r ) for each r ≥ 1.

• If λ = re iφ / ∈ (S 1 ∪ R) is a complex eigenvalue of A, there exists a symplectic basis of V [λ] in which the matrix representing the restriction of A to V [λ] is a symplectic direct sum of k matrices of the form J R re -iφ , 2(p j + 1)

-1 0 0 J R re -iφ , 2(p j + 1) τ with p = p 1 ≥ p 2 ≥ • • • ≥ p k and J R (re iφ , k
) defined by (20). To eliminate the ambiguity in the choice of λ in [λ] = {λ, λ -1 , λ, λ -1 } we can choose the eigenvalue λ with a positive imaginary part and a modulus greater than 1. The size of the blocks is determined, knowing the dimension dim C (Ker(A -λ Id) r ) for each r ≥ 1.

This normal form is unique, when a choice of λ in the set [λ] is fixed.

3 Normal forms for A |V [λ] when λ = ±1.

In this situation [λ] = {λ} and V [λ] is the generalized real eigenspace of eigenvalue λ, still denoted -with a slight abuse of notation-E λ . Again, p denotes the largest integer such that (A -λ Id) p does not vanish identically on E λ . We consider

Q p : E λ/Ker(A -λ Id) p × E λ/Ker(A -λ Id) p → R the non degenerate form defined by Q p [v],
[w] = Ω (A-λ Id) p v, w . We see directly from equation ( 13) that Q p is symmetric if p is odd and antisymmetric if p is even.

If

p = 2k -1 is odd we choose v ∈ E λ such that Q [v], [v] = Ω (A -λ Id) p v, v = 0
and consider the smallest A-invariant subspace E v λ of E λ containing v; it is spanned by

a p := (A -λ Id) p v, . . . , a i := (A -λ Id) i v, . . . , a 0 := v .
We have Ω(a i , a j ) = 0 if i + j ≥ p + 1(= 2k) by equation [START_REF] Sergeichuk | Classification problems for systems of forms and linear mappings[END_REF]; Ω(a i , a p-i ) = 0; by equation [START_REF] Müller | Normal forms of involutive complex Hamiltonian matrices under the real symplectic group[END_REF] and by the choice of v.

Hence E v λ is a symplectic subspace because, in the basis defined by the e i 's, Ω has the triangular form We can choose v in E λ ⊂ V so that Ω (A -λ Id) k v, (A -λ Id) k-1 v = λs with s = ±1 by rescaling the vector and one may further assume, by lemma 8, that

T i,j (v) = 1 λ i 1 λ j Ω (A -λ Id) i v, (A -λ Id) j v = 0 for all 0 ≤ i, j ≤ k -1.
We now construct a symplectic basis a p , . . . , a k , a 0 , . . . , a k-1 of E v λ , extending {a 0 , . . . , a k-1 }, by a Gram-Schmidt procedure, having chosen v as above. We define inductively on 0 ≤ j ≤ k -1

a p := 1 Ω(ap,a0) a p ; a p-j =
1 Ω(ap-j ,aj ) a p-j -k<j Ω(a p-j , a k )a p-k , so that any a j is a linear combination of the a r 's with r ≥ j and in particular

a k = 1 sλ a k + k-1 j=1 c j a k+j .
In the symplectic basis a p , . . . , a k , a 0 , . . . , a k-1 the matrix representing A is

A = B C 0 J(λ, k) τ
with J(λ, m) defined by ( 19) and with C identically zero except for the last column, and the coefficient C k k = sλ. Since the matrix is symplectic, B is the transpose of the inverse of J(λ, p + 1) τ by ( 18), so B = J(λ, k) -1 and J(λ, k)C is symmetric with zeroes except in the last column, hence diagonal of the form diag 0, . . . , 0, s . Thus

J(λ, k) -1 J(λ, k) -1 diag 0, . . . , 0, s 0 J(λ, k) τ , with s = ±1, is the normal form of A restricted to E v λ . Recall that s = λ -1 Ω (A -λ Id) k v, (A -λ Id) k-1 v .

If p = 2k is even

we choose v and w in E λ such that

Q [v], [w] = Ω (A -λ Id) p v, w = λ p = 1
and we consider the smallest A-invariant subspace

E v λ ⊕ E w λ of E λ containing v and w. It is of dimension 4k + 2. Remark that Ω (A -λ Id) p v, v = 0. We can choose v so that T r,s (v) = 1 λ r+s Ω (A -λ Id) r v, (A -λ Id) s v = 0 for all r, s.
Indeed, by formula [START_REF] Mehl | Essential decomposition of normal matrices in real indefinite inner product spaces[END_REF] 

we have T i,j (v) = -T i+1,j (v) -T i+1,j-1 (v). Observe that T i,j (v) = -T j,i (v) so that T i,i (v) = 0 and T j,i (v) = -T j,i+1 (v)-T j-1,i+1 (v).
We proceed by induction, as in lemma 8 :

• T p,0 (v) = 0 implies T p-r,r (v) = 0 for all 0 ≤ r ≤ p by equation [START_REF] Müller | Normal forms of involutive complex Hamiltonian matrices under the real symplectic group[END_REF].

• We assume by decreasing induction on J, starting from J = p, that we have T i,j (v) = 0 for all i + j ≥ J. Then we have T J-1-s,s (v) = -T J-1-s,s+1 (v) -T J-2-s,s+1 (v); the first term on the righthand side vanishes by the induction hypothesis, so

T J-1,0 (v) = (-1) s T J-1-s,s (v) = (-1) J-1 T 0,J-1 (v) = (-1) J T J-1,0 .
If T J-1,0 (v) = α = 0, J must be even and we replace v by

v = v + α 2λ p-J+1 (A -λ Id) p-J+1 w. Then v ∈ E v λ ⊕ E w λ , E v λ ⊕ E w λ = E v λ ⊕ E w λ , Ω (A -λ Id) p v , w = λ p and T i,j (v ) = T i,j (v) = 0 for all i + j ≥ J but now T J-1,0 (v ) = T J-1,0 (v) + α 2λ p Ω (A -λ Id) p w, v + α 2λ p Ω (A -λ Id) J-1 v, (A -λ Id) p-J+1 w + α 2 4λ p Ω (A -λ Id) p w, (A -λ Id) p-J+1 w = α - α 2 - α 2 = 0
so that T i,j (v ) = 0 for all i + j ≥ J -1 and the induction proceeds.

We assume from now on that we have chosen v and w in E λ so that Ω (A -λ Id) p v, w = 1 and Ω (A -λ Id) r v, (A -1 λ Id) s v = 0 for all r, s. We can proceed similarly with w so we can thus furthermore assume that Ω (A -λ Id) j w, A -λ Id k w = 0 for all j, k.

A basis of E v λ ⊕ E w λ is given by

a p = (A -λ Id) p v, . . . , a 0 = v, b 0 = w, . . . , b p = (A -λ Id) p w .
We have Ω(a i , a j ) = 0 and Ω(b i , b j ) = 0 by the choice of v and w;

Ω(a i , b j ) = 0 if i + j > p by equation [START_REF] Sergeichuk | Classification problems for systems of forms and linear mappings[END_REF] ; Ω(a i , b p-i ) = = 0 by equation ( 12) and the choice of of v, w.

The matrix representing Ω has the form

      0 * 0 . . . * * * * . . . 0 * 0      
hence is non singular and the subspace E v λ ⊕ E w λ is symplectic. We now construct a symplectic basis a p , . . . , a 0 , b 0 , . . . , b p of

E v λ ⊕ E w 1 λ
, extending {b 0 , . . . , b p }, using a Gram-Schmidt procedure on the a i 's. We define inductively on j a p := 1 Ω(ap,b0) a p ; a p-j = 1 Ω(ap-j ,bj ) a p-j -k<j Ω(a p-j , b k )a p-k , so that any a j is a linear combination of the a k with k ≥ j.

In the symplectic basis a p , . . . , a 0 , b 0 , . . . , b p the matrix representing A is

B 0 0 J(λ, p + 1) τ .
Hence, the matrix

J(λ, p + 1) -1 0 0 J(λ, p + 1) τ is a normal form for A restricted to E v λ ⊕ E w λ .
Thus we have:

Theorem 10 (Normal form for A |V [λ] for λ = ±1.) Let λ = ±1 be an eigenvalue of A. There exists a symplectic basis of V [λ] in which the matrix representing the restriction of

A to V [λ] is a symplectic direct sum of matrices of the form J(λ, r j ) -1 C(r j , s j , λ) 0 J(λ, r j ) τ
where C(r j , s j , λ) := J(λ, r j ) -1 diag 0, . . . , 0, s j with s j ∈ {0, 1, -1}. If s j = 0, then r j is odd. The dimension of the eigenspace of eigenvalue 1 is given by

2 Card{j | s j = 0} + Card{j | s j = 0}.
Definition 11 Given λ ∈ {±1}, we define, for any integer k ≥ 1, a bilinear form Qλ 2k on Ker (A -λ Id) 2k :

Qλ 2k : Ker (A -λ Id) 2k × Ker (A -λ Id) 2k → R (v, w) → λ Ω (A -λ Id) k v, (A -λ Id) k-1 w . (21) 
It is symmetric.

Proposition 12 Given λ ∈ {±1}, the number of positive (resp. negative) eigenvalues of the symmetric 2-form Qλ 2k is equal to the number of s j equal to +1 (resp. -1) arising in blocks of dimension 2k (i.e. with corresponding

r j = k) in the normal decomposition of A on V [λ]
given in theorem 10. On V [λ] , we have:

j s j = dimV k=1 Signature( Qλ 2k ) (22) 
Proof: On the intersection of Ker (A -λ Id) 2k with one of the symplectically orthogonal subspaces E v λ constructed above for an odd p = 2k -1, the form Qλ 2k vanishes identically. On the intersection of Ker (A -λ Id) 2k with a subspace E v λ for a v so that p = 2k -1 and Ω (A

-λ Id) k v, (A -λ Id) k-1 v = λs the only non vanishing component is Qλ 2k (v, v) = s. Indeed, Ker (A -λ Id) 2k ∩ E v λ is spanned by {(A -λ Id) r v ; r ≥ 0 and r + 2k > p },
and Ω (A -λ Id) k+r v, (A -λ Id) k-1+r v = 0 when 2k + r + r -1 > p so the only non vanishing cases arise when r = r = 0 and p = 2k -1.

Similarly, the 2 form Qλ 2k vanishes on the intersection of Ker (A -λ Id) 2k with a subspace E v λ ⊕ E w λ constructed above for an even p. The numbers s j appearing in the decomposition of A are thus invariant of the matrix.

Corollary 13

The normal decomposition described in theorem 10 is determined by the eigenvalue λ, by the dimension dim Ker(A -λ Id) r for each r ≥ 1, and by the rank and the signature of the symmetric bilinear 2-forms Qλ 2k for each k ≥ 1. It is unique up to a permutation of the blocks.

Normal forms for A |V

[λ] when λ = e iφ ∈ S 1 \{±1}.
We denote again by p the largest integer such that (A -λ Id) p does not vanish identically on E λ and we consider the non degenerate sesquilinear form

Q : E λ/Ker(A -λ Id) p × E λ/Ker(A -λ Id) p → C Q [v], [w] = λ p Ω (A -λ Id) p v, w . Since Q is non degenerate, we can choose v ∈ E λ such that Q([v], [v]) = 0 thus (A -λ Id) p v =
0 and we consider the smallest A-invariant subspace, stable by complex conjugaison, and containing v :

E v λ ⊕ E v λ ⊂ E λ ⊕ E λ . A basis is given by a i := (A -λ Id) i v, b j := (A -λ Id) j v 0 ≤ i, j ≤ p .
We have a i = b i and [START_REF] Müller | Normal forms of involutive complex Hamiltonian matrices under the real symplectic group[END_REF] and by the choice of v.

• Ω(a i , a j ) = 0, Ω(b i , b j ) = 0 because Ω(E λ , E λ ) = 0; • Ω(a i , b k ) = 0 if i + k ≥ p + 1 by equation (14); • Ω(a i , b k ) = 0 if p = i + k by equation
We conclude that E v λ ⊕ E v λ is a symplectic subspace.

If

p = 2k -1 is odd observe that T k,k-1 (v) := 1 λ Ω (A -λ Id) k v, (A -λ Id) k-1 v = s
is real and can be put to ±1 by rescaling the vector (we could even put it to 1 exchanging if needed λ and its conjugate). One may further assume, by lemma 8 that

T i,j (v) = 1 λ i 1 λ j Ω (A -λ Id) i v, (A -λ Id) j v = 0 for all 0 ≤ i, j ≤ k -1.
We consider the basis

{a 2k-1 , . . . , a k , b p , . . . , b k , b 0 , . . . b k-1 , a 0 , . . . a k-1 } for such a vector v with T k,k-1 (v) = s = ±1 and T i,j (v) = 0 for all 0 ≤ i, j ≤ k -1; the matrix representing Ω has the form                   0 * 0 . . . * * 0 0 * 0 . . . * * * * . . . 0 * 0 0 * * . . . 0 * 0                  
and we transform it by a Gram-Schmidt method into a symplectic basis composed of pairs of conjugate vectors, extending {b 0 , . . . , b k-1 , a 0 , . . . , a k-1 } on which Ω identically vanishes. We define

a 2k-1 = 1 Ω(a 2k-1 , b 0 ) a 2k-1 , b 2k-1 = 1 Ω(b 2k-1 , a 0 ) b 2k-1 = a 2k-1
and, inductively on increasing j with 1 < j ≤ k

a 2k-j = 1 Ω(a 2k-j , b j-1 ) a 2k-j - j-1 r=1 Ω(a 2k-j , b r-1 ) a 2k-r , b 2k-j = a 2k-j .
Any a 2k-j is a linear combination of the a 2k-i for 1 ≤ i ≤ j; reciprocally any a 2k-j can be written as a linear combination of the a 2k-i for 1 ≤ i ≤ j, and the coefficient of a 2k-j is equal to Ω(a 2k-j , b j-1 ).

The basis {a 2k-1 , . . . , a k , b 2k-1 , . . . , b k , b 0 , . . . , b k-1 , a 0 , . . . , a k-1 } is symplectic, and in that basis, since A(a r ) = λa r + a r+1 and A(b r ) = λb r + b r+1 for all r < 2k -2, the matrix representing A is of the block upper triangular form

    * 0 0 C * C 0 J(λ, k) τ 0 0 J(λ, k) τ    
where C is a k × k matrix such that the only non vanishing terms are on the last column (C i j = 0 when j < k) and C k k = Ω(a k , b k-1 ) = sλ. The fact that the matrix is symplectic implies that S := J(λ, k)C is hermitean; since S i j = 0 when j = k, we have, and the matrix of the restriction of A to the subspace

C = J(λ, k) -1 0 ...
E v λ ⊕ E v λ has the block triangular normal form     J(λ, k) -1 0 0 C(k, s, λ) J(λ, k) -1 C(k, s, λ) 0 J(λ, k) τ 0 0 J(λ, k) τ     . (23) 
Writing

a 2k-j = 1 √ 2 (e 2j-1 -ie 2j ), b 2k-j = a 2k-j = 1 √ 2 (e 2j-1 + ie 2j ), as well as a j-1 = 1 √ 2 (f 2j-1 -if 2j ) and b j-1 = a j-1 = 1 √ 2 (f 2j-1 + if 2j ) for 1 ≤ j ≤ k,
the vectors e i , f j all belong to the real subspace denoted V v

[λ] of V whose complexification is E v λ ⊕ E v λ and we get a symplectic basis {e 1 , . . . , e 2k , f 1 , . . . , f 2k } of this real subspace V v [λ] . The matrix representing A in this basis is :

J R (λ, 2k) -1 C R (k, s, λ) 0 J R (λ, 2k) τ (24) 
where J R (e iφ , 2k) is defined as in (20) and where C R (k, s, e iφ ) is the (p + 1) × (p + 1) matrix written in terms of two by two matrices as

C R (k, s, e iφ ) τ = s   0 ... 0 0 . . . . . . . . . 0 ... 0 0 (-1) k-1 R(e ikφ ) ... -R(e i2φ ) R(e iφ )   (25) 
with R(e iφ ) = cos φ -sin φ sin φ cos φ as before and s = ±1. This is the normal

form of A restricted to V v [λ] ; recall that s = λ -1 Ω (A -λ Id) k v, (A -λ Id) k-1 v .
Remark 14 For such a v, all Ti,j(v) are determined inductively and we have Ti,j(v) = 0 if i + j ≥ 2k + 1 and for all 0 ≤ i, j ≤ k -1

T k-r,k+r (v) = (-1) r+1 si for all 0 ≤ r ≤ k T k-r,k+m (v) = (-1) r+1 si 2 (r + m)(r -1)! m!(r -m)! for all 0 ≤ m ≤ r ≤ k, r > 1 Ti,j(v) = Tj,i(v)
for all i, j.

With the notation 

a i = (A -λ Id) i v, b i = (A -λ Id) i v,
                      0 
                      .
We transform (by a Gram-Schmidt method) the basis above into a symplectic basis, composed of pairs of conjugate vectors (up to a factor) and extending b 0 , . . . , b k-1 , a 0 , . . . , a k-1 on which Ω identically vanishes. We define inductively, for increasing j with 1 ≤ j ≤ k -1

a 2k : = 1 Ω (A -λ Id) 2k v, v (A -λ Id) 2k v = 1 Ω(a 2k , b 0 ) a 2k b 2k : = 1 Ω (A -λ Id) 2k , v, v (A -λ Id) 2k v = 1 Ω(b 2k , a 0 ) b 2k = a 2k a 2k-j = 1 Ω(a 2k-j , b j ) a 2k-j - j-1 r=0 Ω(a 2k-j , b r )a 2k-r b 2k-j = 1 Ω(b 2k-j , a j ) b 2k-j - j-1 r=0 Ω(b 2k-j , a r )b 2k-r = a 2k-j a k = a k - k-1 r=0 Ω(a k , b r )a 2k-r b k = 1 Ω(b k a k ) b k - k-1 r=0 Ω(b k , a r )b 2k-r = 1 is a k .
Each a 2k-j is a linear combination of the (A -λ Id) 2k-r v for 0 ≤ r ≤ j. The basis {a 2k , . . . , a k+1 , b 2k , . . . , b k+1 , b k ; b 0 , . . . , b k-1 , a 0 , . . . , a k-1 , a k } is now symplectic. Since A(a r ) = λa r + a r+1 for all r < 2k, and A(a 2k ) = λa 2k , the matrix representing A in that basis is of the form

                A1 0 0    0 c 2k d 2k . . . . . . c k+1 d k+1    0 A2      0 e 2k . . . e k+1 e k      0 0 0 J(λ,k) τ 0 0 0 0 J(λ,k+1) τ                 with A(b k-1 ) = λb k-1 + k j=0 e k+j b k+j , A(a k-1 ) = λa k-1 +a k + k j=1 c k+j a k+j and A(a k ) = λa k + k j=1 d k+j a k+j . Since a matrix A E 0 D is symplectic if and only if A = (D τ ) -1 and
D τ E is symmetric, we have

A 1 = J(λ, k) -1 A 2 = J(λ, k + 1) -1 and J(λ, k) 0 c 2k d 2k . . . . . . c k+1 d k+1 =   J(λ, k + 1)   0 e 2k . . . e k+1 e k     τ .
This implies

J(λ, k)   c 2k d 2k . . . . . . c k+2 d k+2 c k+1 d k+1   =   0 0 . . . . . . 0 0 s1 s2   J(λ, k + 1)     e 2k
. . .

e k+2 e k+1 e k     =    0 . . . 0 s1 s2    so that s 1 = λc k+1 and s 2 = λd k+1 . Now A(a k ) = A a k + j≥1 F j k a k+j = λa k + a k+1 + j≥1 F j k a k+j+1 = λa k + a k+1 Ω(a k+1 , b k-1 ) + j≥1 F j k a k+j+1 so that d k+1 = Ω(a k+1 , b k-1 ) = λ 2 is and s 2 = λis. We also have A(a k-1 ) = λa k-1 + a k = λa k-1 + a k + Ω(a k , b k-1 )a k+1 + j≥2 G j a k+j so that c k+1 = Ω(a k , b k-1 ) = λ 1 2
is and s 1 = 1 2 is. We have thus shown that the matrix representing A in the chosen basis has the block upper-triangular normal form

    J(λ, k) -1 0 0 J(λ, k) -1 S J(λ, k + 1) -1 J(λ, k + 1) -1 S τ 0 J(λ, k) τ 0 0 J(λ, k + 1) τ     ( 27 
)
where S is the k × (k + 1) matrix defined by

S = S(k, d, λ) :=      0 . . . 0 0 0 . . . . . . . . . . . . 0 . . . 0 0 0 0 . . . 0 1 2 is λis      . ( 28 
)
We write a

2k+1-j = 1 √ 2 (e 2j-1 -ie 2j ), b 2k+1-j = a 2k+1-j = 1 √ 2 (e 2j-1 +ie 2j ), as well as a j-1 = 1 √ 2 (f 2j-1 -if 2j ) and b j-1 = a j-1 = 1 √ 2 (f 2j-1 + if 2j ) for 1 ≤ j ≤ k, and a k = 1 √ 2 (e 2k+1 + id f 2k+1 ), b k = -ida k = 1 √ 2 (-f 2k+1 -id e 2k+1 ).
The vectors e i , f j all belong to the real subspace

V v [λ] of V whose complexification is E v λ ⊕ E v λ and we get a symplectic basis {e 1 , . . . , e 2k+1 , f 1 , . . . , f 2k+1 } of V v [λ]
. In this basis, the matrix representing A is : where s = ±1, U 1 (φ), U 2 (φ), V 1 (φ) and V 2 (φ) are real 2k × 1 column matrices such that

          J R (λ,2k) -1 s U 2 (φ) 0 . . . 0 ••• ••• 0 . . .
V 1 (φ) V 2 (φ) =    (-1) k-1 R(e ikφ ) . . . R(e iφ )    U 1 (φ) U 2 (φ) =   
(-1) k-1 R(e i(k+1)φ ) . . .

R(e i2φ )    = V 1 (φ) V 2 (φ) R(e iφ ) .
This is the normal form of A restricted to V v 

0 sj V 1 k j (φ) sj V 2 k j (φ) ) 0 J R (λ,2kj ) τ    (29) 
and (4k j + 2) × (4k j + 2) matrices (k j ≥ 0) of the form with R(e iφ ) = cos φ -sin φ sin φ cos φ , where

          J R (λ,2kj ) -1 sj U 2 k j (φ) 0 . . . 0 ••• ••• 0 . . . 0 s j 2 V 2 k j (φ) -s j 2 V 1 k j (φ) U 1
U 1 kj (φ) U 2 kj (φ) = V 1 kj (φ) V 2 kj (φ) R(e iφ ) ( 32 
)
and where s j = ±1. The complex dimension of the eigenspace of eigenvalue λ in V C is given by the number of such matrices. and Qλ m (A -λ Id) r v, (A -λ Id) r v = 0 when m + r + r -1 > p so the only non vanishing cases arise when r = r = 0 and m = p + 1 so for Qλ m (v, v). This is equal to 1 λ Ω (A -λ Id) k v, (A -λ Id) k-1 v = 1 λ λs = s if m = 2k, and to i Ω (A -λ Id) k v, (A -λ Id) k v = i(-is) = s if m = 2k + 1. The numbers s j appearing in the decomposition are thus invariant of the matrix.

Corollary 18 The normal decomposition described in theorem 15 is unique up to a permutation of the blocks when the eigenvalue λ has been chosen in {λ, λ}, for instance by specifyng that its imaginary part is positive. It is completely determined by this chosen λ, by the dimension dim C Ker(A -λ Id) r for each r ≥ 1 and by the rank and the signature of the Hermitian bilinear 2-forms Qλ m for each m ≥ 1.

  denotes an eigenvector of A in D(k, s) = diag(0, . . . 0, s), and S(k, s, λ) is the k × (k + 1) matrix defined by S(k, s, λ)

j b p := 1 Ω 1 Ω

 11 symplectic basis of the real A-invariant symplectic vector space ,E Rv λ ⊕ E Rw 1 λ . If λ is not real, one considers the basis of E v λ ⊕ E w 1 λdefined by the conjugate vectors {b p , . . . , b 0 , a 0 , . . . , a p } and this yields a conjugate normal form onE λ ⊕ E 1 λ, hence a normal form on W [λ] and this will induce a real normal form on V [λ] .We choose v and w such that Ω A -1 λ Id p w, v = 1. We define inductively on (bp,a0) b p = b p ; b p-j = (bp-j ,aj ) b p-j -k<j Ω(b p-j , a k )b p-k , so that any b j is a linear combination of the b r with r ≥ j.

  . 0 s = C(k, s, λ)

  we consider the basis {a 2k , . . . , a k+1 , b 2k , . . . , b k+1 , b k ; b 0 , . . . , b k-1 , a 0 , . . . , a k-1 , a k } for such a vector v; the matrix representing Ω in this basis has the form

  [λ] . Recall that s = iΩ (A -λ Id) k v, (A -λ Id) k v .Theorem 15 (Normal form for A |V[λ] for λ ∈ S 1 \ {±1}.) Let λ ∈ S 1 \{±1}be an eigenvalue of A. There exists a symplectic basis of V [λ] in which the matrix representing the restriction of A to V [λ] is a symplectic direct sum of 4k j × 4k j matrices (k j ≥ 1) of the form

  where J R (e iφ , 2k) is defined as in (20), whereV 1 kj (φ) V 2 kj (φ) is the 2k j × 2

Definition 16

 16 Given λ ∈ S 1 \ {±1}, we define, for any integer m ≥ 1, a Hermitian form Qλ m on Ker ((A -λ Id) m ) by: Qλm : Ker (A -λ Id) m × Ker (A -λ Id) m → C (v, w) → 1 λ Ω (A -λ Id) k v, (A -λ Id) k-1 w if m = 2k (v, w) → i Ω (A -λ Id) k v, (A -λ Id) k w if m = 2k + 1.Proposition 17 For λ ∈ S 1 \ {±1}, the number of positive (resp. negative) eigenvalues of the Hermitian 2-form Qλ m is equal to the number of s j equal to +1 (resp. -1) arising in blocks of dimension 2m in the normal decomposition of A on V [λ] given in theorem 15.Proof: On the intersection of Ker (A -λ Id) m with one of the symplectically orthogonal subspaces E v λ ⊕ E v λ constructed above from a v such that (A -λ Id) p v = 0 and (A -λ Id) p+1 v = 0, the form Qλ m vanishes identically, except if p = m -1 and the only non vanishing component is Qλ m (v, v) = s. Indeed, Ker (A -λ Id) m ∩ E v λ is spanned by {(A -λ Id) r v ; r ≥ 0 and r + m > p },
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If p = 2k is even

we observe that Ω (A -λ Id) k v, (A -λ Id) k v is purely imaginary and we choose v so that it is Ω (A -λ Id) k v, (A -λ Id) k v = si where s = ±1 (remark that the sign changes if one permutes λ and λ). We can further choose the vector v so that :

T i,j (v) := 1

Indeed, as before, by [START_REF] Mehl | Essential decomposition of normal matrices in real indefinite inner product spaces[END_REF], we have T i,j (v) = -T i+1,j (v) -T i+1,j-1 (v) and T i,j (v) = -T j,i (v) and we proceed as in lemma 8 by decreasing induction on i + j:

si and we replace v by v -α1 2λsi (A -λ Id)v; it generates the same A-invariant subspace and the quantities T i,j (v) do not vary for i

this α 2 is purely imaginary and we replace v by v -α2 2λ 2 si (A -λ Id) 2 v; it generates the same A-invariant subspace and the quantities T i,j (v) do not vary for i

We may thus assume this property to hold for v.

is real and we replace v by v -α3 2λ 3 si (A -λ Id) 3 v; it generates and the the same A-invariant subspace and the quantities T i,j (v) do not vary for i+j ≥ 2k -

• we now assume by induction to have a J > 1 so that T i,j (v) = 0 for all 0 ≤ i, j ≤ k -1 so that i + j > 2k -1 -J;

is real when J is even and is imaginary when J is odd; we replace v by v -α J+1 2λ J+1 si (A -λ Id) J+1 v; it sgenerates the same A-invariant subspace and the quantities T i,j (v) do not vary for i

Hence also T k-J+1,k-2 (v) = 0, . . . T k-1,k-J+1 (v) = 0; so the induction step is proven.