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Introduction

Our motivation is to construct a traveling wave solution for the accelerated Frenkel-Kontorova model (AFK): for i ∈ Z and t > 0,

m 0 U ′′ i (t) + U ′ i (t) = U i+1 (t) + U i-1 (t) -2U i (t) + f (U i (t)) (1.1)
where U i (t) denotes the position of a particle i at time t, U ′ i (t) its velocity and U ′′ i (t) its acceleration. The constant m 0 denotes the mass of the particle and f is the force created by periodic potential (whose period 1). In addition, we assume that f is "positive monostable": f (0) = f (1) = 0 and f > 0 on (0, 1). An example of such force f is given by f (x) = 1 -cos(2πx).

System (1.1) can be used as a model of the motion of a dislocation defect in crystal (see [START_REF] Braun | The Frenkel-Kontorova model: concepts, methods, and applications[END_REF]). A traveling wave solution of (1.1) is a particular solution of the form

U i (t) = ϕ(i + ct) (1.2)
with ϕ is non-decreasing, ϕ(-∞) = 0 and ϕ(+∞) = 1.

(1.3)

Here c is the velocity of propagation of the traveling wave ϕ and (1.3) reflects the existence of a defect of one lattice space called dislocation. Expression (1.2) means that the defect moves with velocity c. In addition, ϕ is a phase transition from the unstable equilibrium ϕ(-∞) to the stable equilibrium ϕ(+∞). To be more precise, we will show that there exists c + ∈ R such that a traveling wave solution for (1.1) exists if and only if c ≥ c + . Our work strongly depends on the results obtained previously in the bistable case by authors in [START_REF] Forcadel | Existence and uniqueness of traveling wave for accelerated frenkel-kontorova model[END_REF]: our approach is to study the positive monostable case as the limit of a family of bistable cases. The approach will be detailed through the course of the paper. The dependence of our work on [START_REF] Forcadel | Existence and uniqueness of traveling wave for accelerated frenkel-kontorova model[END_REF] means also that we can present our results in a more general case. We will consider the following system of general and fully non-linear discrete equations of the form

m 0 U ′′ i (t) + U ′ i (t) = F (U i+r0 (t), U i+r1 (t), ..., U i+r N (t)) + σ (1.4)
where F is a real function whose properties are specified later and (r j ) j=0,...,N ∈ R. The parameter σ allows us to distinguish the bistable and monostable regimes and it lies inside an interval [σ -, σ + ].

The precise definition of constants σ + and σ -will be given later (see Definition 2.1). For instance, we just mention that for some fixed θ ∈ (0, 1) and for σ ∈ [σ -, σ + ], there exists m σ ∈ [θ -1, 0] and b σ ∈ [0, θ] such that: i) for σ ∈ (σ -, σ + ), f σ (v) = F (v, v, ..., v) + σ is bistable on [m σ , m σ + 1] : ii) For σ = σ + , f σ + (v) = F (v, v, ..., v) + σ + is positive monostable on [0, 1]:

f σ (m σ ) = f σ (b σ ) = f σ (m σ +
f σ + (m σ + ) = f σ + (m σ + + 1) = 0 and f σ + > 0 on (m σ + , m σ + + 1) with m σ + = 0 . iii) For σ = σ -, f σ -(v) = F (v, v, ..., v) + σ -is negative monostable on [θ -1, θ]: f σ -(m σ -) = f σ -(m σ -+ 1) = 0 and f σ -< 0 on (m σ -, m σ -+ 1) with m σ -= θ -1.
For model (1.4), we look for particular solutions U i of the form U i (t) = ϕ (i + ct) with ϕ is non-decreasing and ϕ(-∞) = m σ and ϕ(+∞) = m σ + 1.

(1.5)

In [START_REF] Forcadel | Existence and uniqueness of traveling wave for accelerated frenkel-kontorova model[END_REF], authors obtained an existence result for a particular bistability: for a unique velocity c, they constructed a traveling wave solution connecting the stable points 0 and 1. Thanks to this result, with a simple change of variable, we can prove that if σ ∈ (σ -, σ + ), a traveling wave for (1.4) exists for a unique velocity c σ . As a consequence, we can generate the function σ → c σ . We will prove that c σ is continuous, non-decreasing and bounded on (σ -, σ + ). We will exploit this function to study the positive monostable case in two ways: first, the velocity c + is defined by

c + = lim σ→σ + c σ .
Second, thanks to the monotony of c σ , we will show that traveling wave solutions exist if and only if c ≥ c + . Similarly, by taking σ → σ -, we can study the negative monostable case.

Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] and Kolmogorov, Petrovsky, and Piskunov [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] were among the first to study traveling waves in reaction-diffusion equations. Existence of traveling wave solutions has been established in many works, see for example [START_REF] Berestycki | Traveling wave solutions to combustion models and their singular limits[END_REF][START_REF] Fife | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF][START_REF] Smaily | Two-dimensional curved fronts in a periodic shear flow[END_REF][START_REF] Volpert | Reaction-diffusion waves in biology[END_REF]. The existence, uniqueness, and stability of traveling waves with different nonlinearities with applications, particularly in biology and combustion, are the subject of a vast body of research; see, for example, the references given in [START_REF] Shen | Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations[END_REF][START_REF] Berestycki | Front propagation in periodic excitable media[END_REF]. Moreover, a number of works have been done on the discrete version of the reaction-diffusion equations in the bistable case (for examples, see [START_REF] Chen | Traveling waves in discrete periodic media for bistable dynamics[END_REF][START_REF] Haj | Existence and uniqueness of traveling waves for fully overdamped frenkel-kontorova models[END_REF][START_REF] Carpio | Wave solutions for a discrete reaction-diffusion equation[END_REF][START_REF] De Masi | Travelling fronts in non-local evolution equations[END_REF]). There are also several works on different discrete or non-local version of reaction diffusion equations in the positive monostable case (see for instance [START_REF] Coville | Nonlocal anisotropic dispersal with monostable nonlinearity[END_REF][START_REF] Weinberger | Long-time behavior of a class of biological models[END_REF][START_REF] Haj | Velocity diagram of traveling waves for discrete reactiondiffusion equations[END_REF][START_REF] Haj | Traveling waves for discrete reaction-diffusion equations in the general monostable case[END_REF][START_REF] Guo | Front propagation for discrete periodic monostable equations[END_REF][START_REF] Chen | Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices[END_REF]).

Up to our knowledge, our work is the first one to establish the existence of traveling waves for accelerated and discrete monotsable dynamics with general Lipschitz non-linearities. Moreover, we get the existence of solutions under weaker assumptions compared to other works. Finally, we obtain our results in the framework of viscosity solutions and we refer the reader to reference [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Barles | An introduction to the theory of viscosity solutions for first-order hamilton-jacobi equations and applications[END_REF][START_REF] Crandall | Viscosity solutions of hamilton-jacobi equations[END_REF][START_REF] Droniou | Solutions de viscosité et solutions variationnelle pour edp non-linéaires[END_REF] for a full presentation of this theory.

Main results

In the rest of the paper, we will work with an equivalent formulation of (1.4). We borrow the idea from [START_REF] Forcadel | Existence and uniqueness of traveling wave for accelerated frenkel-kontorova model[END_REF] and consider for all i ∈ Z,

Ξ i (t) = U i (t) + 1 α 0 Ui (t) with α 0 = 1 2m 0 .
Using this new function, we obtain the following system of ODEs equivalent to (1.4) for all i ∈ Z, for all t ∈ (0, +∞),

Ui (t) = α 0 (Ξ i (t) -U i (t)) , Ξi (t) = α 0 (U i (t) -Ξ i (t)) + 2F (U i+r0 (t), U i+r1 (t), ..., U i+r N (t)) + 2σ. (2.1)
We look for particular solutions of (2.1) of the form

U i (t) = ϕ 1 (i + ct) , Ξ i (t) = ϕ 2 (i + ct) , where (ϕ 1 , ϕ 2 ) solves          cϕ ′ 1 (z) = α 0 (ϕ 2 (z) -ϕ 1 (z)) for z ∈ R, cϕ ′ 2 (z) = α 0 (ϕ 1 (z) -ϕ 2 (z)) + 2F (ϕ 1 (z + r 0 ), ϕ 1 (z + r 1 ), ..., ϕ 1 (z + r N )) + 2σ for z ∈ R, ϕ 1 and ϕ 2 are non-decreasing, ϕ 1 (-∞) = ϕ 2 (-∞) = m σ and ϕ 1 (+∞) = ϕ 2 (+∞) = m σ + 1.
Next, we first give the assumptions on the non-linearity F and we then define the parameters σ -and σ + . Assumption ( Ã). Let F : R N +1 → R and θ ∈ (0, 1).

• (Regularity) F is globally Lipschitz continuous over R N +1 and C 1 over a neighborhood in R N +1 of the two intervals ]0, Θ[ and ]Θ, E[ where Θ = (θ, ..., θ) and E = (1, ..., 1).

• (Monotonicity) For X = (X 0 , X 1 , ..., X N ) ∈ R N +1 , the function F is non-decreasing w.r.t. each X i for i ̸ = 0 and

2 ∂F ∂X 0 + α 0 > 0. • (Periodicity) For X = (X 0 , X 1 , ..., X N ) ∈ R N +1 , we have F (X 0 + 1, ..., X N + 1) = F (X 0 , ..., X N ). Assumption ( B). Let f (v) = F (v, v, ..., v).
We assume that f is "bistable": f (0) = f (1) and

f ′ > 0 on (0, θ), f ′ < 0 on (θ, 1).
Definition 2.1 (Definition of σ -, σ + and consequences). Under assumptions ( Ã) and ( B), we define

σ + = -min f = -f (0), σ -= -max f = -f (θ). For each σ ∈ [σ -, σ + ], there exists a unique m σ ∈ [θ -1, 0] and a unique b σ ∈ [0, θ] such that m σ and b σ are solutions of f (s) + σ = 0. Moreover, σ → m σ (resp. σ → b σ ) is increasing (resp. decreasing) on [σ -, σ + ].
The main results of this paper is the following theorems. In the first one, we study the velocity function associated to the bistable case. Theorem 2.2 (Velocity function in the bistable case). Consider a function F satisfying assumptions ( Ã) and ( B) and let σ ∈ (σ -, σ + ). Then, there exists a unique c = c σ such that there exists a viscosity solution

(ϕ 1 , ϕ 2 ) of          cϕ ′ 1 (z) = α 0 (ϕ 2 (z) -ϕ 1 (z)) for z ∈ R, cϕ ′ 2 (z) = α 0 (ϕ 1 (z) -ϕ 2 (z)) + 2F (ϕ 1 (z + r 0 ), ϕ 1 (z + r 1 ), ..., ϕ 1 (z + r N )) + 2σ for z ∈ R, ϕ 1 and ϕ 2 are non-decreasing, ϕ 1 (-∞) = ϕ 2 (-∞) = m σ and ϕ 1 (+∞) = ϕ 2 (+∞) = m σ + 1.
The map σ → c σ is continuous and non-decreasing on (σ -, σ + ). In addition, c σ is bounded on (σ -, σ + ) and therefore we can define the finite limits

c -= lim σ→σ -c σ and c + = lim σ→σ + c σ . (2.2)
Moreover, we have c -= c + = 0 or c -< c + .

The second main result of this paper is the existence of traveling wave solution in the monostable cases and it's announced in the next theorem. Theorem 2.3 (Existence of traveling wave solutions in the monostable cases). Consider a function F satisfying assumptions ( Ã) and ( B). Let c -and c + be the constants defined in (2.2). i) For any c ≤ c -, there exists a viscosity solution (ϕ 1 , ϕ 2 ) solving for z ∈ R the following system

         cϕ ′ 1 (z) = α 0 (ϕ 2 (z) -ϕ 1 (z)), cϕ ′ 2 (z) = α 0 (ϕ 1 (z) -ϕ 2 (z)) + 2F (ϕ 1 (z + r 0 ), ϕ 1 (z + r 1 ), ..., ϕ 1 (z + r N )) + 2σ -, ϕ 1 and ϕ 2 are non-decreasing, ϕ 1 (-∞) = ϕ 2 (-∞) = m σ -= θ -1 and ϕ 1 (+∞) = ϕ 2 (+∞) = m σ -+ 1 = θ (2.3)
Moreover, if c > c -, there is no viscosity solutions of (2.3).

ii) For any c ≥ c + , there exists a viscosity solution (ϕ 1 , ϕ 2 ) solving for z ∈ R the following system

         cϕ ′ 1 (z) = α 0 (ϕ 2 (z) -ϕ 1 (z)), cϕ ′ 2 (z) = α 0 (ϕ 1 (z) -ϕ 2 (z)) + 2F (ϕ 1 (z + r 0 ), ϕ 1 (z + r 1 ), ..., ϕ 1 (z + r N )) + 2σ + , ϕ 1 and ϕ 2 are non-decreasing, ϕ 1 (-∞) = ϕ 2 (-∞) = m σ + = 0 and ϕ 1 (+∞) = ϕ 2 (+∞) = m σ + + 1 = 1.
(2.4) Moreover, if c < c + , there is no viscosity solutions of (2.4).

Simplification and notation.

Without loss of generality, we will assume that

r 0 = 0 and r i ̸ = r j if i ̸ = j.
For the whole paper, we define

r * = max i=0,...,N |r i | (2.5)
and as a notation, we set for a general function h:

F ((h(z + r i )) i=0,...,N ) = F (h(z + r 0 ), h(z + r 1 ), ..., h(z + r N )).
Organization of the paper. In Section 3, we give the definition of viscosity solutions and then we recall some useful results which are used all over the paper. In Section 4, we construct traveling wave solutions for large (resp. small) velocities in the positive (resp. negative) monostable case. This result will be used in the proof of Theorem 2.2 to prove that the velocity c + (resp. c -) is finite. In section 5, we prove Theorem 2.2 and in Section 6, we prove Theorem 2.3.

Viscosity solutions and some useful results

In this section, we first give the definition of viscosity solutions and then we present some useful results that we will use in this work. We start with the definition of viscosity solutions. Let -∞ ≤ a < b ≤ +∞ and consider the intervals

I = (a -r * , b + r * ) and I ′ = (a, b). Let ϕ 1 , ϕ 2 : I → R be a locally bounded functions. 1) We say that (ϕ 1 , ϕ 2 ) is a viscosity sub-solution (resp. super-solution) of cϕ ′ 1 (z) = α 0 (ϕ 2 (z) -ϕ 1 (z)) on I ′ , cϕ ′ 2 (z) = α 0 (ϕ 1 (z) -ϕ 2 (z)) + 2F ((ϕ 1 (z + r i )) i=0,...,N ) + 2σ on I ′ (3.1)
if for all test function φ ∈ C 1 (R) such that (ϕ 1 ) * -φ attains a local maximum (resp. (ϕ 1 ) * -φ attains a local minimum) at some point z 0 ∈ I ′ , we have

cφ ′ (z 0 ) ≤ α 0 ((ϕ 2 ) * (z 0 ) -(ϕ 1 ) * (z 0 )) (resp. cφ ′ (z 0 ) ≥ α 0 ((ϕ 2 ) * (z 0 ) -(ϕ 1 ) * (z 0 )))
and if for all test function φ ∈ C 1 (R) such that (ϕ 2 ) * -φ attains a local maximum (resp. (ϕ 2 ) * -φ attains a local minimum) at some point z 0 ∈ I ′ , we have

cφ ′ (z 0 ) ≤ α 0 ((ϕ 1 ) * (z 0 ) -(ϕ 2 ) * (z 0 )) + 2F (((ϕ 1 ) * (z 0 + r i )) i=0,...,N ) + 2σ, (resp. cφ ′ (z 0 ) ≥ α 0 ((ϕ 1 ) * (z 0 ) -(ϕ 2 ) * (z 0 )) + 2F (((ϕ 1 ) * (z 0 + r i )) i=0,...,N ) + 2σ).
2) We say that (ϕ 1 , ϕ 2 ) is a viscosity solution of (3.1) if ϕ 1 , ϕ 2 are locally bounded functions and (ϕ 1 , ϕ 2 ) is a viscosity sub-solution and viscosity super-solution of (3.1).

Next, we state Perron's method which is a great tool to construct viscosity solutions.

Proposition 3.2 (Perron's method [START_REF] Ishii | Perron's method for monotone systems of second-order elliptic partial differential equations[END_REF]). Consider a function F satisfying ( Ã). Let -∞ ≤ a < b ≤ +∞ and consider the intervals I = (a -r * , b + r * ) and

I ′ = (a, b). Let (φ 1 , φ 2 ) and (ψ 1 , ψ 2 )
be respectively viscosity sub-solution and viscosity super-solution of (3.1) on I ′ satisfying

φ 1 ≤ ψ 1 on I, φ 2 ≤ ψ 2 on I.
Let S be the set defined by

S = {( ψ1 , ψ2 ) is a super-solution of (3.1) on I ′ such that φ 1 ≤ ψ1 , φ 2 ≤ ψ2 on I}.
We define

ϕ 1 (z) = inf{ ψ1 (z) such that ( ψ1 , ψ2 ) ∈ S }, ϕ 2 (z) = inf{ ψ2 (z) such that ( ψ1 , ψ2 ) ∈ S }.
Then, (ϕ 1 , ϕ 2 ) is a viscosity solution of (3.1) on I ′ and

φ 1 ≤ ϕ 1 ≤ ψ 1 on I, φ 2 ≤ ϕ 2 ≤ ψ 2 on I.
The following proposition allows us to have a stability result under weak assumptions.

Proposition 3.3 (Equivalence between viscosity solutions and almost everywhere solution, see Lemma 2.9 in [START_REF] Forcadel | Existence and uniqueness of traveling wave for accelerated frenkel-kontorova model[END_REF]). Consider a function F satisfying assumption ( Ã). Let ϕ 1 , ϕ 2 : R → R be non-decreasing functions. Then, (ϕ 1 , ϕ 2 ) is a viscosity solution of

0 = α 0 (ϕ 2 (z) -ϕ 1 (z)) on R, 0 = α 0 (ϕ 1 (z) -ϕ 2 (z)) + 2F ((ϕ 1 (z + r i )) i=0,...,N ) + 2σ on R (3.2)
if and only if (ϕ 1 , ϕ 2 ) is an almost everywhere solution of (3.2).

As a consequence of Proposition 3.3, we have the following useful criterion to pass to the limit.

Proposition 3.4 (Stability by passage to limit). Consider a function F satisfying ( Ã) and ( B).

Let (c n ) n∈N and (σ n ) n∈N be sequences of real numbers and ϕ n 1 , ϕ n 2 : R → R be a sequence of non-decreasing functions. Assume that

(ϕ n 1 , ϕ n 2 ) is a viscosity solution of c n (ϕ n 1 ) ′ (z) = α 0 (ϕ n 2 (z) -ϕ n 1 (z)) on R, c n (ϕ n 2 ) ′ (z) = α 0 (ϕ n 1 (z) -ϕ n 2 (z)) + 2F ((ϕ n 1 (z + r i )) i=0,...,N ) + 2σ n on R. (3.3)
In addition, we assume that there exists C > 0 (not depending on n) such that

|ϕ n 1 | L ∞ (R) ≤ C, |ϕ n 2 | L ∞ (R) ≤ C, |c n | ≤ C and |σ n | ≤ C.
Then, up to a subsequence , we have c n → c, σ n → σ and

ϕ n 1 (resp. ϕ n
2 ) converges at least almost everywhere to some function ϕ 1 (resp. ϕ 2 )

and

(ϕ 1 , ϕ 2 ) is a viscosity solution of cϕ ′ 1 (z) = α 0 (ϕ 2 (z) -ϕ 1 (z)) on R, cϕ ′ 2 (z) = α 0 (ϕ 1 (z) -ϕ 2 (z)) + 2F ((ϕ 1 (z + r i )) i=0,...,N ) + 2σ on R. (3.4) Proof. First, let us remark that |F ((ϕ n 1 (z + r i )) i=0,...,N )| = |F ((ϕ n 1 (z + r i )) i=0,...,N ) -F ((ϕ n 1 (z)) i=0,...,N ) + F ((ϕ n 1 (z)) i=0,...,N )| ≤ L F max i=0,...,N |ϕ n 1 (z + r i ) -ϕ n 1 (z)| + f (ϕ n 1 (z)) ≤ 2L F C + f (θ) = C 1
where L F is the Lipschitz constant of F . We distinguish two cases.

Case 1: c ̸ = 0: for n large enough, we have |c n | ≥ |c| 2 and using (3.3), we deduce that

     |(ϕ n 1 ) ′ (z)| ≤ 4α 0 C |c| , |(ϕ n 2 ) ′ (z)| ≤ 4α 0 C |c| + 2C 1 + 2C |c| .
Thus ϕ n 1 and ϕ n 2 are uniformly Lipschitz. Using Ascoli's Theorem and the diagonal extraction argument, up to a subsequence, we get that ϕ n 1 (resp. ϕ n 2 ) converges locally uniformly to a function ϕ 1 (resp. ϕ 2 ) on R. By stability of viscosity solution (see [START_REF] Barles | An introduction to the theory of viscosity solutions for first-order hamilton-jacobi equations and applications[END_REF]), (ϕ 1 , ϕ 2 ) is a viscosity solution of (3.4).

Case 2: c = 0: from the classical Helly's Theorem for monotone functions, up to a subsequence, we get that ϕ n 1 (resp. ϕ n 2 ) converges almost everywhere to a function ϕ 1 (resp.

ϕ 2 ) on R. Let b 1 , b 2 ∈ R such that b 1 < b 2 . Integrating the first equation in (3.3) between b 1 and b 2 , we get c n (ϕ n 1 (b 2 ) -ϕ n 1 (b 1 )) = α 0 b2 b1 (ϕ n 2 (z) -ϕ n 1 (z))dz.
Moreover, we have

ϕ n 2 -ϕ n 1 → ϕ 2 -ϕ 1 almost everywhere on R, |ϕ n 2 -ϕ n 1 | ≤ 2C on R.
Thus, using Lebesque's dominated convergence Theorem, we pass to the limit as n goes to +∞ and we get

0 = α 0 b2 b1 (ϕ 2 (z) -ϕ 1 (z))dz
which implies (since b 1 and b 2 are arbitrary) that

ϕ 1 = ϕ 2 almost everywhere on R.
Integrating the second equation in (3.3) between b 1 and b 2 , we get

c n (ϕ n 2 (b 2 ) -ϕ n 2 (b 1 )) = 2 b2 b1 F ((ϕ n 1 (z + r i )) i=0,...,N ) + σ n dz.
Using that

F ((ϕ n 1 (z + r i )) i=0,...,N ) + σ n → F ((ϕ 1 (z + r i )) i=0,...,N ) + σ almost everywhere on R, |F ((ϕ n 1 (z + r i )) i=0,...,N ) + σ n | ≤ C 1 + C on R,
we can proceed as above to deduce that F ((ϕ 1 (z + r i )) i=0,...,N ) + σ = 0 almost everywhere on R. Finally, from Proposition 3.3, we deduce that (ϕ 1 , ϕ 2 ) is a viscosity solution of (3.4).

Traveling wave solutions for large (resp. small) velocities in the positive (resp. negative) monostable case

In this section, we construct traveling wave solutions for large (resp. small) velocities c in the positive (resp. negative) monostable case. Such result is needed to prove that the velocities c - and c + are finite (see Proposition 5.6). It's sufficient to prove this result in the positive case only.

In fact, once the existence is established in the positive monostable case, we obtain the existence in the negative monostable case by a simple variable change. For F satisfying assumptions ( Ã) and ( B), without loss of generality, we assume in this section that σ + = 0. This implies that f (0) = f (1) = 0 and f > 0 on (0, 1).

For σ + = 0, we consider the following system 

         cϕ ′ 1 (z) = α 0 (ϕ 2 (z) -ϕ 1 (z)) on R, cϕ ′ 2 (z) = α 0 (ϕ 1 (z) -ϕ 2 (z)) + 2F ((ϕ 1 (z + r i )) i=0,...,N ) on R, ϕ 1 and ϕ 2 are non-decreasing, ϕ 1 (-∞) = ϕ 2 (-∞) = 0 and ϕ 1 (+∞) = ϕ 2 (+∞) = 1.
cψ ′ 1 (z) = α 0 (ψ 2 (z) -ψ 1 (z)) on R, cψ ′ 2 (z) = α (ψ 1 (z) -ψ 2 (z)) + 2F ((ψ 1 (z + r i )) i=0,...,N ) on R.
In the following lemma, we show that if a positive viscosity super-solution of (4.1) exists, then we can construct a viscosity solution of (4.1). Lemma 4.2. Consider a function F satisfying ( Ã) and ( B) with σ + = 0. Let c ∈ R fix and for this constant consider system (4.1). Assume that there exists a viscosity super-solution (ψ 1 , ψ 2 ) of (4.1) such that ψ i > 0 for i = 1, 2. Then, there exists a viscosity solution (ϕ 1 , ϕ 2 ) of (4.1).

Proof of Lemma 4.2. Using that ψ 1 > 0, ψ 1 (-∞) = 0, ψ 1 (+∞) = 1 and that ψ 1 is non-decreasing, there exists γ ∈ (0, 1) and x 0 ∈ R such that ψ 1 (x 0 ) = γ. Up to translation of ψ 1 and ψ 2 (to always get a super-solution of (4.1)), we can assume that ψ 1 (0) = γ.

Step 1: construction of a sub-solution. Let ε > 0 small enough such that ε < γ. Using assumption ( B), we can easily verify that (ε, ε) is a sub-solution of

cϕ ′ 1 (z) = α 0 (ϕ 2 (z) -ϕ 1 (z)) on R, cϕ ′ 2 (z) = α (ϕ 1 (z) -ϕ 2 (z)) + 2F ((ϕ 1 (z + r i )) i=0,...,N ) on R. (4.2)
Step 2: construction of a solution Taking ε small enough, and using that ψ 1 , ψ 2 are nondecreasing, positive and ψ 1 (-∞) = ψ 2 (-∞) = 0, we deduce that for i ∈ {1, 2}, we can find

x ε i < 0 such that ε ∈ [(ψ i ) * (x ε i ), (ψ i ) * (x ε i )] and ψ i (x) > ε if x > x ε i . Let K ε = max i=1,2
x ε i . For x > K ε , we have

ψ i (x) > ε for i = 1, 2.
Moreover, using that

ψ 1 (-∞) = ψ 2 (-∞) = 0 and ψ 1 , ψ 2 > 0, we deduce that K ε → -∞ as ε → 0. Using Perron Method (see Proposition 3.2), we construct a viscosity solution (ϕ ε 1 , ϕ ε 2 ) of (4.2) such that      ϕ ε 1 and ϕ ε 2 are defined on (K ε , +∞) , ε ≤ ϕ ε 1 ≤ ψ 1 and ε ≤ ϕ ε 2 ≤ ψ 2 on (K ε , +∞) , (ϕ ε 1 , ϕ ε 2 ) is viscosity solution of (4.2) on (K ε + r * , +∞) .
Step 3: monotonicity of ϕ ε 1 , ϕ ε 2 . We recall that Perron's method provide an explicit form of the solution. We know that

ϕ ε 1 (z) = inf{u 1 (z) such that (u 1 , u 2 ) ∈ S }, ϕ ε 2 (z) = inf{u 2 (z) such that (u 1 , u 2 ) ∈ S } (4.3) 
where the set S is defined by

S = {(u 1 , u 2 ) is a super-solution of (4.2) on (K ε + r * , +∞) such that ε ≤ u 1 , ε ≤ u 2 on (K ε , +∞)}.
We define the functions

   φ1 (z) = inf p≥0 ϕ ε 1 (z + p), φ2 (z) = inf p≥0 ϕ ε 2 (z + p)
and we claim that φi (z) = ϕ ε i (z) for all z ∈ (K ε , +∞). First, let us remark that

φ1 ≤ ϕ ε 1 , φ2 ≤ ϕ ε 2 .
Using the stability of viscosity solutions (see [START_REF] Crandall | Viscosity solutions of hamilton-jacobi equations[END_REF]), we know that (( φ1 ) * , ( φ2 ) * ) is a viscosity supersolution of (4.2) on (K ε + r * , +∞). Since ε ≤ ϕ ε i (z + p) for all p ≥ 0 and z ∈ (K ε , +∞), we get

for i = 1, 2, ε ≤ ( φi ) * (z) for all z ∈ (K ε , +∞).
We deduce that (( φ1 ) * , ( φ2 ) * ) ∈ S and using the definitions in (4.3), we get that

ϕ ε 1 (z) ≤ ( φ1 ) * (z) ≤ ( φ1 )(z) for z ∈ (K ε , +∞), ϕ ε 2 (z) ≤ ( φ2 ) * (z) ≤ ( φ2 )(z) for z ∈ (K ε , +∞).
Therefore, we obtain that φi (z) = ϕ ε i (z) for all z ∈ (K ε , +∞) which implies that ϕ ε i is nondecreasing on (K ε , +∞) for i = 1, 2.

Step 4: passing to the limit as ε → 0. Using that (ϕ ε 1 , ϕ ε 2 ) solves (4.2) on (K ε + r * , +∞) and that ϕ ε 1 , ϕ ε 2 are non-decreasing, we deduce that lim x→+∞ ϕ ε i exists for i = 1, 2. Since ε ≤ ϕ ε i (z) ≤ 1 on (K ε , +∞), passing to the limit as x → ±∞ in (4.2), we get

0 = α 0 (ϕ ε 2 (+∞) -ϕ ε 1 (+∞)), 0 = α(ϕ ε 1 (+∞) -ϕ ε 2 (+∞)) + 2f (ϕ ε 1 (+∞)) which implies that f (ϕ ε 1 (+∞)) = 0 and in particular ϕ ε 1 (+∞) = ϕ ε 2 (+∞) = 1
. Now, on the one hand, using that ψ 1 (0) = γ, we get that ϕ ε 1 (z) ≤ γ for all z ≤ 0. On the other hand, using that ϕ ε 1 (+∞) = 1, we deduce that there exists

x ε ≥ 0 such that γ ∈ [(ϕ ε 1 ) * (x ε ), (ϕ ε 1 ) * (x ε )]. We define φε 1 (z) = ϕ ε 1 (z + x ε ), φε 2 (z) = ϕ ε 2 (z + x ε ).
We have γ ∈ [( φε 1 ) * (0), (ϕ ε 1 ) * (0)] and ( φε 1 , φε 2 ) is a viscosity solution of (4.2) on (r * + K ε -x ε , +∞). Since φε 1 , φε 2 are non-decreasing and uniformly bounded on (K ε -x ε , +∞), we get that φε i → ϕ i (at least) almost everywhere as ε → 0 for i = 1, 2. Moreover, from proposition 3.4, (ϕ 1 , ϕ 2 ) is a viscosity solution of

               cϕ ′ 1 (z) = α 0 (ϕ 2 (z) -ϕ 1 (z)) on R, cϕ ′ 2 (z) = α (ϕ 1 (z) -ϕ 2 (z)) + 2F ((ϕ 1 (z + r i )) i=0,...,N ) on R, ϕ 1 and ϕ 2 are non-decreasing on R, 0 ≤ ϕ 1 , ϕ 2 ≤ 1 , γ ∈ [(ϕ 1 ) * (0), (ϕ 1 ) * (0)] (4.4)
where we used that K ε → -∞ as ε → 0. Passing to the limit as z → ±∞, we get

0 = α 0 (ϕ 2 (±∞) -ϕ 1 (±∞)), 0 = α(ϕ 1 (±∞) -ϕ 2 (±∞)) + 2f (ϕ 1 (±∞)).
We deduce that ϕ 1 (±∞) ∈ {0, 1}. Using that γ ∈ [(ϕ 1 ) * (0), (ϕ 1 ) * (0)], and that ϕ 1 is nondecreasing, we have that ϕ 1 (-∞) = 0 and ϕ 1 (+∞) = 1. Finally, we recall that ϕ 2 (±∞) -ϕ 1 (±∞) = 0 and this ends the proof.

In view of Lemma 4.2, to prove Proposition 4.1, we need to construct a positive super-solution of (4.1). This can be done by using the next lemma. 

h ∈ C 1 (R) such that h is a solution of                  h ′ (z) = 2f (h(z)), h is non-decreasing, h(0) = 1 2 , 0 < h(z) < 1 for z ∈ R, h(-∞) = 0 and h(+∞) = 1. (4.5)
Proof. The proof is divided into 2 steps.

Step

1: construction on [-δ, δ]. Let δ > 0 small such that 2||f ′ || ∞ δ < 1. (4.6)
We define

A = h such that h ∈ C([-δ, δ]) such that h(0) = 1 2 .
Clearly, A is a closed subset of the Banach space C([-δ, δ]). Now, let Φ : A → A the operator defined by

Φ(h)(z) = 2 z 0 f (h(s))ds + 1 2 .
Next, we prove that Φ is a contraction. Let h, g ∈ A: we have

Φ(h)(z) -Φ ( g)(z) ≤ 2||f ′ || ∞ δ||h -g|| L ∞ [-δ,δ] .
In particular, this implies that for δ > 0 small enough as in (4.6), we have

||Φ(h) -Φ(g)|| C([-δ,δ]) < ||h -g|| C([-δ,δ]) .
Hence, the Banach fixed point theorem ensures that there exists h ∈ A such that Φ( h) = h. In particular, h ∈ C 1 ([-δ, δ]) and h is a solution of

   h′ (z) = 2f ( h(z)) for z ∈ (-δ, δ), h(0) = 1 2 .
Step 2: construction on R. First, let us recall that h is non-decreasing on [-δ, δ]. We define o(δ) = inf{x * such that 0 < x * ≤ δ and h ̸ = {0, 1} on [-x * , x * ]}.

By the same arguments used in step 1, we can construct a solution h of

h′ (z) = 2f ( h(z)) for z ∈ (-δ -o(δ), δ + o(δ)), h = h on [-o(δ), o(δ)].
To be more precise, we define the set B by

B = h such that h ∈ C([-δ -o(δ), δ + o(δ)]) such that h = h on [-o(δ), o(δ)] .
Then, we consider the operator Ψ : B → B defined by

Ψ(h)(z) =            h(z) if z ∈ [-o(δ), o(δ)], 2 z -o(δ) f (h(s))ds + h(-o(δ)) if z ∈ [-δ -o(δ), -o(δ)], 2 z o(δ) f (h(s))ds + h(o(δ)) if z ∈ [o(δ), o(δ) + δ].
As in step 1, taking δ as in (4.6), we prove that Ψ is a contraction on B. By an iteration argument, we can construct a solution h of

h ′ (z) = 2f (h(z)) for z ∈ R. (4.7) Moreover, h ∈ C 1 (R), h ′ ≥ 0 and h = h on [-δ, δ], h(z) ∈ [0, 1] and h ̸ = {0, 1} on R.
This implies that h(-∞) = 0 and h(+∞) = 1 and this ends the proof.

Proof of Proposition 4.1. Let M > 0 be large such that

M > 3L F ||f ′ || ∞
where L F is the Lipschitz constant of F . We set c = 1 ε where ε > 0 is small enough such that

e 2ε(1+M ε)r * ||f ′ ||∞ -1 ε < 3.
Let a ε = 1 + M ε and define

h ε (z) = h(a ε z)
where h is the solution of (4.5) defined in Lemma 4.3.

Step 1: equivalence of systems For z ∈ R, we define

ψ 1 (z) = ψ 2 (z) = h ε z c .
Then, it's easy to verify that (ψ 1 , ψ 2 ) is a super-solution of (4.1) if and only if h ε satisfies

     (h ε ) ′ (z) ≥ 2F ((h ε (z + εr i )) i=0,...,N ) for z ∈ R, h ε is non-decreasing, h ε (-∞) = 0 and h ε (+∞) = 1 . (4.8)
Step 2: oscillations of

h ′ . Let z 0 ∈ R such that h(z 0 ) = θ. Since f is a C 1 on (0, θ) ∪ (θ, 1), we have for z ̸ = z 0 , h ′′ (z) = 2h ′ (z)f ′ (h(z)). (4.9)
Using the equivalence between almost everywhere solutions and viscosity ones for ODE, we deduce that h is a viscosity solution of (4.9) on R. Now for z ∈ R and b ̸ = 0 fixed, we consider the function defined for t ≥ 0 by

x(t) = h ′ (z + bt).
Deriving x, we remark that it's a sub-solution of

x ′ (t) = 2|b|||f ′ || ∞ x(t).
Using the comparison principle, we deduce that for t ≥ 0,

x(t) ≤ x(0)e 2|b|||f ′ ||∞t
which implies

h ′ (z + bt) ≤ h ′ (z)e 2|b||f ′ ||∞t . (4.10)
Step 3: h ε solves (4.8). First, let us remark that the second and the third lines in (4.8) are direct consequences of the definition of h. It remains to prove that

(1 + M ε)h ′ (a ε z) ≥ 2F ((h(a ε z + εa ε r i )) i=0,...,N ). ( 4 

.11)

Using that h ′ (z) = 2f (h(z)) = 2F (h(z), ..., h(z)), to prove (4.11), it's sufficient to show that

M εh ′ (a ε z) ≥ 2 (F ((h(a ε z + εa ε r i )) i=0,...,N ) -F ((h(a ε z)) i=0,...,N )) .
We have

h(a ε z + εa ε r i ) = h(a ε z) + εa ε r i 1 0 h ′ (a ε z + εa ε r i t)dt which implies that F ((h(a ε z + εa ε r i )) i=0,...,N ) = F h(a ε z) + εa ε r i 1 0 h ′ (a ε z + εa ε r i t)dt i=0,...,N
.

Using that F is globally Lipschitz continuous, we have

F ((h(a ε z + εa ε r i )) i=0,...,N ) -F ((h(a ε z)) i=0,...,N ) ≤ L F εa ε r * 1 0 h ′ (a ε z + εa ε r i0 t)dt
where

1 0 h ′ (a ε z + εa ε r i0 t)dt = max i=0,...,N 1 0 h ′ (a ε z + εa ε r i t)dt .
Using (4.10), we have

2 (F ((h(a ε z + εa ε r i )) i=0,...,N ) -F ((h(a ε z)) i=0,...,N )) ≤ 2L F εa ε r * h ′ (a ε z) 1 0 e 2εaεr * ||f ′ ||∞t dt ≤ L F ||f ′ || ∞ e 2εaεr * ||f ′ ||∞ -1 h ′ (a ε z) ≤ M εh ′ (a ε z)
where we use that

M > 3L F ||f ′ || ∞ and e 2ε(1+M ε)r * ||f ′ ||∞ -1 ε < 3.
Finally, using that h > 0, we deduce that (ψ 1 , ψ 2 ) is a positive viscosity super-solution of (4.1). Thanks to Lemma 4.2, this ends the proof of this proposition.

To achieve this section's goals, it remains to construct traveling wave solutions in the negative monostable case. This is announced in the following corollary.

Corollary 4.4 (Traveling wave solutions for negative small velocities in the negative monostable case). Consider a function F satisfying ( Ã) and ( B). Then, for c < 0 small enough, there exists a viscosity solution of

         cϕ ′ 1 (z) = α 0 (ϕ 2 (z) -ϕ 1 (z)) on R, cϕ ′ 2 (z) = α 0 (ϕ 1 (z) -ϕ 2 (z)) + 2F ((ϕ 1 (z + r i )) i=0,...,N ) + 2σ -on R, ϕ 1 and ϕ 2 are non-decreasing, ϕ 1 (-∞) = ϕ 2 (-∞) = θ -1 and ϕ 1 (+∞) = ϕ 2 (+∞) = θ. (4.12)
Proof. We define F (X) = -F (θ -X) -σ -and ri = -r i for i = 0, ..., N . It's straightforward to remark that F satisfy ( Ã) and ( B) where

f (v) = F (v, ..., v) satisfies f (0) = f (1) = 0.
Hence, σ+ = -min f = 0. Using Proposition 4.1, for c > 0 large enough, there exists a viscosity solution ( φ1 , φ2 ) of

         c φ′ 1 (z) = α 0 ( φ2 (z) -φ1 (z)) on R, c φ′ 2 (z) = α 0 ( φ1 (z) -φ2 (z)) + 2 F ( φ1 (z + ri )) i=0,...,N
on R, φ1 and φ2 are non-decreasing, φ1 (-∞) = φ2 (-∞) = 0 and φ1 (+∞) = φ2 (+∞) = 1.

Finally, we define

ϕ 1 (z) = θ -φ1 (-z), ϕ 2 (z) = θ -φ2 (-z)
and we can easily verify that (ϕ 1 , ϕ 2 ) is a viscosity solution of (4.12) for c = -c,

Proof of Theorem 2.2

Goal of this section is to prove Theorem 2.2. For a function F satisfying assumptions ( Ã) and ( B), let σ ∈ (σ -, σ + ). We will consider the following system

         cϕ ′ 1 (z) = α 0 (ϕ 2 (z) -ϕ 1 (z)) on R, cϕ ′ 2 (z) = α 0 (ϕ 1 (z) -ϕ 2 (z)) + 2F ((ϕ 1 (z + r i )) i=0,...,N ) + 2σ on R, ϕ 1 and ϕ 2 are non-decreasing, ϕ 1 (-∞) = ϕ 2 (-∞) = m σ and ϕ 1 (+∞) = ϕ 2 (+∞) = m σ + 1.
(5.1)

Our major interest is to study the velocity function c = c σ . The existence of traveling wave solutions for system (5.1) could be easily obtained by using a variable change as we will next show.

Proposition 5.1 (Existence and uniqueness of traveling wave: the fix bistable case (see Proposition 2.3 and Theorem 1.3 in [START_REF] Forcadel | Existence and uniqueness of traveling wave for accelerated frenkel-kontorova model[END_REF])). Consider a function F satisfying assumption ( Ã). We set

f (v) = F (v, ..., v).
Assume that F satisfies the following assumptions (B) and (C):

Assumption (B)
1) f (0) = f (1) = 0 and ∃b ∈ (0, 1) such that

f (b) = 0, f | (0,b) < 0, f | (b,1) > 0 and f ′ (b) > 0. 2) F ∈ C 1 in a neighborhood of {b} N +1 .
Assumption (C) There exists β 0 > 0 such that for a > 0, we have

F (X + (a, ..., a)) < F (X) if X, X + (a, ..., a) ∈ [0, β 0 ] N +1 , F (X + (a, ..., a)) < F (X) if X, X + (a, ..., a) ∈ [1 -β 0 , 1] N +1 . (5.2)
Then, there exists a unique velocity c such that there exists a viscosity solution ( φ1 , φ2 ) of

         c φ′ 1 (z) = α 0 ( φ2 (z) -φ1 (z)) on R, c φ′ 2 (z) = α 0 ( φ1 (z) -φ2 (z)) + 2 F ( φ1 (z + r i )) i=0,...,N
on R, φ1 and φ2 are non-decreasing, φ1 (-∞) = φ2 (-∞) = 0 and φ1 (+∞) = φ2 (+∞) = 1.

(5.3) Now, we prove the existence of solutions for (5.1). Proposition 5.2 (Traveling wave solutions for system (5.1)). Consider a function F satisfying assumptions ( Ã) and ( B) and let σ ∈ (σ -, σ + ). Then, there exists a unique c = c σ such that there exists a viscosity solution (ϕ 1 , ϕ 2 ) of (5.1). on R + × R. Also, (v 1 , v 2 ) is a viscosity super-solution of (5.7) replacing σ 1 by σ 2 . In particular, using that σ 1 ≤ σ 2 , we have that (v 1 , v 2 ) is a viscosity super-solution of (5.7). Using (5.6), we have for i ∈ {1, 2},

u i (0, ±∞) < v i (0, ±∞).
Up to translation, we can assume that for i ∈ {1, 2},

u i (0, x) < v i (0, x) for all x ∈ R.
Using the comparison principle for system (5.7) (see Proposition 2.6 in [START_REF] Forcadel | Homogenization of accelerated frenkelkontorova models with n types of particles[END_REF]), we deduce that for i ∈ {1, 2},

u i (t, x) ≤ v i (t, x) for (t, x) ∈ R + × R.
(

Taking i = 1 and x = -c σ1 + c σ2 2 t in (5.8), we get

ϕ 1 c σ1 -c σ2 2 t ≤ ψ 1 c σ2 -c σ1 2 t .
Taking t → +∞, we get

ϕ 1 (+∞) ≤ ψ 1 (-∞)
which gives a contradiction.

Corollary 5.4 (Monotony of c σ ). Consider a function F satisfying assumptions ( Ã) and ( B).

For σ ∈ (σ -, σ + ), let c σ be the unique velocity such that there exists a viscosity solution of (5.1) (see Proposition 5.2). If σ 1 , σ 2 ∈ (σ -, σ + ) such that

σ 1 < σ 2 ,
then, we have

c σ1 ≤ c σ2 .
Proof. The proof of this corollary could be easily derived from Proposition 5.3. In fact, for σ 1 , σ 2 ∈ (σ -, σ + ) such that σ 1 < σ 2 , we have

m σ1 < m σ2 , m σ1 + 1 ≥ θ > 0 ≥ m σ2 .
In the next lemma we prove a strict monotony property for the function σ → c σ . In particular, this result allows us to prove that if c -= c + , then c σ = 0 for any σ ∈ [σ -, σ + ]. Lemma 5.5. Consider a function F satisfying assumptions ( Ã) and ( B). For σ ∈ (σ -, σ + ), let c σ be the unique velocity such that there exists a viscosity solution of (5.1) (see Proposition 5.2). Let σ 1 , σ 2 ∈ (σ -, σ + ) such that

σ 1 < σ 2 .
Then, there exists K = K(σ 1 , σ 2 ) > 0 such that

c σ1 + K|c σ1 |(σ 2 -σ 1 ) ≤ c σ2 .
(5.9)

Proof. Let C = α 0 + 2 max X∈[-1,1] N +1
F (X) + σ + and consider a constant γ such that

0 < γ < 2(σ 2 -σ 1 ) α 0 + 2L F (5.10)
where L F is the Lipschitz constant of F . As a notation, we set c 1 = c σ1 , c 2 = c σ2 and

c = c 1 + K|c 1 |(σ 2 -σ 1 ).
Our goal is to prove (5.9) for any constant K such that

0 < K < min α 0 γ (σ 2 -σ 1 )C , 2(σ 2 -σ 1 ) -α 0 γ -2L F γ (σ 2 -σ 1 )C . ( 5.11) 
If c 1 = 0, then (5.9) is true by Corollary 5.4. Assume that c 1 ̸ = 0. Using the two first equations in (5.1) for σ = σ 1 , we have

|c 1 |ψ ′ 1 (z) ≤ C, |c 1 |ψ ′ 2 (z) ≤ C.
(5.12)

For t ≥ 0 and x ∈ R, we define the functions

u 1 (t, x) = ψ 1 (x + ct) -γ, u 2 (t, x) = ψ 2 (x + ct)
where c is defined in (5.9). We will show that for (u 1 , u 2 ) is a viscosity sub-solution of (u 1 ) t (t, x) = α 0 (u 2 (t, x) -u 1 (t, x)), (u 2 ) t (t, x) = α 0 (u 1 (t, x) -u 2 (t, x)) + 2F ((u 1 (t, x + r i )) i=0,...,N ) + 2σ 2 (5.13) on R + × R. Assume that ψ 1 and ψ 2 are C 1 functions (if not we proceed similarly in the viscosity sense). On the one hand, we have for z = x + ct,

(u 1 ) t (t, x) = cψ ′ 1 (z) = (c -c 1 )ψ ′ 1 (z) + c 1 ψ ′ 1 (z) = (c -c 1 )ψ ′ 1 (z) + α 0 (ψ 2 (z) -ψ 1 (z)) ≤ K(σ 2 -σ 1 )C + α 0 (u 2 (t, x) -u 1 (t, x)) -α 0 γ ≤ α 0 (u 2 -u 1 )
where we use (5.12) in the third line and (5.10), (5.11) in the last line. On the other hand, we have

(u 2 ) t (t, x) = cψ ′ 2 (z) = (c -c 1 )ψ ′ 2 (z) + c 1 ψ ′ 2 (z) = (c -c 1 )ψ ′ 2 (z) + α 0 (ψ 1 (z) -ψ 2 (z)) + 2F ((ψ 1 (z + r i )) i=0,...,N ) + 2σ 1 = (c -c 1 )ψ ′ 2 (z) + α 0 (u 1 (t, x) -u 2 (t, x)) + α 0 γ + 2F ((u 1 (t, z + r i )) i=0,...,N + γ) + 2σ 1 ≤ K(σ 2 -σ 1 )C + α 0 (u 1 (t, x) -u 2 (t, x)) + α 0 γ + 2F ((u 1 (t, z + r i )) i=0,...,N ) + 2L F γ + 2σ 1 ≤ α 0 (u 1 (t, x) -u 2 (t, x)) + 2F ((u 1 (t, z + r i )) i=0,...,N ) + 2σ 2
where we use that F is Lipschitz in the forth line and (5.10), (5.11) in the last line. Finally, we define the functions

v 1 (t, x) = ϕ 1 (x + c 2 t), v 2 (t, x) = ϕ 2 (x + c 2 t).
Clearly, (v 1 , v 2 ) is a viscosity super-solution of (5.13) and proceeding as in the proof of Proposition 5.3, we get (5.9). Proposition 5.6. Consider a function F satisfying assumptions ( Ã) and ( B). For σ ∈ (σ -, σ + ), let c σ be the unique velocity such that there exists a viscosity solution of (5.1) (see Proposition 5.2). Then, we have Taking σ → σ + , we get that c + is finite. In the same way, we can prove that c -is finite. Now, assume that c -= c + . Using that σ → c σ is non-decreasing on (σ -, σ + ), we deduce that

c -= lim
c σ = c + for all σ ∈ (σ -, σ + )
and thanks to Lemma 5.5, we obtain c -= c + = 0.

Next, we show that the map σ → c σ is continuous on (σ -, σ + ). To this end, we first need the following comparison principles on the half-line.

Theorem 5.7 (Comparison principle on (-∞, r * ) (see Theorem 4.1 in [START_REF] Forcadel | Existence and uniqueness of traveling wave for accelerated frenkel-kontorova model[END_REF]).). Consider a function F satisfying assumption ( Ã) and ( B) and let σ ∈ (σ -, σ + ). For c ∈ R, let (u 1 , u 2 ) and (v 1 , v 2 ) be respectively a viscosity sub-solution and a viscosity super-solution of

cu ′ 1 (z) = α 0 (u 2 (z) -u 1 (z)) on (-∞, 0), cu ′ 2 (z) = α 0 (u 1 (z) -u 2 (z)) + 2F ((u 1 (z + r i )) i=0,.
..,N ) + 2σ on (-∞, 0).

(5.14)

Assume that u i ∈ [m σ , m σ + 1] and v i ∈ [m σ , m σ + 1] for i = 1, 2.
We suppose that ∃β 0 > 0 such that

u 1 ≤ m σ + β 0 on (-∞, 2r * ], u 2 ≤ m σ + β 0 on (-∞, 2r * ]
and

u 1 ≤ v 1 on [0, r * ], u 2 ≤ v 2 on [0, r * ].
Then, 

u 1 ≤ v 1 on (-∞, r * ], u 2 ≤ v 2 on (-∞, r * ]. Corollary 
i ∈ [m σ , m σ + 1] and v i ∈ [m σ , m σ + 1] for i = 1, 2. We suppose that ∃β 0 > 0 such that v 1 ≥ m σ + 1 -β 0 on [-2r * , +∞), v 2 ≥ m σ + 1 -β 0 on [-2r * , +∞)
and

u 1 ≤ v 1 on [-r * , 0], u 2 ≤ v 2 on [-r * , 0].
Then,

u 1 ≤ v 1 on [-r * , +∞), u 2 ≤ v 2 on [-r * , +∞).
Remark 5.9. The reader can remark that the previous theorem and corollary are not stated exactly as in [START_REF] Forcadel | Existence and uniqueness of traveling wave for accelerated frenkel-kontorova model[END_REF]. Nevertheless, we can deduce them by a simple change of variable: since F satisfies assumptions ( Ã) and ( B), as in the proof of Proposition 5.2, we define the new function F (X) = F (X + m σ ) + σ and for i = 1, 2, we consider the new functions ũi and ṽi defined by

ũi (z) = u i (z) -m σ and ṽi (z) = v i (z) -m σ .
Then, we apply Theorem 4.1 in [START_REF] Forcadel | Existence and uniqueness of traveling wave for accelerated frenkel-kontorova model[END_REF] considering these new functions to obtain our Theorem 5.7.

In the same way, we can derive Corollary 5.8 from Corollary 4.2 in [START_REF] Forcadel | Existence and uniqueness of traveling wave for accelerated frenkel-kontorova model[END_REF].

Proposition 5.10 (Continuity of the velocity function). Consider a function F satisfying assumptions ( Ã) and ( B). For σ ∈ (σ -, σ + ), let c σ be the unique velocity such that there exists a viscosity solution of (5.1) (see Proposition 5.2). Then, the map σ → c σ is continuous.

Proof. Let σ 0 ∈ (σ -, σ + ) and consider a sequence σ n ∈ (σ -, σ + ) such that σ n → σ 0 as n → +∞.

We want to show that c n = c σn → c 0 = c σ0 . Up to extract a sub-sequence, we have

c n → c ∞ .
We want to show that c ∞ = c 0 . Let (ϕ n 1 , ϕ n 2 ) (resp. (ϕ 1 , ϕ 2 )) be the viscosity solution of (5.1) replacing σ by σ n (resp. σ 0 ) and c by c n (resp. c 0 ).

Case 1: c

0 < c ∞ . Since ϕ n 1 is non-decreasing and ϕ n 1 (-∞) = m σn < m σ0 + b σ0 2 < ϕ n 1 (+∞) = m σn + 1, there exists x n ∈ R such that m σ0 + b σ0 2 ∈ [(ϕ n 1 ) * (x n ), (ϕ n 1 ) * (x n )] .
We define

φn 1 (x) = ϕ n 1 (x + x n ), φn 2 (x) = ϕ n 2 (x + x n ).
Because our system (5.1) is invariant by translation, ( φn 1 , φn 2 ) is a viscosity solution of (5.1) and

m σ0 + b σ0 2 ∈ ( φn 1 ) * (0), ( φn 1 ) * (0) .
Up to extract a subsequence, φn 1 (resp. φn 2 ) converges almost everywhere to ϕ ∞ 1 (resp. ϕ ∞ 2 ). Thanks to Proposition 3.4, (ϕ ∞ 1 , ϕ ∞ 2 ) satisfies Then, Theorem 5.7 implies that ϕ ∞ 1 ≤ ϕ 1 on (-∞, r * ), ϕ ∞ 2 ≤ ϕ 2 on (-∞, r * ).

                 c ∞ (ϕ ∞ 1 ) ′ (z) = α 0 (ϕ ∞ 2 (z) -ϕ ∞ 1 (z)) on R, c ∞ (ϕ ∞ 2 ) ′ (z) = α 0 (ϕ ∞ 1 (z) -ϕ ∞ 2 ( 
Since ϕ i (+∞) > ϕ ∞ i (+∞), we can assume (up to translation) that

ϕ ∞ 1 ≤ ϕ 1 on R, ϕ ∞ 2 ≤ ϕ 2 on R.
Finally, arguing as in the proof of Proposition 5.3, we get

b σ0 = ϕ ∞ 1 (+∞) ≤ ϕ 1 (-∞) = m σ0
which gives a contradiction. Then, using the forth line in (6.2) and that ϕ p j is non-decreasing for j = 1, 2, we deduce that 0 ≤ ϕ p j (1) -ϕ p j (0) ≤ ϕ p j 1 p -ϕ p j (0) ≤ 1 (6.5)

and for z ∈ R and i ∈ {0, ..., N }, we have Passing to the limit as p → 0, we get the convergence of ϕ p j to a function ϕ j almost everywhere for j = 1, 2. Moreover, (ϕ 1 , ϕ 2 ) satisfies 

-1 = ϕ p j z -
         c(ϕ 1 ) ′ (z) = α 0 (ϕ 2 (z) -ϕ 1 (z)) on R,

  1) = 0 and f σ < 0 on (m σ , b σ ) and f σ > 0 on (b σ , m σ + 1) with b σ ∈ (0, θ) and m σ ∈ (θ -1, 0).

Definition 3 . 1 (

 31 Definition of viscosity solutions). Consider a function F defined on R N +1 and let c, σ ∈ R. Let ϕ 1 , ϕ 2 be two locally bounded functions. We define the upper and lower semicontinuous envelopes of ϕ 1 and ϕ 2 by (ϕ 1 ) * (z) = lim sup y→z ϕ 1 (y) and (ϕ 1 ) * (z) = lim inf y→z ϕ 1 (y), (ϕ 2 ) * (z) = lim sup y→z ϕ 2 (y) and (ϕ 2 ) * (z) = lim inf y→z ϕ 2 (y).

(4. 1 )

 1 Proposition 4.1 (Existence of traveling wave for large velocities in the positive monostable case). Consider a function F satisfying ( Ã) and ( B) with σ + = 0. Then, for c > 0 large enough, there exists a viscosity solution (ϕ 1 , ϕ 2 ) of (4.1). The proof of Proposition 4.1 requires to construct positive viscosity super-solution. We say that the couple (ψ 1 , ψ 2 ) is a viscosity super-solution of (4.1) if ψ 1 and ψ 2 are non-decreasing on R, ψ 1 (-∞) = ψ 2 (-∞) = 0 and ψ 1 (+∞) = ψ 2 (+∞) = 1 and (ψ 1 , ψ 2 ) is a viscosity super-solution in the sense of Definition 3.1 of

Lemma 4 . 3 .

 43 Consider a function F satisfying ( Ã) and ( B) with σ + = 0. Then, there exists

  σ→σ -c σ and c + = lim σ→σ + c σ exist and are finites and c -= c + = 0 or c -< c + . Proof. Thanks to Corollary 5.4, σ → c σ is non-decreasing, the limits c -= lim σ→σ - c σ and c + = lim σ→σ + c σ exist. From Proposition 4.1, we know that for c >> 1 big enough, there exists a viscosity solution (ϕ 1 , ϕ 2 ) of (5.1) replacing σ by σ + . Then, from Corollary 5.4, we get for any σ ∈ (σ -, σ + ), c σ ≤ c.

  z)) + 2F ((ϕ ∞ 1 (z + r i )) i=0,...,N ) + 2σ 0 on R, ϕ ∞ 1 and ϕ ∞ 2 are non-decreasing, m σ0 ≤ ϕ ∞ 1 ≤ m σ0 + 1 and m σ0 ≤ ϕ ∞ 2 ≤ m σ0 + 1, m σ0 + b σ0 2 ∈ [(ϕ ∞ 1 ) * (0), (ϕ ∞ 1 ) * (0)] .Passing to the limits as x → ±∞, we deduce thatϕ ∞ 1 (±∞) = ϕ ∞ 2 (±∞) and f (ϕ ∞ 1 (±∞)) + σ 0 = 0. Using that m σ0 + b σ0 2 < b σ0 , we obtain ϕ ∞ 1 (-∞) = m σ0 and ϕ ∞ 1 (+∞) ∈ {b σ0 , m σ0 + 1}. If ϕ ∞ 1 (+∞) = m σ0 +1, we obtain c ∞ = c 0 using the uniqueness of c 0 and this gives a contradiction. Now, assume that ϕ ∞ 1 (+∞) = b σ0 . Using that ϕ ∞ i (-∞) = m σ0 and ϕ i (+∞) = m σ0 + 1 for i ∈ {1, 2}, then up to translation, we can assume thatϕ ∞ 1 ≤ m σ0 + β 0 on (-∞, 2r * ), ϕ ∞ 2 ≤ m σ0 + β 0 on (-∞, 2r * )andϕ ∞ 1 ≤ ϕ 1 on [0, r * ), ϕ ∞2 ≤ ϕ 2 on [0, r * ).

Case 2 :< ϕ n 1 ( 1 0F ((ϕ p 1 (

 2111 c 0 > c ∞ . Since ϕ n 1 is non-decreasing andϕ n 1 (-∞) = m σn < m σ0 + b σ0 + 1 2 +∞) = m σn + 1, there exists x n ∈ R such that m σ0 + b σ0 + 1 2 ∈ [(ϕ n 1 ) * (x n ), (ϕ n 1 ) * (x n )] .Integrating (6.3) between 0 and 1, we get c ((ϕ p 1 (1) -ϕ p 1 (0)) + (ϕ p 2 (1) -ϕ p 2 (0))) = 2 z + r i )) i=0,...,N )dz + 2σ(c, p).

1 p

 1 -ϕ p j (z) ≤ ϕ p j (z + r i ) -ϕ p j (z) ≤ ϕ p j z + 1 p -ϕ p j (z) = 1.Moreover, the Lipschitz continuity of F implies that|F ((ϕ p 1 (z + r i )) i=0,...,N )| = |F ((ϕ p 1 (z + r i )) i=0,...,N ) -F ((ϕ p 1 (z)) i=0,...,N ) + F ((ϕ p 1 (z)) i=0,...,N )| ≤ L F max i=0,...,N ||ϕ p 1 (z + r i ) -ϕ p 1 (z)| + f (ϕ p 1 (z)) ≤ L F + f (θ) (6.6)where L F is the Lipschitz constant of F . Injecting (6.5) and (6.6) in (6.4), we deduce that there exists a constantC 0 = C 0 (c, L F , θ) such that |σ(c, p)| ≤ C 0 .Therefore, up to subsequence, we have σ(c, p) → σ 0 as p → 0.Using that |h 1 (z) -z| ≤ C, we deduce that up to translation of ϕ p 1 and ϕ p 2 , we can assume that   b σ0 + m σ0 2 ∈ [(ϕ p 1 ) * (0), (ϕ p 1 ) * (0)] if σ 0 < σ + , θ ∈ [(ϕ p1 ) * (0), (ϕ p 1 ) * (0)] if σ 0 = σ + .

c(ϕ 2 ) 1 ( 6 b

 216 ′ (z) = α 0 (ϕ 1 (z) -ϕ 2 (z)) + 2F ((ϕ 1 (z + r i )) i=0,...,N ) + 2σ 0 on R, ϕ 1 and ϕ 2 are non-decreasing, ϕ 1 (+∞) -ϕ 1 (-∞) ≤ 1 and ϕ 2 (+∞) -ϕ 2 (-∞) ≤ σ0 + m σ0 2 ∈ [(ϕ 1 ) * (0), (ϕ 1 ) * (0)] if σ 0 < σ + , θ ∈ [(ϕ 1 ) * (0), (ϕ 1 ) * (0)] if σ 0 = σ + .(6.8)

  5.8 (Comparison principle on [-r * , +∞) (see Corollary 4.2 in[START_REF] Forcadel | Existence and uniqueness of traveling wave for accelerated frenkel-kontorova model[END_REF]).). Consider a function F satisfying assumption ( Ã) and ( B) and let σ ∈ (σ -, σ + ). For c ∈ R, let (u 1 , u 2 ) and (v 1 , v 2 ) be respectively a viscosity sub-solution and a viscosity super-solution of (5.14) on (0, +∞).

	Assume that u

Proof. Let σ ∈ (σ -, σ + ). We define for X ∈ R N +1 , F (X) = F (X + m σ ) + σ.

By definition of m σ and b σ (see Definition 2.1), we have for σ ∈ (σ -, σ + ), m σ ∈ (θ -1, 0) and b σ ∈ (0, θ). This implies that f ′ (b σ ) > 0 and F is C 1 in a neighborhood of {b σ } N +1 .

(5.4)

Therefore, F satisfies assumption ( Ã) and assumption (B) given in Proposition 5.1 with b = b σ -m σ . Moreover, using that f ′ < 0 in a neighborhood of m σ , we deduce that F satisfies assumption (C). Hence, thanks to Proposition 5.1, there exists a unique velocity c = c σ such that there exists a viscosity solution ( φ1 , φ2 ) of (5.3). Finally, we define

Then, (ϕ 1 , ϕ 2 ) is a viscosity solution of (5.1) for the same velocity c = c σ .

Next, we prove that the map σ → c σ is non-decreasing on (σ -, σ + ). To do this, we need the following proposition.

Proposition 5.3 (Comparison of the velocities). Consider a function F satisfying ( Ã) and consider the following system

..,N ) + 2σ on R, ϕ 1 and ϕ 2 are non-decreasing, ϕ 1 and ϕ 2 are bounded, ϕ 1 (-∞) = ϕ 2 (-∞) and ϕ 1 (+∞) = ϕ 2 (+∞).

(5.5)

Assume that σ 1 ≤ σ 2 and assume that there exists a viscosity sub-solution solution (ϕ 1 , ϕ 2 ) of (5.5) for σ = σ 1 and a viscosity super-solution (ψ 1 , ψ 2 ) of (5.5) for σ = σ 2 . Moreover, we assume that

(5.6) Then, we have

Proof. By contradiction, let us assume that c σ1 > c σ2 . For i ∈ {1, 2}, we define the functions

Then, (u 1 , u 2 ) is a viscosity sub-solution of

We define

Because our system (5.1) is invariant by translation, ( φn 1 , φn 2 ) is a viscosity solution of (5.1) and

Up to extract a subsequence, φn

Passing to the limits as x → ±∞, we deduce that

, we obtain c ∞ = c 0 using the uniqueness of c 0 and this gives a contradiction. Now, assume that ϕ ∞ 1 (-∞) = b σ0 . Using that ϕ ∞ i (+∞) = m σ0 + 1 and ϕ i (+∞) = m σ0 + 1 for i ∈ {1, 2}, then up to translation, we can assume that

Finally, arguing as in the proof of Proposition 5.3, we get

Proof of Theorem 2.2. Theorem 2.2 is now proved thanks to Propositions 5.2, 5.10, 5.6 and Corollary 5.4.

Proof of Theorem 2.3

In this section, we construct traveling wave solution in the positive and negative monostable case. To do this, we will use the so-called "hull functions". These functions were constructed in [START_REF] Forcadel | Homogenization of accelerated frenkelkontorova models with n types of particles[END_REF] in order to pass from the discrete accelerated Frenkel Kontorova model with n types of particles to a macroscopic Hamilton-Jacobi equation. In [START_REF] Forcadel | Homogenization of accelerated frenkelkontorova models with n types of particles[END_REF], the existence of hull functions was obtained for n types of particles and for a non-linear functions F j depending on time . In our case, we need a simplified version since we consider one type of particle and the non-linearity F does not depend on time. The definition and the existence of hull functions is stated in the following lemma: Lemma 6.1 (Existence of hull functions (see Theorem 1.10 and Theorem 1.11 in [START_REF] Forcadel | Homogenization of accelerated frenkelkontorova models with n types of particles[END_REF])). Consider a function F satisfying assumption ( Ã). Let p > 0 and σ ∈ R. There exists a unique λ(σ, p) = λ p (σ) such that there exists a locally bounded functions h 1 : R → R and h 2 : R → R such that (h 1 , h 2 ) satisfies in the viscosity sense

Moreover, the function σ → λ p (σ) is continuous and we have the following properties:

2) λ p is non decreasing in σ.

Next, we prove Theorem 2.3.

Proof of Theorem 2.3. We will only do the proof part ii) since the proof of part i) is similar.

Step 1: traveling wave for c > c + . Let us consider a velocity c such that c > c + .

From the properties of λ p (σ), we deduce that there exists σ(c, p) such that

We define

where (h 1 , h 2 ) satisfies (6.1). Hence, (ϕ p 1 , ϕ p 2 ) satisfies

The sum of the first two equations in (6.2) gives that for almost every z ∈ R, we have

Passing to the limit as z → ±∞, we get that where c σ is defined in Proposition 5.2. Taking σ → σ + , we get c ≤ c + which gives a contradiction because c > c + . We deduce that σ 0 = σ + , and using (6.8), we have ϕ 1 (-∞) = 0 and ϕ 1 (+∞) = 1 and this ends the proof for c > c + .

Step 2: traveling wave for c = c + . Let c > c + such that c → c + . There exists a viscosity solution (

Up to translation, we can assume that θ ∈ [(ϕ c 1 ) * (0), (ϕ c 1 ) * (0)].

Passing to the limit as c → c + , we get the convergence almost everywhere of ϕ c i to ϕ i for i = 1, 2. Then, thanks to Proposition 3.4, we get that (ϕ 1 , ϕ 2 ) solves

Finally, using the last line in (6.9), we get ϕ 1 (-∞) = ϕ 2 (-∞) = 0 and ϕ 1 (+∞) = ϕ 2 (+∞) = 1 .

Step 3: non-existence of traveling wave for c < c + . Assume that there exists a viscosity solution (ϕ 1 , ϕ 2 ) of (2.4) with c < c + . Using Proposition 5.3, for any σ ∈ (σ -, σ + ), we have c σ ≤ c.

Taking σ to σ + , we obtain c + ≤ c which gives a contradiction.
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