
HAL Id: hal-04085593
https://hal.science/hal-04085593v1

Submitted on 29 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Phase field modelling combined with data-driven
approach to unravel the orientation influenced growth of
interfacial Cu6Sn5 intermetallics under electric current

stressing
Shuibao Liang, Cheng Wei, Anil Kunwar, Upadesh Subedi, Han Jiang, Haoran

Ma, Changbo Ke

To cite this version:
Shuibao Liang, Cheng Wei, Anil Kunwar, Upadesh Subedi, Han Jiang, et al.. Phase field mod-
elling combined with data-driven approach to unravel the orientation influenced growth of interfacial
Cu6Sn5 intermetallics under electric current stressing. Surfaces and Interfaces, 2023, 37, pp.102728.
�10.1016/j.surfin.2023.102728�. �hal-04085593�

https://hal.science/hal-04085593v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1 

 

 

Phase field modelling combined with data-driven approach to unravel the orientation 

influenced growth of interfacial Cu6Sn5 intermetallics under electric current stressing 

 

Shuibao Liang a,b, Cheng Wei c, Anil Kunwar d,*, Upadesh Subedi d, Han Jiang a, Haoran Ma e, 

Changbo Ke b,**  

 

aWolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, 

Loughborough LE11 3TU, UK 

bSchool of Materials Science and Engineering, South China University of Technology, 

 Guangzhou 510640, China 

cSchool of Resource Engineering, Longyan University, Longyan 364000, China 

dFaculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 

Gliwice, Poland 

e School of Microelectronics, Dalian University of Technology, Dalian 116024, China 

 

*Corresponding author 

**Corresponding author 

E-mail addresses: anil.kunwar@polsl.pl (A. Kunwar); mecbke@scut.edu.cn (C. Ke) 

 

 

Abstract Microstructure of interfacial intermetallics plays an important role in determining the service 

performance and reliability of interconnects especially due to the anisotropic properties of intermetallic 

grains, preferential growth of intermetallics induced by the electric current is observed in experiments, 

but the exact mechanisms for this have not been understood completely. For this endeavor, a phase field 

model considering the free energy arisen from the applied electric current is developed to tackle the 

intermetallic grain growth behavior in Sn/Cu interconnects, the focus falls on the influence of anisotropic 

electric conductivity. Simulation results show that electric current stressing preferentially accelerates the 

intermetallic growth, and the orientation effects are more pronounced with higher value of electric current 

density. Due to the competitive growth of multiple Cu6Sn5 grains in the presence of electric current, most 

region of the intermetallic layer is occupied by the grains whose c-axis is along the direction of the electric 

current. The intermetallic grain with higher electric conductivity along the electron flow holds smaller 
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current field, while the phase boundaries own higher electric field. It is found that the higher local electric 

field concentrating at phase boundary drives faster phase boundary migration. The data generated from 

physics-based phase field simulations are utilized to train a neural network model that functionally maps 

the area of a particular grain with the applied current density, simulation time, grain identification, 

orientation of the grain and its neighboring grains. The prediction model reveals that that electric current 

stressing preferentially accelerates the intermetallic growth, and the orientation effects are more 

pronounced with higher value of electric current density. The results from phase field simulation and 

physically informed machine learning model further deepen understandings of the microstructure 

evolution and selective intermetallic growth in the context of electric current, and shed light on the in-

silico studies and design route of interconnects under other types of loadings. 

Keywords:  Crystal orientation, Preferential grain growth, Intermetallic, Electromigration, Phase field model, 

Machine learning 

 

1. Introduction 

The formation and existing of intermetallics are one of the most important evidences that the 

interconnects have a reliable performance, whether through soldering [1-3], welding [4],  and self-

propagating exothermic reaction [5, 6]. Intermetallics occupying a suitable volume at the bonding 

interface could ensure a good service reliability of the interconnects [7]. Noticing that the physical 

properties of intermetallic compounds are usually anisotropic [8-11], such as mechanical properties, 

thermal and electric conductivities. For example, Young’s modulus of Cu6Sn5 intermetallic grains with 

[010] direction parallel to loading direction is lower than other grain orientations [11, 12], and strength of 

Cu6Sn5 grains closing to the c-axis has 20% increase compared with that normal to the c-axis [13]. 
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Therefore, the microstructure characteristics of the intermetallic compound phase, such as the distribution 

and size difference of the grains with different orientations, can determine the performance and lifetime 

of the interconnects [1, 7, 14-17], particularly for the micro- and nano-scale integrated structures. 

Interconnects in service are frequently subjected to multiple mechanical and physical loadings [18-

21], to name a few, thermal stress, electric current stressing, and temperature gradient. Meanwhile, field-

assisted manufacturing is being an attractive means to optimize or accelerate the bonding process to 

achieve the interconnects with better properties [22-24]. However, the mechanical and theoretical 

mechanisms behind the physical fields acting on microstructure and bonding process of interconnects 

remains to be further clarified. Generally, the physical loadings can promote or hinder the growth of 

intermetallic, depending on the type and direction of loadings [25, 26]. Moreover, the grain distribution 

and orientation are affected by the applied loadings [27, 28]. The studies of transient liquid phase bonding 

of Sn/Cu interconnects under temperature gradient showed that, in addition to accelerating the growth of 

intermetallic phase [29], the c-axis of the Cu6Sn5 intermetallics after bonding tend to be parallel to the 

temperature gradient direction [22]. The orientation of Co3W intermetallic grains at the W/Co bonding 

interface after spark plasma sintering was observed to be associated with the density of electric current, 

and intermetallic grains preferentially grew in a specific direction along current direction [30]. The favor 

growth of Cu-Sn intermetallic grains with preferred orientations was found in Cu-Sn intermetallic 

interconnects [31, 32], and  grain orientation of intermetallics were greatly influenced due to the applied 

high-density high electric current. However, the behind mechanism of preferential growth of intermetallic 

grains induced by the applied temperature gradient or electric current still needs to be clarified, thus further 

understanding and studies are imperative. 

A whole range of researches show the capability and advantages of phase field modelling in the  study 

of formation and growth of intermetallics in Sn/Cu [33-37], Mg/Al [38], and Al/Ni [39, 40] systems. For 

instance, Huh et al [33, 34] developed a phase field model to study the interfacial reaction in Sn/Cu system 
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during the conditions of soldering and aging, the simulated results are in line with previous observation. 

Park et al [35] has studied the formation characteristics of intermetallic compounds at the bonding layer  

Sn-Cu system during the early stages of soldering with considering the phase nucleation, providing a better 

understand of the Cu-Sn soldering reactions. Moelans [36] proposed a new type of interpolation functions 

for describing the multi-phase systems, and applied to study the intermetallic growth. Ke et al [37] 

investigated the microstructure evolution in the region between Sn and unidirectional Cu substrates by 

phase field modelling incorporating micro-elasticity, the simulated results revealed the mechanism of 

formation of different patterns on different Cu substructures.  

Moreover, the evolution of intermetallic compounds in interconnects under external loadings can 

also be simulated by coupling the phase field model with extra energy density or driving force terms, such 

as the energy terms exerted by electric current [41], stress field [42], and temperature gradient [43, 44]. 

Noteworthily, the phase field model was previously attempted by many researchers to reveal the 

microstructure evolution behaviour under external loadings [45-48], which were consistent with 

experimental observations. The previous study by Attari et al [47] taken into account the electromigration 

and non-equilibrium formation of vacancies, the simulation result gave some insightful understandings of 

the intermetallic growth behaviour and vacancy distribution influence on void formation. However, 

anisotropy in electric properties of intermetallic compounds would lead to the preferential growth of 

intermetallics, rare attentions were paid to this issue. For sub-100 nm structures of nanoscale interconnects 

transmitting electric currents, the operating current density can reach as high as several MA/cm2 thereby 

causing reliability issues in these devices [48, 49]. Thus the knowledge of electromigration physics is of 

utmost importance for safety of nano-electronic devices. Our recent study [50] has mechanistically 

explored the electric current stressing induced preferential growth Cu6Sn5 intermetallic grains at the 

solder/substrate interface, but the study only used two order parameters for the intermetallic phase and 



5 

 

 

considered intermetallic grains with two different orientations, it can be of limited understandings of real 

microelectronic interconnects consisting of randomly oriented multiple intermetallic grains. 

There has been an ongoing trend among the researchers to implement physically informed machine 

learning models at multiscale. The first approach is towards incorporating the laws of physics within the 

machine learning model itself, for an example solving the partial differential equations using neural 

network as described in the study by Raissi et al. [51]. The second approach is towards collecting the 

datasets with features that have variance in accordance with the governing equations of physics, and 

building the machine learning models upon these datasets. One way to generate physically intuitive 

datasets is by performing a large set of physics based multi-scale numerical simulations (molecular 

dynamics, density functional theory and finite element method) through variation of the parameters in the 

governing equations. The set of partial differential equations have been solved using finite element method 

in Kunwar et al. [44, 52] to generate data required by artificial neural network (ANN). The major 

advantage of this approach is the unlimited flexibility in the architecture of the machine learning model. 

The third approach is to develop multi-modal machine learning models capable enough of taking in the 

physics-based information in addition to the empirical datasets. This approach has been implemented 

recently in the development of physically informed machine learning potentials [53, 54].  

In this work, the grain growth and electromigration behaviour of intermetallics in the Sn/Cu 

interconnects with emphasizing on effect of anisotropic electric conductivity are studied by developing a 

phase field model taking into account the electrostatic free energy. The cases of bi-crystal and multiple 

grains in the intermetallic phase are respectively investigated under electric current stressing, compared 

with the cases without electric current stressing. A set of phase-field simulations will be performed by 

varying the parameters such as current density, orientation angle etc., and data of these features along with 

time, grain identification and grain size etc. will be collected. The generated datasets will be utilized to 

train the ANN based on second approach mentioned above and then subsequently build a prediction model. 
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Thus, by integrating the physically intuitive computational method (phase field method) with machine 

learning technique, the present work will be able to unravel the hidden details of the mechanistic aspects 

associated with the electromigration-induced grain growth of interfacial intermetallics affected by 

orientation. 

 

 

2. Numerical model 

For the Cu/Sn bonding/soldering system, usually there are Cu6Sn5 and Cu3Sn intermetallics at the 

bonding interface.  Cu6Sn5 is merely considered in the present study since that it is the main phase in the 

reflowing process[35, 55], besides, the  amount of Cu3Sn intermetallic is nearly negligible compared with 

that of Cu6Sn5 intermetallic going through a considerable time of aging. The simulation domain is thus 

composed of three individual phases, i.e., the phases of substrate, Cu6Sn5 intermetallic and solder. The N 

number of orientations of grains could be represented by a set of order parameters { ( , , , )}i x y z t

( 1,2,..., ),i N=  The variable 1  and N  stand for substrate and solder, respectively. The other N-2 number 

of order parameters denote the intermetallic grains with different orientations. The grains labeled as same 

orientation are presented using one of order parameters with the value of 1, while other order parameters 

are 0. To further describe the different states for the intermetallic compared with the solder and substrate, 

another order parameter   is introduced to represent the intermetallic phase, 1 =  in the intermetallic and 

0 =  in the solder or substrate. The total free energy with the order parameters can be constructed as 
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where f  is determined by ( ) ( )2 2 2 2 2 2 2 2

1 1 2 1N Nf f f        =  +  + , where 1
f  is the chemical energy 

difference between the intermetallic and substrate phases, 2
f  is the chemical energy difference between 

the intermetallic and solder phases,  The constants are chosen as 0.14, 12.42, 12.28a b c= = = [56]. The local 

free energy density 1 2( , ,..., , )N      is given by 

1 2 1 1 2 2 1 2 3 1 2( , ,..., , ) ( , ,..., , ) ( , ,..., ) ( , ,..., , ),N N N N                  = + +                  (3)    
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where 1 1 2( , ,..., , )N      describes the coupling between the phase order parameter  and the orientation 

order parameter i , 2 1 2( , ,..., )N     is used to account for the interaction between grains with different 

orientations, 3 1 2( , ,..., , )N      denotes the coupling between the different phases. The parameter 

6 /gb gbm l= [57, 58], in which gb  and gbl stand for the grain boundary energy and width, respectively. 

Based on the above free energy formulation, the “multi-well” can be formed between different grains in 

the intermetallic phase, and the thermodynamic stability between different phases is determined by f  

(See Fig. 1). 
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Fig. 1. (a) Landscape of the free energy density 
1 2

( , , ..., , )
N

     , where red surface plot represents the free energy density 

changes from solder to intermetallic phase, and the blue surface represents the free energy density changes from substrate to 

intermetallic phase. Free energy density changes across the phase boundaries (b) and the intermetallic grain boundaries (c). 

 

When the electric current flowing through the system, the electrostatic free energy density difference 

across the grain boundaries will drive the atom to migrate. This effect can be accounted by coupling the 

electric potential gradient to Allen-Cahn equation [59], which is similar to the consideration of the 

temperature gradient influence on grain growth [60, 61]. The microstructure evolution of intermetallic 

grains (with specific orientation i ) can be given by 

                                         
21 2( , ,..., , )

,i N

i i

i

L k
t

  

     
   



  
= − −  −   

  
                             (4) 

where L
 is a constant relating to the grain boundary mobility, ( )

2

a ,i i j m iN eZ V    =  is the electric 

potential gradient coefficient, aN  represents Avogadro’s number, e  and iZ are electronic charge and 

effective charge number, respectively, mV  denotes the molar volume, and   is the electric potential, the 
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Dirac-δ function ( ) ,i j    is employed to apply the electromigration driving force at the grain boundaries 

in intermetallic phase, with the form of  ( )
2

2

2
1 1

2 2

2,

 =1- 1- tanh )(,
N N

i j i j

i j j i

d    
− −

= = 

 
 
 

  and d is a constant across the 

grain boundaries. 

The governing equation of order parameter can be written as 

                                       21 2( , ,..., , )( )
,NL k

t
  

      
   

 

  
= − + −  −   

   
                       (5) 

where L
 is a kinetics mobility constant, the last term a gb gb mN eZ w M L V   =  is used to reflect the driving 

force induced by electric potential at phase boundaries, and 
1

2 2 2 2

1 1

2 1

( ) ,
N N

i i N N i

i i

Z Z Z Z    
−

= =

 
= − + 
 
   gbw  is the 

actual physical width of the grain boundary, gbM  is the grain boundary mobility. 

In Eqs. (4) and (5), 
1

1 2 1 2( , ,..., ) ( , ,..., ),N N      − = − J σ
 
where J  is the electric current density and

1 2( , ,..., )N  σ the electric conductivity tensor which is calculated through 2 2

1 2

1 1

( , ,..., ) ,
N N

N i i i

i i

    
= =

= σ σ
 
the 

electric conductivity tensor of intermetallic grains with different orientations is given by 
IMC IMC

0 ,T

i =σ Mσ M  

with M the transformation matrix [62].  

The model described above is applied to investigate the Cu6Sn5 intermetallic growth at the presence 

of electric current at 150°C. The multiphase system including Sn solder, Cu substrate and multiple Cu6Sn5 

grains (N-2) are considered based on the experimental study [63] and simulation work launched by Ref. 

[42], and x =z =4.15×10-9 m, as shown in Fig. 2. The schematic sketch of Fig. 2(a) is utilized to define 

the crystal orientation angle (θ) of Cu6Sn5 intermetallic grains, and the definition of N-2 order parameters 

for intermetallic grains in Fig. 2(b) which allows the allocation of these different values of crystal 

orientation angles. The periodic conditions are adopted for i  and   along the x axis, and Neumann 

boundaries are applied for the top and bottom edges. The periodic boundary condition allows the half 



10 

 

 

grains at the left and right boundaries to be defined by a single order parameter. Constant current density 

(ja) values are ensured using these Neumann boundary conditions. The electric conductivities of substrate 

and solder are assumed to be isotropic, with the quantity of 
Cu 7 1 15.85 10  Ω m − −=  and 

n 6 1 19.09 10  Ω mS − −=   

[41, 64], respectively. The diagonal elements of electric conductivity tensor 
IMC

0σ  of intermetallic grains 

are assigned as: 
IMC IMC 6 1 1

11 22 2.38 10  Ω m ,  − −= =  IMC 6 1 1

33 3.75 10  Ω m − −=  [65]. Other simulation parameters are: 

72.24 10 m s kg,L
−=    

12

Sn/IMC 4.41 10 m s kg ,L −=   13

IMC/Cu 2.34 10 m s kg ,L −=   Cu 5Z = [66], IMC 30Z = [66], 

Sn 18Z = [67], 20.5J mgb =  [42], 
5 31.629 10 m mol,mV −=  83 10 mgbl −=  ， 105 10 mgbw −=  [68],

8 3

1 9.5 10 J mf =  and
8 3

2 2.4 10 J mf =  [69]. Then, the values of parameters k , k  and m can be 

determined based on the assigned gb  and gbl [58]. In the simulation procedure, the implicit backward 

difference method and the finite element scheme are used for the temporal and spatial discretization for 

solving the equations governing the grain morphology evolution and electric potential distribution. 

 

Fig. 2. Schematic configurations are illustrated in (a) to provide 3D perspective of angle θ between the z direction (i.e., 

electric current direction) and the c-axis of intermetallic grains, and (b) to show the view from y-axis direction of the 

simulation domain in x-z plane, where three phases of solder, intermetallic grains and substrate are considered. The sketch 

shown in (b) is used for the construction of the equivalent 2D geometry of the finite element model, the numbers 1, 2, ..., 8 

tagged on the grains are the grain identifications. 
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3. Phase field simulation of intermetallic growth under electric current stressing 

We first consider the interconnect including the bicrystal intermetallic phase under the electric 

current stressing with different densities, and the growth rate and characteristics of intermetallic grains are 

compared with previous experimental studies to illustrate and verify the feasibility of the developed 

model. Subsequently, multiple grains with different orientations in the intermetallic phase are considered 

and to investigate the competitive and preferential growth of different grains though the grain size 

comparison. Finally, the typical simulation case in the last subsection is selected for analysing current 

density distribution, and discussion about the mechanism behind the preferential growth, mainly from the 

perspective of the electromigration induced driving force. 

3.1.  Preferential grain growth of intermetallics 

For simplicity, two grains are firstly considered in the intermetallic phase, and the orientation angle 

θ for grain 1 is set as 0o, the angle for grain 2 is 90°. Figure 3(a1-a3) show the simulated grain morphology 

at t=1500 s with different values of current density, 0, 2×104 and 2×105 A/cm2. It is found intermetallic 

grains grows faster under the higher electric current density, the quantitative changes of the intermetallic 

phase layer can be clearly seen in Fig. 4(a). The increase velocity of intermetallic layer under current 

conditions of 0 and 2×104 is 0.024 and 0.034 nm/s, respectively, which is consistent with the experimental 

studies [70].  

More importantly, from the simulation results, it is observed that the grain 1 grows faster than grain 

2, and the difference is more pronounced under the electric current with higher density. As shown in Fig. 

3(c), grain 1 not only occupies the spaces of solder and substrates, but also it can be seen that the width of 

grain 1 increases significantly especially adjacent to the solder region, while the width of the grain 2 

decreases. The size comparison of grain 1 and 2 is shown in Fig. 4(b), and the grain size difference is more 

obvious when higher current density is applied. Noticeably, high current electric densities have been found 
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in the experimental studies on Cu/Sn and Co/W interconnects to induce the rapid growth or preferential 

presence of intermetallic grains with certain orientations [30, 32]. The study by Deng et al [30] found that 

the intermetallic grains with specific orientations are easier to grow and prevail after applying electric 

current, The present simulation further confirms this behaviour, and it is in good agreement with the 

findings by experiments. 

 

Fig. 3. Comparison of grain morphologies at t=1500 s for conditions of 0 A/cm2 (a1), 2×104 A/cm2 (a2) and 2×105 A/cm2 (a3), 

the dashed lines denote the initial position of grain boundaries. 

 

Fig. 4. (a) Variation in intermetallic thickness with time under different current densities. (b) Comparison of the diameters of 

grain 1 and grain 2 with time under different current densities. 
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3.2. Competitive growth of multiple intermetallic grains under electric current stressing 

As intermetallic grains in the Sn/Cu interconnects usually have random crystal orientations [63], it is 

very important from the perspective of materials design engineering to consider simulation cases that 

account into the effect of multiple grain orientations. Two cases of systems with multiple orientation 

angles (8 number of θ in the range 0o-90o) for intermetallic grains of Fig. 2(b) are performed for studying 

the competitive growth under multiple intermetallic grains with different orientations. Case I is designed 

with an ascending order in the magnitude of orientation angles of the intermetallic grains from left to right 

of the intermetallic phase layer (0o, 20o, 30o, 40o, 50o, 60o, 70o, 90o) , while case II assigns a more 

randomized values for the corresponding grains 50o, 60o, 20o, 90o, 0o, 70o, 30o, 40o for intermetallic phase 

from left to right. Fig. 5(a) shows the simulated morphology at t=500, 1000 and 1500 s without applied 

electric current stressing. Fig. 5(b) and Fig. 5(c) respectively present the simulated grain morphology at 

times t=500, 1000 and 1500 s of case I and case II under current density condition of 2×104 A/cm2. It is 

apparent that the presence of electric current stressing induces the intermetallic phase grow faster, which 

was also found in some previous experimental studies [31, 32]. Moreover, the comparison between case 

I and case II shows that there is almost no morphological difference in terms of height and width of the 

intermetallic grains under current density condition of 2×104 A/cm2, even though the grain orientations 

are evidently different.  

When the applied electric current density increases to 2×105 A/cm2, the simulated grain morphology 

at times t=500, 1000 and 1500 s of case I and case II is shown in Fig. 5(d-e). The intermetallic grains grow 

much faster, especially along the direction towards the solder matrix. At t= 500 s, the sizes of intermetallic 

grains with different orientations are no longer the same. Transient grain evolution is influenced by not 

only the magnitude of current density values but also the net flow of electrons along a grain of certain 

orientation. As time proceeds to 1000 s in Fig. 5(d-e), the size of the grain with orientation angle θ=90o is 

very small, while the size of grain with θ=0o increases sharply. At t= 1500 s, the grain with θ=90o in case 
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I have been swallowed by the surrounding intermetallic grains, similar event also occurs in case II, and 

the grains with orientation angles (θ) of 90o and 70o have also disappeared. The above-mentioned 

evolution behavior results in the intermetallic grains with θ=0o occupying a relatively large area volume 

fraction of the Cu6Sn5 intermetallic phase region.  

  

Fig. 5. The simulated microstructure of solder interconnects under current density conditions of 0 A/cm2 (a), 2×104 A/cm2 (b–

c), 2×105 A/cm2 (d–e), at different times for case I (a, b, d) and case II (a, c, e). The dashed lines indicate the initial position of 

intermetallic grain boundaries. 
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The analysis of intermetallic phase thickness over time is shown in Fig. 6. Clearly, the intermetallic 

phase thickness increases faster when a higher electric current stressing is applied. Moreover, the thickness 

of intermetallic phase in case I is almost the same with that in case II under the same electric current 

density. 

 
Fig. 6. Average thickness of the intermetallic phase as a function of the intensity of applied current density for two different 

designed cases of grain orientations. The layer thickness of intermetallic phase represents the value obtained by dividing the 

total area of all the intermetallic grains by the base width of the interface. 

To quantitatively understand the growth and competitive behaviour of intermetallic grains with 

different orientations, the grain sizes with different orientations after electric current stressing at different 

times are plotted, as shown in Fig. 7. It is clearly seen that all the grains share the same trend, that the size 

of all grains increase with time regardless of grain orientations, this trend is particularly prominent in 

grains with θ=0o. In case I, except that the sizes of grains with orientation angles (θ) of 90o and 0o are very 

different from the grains with other orientations, and the size of grains with other orientations do not differ 

greatly. While in case II, it can be found that the grains with larger orientation angle (θ) have smaller grain 

size. This result indicates that the intermetallic phase tends to favor more grains with orientation angle 

equal to or very close to 0o. The quantitative simulation results have revealed that the changes in the 

morphology of the intermetallic grains caused by the competitive grain growth are consistent with the 

experimental phenomenon that the Cu6Sn5 phase often have the grains with c-axis along the direction of 
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the electric current if a high-density electric current is applied [31, 32]. Moreover, the competitive growth 

becomes more obvious with the increase of electric current density, and the grains with c-axis along the 

electric current dominate the growth and exist in the intermetallic phase. 

 

Fig. 7. Size distribution pattern of intermetallic grains with different orientations for case  I (a) and case II (b) at different 

times. The orientation angles in the x-axes of the histograms also serve as the grain identity in the intermetallic phase. 

 

3.3. Current density distribution and driving force analysis 

Noting that the intermetallic grains with different orientations have different electric conductivity 

tensors consider the anisotropy of intermetallics, characterization of the correlation between the grain 

morphology and electric current density is critical for revealing the mechanism of the preferential growth 

of intermetallic grains. In general, considering that the difference of the electric conductivity tensor in 

different intermetallic grains, when the effective component of the electric conductivity of the grains along 

the electric current direction is larger, the electron flow tends to pass through these grains. The effective 

electric conductivity along the direction of the applied electric current could be given by 

IMC IMC 2 IMC 2

33 11cos sin .e    = +  Due to the conservation of electric current, the current density distribution 

closely depends on the intermetallic morphology, thus assessment of electric current density distribution 

in evolving interfacial intermetallic grains can be largely insightful in understanding the dynamics of a 

multi-phase system. 
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The quantitative distribution of current density is shown in Fig. 8, in which the grain morphology 

shown in Fig. 5(e) is considered. It is observed that most of the electrons flow through the grains with 

orientation angles of 0o, 20o and 30o, and other grains are observed with the smaller values of current 

density. Comparing Fig. 8(a) with 8(b) and 8(c), we see that the intermetallic grains with larger electric 

current density occupy the original spaces of the intermetallic grains with smaller one, which also means 

that those grains having higher electric conductivity preferentially grow and prevail in the intermetallic 

phase region. 

  

Fig. 8. The current density distributions in accordance with the grain morphology shown in Fig. 5(e) (case II) at t=500 (a), 

1000 (b) and 1500 s (c). The red arrows indicate the directions of the electron flow. 

The driving force acting on the grain boundary due to the applied electric current can be expressed 

as *
em gbF eZ w= E  , where E is the electric field [71, 72], Z* stands for the effective charge number , it can 

be seen that the driving force is proportional to the magnitude of electric field. Fig. 9(a) shows the electric 

field distribution of the simulation domain with morphology corresponding to t=1000 s of case II shown 

in Fig. 5(e). It is observed that the electric field in the grains with small orientation angles (e.g., grain with 

0 o) is lower than that in grains with large orientation angles (e.g., grains with 70o and 90o) due to the 

higher electric resistivity of large-orientated grains along the electron flow direction. However, the electric 

field in the micro-domains of solder near the grains with small orientation angles is higher than that near 

grains with large orientation angles. 
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Fig. 9. (a) The electric field distribution corresponding to t=1000 s of Fig. 5(e) (case II) is presented. (b) Plot of electric field 

and its vector direction at the phase boundaries and grain boundaries, color of the vector flows at the phase boundaries of 

solder/intermetallic and intermetallic/Cu depends on the magnitude of the electric field. 

Additionally, from the plot of electric field and its vector direction at the phase boundaries and grain 

boundaries shown in Fig. 9(b), it is found that electric field acting on the phase boundaries of grain 

A/solder and grain A/substrate is higher than that of grain B(C)/solder and grain B(C)/substrate, 

respectively. This could be the main reason for having different growth velocities of grain A and B(C). 

When the driving force for the boundary changes, the boundary between A and B(C) is no more the same 

with the electric current direction. Electric field force also exists at the boundary region between 

neighboring grains in the intermetallic phase, as shown in the gray region in Fig. 9(b), which was reported 

in previous study [59] and observed in the experiment [27]. This extra driving force at the grain boundaries 

in intermetallic layer will induce the grain boundaries to migrate along the direction parallel to the electric 

field, further leading to a more rapid growth of grain A by shrinkage of grain B(C). Base on the 

experimental studies [32, 65] , it was indicated that the preferred orientation of intermetallic grains [0001] 

direction paralleling to the electric current direction is closely related to the electric resistance of the 

intermetallic phase, which is also shown in the present simulation. Moreover, from the perspective of the 

relationship between electric conductivity and carrier mobility, ne =  , where n is carrier concentration,  

  is the carrier mobility and   is the electric conductivity, it is seen that lower electric resistance induces 

higher carrier mobility since n is relatively constant [65]. When the c-axis of the grain is along the direction 
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of electric current, i.e., grain A with θ=0o, the scattering obeyed by the electrons is the lowest due to the 

smallest atomic density through the Cu6Sn5 (0001) plane [32], then may lead to the higher electromigration 

and then faster growth of grain A. 

To further explain our findings in the above discussion, we can regard the computational domain as 

the one consisting of two rectangular domains with the same size, domain 1 has three layers including 

solder, substrate and whole grain A, and the three-layered domain 2 owns the whole grain B. At the initial 

time, because the volume of the intermetallic grains is smaller compared with that of the solder and the 

substrate, and the resistivity of the solder/substrate is smaller than the intermetallic phase, the voltage 

across the two rectangular domains is almost the same. However, the voltage across grain B occupies a 

larger ratio of the total voltage than grain A due to the higher resistance of grain B, which leaves the 

voltage acting on the phase boundaries of grain B smaller than that on grain A. Hence, the electric field at 

phase boundaries of grain A will be greater, which in turn leads to the phase boundary adjacent to grain 

A growing faster than that of grain B.  

4. Physically informed neural network for learning the differential grain growth  

As discussed in previous sections, multiple number of phase-field simulations have been performed 

by varying the magnitude of applied current density and the orientation angles of the grain system. Thus, 

these factors are very significant in relation to the intermetallic grain growth kinetics. The grains will have 

different areas at different simulation time, and thus the time is also an important feature during grain 

growth. If a grain of grain identification p (p = 1, 2, ..., 8) is chosen for the intermetallic grains from left 

to right of the intermetallic phase layer shown in Fig. 2(b), it is already found that its orientation angle 

(θp) will affect the evolution rate of its area (Ap). The adjacent grain also will affect the relative growth of 

the grain; and in this respect the orientation angle of the grain at vicinity also needs to be considered as 

another significant feature affecting the growth kinetics of the grain p. In the present study, as shown in 
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Fig. 2(b), the grains are linearly arranged at the interface. Thus, for a grain p, the grain at its left side will 

be referred to as grain (p-1) and the grain at its right side will be known as grain (p+1). The orientation 

angles θp-1 and θp+1 of these two neighboring grains subsequently matter to the evolution rate of grain p. 

In summary, seven features, namely, grain identification (p), θp, θp-1, θp+1, applied current density (j), t and 

Ap are chosen as the variables for the data-driven model of the present study. From the phase field 

simulations, 144 observations were made regarding the values of these 7 features. Since the data were 

generated from the solutions of partial differential equations, the neural network model will be adequately 

informed with the underlying physics. 

It is always important to assess these features based upon the principle of maximum relevance and 

minimum redundance. Pearson’s correlation coefficient (PCC) heat map representation of the dataset is a 

good way to get insight about the linear relationship between any two features in the list of these 7 features  

- p, θp, θp-1, θp+1, j, t and Ap. As it is aimed to define Ap as the output feature and the features p, t, θp, θp-1, 

θp+1, and j as the input features in the ANN in Section 4.1, the minimum redundance and maximum 

relevance criteria will be established based upon this input-output structure. In the context of this study, 

an input feature or attribute is considered to be relevant and not redundant if it has a correlation coefficient 

of absolute magnitude less than 0.5 with other input feature whereas it has the coefficient of magnitude 

more than 0.05 with the output feature. A PCC heatmap for the dataset is shown in Fig. 10(a). It should 

be noted that the coefficient with the absolute magnitude less than 1×10-9 is established as 0.0 in the 

heatmap. It should be noted that the feature related to time (t) has correlation coefficient of 0.0 with every 

other remaining 5 input features and has a correlation coefficient of +0.25 with Ap (output feature). Thus 

t is a very relevant feature and does not show redundancy. Compared to t, j is even more relevant as its 

correlation coefficient (+0.52) with Ap is the highest, and also it has no observable linear relationship with 

the other five features. Thus, the current density is considered as the most relevant input feature of this 
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study. After j, the orientation angle of pth grain (θp) is the second most relevant feature as it has the 

correlationship coefficient of -0.26 with the output feature. None of the features are seriously redundant 

and irrelevant as all of the input features pairs considered will have a correlationship coefficient well below 

an absolute magnitude of 0.5. The input feature pair p and θp showing a correlationship coefficient of 

+0.42 show a little redundancy when considered together, but since the absolute magnitude 0.42 is smaller 

than the threshold of 0.5, both of these features will be considered relevant for this study. Hence, all of 

the 6 input features will be considered relevant and non-redundant in the present study. 

Data visualization can provide a good summary regarding the distribution of the variables. As shown 

in Fig. 10(b), a pairplot diagram was constructed upon the dataset for the 5 features - grain identification 

(p), θp, j, t and Ap. The diagram clearly reveals that the grain growth represented by Ap is affected 

importantly by the choice of θp, time or current density, and thus provides a green signal to proceed with 

the development of artificial neural network. 
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Fig. 10. Pearson’s correlation coefficient (PCC) heatmap is constructed in (a) for the correlation analysis among the 7 

features - p, θp, θp-1, θp+1, j, t and Ap. It is evident from the image that the grain area (Ap) has the strongest correlationship with 

the current density j (correlation coefficient = +0.52) whereas the mildest correlationship with p (correlation coefficient = -

0.1). The correlation between the four features: grain identification (p), orientation angle for the pth grain, applied current 

density (j) and area of the pth grain (Ap) have been visualized using pairplot diagram in (b). It is important to note in the figure 

that some grains with non-zero initial area have a zero area at t = 1500 s, these grains correspond to larger orientation angle 

and larger current density. For larger j, the grains with orientation angle of 0 have exceptionally large areas at t =1500 s. 
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4.1 Architecture of the artificial neural network 

Among the seven features, the grain identification p of intermetallic grain, θp, θp-1, θp+1, j and t were 

taken as the input features whereas the area (Ap) of the pth grain was considered as the output feature for 

the ANN shown in Fig. 11(a). Corresponding to the 6 input features at the input layer, the size or dimension 

of the input was 6. Three hidden layers, namely hl1, hl2 and hl3 were defined in between the input and 

output layer. The numbers of neurons in hl1, hl2 and hl3 were respectively assigned as 20, 10 and 5. While 

ReLU activation function was defined for the first hidden layer, LeakyReLU activation function was 

chosen for the second and third hidden layers. The output layer was assigned a single neuron, and to 

account for the non-linearity associated with the data consisting of both growing and shrinking 

intermetallic grains, sigmoid activation function was defined for the output layer.  

The original data supplied by the phase field simulations is marked by the differences in ranges of 

the datasets of the features. The grain identification varies in the range 1-8, whereas the orientation angle 

features (θp, θp-1, θp+1) are in the values lying from 0 to 90◦. The current density features range from 0 to 

2×105 A/cm2 and time is in the range 500-1500 s. The use of datasets with features of different ranges of 

variation in the machine learning model will cause the result to be dependent mainly on the input feature 

having the largest range - current density in the present context. To avoid the erroneous prediction caused 

by the hegemony or dominance of a single input feature, a technique called normalization [52, 73] was 

implemented on the dataset in accordance to which all of the input and output features were scaled within 

the range 0-1. With this procedure, all the input features can have their proportional claim on the prediction 

result.  
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Fig. 11. A neural network model with an input layer (i), three hidden layers - hl1, hl2, hl3 and an output layer (o) is shown 

schematically in (a). The grain identification (p) of an intermetallic grain, orientation angles of the grain as well as its adjacent 

neighbors, current density and time are chosen as the input features whereas the area of the grain (Ap) is selected as the output 

feature for the ANN. The image in (b) shows the mean square error (MSE) values at 199th epoch for 10 different ANN models 

compiled with different values of constant learning rates. In image (c), the variation of MSE values for training and validation 

data is plotted against the number of Epochs for ANN model corresponding to learning rate = 2.5E-04. 

To enable the ANN to predict well beyond the training data, 25% of the total observations were 

designated as validation data. Mean square error (MSE) is chosen as the metrics for performance 

assessment of the ANN, and is defined mathematically as following: 
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where ,p cA  is the area of the pth grain computed from phase field simulations and ye is the corresponding 

value estimated by the neural network. With Adam optimizer being selected as the optimizer for model, 

the neural network model was run and compiled in TensorFlow software [74]. Learning rate (lr) is the 
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hyperparameter that has a significant role on the performance of the neural network. 10 ANN models were 

built in this study, and each model was assigned a unique constant value of learning rate. The learning 

rates used in this work range from 1.0E-05 to 1.0E-02. The training and validation MSE values at the 199th 

epoch for the 10 models are plotted graphically in Fig. 11(b). As revealed by the black colored dots in the 

figure, the models with lr = 2.5E-04, lr = 5.0E-04 and lr = 1.0E-02 have the low values of MSE for the 

training data. Among the three models, the model with lr=5.0E-04 has the lowest MSE value for training 

data (MSE train =4.56E-05) , followed by the model with lr = 2.5E-04 (MSE train =4.97E-05). The model 

corresponding to lr of 1.0E-02 has MSE train =5.42E-05. In terms of MSE for validation data shown by 

red colored dots in the image, the model with lr = 2.5E-04 has the lowest error (MSE validation = 3.3E-

03). The validation mean square error for models with lr=5.0E-04 and lr=1.0E-02 are 3.8E-03 and 8.2E-

03 respectively. Owing to the reason that it has the lowest validation MSE, the model corresponding to lr 

=2.5E-04 is chosen subsequently as the prediction model. The training and validation MSE curves for this 

model (lr=2.5E-04) for the entire 199 epochs are presented in Fig. 11(c). 

4.2 Prediction of grain area as a function of its orientation 

As the ANN was trained with datasets generated from phase field simulations, the machine learning 

model is physically informed and so it is able not only to interpolate the data but also to extrapolate it 

without making mistakes. Physically informed neural network models are a suitable choice to make 

predictions as they are computationally less expensive than the phase field simulations. That the ANN 

prediction model as applied to make estimations beyond the training data, is essentially acting as the sole 

model to make predictions for all the new values of input feature sets. 

The main purpose of this study is to assess the influence of area of Cu6Sn5 intermetallic grain p by a 

single variable, namely its crystal orientation angle (θp). The prediction ANN model can be utilized for 

this purpose by predicting Ap as a function of θp solely and keeping other 5 input features as constant. The 
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curve of the grain area plotted as a function of θp by defining constant values of other input variables is 

known as the Ceteris Paribus plot, and several such plots are presented in Fig. 12. The time feature is 

selected as t=1250 s. The fourth intermetallic grain from left is chosen, i.e. grain identification p= 4. Thus, 

the neighboring intermetallic grains (p-1) and (p+1) are 3 and 5 respectively. The red colored curves 

correspond to a constant current density of 5×105 A/cm2 whereas the black colored lines represent j of 

magnitude of 5×104 A/cm2. The image in Fig. 12(a) correspond to the orientation angle of both the 

neighboring grains kept at constant value of 0◦ whereas Fig. 12(a) reveals that these two grains 3 and 5 

have orientation angle of 90◦. The reference area Ai =1.70×10-14 m2 shown in the images is the original 

area of grain 4 (as defined in the initial condition of the phase field simulation). 

  

Fig. 12. The estimation results from the prediction model are presented in the images. Inspired from the concept of Ceteris 

Paribus plots, the prediction model tries to study the variation in area of 4th Cu6Sn5 intermetallic grain (grain identification p 

with p=4) with the change in its orientation angle (θp; p =4) when other input features are held constant. The orientation 

angles of neighboring grain p-1 on the left grain p is considered equal to that of another neighboring grain p+1 on the right of 

grain p. That is, θp-1 = θp+1 = 0 ◦ in (a) whereas θp-1 = θp+1 =90 ◦ in (b). The value of time (t) in both images is 1250 s. The red 

colored predicted curves in the two images correspond to the constant current density of magnitude 5×105 A/cm2 whereas the 

black colored curve is predicted for j value kept constant at 5×104 A/cm2. The dotted green line corresponds to the numerical 

value of area (Ai) of the grain p at t =0 (initial condition of the phase field simulation). 

As shown in Fig. 12(a) and 12(b), at t= 1250 s, the area of grain 4 is predicted to become smaller and 

smaller as its orientation angle (θp) increases from 0 to 90◦. It is important to note the effect of the 

orientation angles of the neighboring grains as well. As revealed in the Fig. 12(a), when the neighboring 

grains have orientation angle of 0◦, these grains will not only grow faster than their adjacent intermetallic 
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grains with larger orientation angle but also grow at the expenses of the later. So, when the grain 3 and 

grain 5 have orientation angle of 0◦, the grain 4 for θp =90◦ is predicted to have an area of 1.7055×10-14 

m2 at t=1250 s and j=5×104 A/cm2. It could be understood that though the grain 4 has first grown due to 

combined electromigration and diffusion, but has again reduced to an area (nearly equal to its initial area) 

due to the presence of larger neighboring grains. The reduction in area is more pronounced at larger current 

density of 5×105 A/cm2. In Fig. 12(a), the grain 4 with θp =90◦ is estimated to be reduced to an area of 

2.43×10-15 m2 at t=1250 s, and this is very small compared to the initial area Ai. 

The prediction results in Fig. 12(b) illustrate another scenario regarding the roles of the orientation 

angles of the surrounding intermetallic grains. When 3rd and 5th grains have orientation angle of 90◦, the 

grain 4 is predicted to have an area always larger than Ai at all values of orientation angles in the range 0-

90◦ at t=1250 s for both values of current densities. The grain 4 grows at the expense of its neighboring 

grains, and this phenomenon is more pronounced at larger current density and smaller θp. With the increase 

in θp, the grain’s area gradually decreases, and this is more severe at higher magnitude of current density. 

At θp=0◦, the areas of the grain 4 corresponding to t=1250 s for j=5×104 A/cm2 and j=5×105 A/cm2 are 

respectively 2.016×10-14 m2 and 3.899×10-14 m2. When the orientation angle of this grain changes to 90◦, 

the area values predicted at j=5×104 A/cm2 and j=5×105 A/cm2 are 1.90×10-14 m2 and 2.70×10-14 m2 

respectively. 

The physically informed neural network has clearly revealed that the orientation of a grain, and its 

neighboring grains has a significant effect on the growth kinetics of the Cu6Sn5 intermetallic grains at the 

interface of Cu-Sn interconnects subjected to electric current stressing. Moreover, the computational 

efficiency of these machine learning models are expected to enable the accelerated design of material 

interfaces characterized with multi-variate phenomena and mechanisms. 
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5. Limitations of the simulation 

The above findings reveals that the morphology of intermetallic layer is significantly related to the 

anisotropy nature of electric conductivity, since the driving forces of electromigration are different for 

grains with different orientations. This consolidates the conclusions proposed based on experimental study 

that the low-resistance route for electron flow may be formed by the preferential epitaxial growth of 

intermetallics [65]. The developed phase field model is beneficial for digging the mechanism of materials’ 

selective growth behaviour in the environment of  electric current, as well as helpful for providing some 

inspiration to understand the microstructure evolution and preferential grain growth under various types 

of loadings, such as temperature gradient [22] and magnetic field [75]. However, it should be mentioned 

that the present model do not take into account the concentration field since that the concentration 

gradients in the same phase region are small based on the experimental studies [76, 77], the ruling out of 

concentration field would better inspect the effect arising from current density at the cost of negligible 

accuracy. Despite it was reported that the electric current drives the dominant growth of intermetallics and 

it is mainly related to the electric properties of intermetallic grains [30, 31, 78], which is confirmed and 

further clarified  in this study, the anisotropies of the interfacial energy [37] and diffusion coefficient [66, 

79] may affect the growth behavior of the  grains. It is anticipated that the above-mentioned limitations of 

the present model will be tackled in the forthcoming study together with considering effects of other 

factors. 

6. Conclusions 

In this study, a phase field model taking into account the electric field is developed to study the 

growth behaviour of multiple Cu6Sn5 grains in the intermetallic layer under electric current stressing, and 

the generated datasets is utilized to train the ANN and subsequently build a prediction model, with focuses 
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on clarifying how the intermetallic grain grows when considering the anisotropy of electric conductivity. 

The following conclusions can be drawn from this work: 

(1) Simulation results show that the anisotropy of electric conductivity induces different growth rates 

for grains with different orientations. The electromigration investigation cases of multiple 

intermetallic grains further confirm that grain grows faster and more preferentially prevails in the 

intermetallic phase when the direction of the applied electric current is along the c-axis of the 

intermetallic grain, which is qualitatively consistent with the previous experimental study. 

(2) The initial distribution characteristics of intermetallic grain orientations are found to seriously 

affect the competitive and preferential growth of grains. Compared with the case having an 

ascending order in the magnitude of orientation angles of the grains, the grain growth is more 

obvious for the case with relatively random orientated intermetallic grains. 

(3) The grains with higher electric conductivity along the current direction grow faster, and those 

grains dominate the thickening and coarsening process in intermetallic phase. It is revealed by 

the simulation that the faster growth of grains mainly depends on the higher local electric field 

near the phase interfaces. 

(4) The physically informed neural network model was utilized to predict the area of a grain as a 

function of its orientation angle, while maintaining the other features as constant. This grain area 

function was then determined for two different constant values of other three features orientation 

angle of a neighboring grain, orientation angle of another neighboring grain, and applied current 

density. It is revealed that the increase of orientation angle is responsible for the decrease in its 

area during current stressing. When both neighboring grains have orientation angle of 0◦, these 

neighbors grow at the expense of the area of the intermetallic grain. On the other hand, when 

both the neighboring intermetallic grains are oriented at 90◦, the grain expands in areas at their 
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expense. The area expansion and reduction of the grain is more pronounced at larger current 

density.  
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